最小二乘法

合集下载

最小二乘法定义

最小二乘法定义

最小二乘法定义最小二乘法(Least Squares Method,简称LS)是指在数学中一种最常见的数据拟合方法,它是一种统计学意义上的估计方法,用来找出未知变量和已知变量之间的关系,其中模型参数是通过最小化数据集误差的平方和来估计的。

一、定义:最小二乘法(Least Squares Method)是指在数学中最常见的数据拟合方法,它是一种统计学意义上的估计方法,用来确定未知变量与已知变量之间的关系,其中模型参数是通过最小化数据集误差的平方和来估计的。

二、基本原理:最小二乘法的基本原理是利用数据点与一个被称为“模型函数”的预设函数之间的差异,来从中估计出模型函数的参数。

具体来说,这一差异可以以误差的平方和来衡量,最小二乘法就是最小这一平方和的方法。

三、步骤:1. 构造未知变量的模型函数,其中当需要拟合的参数数目大于等于给定数据点的个数时,就会导致一定的形式多项式模型函数有正解;2. 求解模型函数的最小平方误差的最优解,即求解参数的数值;3. 根据最优解找出最小平方误差的值;4. 对模型函数进行评价,判断是否尽可能地满足数据点;5. 若满足,则用找出的模型函数来预报未来的参数变化情况。

四、应用:1. 拟合统计图形:通过最小二乘法,可以得到曲线拟合的参数,绘制出统计图形的曲线,用来剖析统计数据;2. 回归分析:可以用最小二乘法预测变量和另一变量之间的关系,如:股票收益与股价价格之间的关系,从而得到有用的分析结果;3. 模型拟合:最小二乘法可以估计精确数据模型参数,这些模型参数可与实验数据相同;4. 图像分析:最小二乘法可用于分析图像特征,如:平面图像的特征提取与比较,目标图像分类,等;5. 信号处理:最小二乘法的应用也可扩展到信号处理领域,用该方法对信号和噪声之间的关系进行拟合,来消除信号中的噪声。

最小二乘法的概念

最小二乘法的概念

最小二乘法1. 概念定义最小二乘法(Least Squares Method)是一种数学优化方法,用于找到一组参数,使得观测数据与模型预测值之间的平方误差最小。

它通过对误差的平方和进行最小化来估计未知参数的值。

在最小二乘法中,我们假设存在一个线性模型来描述观测数据与未知参数之间的关系。

给定n个观测数据点(xi, yi),其中xi是自变量,yi是因变量,我们可以将线性模型表示为:yi = β0 + β1 * xi + εi其中β0和β1是待估计的未知参数,εi是服从正态分布的随机误差。

我们的目标是找到最佳拟合线,使得所有数据点到该线的距离之和最小。

2. 重要性最小二乘法在统计学和数据分析中具有广泛应用,并且具有以下重要性:2.1 参数估计通过最小二乘法可以估计出线性回归模型中的未知参数。

这些参数对于理解和解释观测数据与自变量之间关系非常重要。

例如,在经济学中,可以使用最小二乘法来估计供需曲线、收入弹性等经济模型中的参数。

2.2 模型拟合最小二乘法可以用于拟合数据,并找到最佳拟合线或曲线。

通过最小化误差平方和,我们可以找到与观测数据最接近的模型。

这对于预测和预测未来数据点非常有用。

2.3 假设检验在统计推断中,最小二乘法还可以用于假设检验。

我们可以利用最小二乘估计的参数进行假设检验,以确定自变量与因变量之间是否存在显著关系。

2.4 模型诊断除了参数估计和模型拟合外,最小二乘法还可以用于诊断模型的适应性和有效性。

通过分析残差(观测值与预测值之间的差异),我们可以检查模型是否满足所假设的条件,并进行必要的修正。

3. 应用最小二乘法广泛应用于各个领域,包括但不限于以下几个方面:3.1 线性回归分析线性回归是最常见的应用之一。

通过将观测数据与线性模型进行拟合,我们可以估计出自变量与因变量之间的关系。

线性回归可以用于预测、关联分析和因果推断等。

3.2 时间序列分析时间序列分析是对随时间变化的数据进行建模和预测的方法。

最小二乘法知识

最小二乘法知识

最小二乘法知识最小二乘法是一种最优化方法,经常用于拟合数据和解决回归问题。

它的目标是通过调整模型参数,使得模型的预测值与观测值之间的差异最小。

最小二乘法的核心思想是最小化误差的平方和。

对于给定的数据集,假设有一个线性模型y = β₀ + β₁x₁ + β₂x₂ + ... +βₙxₙ,其中β₀, β₁, β₂, ... , βₙ 是需要求解的未知参数,x₁, x₂, ... , xₙ 是自变量,y 是因变量。

那么对于每个样本点 (xᵢ, yᵢ),可以计算其预测值ŷᵢ = β₀ + β₁x₁ + β₂x₂ + ... + βₙxₙ,然后计算预测值与实际值之间的差异 eᵢ = yᵢ - ŷᵢ。

