云南财经大学2017年数学建模竞赛校内选拔赛题目.doc

合集下载

2017数学建模国赛题目

2017数学建模国赛题目

2017数学建模国赛题目(实用版)目录一、2017 年数学建模国赛简介二、2017 年数学建模国赛题目概述三、题目 A:基于无人机的森林防火系统四、题目 B:城市交通信号灯控制优化五、题目 C:无人机航拍图像处理及应用六、题目 D:新型城镇化背景下的乡村规划正文一、2017 年数学建模国赛简介2017 年数学建模国赛,即 2017 年全国大学生数学建模竞赛,是中国工业与应用数学学会主办的面向全国大学生的群众性科技活动,目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和方法的改革。

二、2017 年数学建模国赛题目概述2017 年数学建模国赛共有四个题目,分别是:基于无人机的森林防火系统、城市交通信号灯控制优化、无人机航拍图像处理及应用、新型城镇化背景下的乡村规划。

这四个题目分别涉及到林业、交通、航空、城乡规划等领域,旨在考查学生运用数学知识解决实际问题的能力。

三、题目 A:基于无人机的森林防火系统题目 A 要求参赛选手针对森林防火问题,建立无人机监测森林火情的数学模型,并结合实际数据,分析火情发生的可能性,为森林防火工作提供科学依据。

此题考查了学生对无人机技术、遥感技术、数据挖掘等领域的综合运用能力。

四、题目 B:城市交通信号灯控制优化题目 B 要求参赛选手针对城市交通信号灯控制问题,建立数学模型,分析交通流量、拥堵状况等数据,优化信号灯控制策略,提高道路通行能力。

此题考查了学生对交通工程、数据分析、优化算法等领域的综合运用能力。

五、题目 C:无人机航拍图像处理及应用题目 C 要求参赛选手针对无人机航拍图像处理问题,研究图像去噪、增强、拼接等技术,并结合实际场景,分析航拍图像在农业、地质、环保等领域的应用价值。

此题考查了学生对图像处理、计算机视觉、遥感技术等领域的综合运用能力。

高教社杯全国大学生数学建模竞赛题目(四套ABCD)

高教社杯全国大学生数学建模竞赛题目(四套ABCD)

高教社杯全国大学生数学建模竞赛题目(四套ABCD)当我第一遍读一本好书的时候,我仿佛觉得找到了一个朋友;当我再一次读这本书的时候,仿佛又和老朋友重逢。

我们要把读书当作一种乐趣,并自觉把读书和学习结合起来,做到博览、精思、熟读,更好地指导自己的学习,让自己不断成长。

让我们一起到店铺一起学习吧!2017年高教社杯全国大学生数学建模竞赛题目A题 CT系统参数标定及成像CT(Computed T omography)可以在不破坏样品的情况下,利用样品对射线能量的吸收特性对生物组织和工程材料的样品进行断层成像,由此获取样品内部的结构信息。

一种典型的二维CT系统如图1所示,平行入射的X射线垂直于探测器平面,每个探测器单元看成一个接收点,且等距排列。

X射线的发射器和探测器相对位置固定不变,整个发射-接收系统绕某固定的旋转中心逆时针旋转180次。

对每一个X射线方向,在具有512个等距单元的探测器上测量经位置固定不动的二维待检测介质吸收衰减后的射线能量,并经过增益等处理后得到180组接收信息。

CT系统安装时往往存在误差,从而影响成像质量,因此需要对安装好的CT系统进行参数标定,即借助于已知结构的样品(称为模板)标定CT系统的参数,并据此对未知结构的样品进行成像。

请建立相应的数学模型和算法,解决以下问题:(1) 在正方形托盘上放置两个均匀固体介质组成的标定模板,模板的几何信息如图2所示,相应的数据文件见附件1,其中每一点的数值反映了该点的吸收强度,这里称为“吸收率”。

对应于该模板的接收信息见附件2。

请根据这一模板及其接收信息,确定CT系统旋转中心在正方形托盘中的位置、探测器单元之间的距离以及该CT系统使用的X射线的180个方向。

(2) 附件3是利用上述CT系统得到的某未知介质的接收信息。

利用(1)中得到的标定参数,确定该未知介质在正方形托盘中的位置、几何形状和吸收率等信息。

另外,请具体给出图3所给的10个位置处的吸收率,相应的数据文件见附件4。

财经大学校内数学建模选拔赛试题

财经大学校内数学建模选拔赛试题

年云南财经大学校内数学建模选拔赛试题注意事项:()请希望参加今年全国大学生数学建模竞赛的同学积极参加校内选拔赛,但是要务必能够保证八月底提前一周回校参加集训,月日月日参加竞赛。

()请各位同学下列个问题中选一个问题,人组队,按照全国大学生数学建模竞赛()模板和格式要求书写论文。

()论文写好后,打印纸质文件,于月日点前将论文交送到统数学院办公室王天友老师,同时填写报名表。

人力资源安排问题某高校数学系现有名教师,其职称结构和相应的工资水平分布如表所示。

目前,该系承接有个项目,其中项项目实践,需要到现场监理,分别在地和地,主要工作在现场完成;另外项是理论研究,分别在地和地,主要工作在办公室完成。

由于个项目来源于不同客户,并且工作的难易程度不一,因此,各项目的合同对有关技术人员的报酬不同,具体情况如表所示。

表不同项目和各种人员的报酬标准为了保证项目质量,各项目中必须保证各职称人员结构符合客户的要求,具体情况如表所示。

表各项目对专业技术人员结构的要求说明:表中“~”表示“大于等于,小于等于”,其他有“~”符号的同理;项目,由于技术要求较高,人员配备必须是讲师以上,助教不能参加;教授相对稀缺,而且是质量保证的关键,因此,各项目客户对教授的配备有不能少于一定数目的限制。

各项目对其他职称人员也有不同的限制或要求;各项目客户对总人数都有限制;由于、两项目是在办公室完成,所以每人每天有元的管理费开支。

() 收费是按人工计算的,而且个项目总共同时最多需要的人数是,多于数学系现有人数。

因此需解决的问题是:如何合理的分配现有的技术力量,使数学系每天的直接收益最大?并写出相应的论证报告。

() 以一个星期为周期,如果每个教授最多只能工作四天,每个副教授最多只能工作天,讲师和助教每天都可以工作。

此时如何合理的分配现有的技术力量,使数学系一个星期的直接收益最大?并写出相应的论证报告。

客房价格确定和预定问题旅游景区中的宾馆主要提供举办会议和游客使用。

2017年数模美赛校内选拔题(1)

2017年数模美赛校内选拔题(1)

自习教室开放的优化管理
近年来,大学用电浪费比较严重,集中体现在学生上晚自习上,一种情况是去某个教室上自习的人比较少,但是教室内的灯却全部打开,第二种情况是晚上上自习的总人数比较少,但是开放的教室比较多。

另外,教学楼内楼道的长明灯也会造成能源的浪费。

在电力资源不变的条件下,要求我们提供一种最节约、最合理的管理方法。

请结合校园实际,建立数学模型完成以下问题:
1.在楼道内某些地方可以安装声控灯,当然声控灯的成本要高于普通灯。

请从节约用电的角度,建立数学模型,给出应如何分配布置声控灯和长明灯具体方案。

2.区分不同季节和时间,建立数学模型,讨论教室开放时间,开放教室数目以及教室中开灯的数目和时间,对于整体用电量的影响,并给出具体操作方案,以达到节约用电的目的.
3.除了完成数学建模论文之外。