最小二乘法的目标是使得误差的平方和最小化,即最小化目标函数 E = ∑(yᵢ - ŷᵢ)²。

对于简单的线性回归问题,即只有一个自变量的情况下,最小二乘法可以通过解析方法求解参数的闭合解。

我们可以通过求偏导数,令目标函数对参数的偏导数等于零,求解出参数的最优解。

然而,对于复杂的非线性回归问题,解析方法通常不可行。

在实际应用中,最小二乘法通常使用迭代方法进行求解。

一种常用的迭代方法是梯度下降法。

梯度下降法通过反复进行参数更新的方式逐步降低目标函数的值,直到收敛到最优解。

具体而言,梯度下降法首先随机初始化参数的值,然后计算目标函数对于每个参数的偏导数,根据偏导数的方向更新参数的值。

迭代更新的过程可以通过下式表示:βₙ = βₙ - α(∂E/∂βₙ)其中,α 是学习率参数,控制每次更新参数的步长。

学习率需要适当选择,过小会导致收敛过慢,过大会导致震荡甚至不收敛。

最小二乘法除了可以用于线性回归问题,还可以用于其他类型的回归问题,比如多项式回归。

在多项式回归中,我们可以通过增加高次项来拟合非线性关系。

同样地,最小二乘法可以通过调整多项式的系数来使得拟合曲线与实际数据更加接近。

除了回归问题,最小二乘法还可以应用于其他领域,比如数据压缩、信号处理和统计建模等。

最小二乘法估计

最小二乘法估计

机器学习领域应用
线性回归模型
在机器学习中,最小二乘法是线性回归模型的核心算法之一。通过最小化预测值与实际值之间的平方误差,可以 训练出预测精度较高的线性回归模型。
特征选择
最小二乘法也可以用于特征选择,通过计算特征的系数大小,可以判断哪些特征对模型的预测结果影响较大,从 而进行特征筛选和优化。
06 最小二乘法的未来发展与 研究方向
用于研究社会现象和人类行为 ,如市场调查、人口统计等。
最小二乘法的历史与发展
历史
最小二乘法最早由法国数学家勒让德 于1805年提出,并广泛应用于天文、 物理和工程领域。
发展
随着计算机技术的进步,最小二乘法 在数据处理和统计分析方面得到了广 泛应用和改进,出现了多种扩展和变 种,如加权最小二乘法、广义最小二 乘法等。
加权最小二乘法(WLS)
总结词
详细描述
加权最小二乘法是一种改进的线性回 归分析方法,通过给不同观测值赋予 不同的权重来调整误差的平方和。
加权最小二乘法(Weighted Least Squares,WLS)是对普通最小二乘法 的改进,通过给不同观测值赋予不同 的权重来调整误差的平方和。这种方 法适用于存在异方差性的数据,即误 差项的方差不恒定的情况。通过合理 地设置权重,WLS能够更好地拟合数 据并提高估计的准确性。
广泛的应用领域
最小二乘法适用于多种统计模型 和回归分析,是线性回归分析中 最常用的方法之一。
缺点
假设限制
01
最小二乘法要求数据满足线性关系和误差项独立同分布等假设,
这些假设在实际应用中可能难以满足。
对异常值敏感
02
虽然最小二乘法相对稳健,但仍然容易受到异常值的影响,可
能导致估计结果偏离真实值。

最小二乘法实现公式

最小二乘法实现公式

最小二乘法实现公式最小二乘法是一种常用的回归分析方法,用于估计线性模型中的参数。

它通过最小化观测值与预测值之间的误差平方和,来确定最优的参数估计值。

下面将详细介绍最小二乘法的原理和应用。

一、最小二乘法原理最小二乘法的基本思想是,通过找到一条线(或曲线),使得该线与观测数据点之间的误差最小化。

具体来说,对于一个线性模型 y = β0 + β1x + ε,其中 y 是因变量,x 是自变量,β0 和β1 是待估计的参数,ε 是误差项。

最小二乘法的目标是找到最优的参数估计值β0* 和β1*,使得观测值与预测值之间的误差平方和最小化。

为了实现最小二乘法,需要定义一个衡量误差的函数,通常选择误差的平方和作为目标函数。

即最小化目标函数:min Σ(yi - (β0 + β1xi))^2通过对目标函数求导,可以得到参数估计值的解析解。

令目标函数的导数等于零,可以得到以下两个方程:Σyi - nβ0 - β1Σxi = 0Σxiyi - β0Σxi - β1Σxi^2 = 0解这个方程组,可以求得最优的参数估计值β0* 和β1*。