请你给学校有关部门写一封建议书(不超过一页),阐述你的设计方案并简要解释方案的合理性及必要性。

注:1. 论文必须用英文写作;但论文封面的小组成员名字使用中文,以备核对。

2. 交论文的时间和地点见报名通知。

2017年全国研究生数学建模竞赛题

2017年全国研究生数学建模竞赛题

2017年全国研究生数学建模竞赛题D如果有,请给出建模方案,包括可能的数学公式,不同温度和偏置电流下的带宽响应曲线,并与问题3的模型进行比较。

1 附录1:激光器L-I 模型一般认为,VCSEL 的各参数间满足如下规律:()()()0,th T I P I N T η-= (1)其中:0P :激光器输出的光功率,在L-I 中光功率也用L 来表示,即L-I 也可以写成P-II :注入到激光器的外部驱动电流,包含外部加载的偏置电流Ib 和信号电流,在无信号时为偏置电流Ib()T η :L-I 曲线的斜率,从能量转换角度看,斜率对应于转换效率(L-I 曲线横坐标是电流I ,纵坐标是出光功率P ,斜率越高,相同电流I 对应的输出光功率越高,相同电能转换为的光能越多,即转换效率越高);与温度相关(),th I N T :阈值电流;激光器电流超过该值则激光发光;与载流子数和温度相关N :载流子数假设:1. 转换效率()T η受温度影响较小,即()T η近似于常数η ;2. ()()0,th th off I N T I I T =+其中0th I 为常数,()off I T 是与温度相关的经验热偏置电流(即激光器内部的偏置电流,随激光器温度的变化而变化,有别于外部人为加载的激光器偏置电流Ib )。

这样(1)式可以简化为()()00th off P I T I I η=--(2)将()off I T 表示为:()0n off n n I T T a ∞==∑(3)式错误!未找到引用源。

中的温度T 受外界环境温度0T 和自身的温度影响,自身的温度与器件产生的瞬时功率VI 相关,即受V-I 特性(电压-电流特性)影响:()00th thdT IV P R T tT d τ+=-- (5)th R :VCSEL 热阻抗|th τ :热时间常数0T :环境温度I :偏置电流Ib (输入电流)V :输入电压式(2)-(5)就是VCSEL 的一种经验模型,其中的参数需要根据实验数据确定,表1给出的仅是一组(并非最佳)参考初值:表1 L-I 模型初值设置即模型参数提取参数参考初值 单位 η0.5 - 0th I 0.3E-3 A th R2.6E3 ℃/W 0a 1.246E-3 A 1a -2.545E-5 A/K 2a 2.908E-7A/K 23a -2.531E-10 A/K 3 4a1.022E-12A/K 42 附录2:基于速率方程的带宽模型推导将偏置电流和注入激光器的外部驱动电流代入激光器速率方程,得到:()()()()0000011i th off n p n G dN N I I I T N N Sdt q S G dS N N S S S N dt ετεηβττ-⎧--⎪+⎪⎨-⎪⎪+==-++⎩-- (6)VCSEL 输出的光功率与光子数成正比,假定比例因子为k0P kS = (7)VCSEL 的小信号响应建模的思路为:1. 求出稳态下的电流s I 、载流子数s N 、光子数s S ;稳态,即无驱动信号情况下,激光器中的电流为直流信号,此时电流是稳定的,载流子数、光子数也都是稳定的;2. 加载小信号(小信号为信号幅度非常小的信号,不同频率处的信号幅度不同,因此小信号是与频率相关的小幅度信号),可以假定小信号引入了与频率相关的电流、载流子数、光子数,数学表达可以写成:()i f ,()n f ,()s f3. 给VCSEL 加载上小信号后,原来速率方程中的电流、载流子数、光子数N :载流子数t : 时间i η:注入效率;或转换效率;q :物理常量,电子电量,1.6×10-19库伦0N :透明载流子数,当载流子数N 大于透明载流子数的时候,激光器有源区发生粒子束反转,满足产生激光的其中一个条件 I :注入的外部驱动电流;I off (T ):与温度相关的偏置电流 n τ :载流子复合寿命p τ :光子寿命(p: Photon, 光子)0G :增益系数,激光产生的阈值条件,增益大于总损耗; S :光子数β :受激辐射耦合系数 ε :增益压缩因子则表示为稳态下的值与小信号下引入信号变化的值的和。

2017全国大学生数学建模竞赛解析演示文档

2017全国大学生数学建模竞赛解析演示文档

巡视,而每名工人的上班时间向后错
下,可以不巡视,但要在相应点
35分钟,即在前一位工人开始巡视的
处休息,休息的时间就是该点的
35分钟之后,再安排另一名工人巡视。 巡视需要的时间。
h
28
问题3 —— 上班时间
因此,得到如下的排班方法:第1
如果第1名工人在第一轮巡视后,
名工人在8:00开始巡视(上班或换
由于每天是24小时,而换班的时
间点,工作7个小时开始换班。
间是7小时,三班下来是21小时,所
例如,第一班工作的4名工人上 以每天的换班时间比前一天提前3小
班的时间分别是8:00、8:35、9:10和 时。
h
31
问题3 —— 换班时间
也就是说,第一班的4名工人在
一周7天,有7个24小时,恰好有
第二天的换班时间分别是5:00、5:35、 8个21小时,所以这种换班方案一周
表12 第5组巡视的时间表(部分,包含进餐时间)
h
25
问题2 —— 进餐时间
表13 第6组(机动)的巡视时间表
h
26
问题3 —— 上班时间
4.问题3的求解
问题3是考虑错时上班能否更省
如果能省,应在哪个地方省;如 果不能省,这个问题也就没有讨论的
人力。
4.1 上班时间
必要了。 每个点的检查时间(共计67分钟)
题(Vehicle Routing Problem, VRP), 没有那糟糕,如果一个人能巡视3~5
而且还是带有时间窗口的车辆路径问 个点的话,一个班也就是 6~9 个人。
题(Vehicle Routing Problem with
因此,只需要启发式算法就可能得到

2017数学建模国赛题目

2017数学建模国赛题目

2017数学建模国赛题目(原创版)目录一、2017 数学建模国赛题目概述二、题目 A:空中交通管制1.题目背景及要求2.题目分析3.建模思路与方法三、题目 B:城市交通信号控制1.题目背景及要求2.题目分析3.建模思路与方法四、题目 C:新能源汽车充电设施规划1.题目背景及要求2.题目分析3.建模思路与方法五、总结正文一、2017 数学建模国赛题目概述2017 年全国大学生数学建模竞赛的题目分为 A、B、C 三个题目,分别涉及空中交通管制、城市交通信号控制和新能源汽车充电设施规划三个领域。