最小二乘法的核心思想就是通过最小化误差平方和来确定最优的参数估计值。

二、最小二乘法的应用最小二乘法广泛应用于各个领域的回归分析中。

下面将介绍最小二乘法在经济学、统计学和工程学中的应用。

1. 经济学中的应用最小二乘法在经济学中被广泛应用于建立经济模型和估计经济参数。

经济学家可以利用最小二乘法来估计需求函数、供给函数和生产函数等。

通过回归分析,经济学家可以研究各种经济变量之间的关系,并对经济现象进行解释和预测。

2. 统计学中的应用最小二乘法是统计学中最常用的参数估计方法之一。

通过最小二乘法,统计学家可以估计线性回归模型中的参数,并进行统计推断。

最小二乘法还可以用于解决多重共线性、异方差性和自相关等统计问题。

3. 工程学中的应用最小二乘法在工程学中有着广泛的应用。

例如,在信号处理中,最小二乘法可以用于信号滤波和信号重构。

最小二乘方法

最小二乘方法

最小二乘方法:原理、应用与实现一、引言最小二乘方法是数学优化中的一种重要技术,广泛应用于各种实际问题中。

它的基本原理是通过最小化误差的平方和来估计未知参数,从而实现数据拟合、线性回归等目标。

本文将对最小二乘方法的原理、应用与实现进行详细介绍,并探讨其在实际问题中的应用。

二、最小二乘方法的原理最小二乘方法的基本原理可以概括为:对于一组观测数据,通过最小化误差的平方和来估计未知参数。

具体而言,设我们有一组观测数据{(xi, yi)},其中xi是自变量,yi是因变量。

我们希望找到一个函数f(x),使得f(xi)与yi之间的差距尽可能小。

为了量化这种差距,我们采用误差的平方和作为目标函数,即:J = Σ(f(xi) - yi)²我们的目标是找到一组参数,使得J达到最小值。

这样的问题称为最小二乘问题。

在实际应用中,我们通常采用线性函数作为拟合函数,即:f(x) = a + bx其中a和b是待估计的参数。

此时,最小二乘问题转化为求解a 和b的问题。

通过求解目标函数J关于a和b的偏导数,并令其为零,我们可以得到a和b的最优解。

这种方法称为最小二乘法。

三、最小二乘方法的应用数据拟合:最小二乘方法在数据拟合中有广泛应用。

例如,在物理实验中,我们经常需要通过一组观测数据来估计某个物理量的值。

通过采用最小二乘方法,我们可以找到一条最佳拟合曲线,从而得到物理量的估计值。

这种方法在化学、生物学、医学等领域也有广泛应用。

线性回归:线性回归是一种用于预测因变量与自变量之间关系的统计方法。

在回归分析中,我们经常需要估计回归系数,即因变量与自变量之间的相关程度。

通过采用最小二乘方法,我们可以得到回归系数的最优估计值,从而建立回归方程。

这种方法在经济学、金融学、社会科学等领域有广泛应用。

图像处理:在图像处理中,最小二乘方法常用于图像恢复、图像去噪等问题。

例如,对于一幅受到噪声污染的图像,我们可以采用最小二乘方法对图像进行恢复,从而得到更清晰、更真实的图像。

最小二乘法名词解释

最小二乘法名词解释

最小二乘法名词解释
最小二乘法是一种数学优化方法,用于通过对观测数据进行拟合来求解线性回归问题。

它的基本原理是通过最小化观测数据与模型预测值之间的平方误差和,来确定最优的模型参数。

在最小二乘法中,有一些关键的术语和概念需要解释。

1. 观测数据:观测数据是在实际测量或观察中收集到的一系列数值。

在最小二乘法中,这些观测数据通常由两个向量表示,一个是自变量向量X,另一个是因变量向量Y。

2. 模型参数:模型参数是用于预测因变量的线性回归模型中的常数项和各个自变量的系数。

在最小二乘法中,我们通过最小化残差的平方和来确定最优的模型参数。

3. 残差:残差是观测数据的真实值与模型预测值之间的差异。

在最小二乘法中,我们希望通过调整模型参数使得残差的平方和最小化。

4. 残差平方和:残差平方和是残差的平方值的总和,用于衡量模型预测结果与观测数据之间的总体误差。

最小二乘法的目标就是通过最小化残差平方和来求解最优的模型参数。

5. 矩阵表示:最小二乘法可以利用矩阵运算来进行求解,这样可以简化计算并提高效率。

通常,自变量矩阵X、因变量矩阵Y、模型参数向量β和残差向量ε都是以矩阵形式表示。

6. 最优解:在最小二乘法中,我们寻找的是使得残差平方和最小的模型参数向量。

这个最优解可以通过数学推导或迭代算法来求解。

最小二乘法是一种常用且有效的回归分析方法,它在统计学、经济学、工程学等多个领域都有广泛的应用。

通过最小二乘法,我们可以利用已知的观测数据来估计未知的模型参数,从而进行预测、分析和决策。

最小二乘法(least sqaure method)

最小二乘法(least sqaure method)

最小二乘法(least sqauremethod)专栏文章汇总文章结构如下:1:最小二乘法的原理与要解决的问题2 :最小二乘法的矩阵法解法3:最小二乘法的几何解释4:最小二乘法的局限性和适用场景5:案例python实现6:参考文献1:最小二乘法的原理与要解决的问题最小二乘法是由勒让德在19世纪发现的,形式如下式:标函数 = \sum(观测值-理论值)^2\\观测值就是我们的多组样本,理论值就是我们的假设拟合函数。

目标函数也就是在机器学习中常说的损失函数,我们的目标是得到使目标函数最小化时候的拟合函数的模型。

举一个最简单的线性回归的简单例子,比如我们有 m 个只有一个特征的样本: (x_i, y_i)(i=1, 2, 3...,m)样本采用一般的 h_{\theta}(x) 为 n 次的多项式拟合,h_{\theta}(x)=\theta_0+\theta_1x+\theta_2x^2+...\theta_nx^n,\theta(\theta_0,\theta_1,\theta_2,...,\theta_n) 为参数最小二乘法就是要找到一组\theta(\theta_0,\theta_1,\theta_2,...,\theta_n) 使得\sum_{i=1}^n(h_{\theta}(x_i)-y_i)^2 (残差平方和) 最小,即,求 min\sum_{i=1}^n(h_{\theta}(x_i)-y_i)^22 :最小二乘法的矩阵法解法最小二乘法的代数法解法就是对 \theta_i 求偏导数,令偏导数为0,再解方程组,得到 \theta_i 。

矩阵法比代数法要简洁,下面主要讲解下矩阵法解法,这里用多元线性回归例子来描:假设函数h_{\theta}(x_1,x_2,...x_n)=\theta_0+\theta_1x_1+...+\t heta_nx_n 的矩阵表达方式为:h_{\theta}(\mathbf{x})=\mathbf{X}\theta\\其中,假设函数 h_{\theta}(\mathbf{x})=\mathbf{X}\theta 为 m\times1 的向量, \theta 为 n\times1 的向量,里面有 n 个代数法的模型参数。

最小二乘法

最小二乘法

最小二乘法一、最小二乘法概述最小二乘法是1795年高斯在预测星体运行轨道最先提出的,它奠定了最小二乘估计理论的基础.到了20世纪60年代瑞典学者Austron 把这个方法用于动态系统的辨识中,在这种辨识方法中,首先给出模型类型,在该类型下确定系统模型的最优参数。

我们可以将所研究的对象按照对其了解的程度分成白箱、灰箱和黑箱。

于其内部结构、 机制只了解一部分,对于其内部运行规律并不十分清楚,这样的研究对象通常称之为 “灰箱”;如果我们对于研究对象的内部结构、 内部机制及运行规律均一无所知的话,则把这样的研究对象称之为“黑箱”。

研究灰箱和黑箱时,将研究的对象看作是一个系统,通过建立该系统的模型,对模型参数进行辨识来确定该系统的运行规律。

对于动态系统辨识的方法有很多,但其中应用最广泛,辨识效果良好的就是最小二乘辨识方法,研究最小二乘法在系统辨识中的应用具有现实的、广泛的意义。

应用最小二乘法对系统模型参数进行辨识的方法有离线辨识和在线辨识两种离线辨识是在采集到系统模型所需全部输入输出数据后,用最小二乘法对数据进行集中处理,从而获得模型参数的估计值;而在线辨识是一种在系统运行过程中进行的递推辨识方法,所应用的数据是实时采集的系统输入输出数据,应用递推算法对参数估计值进行不断修正,以取得更为准确的参数估计值。