这些题目旨在考验参赛选手的数学建模能力、创新思维和团队协作精神,以及运用数学方法解决实际问题的能力。

二、题目 A:空中交通管制1.题目背景及要求题目 A 的背景是在未来,无人机和飞行汽车等空中交通工具将逐渐普及,如何有效地对空中交通进行管制以确保安全和效率。

题目要求参赛选手建立一个空中交通管制系统,通过优化算法和数学模型对空中交通进行实时监控和调度。

2.题目分析此题需要参赛选手充分了解无人机和飞行汽车的运行特点,以及空中交通管制的基本原理。

此外,需要运用运筹学、优化方法等相关知识,建立一个能够实现空中交通实时监控和调度的数学模型。

3.建模思路与方法首先,需要对无人机和飞行汽车的飞行数据进行收集和整理,建立一个飞行数据库。

其次,根据空中交通管制的基本原理,建立一个空中交通管制的数学模型。

最后,运用优化算法对模型进行求解,实现空中交通的实时监控和调度。

三、题目 B:城市交通信号控制1.题目背景及要求题目 B 的背景是城市交通信号控制问题,要求参赛选手设计一个信号控制系统,使得城市道路交通更加顺畅、安全和环保。

2.题目分析此题需要参赛选手充分了解城市交通信号控制的基本原理和方法,以及道路交通流的运行特点。

此外,需要运用运筹学、优化方法等相关知识,建立一个能够实现城市交通信号控制的数学模型。

3.建模思路与方法首先,需要对城市道路交通流的数据进行收集和整理,建立一个交通流数据库。

2017年第九届全国大学生数学竞赛(非数学类)预赛题和参考答案

2017年第九届全国大学生数学竞赛(非数学类)预赛题和参考答案

第九届全国大学生数学竞赛(非数学类)预赛题和参考答案2017年10月28日一、填空题(满分42分,共六小题,每小题7分) 1、已知可导函数满足,则()f x == 。

2、求极限()n n n +∞→22sin lim π == 。

3、设(,)w f u v =具有二阶连续偏导数,且==+u x cy v x cy -,,其中c 为非零常数。

则21xx yy w w c - = _ ___。

4、设()f x 有二阶导数连续,且(0)'(0)0,"(0)6f f f ===,则240(sin )lim x f x x → = ______ 。

5、不定积分 sin 2sin 2(1sin )x e xI dx x -=-⎰= ________。

6. 记曲面222z x y =+和224z x y =--围成空间区域为V ,则三重积分Vzdxdydz ⎰⎰⎰ = ____ ______。

二、(本题满分14分)设二元函数(,)f x y 在平面上有连续的二阶偏导数。

对任何角度α,定义一元函数()(cos ,sin )g t f t t ααα=。

若对任何α都有(0)0dg dt α=且22(0)0d g dt α>。

证明)0,0(f 是(,)f x y 的极小值。

三、(本题满分14分)设曲线Γ为在2221x y z ++=,1x z +=,0,0,0x y z ≥≥≥上从(1,0,0)A 到(0,0,1)B 的一段。

求曲线积分⎰Γ++=xdz zdy ydx I 。

四、(本题满分15分)设函数()0f x >且在实轴上连续,若对任意实数t ,有||()1t x e f x dx +∞---∞≤⎰,则,()a b a b ∀<,2()2bab a f x dx -+≤⎰。

五、(本题满分15分)设{}n a 为一个数列,p 为固定的正整数。

若()lim n p n n a a λ+→∞-=,其中λ为常数,证明 limnn a npλ→∞=。

2017第六届数学中国数学建模国际赛赛题

2017第六届数学中国数学建模国际赛赛题

(请先阅读“2017第六届数学中国国际赛赛前通知和论文参考模版”)问题A(MCM):飓风和全球变暖飓风(包括西北太平洋被称为“台风”的风暴,印度洋和西南太平洋的“强热带气旋”)也是非常具有破坏性的,经常造成数百人偶尔成千上万人的死亡。

许多气象学家都认为,过去几十年地球表面出现了全球变暖(大约半摄氏度),这种趋势可能会持续下去。

问题是,全球变暖对飓风活动意味着什么?请构建一个合理的模型,测量全球变暖的程度和全球飓风活动的强度,并估计它们之间的关系。

(请先阅读“2017第六届数学中国国际赛赛前通知和论文参考模版”)问题B(MCM):电子邮件中的手写分析手写分析是一种非常具体的调查形式,用于将人们与书面证据联系起来。

书面调查人员通常在法庭或刑事调查中被要求,以确定书写样本是否来自特定的人。

由于现在很多语言证据出现在电子邮件中,从广义上讲,手写分析还包括如何通过电子邮件的语言特征来识别作者的问题。

作者归属是语言学家开始使用语言风格的可识别特征来识别有争议文本的作者的过程,范围从词频到首选的句法结构。

电子邮件的内容往往比较短,作者的语言风格比较明显。

通过捕捉电子邮件的语言特征,请构建一个有效的模型来识别作者。

您可以使用安然电子邮件数据集来训练和测试您的模型。

安然电子邮件数据集链接:/enron_Email.html(请先阅读“2017第六届数学中国国际赛赛前通知和论文参考模版”)问题C(ICM):如何打击人口贩运7月30日标志着联合国打击贩卖人口世界日,这一天的重点是结束对从事强迫劳动或性工作的儿童,妇女和男子的犯罪活动。

全世界有二千七百万到四千五百八十万人被困在某种形式的现代奴隶制中。

受害者被迫成为性工作者,乞丐和童兵,或作为家庭工人,工厂工人和制造业,建筑业,矿业,商业捕鱼业等工人的奴隶。

人口贩运在世界上每个国家都有发生,包括美国在内,这是一个非常有利可图的产业,每年每年产生1500亿美元的非法利润。

2017年数学竞赛预赛(非数学类)试题评分标准及参考答案 .doc

2017年数学竞赛预赛(非数学类)试题评分标准及参考答案 .doc

2017年数学竞赛预赛(非数学类)试题评分标准及参考答案一 1. 已知可导函数满足, 则()f x解: 在方程两边求导得'()co s +()s i n f x x f x x =,'()+()tan sec f x f x x x =.从而tan tan ()sec xdx xdx f x e xe dx c -⎛⎫⎰⎰=+ ⎪⎝⎭⎰l n c o sl n c o s211==cos cos cos x x ee dx c x dx c x x --⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎰⎰ ()=cos tan =sin cosx x c x c x ++ 由于(0)1f =,故()sin cos f x x x =+。

2.求()n n n +∞→22sin lim π解 由于 ()=+n n 22sin π()ππn n n -+22sin=2sin 1⎛⎫→。

3.设(,)w f u v =具有二阶连续偏导数,且==+u x cy v x cy -,,其中c 为非零常数。

则21xx yy w w c-=_________。

解: 12+x w f f =,1112222xx w f f f =++,21()y w c f f =-,()()()22111122122111222=2yy w cf f c cf cf cf cf c f f f y∂=-=--+-+∂。

所以1221=4xx yy w w f c-。

4.设()f x 有二阶导数连续,且(0)'(0)0,"(0)6f f f ===,则240(sin )lim x f x x →=______解:21()(0)'(0)"()2f x f f x f x ξ=++,所以241(sin )"()sin 2f x f x ξ=。

这样244400(sin )"()sin lim=lim 32x x f x f xx x ξ→→=。

数学建模校内选拔赛答题要求与题目

数学建模校内选拔赛答题要求与题目

2017年度数学建模校内选拔赛答题要求(请详细阅读!)1、欢迎同学们参加此次【2017 年数学建模竞赛校内选拔赛】,参赛者以队为单位, 每队3人【必须自己组好队】。

为了争取好成绩,建议并鼓励跨系跨专业跨班级组队,三位队员要分工合作,最好有一位队员擅长数学建模和求解,有一位队员擅长算法和编程,有一位队员擅长写作论文。

请参赛队员对选拔题【任选一题】,尽量作答,不管是否完全完成,都请准时上交。

【2017年全国赛时间是9月14日晚上8点—9月17日晚上12点截止】2、欲了解有关全国大学生数学建模竞赛相关知识,请登陆-----(全国数学建模竞赛网站),-----(中山大学数模网站)3、2017年广西科技大学数模校内选拔赛题目(A、B题),附在最后4、交卷时间为2017年6月12日下午17:00前,(文件名为:数模论文+参赛队号,看共享中名单的参赛队编号)【请务必自己保留底稿,以防邮件含病毒打不开,需再次索取】同时将答案打印稿交到:三教三楼3北303理学院办公室代收!5、参赛队员可以充分使用各种图书资料、网络信息、计算机和软件以及各种实验手段来完成解答。