假设一个SISO 系统如下图所示:图1 SISO 系统结构图其离散传递函数为:(1)输入输出的关系为:)()()()(1k y k e z G k u =+•- (2)进一步,我们可以得到:)()()()()(11k e z B k u z A k y +⋅=⋅-- (3)其中,扰动量)(k e 为均值为0,不相关的白噪声。

将式(3)写成差分方程的形式:)()()2()1()()2()1()(2121k e n k u b k u b k u b n k y a k y a k y a k y n n +-⋯+-+-+--⋯-----=(4)令T n k u k u k u n k y k y k y k ])()2()1()()2()1([)(-⋯----⋯----=ϕnn n n z a z a z a z b z b z b z A z B z G ---------+⋯++++⋯++==221122111111)()()(][2121n nb b b a a a ⋯⋯=θ则式(4)可以写为:)()()(k e k k y T+=θϕ (5)将上述式子扩展到N 个输入、输出观测值{)(),(k y k u },k=1,2,…,N+n 。

最小二乘法截距公式

最小二乘法截距公式

最小二乘法截距公式
最小二乘法公式为a=y(平均)-b*x(平均)。

在研究两个变量(x,y)之间的相互关系时,通常可以得到一系列成对的数据(x1,y1),(x2,y2)...(xm,ym);将这些数据描绘在x-y直角坐标系中,若发现这些点在一条直线附近,可以令这条直线方程如a=y(平均)-b*x(平均)。

其中:a、b是任意实数。

扩展资料:
最小二乘法通过最小化误差的平方和寻找数据的最佳函数匹配。

利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。

还可用于曲线拟合,其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。

根据样本数据,采用最小二乘估计式可以得到简单线性回归模型参数的估计量。

但是估计量参数与总体真实参数的接近程度如何,是否存在更好的其它估计式,这就涉及到最小二乘估计式或估计量的最小方差(或最佳)性、线性及无偏性。

最小二乘法

最小二乘法

第七章 最小二乘法最小二乘法是实验数据处理的一种基本方法。

它给出了数据处理的一条准则,即在最小二乘以一下获得的最佳结果(或最可信赖值)应使残差平方和最小。

基于这一准则所建立的一整套的理论和方法,为随机数据的处理提供了行之有效的手段,成为实验数据处理中应用十分广泛的基础内容之一。

自1805年勒让得(Legendre )提出最小二乘法以来,这一方法得到了迅速发展,并不断完善,成为回归分析、数理统计等方面的理论基础之一,广泛地应用于天文测量,大地测量及其他科学实验的数据处理中。

现代,矩阵理论的发展及电子计算机的广泛应用,为这一方法提供了新的理论工具和得力的数据处理手段。

随着计量技术及其他现代科学技术的迅速发展,最小二乘法在各学科领域将获得更为广泛的应用。

本章仅涉及独立的测量数据的最小二乘法处理。

以等精度线性参数的最小二乘法为中心,叙述最小二乘法原理,正规方程和正规方程的解,以及最小二乘估计的精度估计。

最后给出测量数据最小二乘法处理的几个例子。

7 .1 最小二乘法原理县考察下面的例子。

设有一金属尺,在温度()C t ︒条件下的长度可表示)1(0t y y t α+=式中 y 0——温度为0°C 时的金属尺的长度;α——金属材料的线膨胀系数; t ——测量尺长时的温度。

现要求给出y 0与α的数值。

为此,可在t 1与t 2两个温度条件下分别测得尺的长度l 1与l 2,得方程组()()⎭⎬⎫+=+=20210111t y l t y l αα由此可解得y 0与α。

事实上,由于测量结果l 1与l 2含有测量误差,所得到的y 0与α的值也含有误差。

显而易见,为减小所得y 0与α值的误差,应增加y t 的测量次数,以便利用抵偿性减小测量误差的影响。

设在n t t t ,,,21 温度条件下分别测得金属尺的长度n l l l ,,,21 共n 个结果,可列出方程组⎪⎪⎭⎪⎪⎬⎫+=+=+=)1()1()1(0202101n n t y l t y l t y l ααα)1(0t y y t α+=但由于方程式的数目n 多于待求量的数目,所以无法直接利用代数法求解上述方程组。

最小二乘法

最小二乘法

最小二乘法原理
若随机误差为正态分布,且不存在系统误差,对一 个量 X进行等权n次测量,得到数据x1,x2,…xn时
x
n
xi
i 1
n
n
n 2
u x
2 v i
n
nn 1
i 1
上式表明, vi2 越小,不确定度越小,所得x测量结果的可 信赖程度越高。当 v 为最小时,所得的结果可信赖程度
i 1 i i 1
最高。
最小二乘法的产生是为了解决从一组测量值 (n次)中,寻找t个最佳估计值(n >t ) 的问题。
待测量: X 1 , X 2 ,..., X t
直接测量量: Y1 , Y2 ,..., Yn
, Xt ) l2 Y2 f 2 ( X 1 , X 2 , , X t ) M ln Y f ( X , X , , X ) n n 1 2 t
uD 2
对高度h 的测量不确定度影响显著的因素主要有: 高度的测量重复性引起的不确定度 uh1 测微仪示值误差引起的不确定度
uh 2
4. 不确定度评定:评定不确定度分量,并给出其数 值和自由度 (1)计算直径D的标准不确定度 uD
测量重复性引起的标准不确定度分量 uD1
uD1 sD
sD 6
yi fi x1, x2 ,

vi li fi x1, x2 , , xt
, xt
测量数据 l1 , l2 ,, ln 的残差为 vi li yi
称为残差方程。
实例:取6次不同温度,测定该不同温度下铜棒的长度 共6次,测量数据如下表,试估计0℃时的铜棒长度l0和铜 的线膨胀系数α。
测量数据处理的完整步骤

最小二乘法

最小二乘法

数值分析作业最小二乘法最小二乘法是提供“观测组合”的主要工具之一,它依据对某事件的大量观测而获得最佳”结果或最可能”表现形式。

如已知两变量为线性关系y= a+ bx,对其进行n(n> 2)次观测而获得n对数据。

若将这n对数据代入方程求解a,b之值则无确定解。

最小二乘法提供了一个求解方法,其基本思想就是寻找最接近”这n 个观测点的直线。

最小二乘法不仅是19世纪最重要的统计方法,而且还可以称为数理统计学之灵魂。

相关回归分析、方差分析和线性模型理论等数理统计学的几大分支都以最小二乘法为理论基础。

作为其进一步发展或纠正其不足而采取的对策,不少近现代的数理统计学分支也是在最小二乘法基础上衍生出来的。

正如美国统计学家斯蒂格勒(S.M. Stigler)所说,最小二乘法之于数理统计学犹如微积分之于数学”最小二乘法创立的历史过程充满着丰富的科学思想,这些对今日的数学创造仍有着重要的启示意义。

本文旨在全面认识最小二乘法的历史系统发育过程以及创立者的思路。

一先驱者的相关研究天文学和测地学的发展促进了数理统计学及其他相关科学的发展。

丹麦统计史家哈尔德曾指出天文学在数理统计学发展中所起的作用。

“天文学自古代至18 世纪是应用数学中最发达的领域。

观测和数学天文学给出了建立数学模型及数据拟合的最初例子,在此种意义下,天文学家就是最初的数理统计学家。

天文学的问题逐渐引导到算术平均,以及参数模型中的种种估计方法,以最小二乘法为顶峰。

” 这也说明了最小二乘法的显著地位。

有关统计计算思想记载的著作要首推天文学家罗杰柯茨的遗作,即1715年其所发论文中所蕴含的统计方法,亦即对各种观测值赋予加权后求其加权平均。

尽管当时得到认可,然而事实证明如此计算的结果不太精确。

1749年,欧拉(L. Euler,1707—1783)在研究木星和土星之间相互吸引力作用对各自轨道影响时,最后得到一个含8个未知量75个方程的线性方程组。

欧拉的求解方法繁杂而奇特,只能看作是一次尝试。

最小二乘法计算例题

最小二乘法计算例题

最小二乘法计算例题最小二乘法是数学统计学上十分常见的一种拟合方法,它可以用来在数据中拟合出一条曲线,使得一组数据集合最佳地拟合出一条曲线或多条曲线。

最小二乘法是统计方法中最常用的拟合方法,它的原理是根据给定的多个数据点,寻找最佳拟合的曲线,使得拟合曲线与所有已知数据点之间的距离最小。

最小二乘法最容易计算的曲线就是一元多项式曲线,它是任意数据点之间拟合出的参数曲线。

本文将介绍小二乘法的计算步骤和过程,以及一个示例,以帮助大家更加熟练地掌握这一知识点。

一、最小二乘法的概念最小二乘法是数学中一种常用的拟合方法,也叫参数估计法,它可以用来拟合给定的数据点,使得这个数据集合的距离最小。

最小二乘法的原理是尽可能最大地减少直线与数据点之间的距离,以期搜索到最佳拟合的曲线。

二、最小二乘法的计算步骤1.确定样本数据:首先要确定给定的样本数据,这些样本数据将用来计算最小二乘法获得最优拟合曲线。

2.计算最小二乘法残差:根据给定的数据点,可以计算出残差,残差就是拟合曲线与样本数据点之间的差值。

3.求解最小二乘公式:最小二乘法求解公式是用来获得拟合曲线中参数的最优值的公式。

4.使用极点最小二乘法:最小二乘法的极点求解法是求解最优拟合曲线的另一种方法,它的步骤与最小二乘法的求解步骤一样,但是使用了不同的数学方法。

三、最小二乘法计算例题下面我们来看一个具体的拟合曲线计算例题,此例题中要使用到最小二乘法,拟合给定的数据点。

所需数据: y=(3,2,1,0,-1)x=(1,2,3,4,5)要求:拟合出一条一元多项式曲线解法:1.计算残差:根据数据点求出残差,残差的计算公式为yi-ai-bxi,在此例题中,可以求出:3-a-b=12-a-2b=11-a-3b=20-a-4b=-1-1-a-5b=-32.求解最小二乘公式:根据求出的残差,可以求出最小二乘求解公式,公式为:b=(nΣxiyi-ΣxiΣyi) / (nΣx2i-(Σxi)2)a=(Σyi-bΣxi) / n在此例题中,可以求出:b= ( 5*6-15*-3) / (5*30-225) = 0.4a= (-3-0.4*15) / 5 = -2.23.使用极点最小二乘法:最后,我们可以使用极点最小二乘法,计算出最优的拟合曲线,其结果为:y=-2.2+0.4x因此,我们可以得出本例题的答案:y=-2.2+0.4x。

最小二乘法

最小二乘法

最小二乘法中文名称:最小二乘法英文名称:least square method定义:在残差满足VPV为最小的条件下解算测量估值或参数估值并进行精度估算的方法。

其中V为残差向量,P为其权矩阵。

应用学科:测绘学(一级学科);大地测量学(二级学科)最小二乘法(又称最小平方法)是一种数学优化技术。

它通过最小化误差的平方和寻找数据的最佳函数匹配。

利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。

最小二乘法还可用于曲线拟合。

其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。

最小二乘法最小二乘法(least square)历史简介1801年,意大利天文学家朱赛普·皮亚齐发现了第一颗小行星谷神星。

经过40天的跟踪观测后,由于谷神星运行至太阳背后,使得皮亚齐失去了谷神星的位置。

随后全世界的科学家利用皮亚齐的观测数据开始寻找谷神星,但是根据大多数人计算的结果来寻找谷神星都没有结果。

时年24岁的高斯也计算了谷神星的轨道。

奥地利天文学家海因里希·奥尔伯斯根据高斯计算出来的轨道重新发现了谷神星。

高斯使用的最小二乘法的方法发表于1809年他的著作《天体运动论》中。

法国科学家勒让德于1806年独立发现“最小二乘法”,但因不为世人所知而默默无闻。

勒让德曾与高斯为谁最早创立最小二乘法原理发生争执。

1829年,高斯提供了最小二乘法的优化效果强于其他方法的证明,因此被称为高斯-莫卡夫定理。

(来自于wikipedia)最小二乘法公式最小二乘法公式∑(X--X平)(Y--Y平)=∑(XY--X平Y--XY平+X平Y平)=∑XY--X平∑Y--Y平∑X+nX平Y平=∑XY--nX平Y平--nX平Y平+nX平Y平=∑XY--nX平Y平∑(X --X平)^2=∑(X^2--2XX平+X平^2)=∑X^2--2nX平^2+nX平^2=∑X^2--nX平^2Y=kX+b: k=((XY)平--X平*Y平)/(X^2--(X平)^2 ;b=Y平--kX平X平=1/n∑X i;(XY)平=1/n∑X i Y i最小二乘法原理用各个离差的平方和M=Σ(i=1到n)[y i-(ax i+b)]^2最小来保证每个离差的绝对值都很小。

最小二乘法的计算方法

最小二乘法的计算方法

题目
最小二乘法计算公式是什么?
答案解析
最小二乘法公式是一个数学的公式,在数学上称为曲线拟合,此处所讲最小二乘法,专指线性回归方程!最小二乘法公式为a=y(平均)-b*x(平均)。

最小二乘法((又称最小平方法)是一种数学优化技术。

它通过最小化误差的平方和寻找数据的最佳函数匹配。

利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。

扩展资料:
普通最小二乘估计量具有上述三特性:
1、线性特性
所谓线性特性,是指估计量分别是样本观测值的线性函数,亦即估计量和观测值的线性组合。

2、无偏性
无偏性,是指参数估计量的期望值分别等于总体真实参数。

3、最小方差性
所谓最小方差性,是指估计量与用其它方法求得的估计量比较,其方差最小,即最佳。

最小方差性又称有效性。

这一性质就是著名的高斯一马尔可夫((Gauss-Markov)定理。

这个定理阐明了普通最小二乘估计量与用其它方法求得的任何线性无偏估计量相比,它是最佳的。

最小二乘法讲解

最小二乘法讲解
1
历史简介
• 1801年,意大利天文学家朱赛普·皮亚齐发现了第一颗小行星谷神星。 经过40天的跟踪观测后,由于谷神星运行至太阳背后,使得皮亚齐失 去了谷神星的位置。随后全世界的科学家利用皮亚齐的观测数据开始 寻找谷神星,但是根据大多数人计算的结果来寻找谷神星都没有结果。 时年24岁的高斯也计算了谷神星的轨道。奥地利天文学家海因里 希·奥尔伯斯根据高斯计算出来的轨道重新发现了谷神星。
5
例题
6
例题
7
例题
8
例题
9
例题
10
例题
11
例题
12
例题
13
例题
14
例题
15
习题
假设关于某设备的使用年限x和所支出的维修费用y (万元)有如下统计资料:
x
2
3
4
5
6
y
2.2 3.8 5.5 6.5 7.0
(1)求回归直线方程;
(2)估计使用10年 时,维修费用约是
多少?
16
习题
解:根据散点图知 x 与 y 成线性相关关系
(1)列表
xi
yi
xi 2
xi yi
2
2.2
4
4.4
3
3.8
9
11.4
4
5.5
16
22
5
6.5
25
32.5
6
7.0
36
42
合计 20
25
90 112.3
x4
y5
17
习题
112.3 5 4 5 b 90 5 42 1.23 a 5 1.23 4 0.08
2
历史简介
• 高斯使用的最小二乘法的方法发表于1809年他的著作《天体运动论》 中。

最小二乘公式

最小二乘公式

最小二乘法公式最小二乘法公式∑(X--X平)(Y--Y平)=∑(XY--X平Y--XY平+X平Y平)=∑XY--X平∑Y--Y平∑X+nX平Y平=∑XY--nX平Y平--nX平Y平+nX平Y平=∑XY--nX平Y平∑(X --X平)^2=∑(X^2--2XX平+X平^2)=∑X^2--2nX平^2+nX平^2=∑X^2--nX平^2最小二乘公式(针对y=ax+b形式):a=(NΣxy-ΣxΣy)/(NΣx^2-(Σx)^2)b=y(平均)-ax(平均)最小二乘法在我们研究两个变量(x, y)之间的相互关系时,通常可以得到一系列成对的数据(x1, y1、x2, y2 (x)m , y m);将这些数据描绘在x -y直角坐标系中(如图1), 若发现这些点在一条直线附近,可以令这条直线方程如(式1-1)。

Y计= a0 + a1 X (式1-1)其中:a0、a1 是任意实数为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,将实测值Y i与利用(式1-1)计算值(Y计=a0+a1X)的离差(Y i-Y计)的平方和〔∑(Y i -Y计)2〕最小为“优化判据”。

令: φ = ∑(Y i -Y计)2 (式1-2)把(式1-1)代入(式1-2)中得:φ = ∑(Y i -a0 - a1 Xi)2 (式1-3)当∑(Y i-Y计)平方最小时,可用函数φ 对a0、a1求偏导数,令这两个偏导数等于零。

(式1-4)(式1-5)亦即:m a0 + (∑Xi )a1 = ∑Y i (式1-6)(∑Xi )a0 + (∑Xi2 )a1 = ∑(Xi, Yi) (式1-7)得到的两个关于a0、a1为未知数的两个方程组,解这两个方程组得出:a0 = (∑Y i)/ m -a1(∑Xi) / m (式1-8)a1 = [∑Xi Y i - (∑Xi ∑Y i)/ m] / [∑Xi2 - (∑Xi)2 / m)] (式1-9)这时把a0、a1代入(式1-1)中, 此时的(式1-1)就是我们回归的元线性方程即:数学模型。

最小二乘法

最小二乘法

(1)正交性的有关性质
在线性代数欧氏空间理论中 , 将 R 3 中两个向量 x,y之间的夹角φ满足的关系式 xTy=‖x‖2‖y‖2cosφ 推广到Rn. T
x y 1 设x,y∈Rn, 由Cauchy不等式 1 || x ||2 || y ||2
从而得到Rn中两个向量之间的夹角为
x y arccos || x ||2 || y ||2
(i , f ) ( xk )i ( xk ) f ( xk )
k 0
m
则:
(i , f ) ci (i ,i )
拟合函数 f ( x) c00 ( x ) c11 ( x ) cnn ( x)
例1
设函数y=f(x)的离散数据如下表所示, 试用二次 多项式拟和上述数据,并求平方误差. i 0 xi 0 yi 1.000 1 2 3 4 5 0.2 0.4 0.6 0.8 1 1.221 1.492 1.822 2.226 2.718
T
定理1
设x, y是Rn中的向量, x与y正交的充分必要条
件为xTy=0.
证明 必要性. 当x与y正交,它们的夹角φ=π/2, 有xTy=0. 充分性. 当xTy=0, φ=π/2, 即x与y正交. 注:如果x与y正交, 记为x⊥y
定理2
设x, y∈Rn, 且x⊥y, 那 么: ‖x+y‖22=‖x‖22+‖y‖22.
假设x⊥R(A), 即αiTx=0 (i=1,2,…,k). 从而ATx=0 另一方面,如果ATx=0, 那么有z∈Rk, 使Az=y∈R(A). 这时,yTx=zTATx=0,即x⊥y. 由z的任意性, 得Az是任意的, 因此x⊥R(A). 由这个定理, 容易得到: 推论1 设A是n×k阶矩阵, 那么R(A)有唯一的正交 补子空间N(AT).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在线性代数中已作详细讨论的线性空间有: (1) 维实向量的全体,按照向量的加法和数乘,构成实数域上的线 性空间。 (2) 行列的矩阵的全体,按照矩阵的加法和数乘,构成实数域上的线性 空间。 推广到连续函数,有 (3) --定义在区间上的连续实值函数的全体,按通常函数的加法与数乘, 构成上的线性空间,称为连续函数空间。 (4) —定义在区间上次数不超过次的多项式的全体,同样按照定义加法 和数乘,也构成上的线性空间。显然是的子空间。 以上的几个实数域上的线性空间,可扩展为复数域上的线性空间。 以后如无特别指明,均讨论为实数域上的线性空间。 定义 6.1.1 对数域上的线性空间,有,若存在不全为零的数,使得下列 等式成立
给出如下定理: 定理6.1.1 设 ,由它们的内积构成的矩阵(称为Gram矩阵)
则 非奇异的充分必要条件是 线性无关。 证明:注意到非奇异(即)的充分必要条件是齐次方程组
() 只有零解 。 必要性:现设有系数使线性组合,则有 即满足齐次方程组。于是,如果非奇异(即),则有,从而线性无关。 充分性:设有参数满足前式的齐次方程组,则它们满足上式,进而有, 按内积的正定性,可知有。如果线性无关,则,从而齐次方程组只有零 解,故非奇异。
类似地,对带权内积为 对连续空间,设 ,则可定义内积和导出2-范数(也称Euclid范数)
同样,也给出上的权函数,从而可定义带权的内积和范数
所谓权函数,其严格定义是: 定义 6.1.7 如果是定义在(有限或无限)上的非负函数;存在();对非负 的,由必有 ,则称为上的一个权函数。
对连续函数空间的内积,有一个与最小二乘原理应用有关的性质,
(正定性)
(2) ,
(齐次性)
(3)
(三角不等式)
则称为线性空间上的范数,并且称为为赋范线性空间,仍记为。
对于连续函数空间,并定义(并证明满足范数3个基本条件)的如下3种范
数:
范数:
范数:
范数
这就是空间应用中最基本的3种范数。
定义 6.1.4 设是赋范线性空间,其范数为,若序列,如果有
,使
则称序列依范数收敛于,记作
从上述又可见(可能有的读者一时还不太懂),如果有线性空间理 论的基础知识,逼近问题的陈述必定更清晰和简洁。
3. 线性空间 在数学理论中,对集合引起某种的所谓结构(即关系),从而称该集合 为某种数学空间。最基本又常用的一种空间结构是:对集合的任意两个 元素确定一种“加法”和对某数域(通常用到的是实数域R,对于复数域 C也有类似的推广)上的任意一个数与集合中任意一个元素确定一种“数 乘法”,并称这两种运算为“集合在数域上的线性运算”或“线性空间结 构”,而把所论的集合、数域、线性运算合称为线性空间。
6.2 曲线拟合的(线性)最小二乘法 1. 最小二乘拟合问题的提法
设在个节点上给定的离散函数,即给定离散数据(或称实验数据或观测 数据) ( 6.2.1 ) 要在某特定的函数空间中找出一个函数作为的近似函数模型,要求在出 的值与的误差(工程中也称残差)
( 6.2.2 ) 的平方和最小,即(记)
(6.2.3 ) 或为了体现数据的重要性不同,引入对应上不同点的权函数值,因而( 6.2.3 )式写成更一般的带权形式(6.2.4) 这就是最小二乘法拟合问题,称为在个节点()上的最小二乘法(即拟合曲 线或经验公式,或称为回归线)。通常,在简单情形下,取为多项式空 间,这时 为
则称是线性相关的,否则,等式只对才能成立,则称是线性无关的。
定义6.1.2 称是由线性空间中个线性无关元素生成的,即都有 这时,
(1) 记 (2) 称 是的一组基; (3) 称是维的; (4) 系数称为在基下的坐标,并记为 如果的线性无关的元素可以无限地扩充,则称为无限维的;就是无限维 的。
特别地,用中的一组线性无关函数生成则,有 由坐标惟一确定。 对n次多项式空间,设,则
(6.2.5) 在一般情形下,取为线性空间,其中是上已知的线性无关组,这时为
(6.2.6) 显然(6.2.5)是(6.2.6)的一种特殊情形。由于两式中关于待定参量(也称回
归系数) 都是一次的,所以是一种线性模型,而上述问题称为线性最小二乘拟 合。
ቤተ መጻሕፍቲ ባይዱ2. 最小二乘解的解法/法方程 如何由已知数据求出最小二乘解呢?
至此,我们已经引进了赋范线性空间、内积线性空间及其有关概念。 需要特别指出的是有关内积、正交,包括后面还要讲到的正交函数和正 交多项式等概念及其有关性质,均可分为“连续意义下”和“离散意义 下”的两种定义。以上对主要是在连续意义下给出定义,对于离散点列 上的情形(这是在处理离散数据过程中回碰到的问题),我们在遇到时说 明。
第六章 曲线拟合的最小二乘法/函数平方逼近初 步
这一章也属于近似计算的范畴,或者说是函数逼近的问题,主要介绍离 散数据的最小二乘拟合,也叫做曲线拟合的最小二乘法,并自然地过渡 到连续函数的最佳平方逼近。为了使问题有更清晰、更简洁的数学表 述,在这一章中还复习、补充一些可供使用的线性空间基本理论和正交 多项的基本知识,并鼓励大家使用这些理论知识。
通过内积,又引进正交(垂直)的概念。 定义 6.1.6 设为内积空间,若对任意的,有 则称与正交。 通过内积,还可以导出中的范数,即对于,可定义并证明满足范数定义 的如下范数 根据上述定义,现在有: 对于空间,如上已定义过,设,, 则内积为 从而导出的范数为向量2-范数 更一般地,对给定实数称为权系数,中带权的内积及导出的2-范数分别 为

对 及取,上述定义就称在上一致收敛于;若依范数收敛于,则上
述定义称平方收敛或均方收敛。
5. 内积/内积空间
在平面几何和空间几何中,以坐标表示的任意两个向量x, y数量积(或
称“·乘”)分别定义为
推广到线性空间中,任意两个向量,的数量积称为内积,记为,并定义 为 同时将引进内积的线性空间称为n维Euclid(欧几里得)空间,一般仍记 为。Euclid空间便自然地推广了夹角和正交(垂直)的概念。又对于复 线性空间,也有类似的结构,并称为空间。 定义6.1.5 设是数域(如实数域或复数域)上的线性空间,若对,有中一个 数与之对应,记为,满足条件: (1) ,其中 (2) , 为的共轭 (3) , (4) , 则称为与的内积;而定义了内积的线性空间X称为内积空间。只要不混 淆,内积空间仍可为X。
下面,为了简便,有时就使用inf场合写成min。 (2) 最佳一致逼近 即对,求出,使得 或用赋范线性空间的范数记号 最佳一致逼近也称为chebyshev逼近。
从上述可见,最小二乘拟合问题实际上就是针对已知的离散数据的 (离散)平方逼近问题;插值问题就是针对已知的离散函数点,要求以插 值函数与已知离散点相等为逼近标准的逼近问题。本书除了重点介绍针 对离散数据 的多项式插值(第5章)、最小二乘曲线拟合(本章6.2-6.4 节)以外,还介绍连续函数最佳平方逼近的初步知识(本章6.5节,并 冠以*号)。
2. 逼近问题 这里指的 是“连续函数逼近问题”,即对连续函数如,研究用有限维空间 中的简单函数如来近似(逼近)连续函数。为此,需按如下步骤进行: 首先,要选择逼近函数的类型。通常就在中的一个有限维空间(或多项 式空间)中选择一个函数(或多项式),作为的逼近函数。 其次,对逼近函数提出按什么度量标准来逼近。有了这些标准(即条 件),才能按这些标准确定出具体的。 通常研究的两种基本的逼近问题是: (1) 最佳平方逼近 即对,求出,使得 或用赋范线性空间的范数记号 这里inf是下确界记号,其定义见有关微积分教材,不妨直观地理解为它 是“最小的更精确、更严格的数学表达”。
6.1* 拟合问题与逼近问题/线性空间基础知识 1. 拟合问题
假设已获得某函数关系的成批离散实验数据或观测数据,拟合问题 就是为这样的大量离散数据建立对应的、近似的连续模型的一种应用基 础问题。所建立的模型的基本形式是一条曲线(一元函数),称为拟合曲 线或经验公式。
其实,利用离散数据建立对应的连续模型,上一章讨论的插值方法 也是其中一种,在那里,其特点是要求目标模型(即插值函数)要过已 知的离散点,且所得的插值函数通常用来作非插值节点上的近似计算。 在这一章的拟合问题中,它不要求目标模型(即拟合曲线)精确地过已 知的各离散点(离散点本来就可能不准确),只是要求目标模型符合已 知离散点分布的总体轮廓,并且尽可能接近已知的数据,即与已知的离 散点的误差按某种意义尽量地小。关键就在“误差按某种意义尽量地 小”这一点上,可以有多种不同提法,通常采用“误差的平方和最小”的 原则,这就是“最小二乘拟合问题”。
由n+1 个坐标惟一确定,而为线性无关基。记
是n+1维空间,也是的一个n+1维子空间。又如
都是的子空间。
4. 范数/赋范线性空间
对线性空间的元素引进范数的概念,从而称为赋范线性空间。对和已在
第2章2.5节引进范数定义,下面引进一般的线性空间范数的定义。
定义6.1.3 设,若存在惟一的实数,满足条件
(1) ,其中当且仅当
例6.2.1 例已知数据如下:
试求其拟合曲线。 解 根据上面数据,图近似一条直线 , 得法方程
解之得 得拟合曲线
平方误差
这相当于求多元函数 (6.2.7)
的极小值。按照求极值的必要条件,应有 整理为 这里引用两个离散点列上的函数值向量的内积
(6.2.8) 于是有
(6.2.9) 它称为的法方程或正则方程,是阶线性代数方程组,其系数矩阵为
(6.2.10) 这时,如果非奇异,则方程组(6.2.9)的解存在惟一。但需注意,这 里的每个元素中的是离散点集上的值向量组,而不是连续函数组,由的 线性无关未必能使线性无关,因此,不能直接引用6.1节内积性质定理 6.1.1,由的线性无关性而推断非奇异。 但由于在应用中通常取且,故借助更详细的理论推导,可知这里的 确是非奇异的,因而有惟一解 ,从而得 并且由于(6.2.7)式的是非负的上无界的二次函数,没有最大值,但 可以达到最小值,现在既然存在惟一的解解,则在 从上述求解过程可见,根据已知数据求最小二乘拟合曲线有两个主要步 骤:①选定拟合模型的形式,即选定②求最小二乘解,即求出拟合曲 线,它转化为求解相应的法方程。
相关文档
最新文档