6、答卷要求:请按照附件“高教社”杯全国大学生数学建模竞赛论文格式规范进行答卷(附件的详细内容,选拔题目在最后)。

并按以下要求写成一篇完整的数学建模论文。

a: 摘要 b: 问题的重述与分析c:模型假设 d:模型的建立e:模型的简化和求解 f:结果分析与验证g: 模型的推广与改进 h:模型的优缺点分析。

8、请将承诺书(请详细填写好个人信息)放在论文的首页。

个人信息包含:每位队员所在的二级学院,专业,班级,姓名、性别、学号、联系电话(手机);(以上信息是向全国竞赛组委会报名需要)、排列第一者即为本队的队长。

【附件:高教社杯全国大学生数学建模竞赛论文格式规范(摘录)】●参赛队从A、B题中任选一题。

●论文(答卷)用白色A4纸单面打印,上下左右各留出至少2.5厘米的页边距。

2017数学建模国赛赛题

2017数学建模国赛赛题

2017数学建模国赛赛题一、问题背景与分析1.1 赛题背景2017年数学建模国赛赛题旨在考察参赛选手对于数学建模的理解和应用能力。

题目涵盖多个领域的知识,要求选手在给定的条件下,运用数学方法进行分析和建模,并给出切实可行的解决方案。

1.2 问题分析本次赛题涉及到XXX方面的问题(根据赛题实际情况,替换XXX 为具体领域)。

二、问题描述2.1 赛题背景描述(根据赛题实际情况,描述涉及领域的基本背景)2.2 问题陈述(根据赛题实际情况,描述具体问题,并给出条件和要求)三、模型建立与求解3.1 假设与符号定义(根据赛题实际情况,对问题进行假设,说明符号定义)3.2 模型建立(根据赛题实际情况,运用数学方法建立相应模型,并给出相应方程式或算法)3.3 模型求解(根据赛题实际情况,运用适当的数值计算方法对模型进行求解,并给出计算结果)四、结果分析与讨论4.1 结果展示(根据赛题实际情况,给出模型求解的结果,以表格、图示等方式展示)4.2 结果分析(根据赛题实际情况,对结果进行分析和解释,讨论结果的合理性和可行性)五、模型的优缺点与改进5.1 模型的优点(根据赛题实际情况,总结模型的优点,包括准确性、可靠性、适用性等方面)5.2 模型的缺点(根据赛题实际情况,指出模型的不足之处,可能存在的局限性或假设的不合理性)5.3 模型的改进(根据赛题实际情况,提出改进模型的方法或思路)六、总结6.1 主要内容回顾(对文章中的重要内容进行回顾,概括模型建立与求解的过程)6.2 结论(根据赛题实际情况,给出问题的解决方案,并阐述解决方案的有效性和可行性)七、参考文献(如有参考文献,列出相关文献的信息)本文根据2017数学建模国赛赛题,按照论文的格式进行了文章的撰写。

通过分析问题背景与条件、建立数学模型、求解模型,最终得出了切实可行的解决方案。

在模型建立与求解的过程中,我们运用了适当的数学方法和计算算法,对结果进行了分析和讨论,并提出了模型的优缺点和改进思路。

2017数学建模大赛赛题

2017数学建模大赛赛题

手写数字的稀疏特征提取
手写数字识别主要研究如何利用计算机自动识别由阿拉伯数字组成的数据符号,其在邮政编码、银行票据、统计报表识别等领域用途广泛。

由于手写数字的不规范性和多样性,加上为了识别精确而对数字图像进行高点阵扫描,从而使手写数字识别所要处理的信息不仅量大,而且复杂。

如何对手写数据进行特征提取,也就是找出其重要位点,是进行手写数字识别的核心。

任务1:针对附件所给出的0-9手写数字集,分别针对每一数字集合,找出其稀疏位点,同时能对其识别准确率进行验证。

(即:用不同于该数字的其它集合来判断是否能分类正确)任务2:研究由2-3个不同手写数据集所构成的集合,获取此时的重要位点,分析这些位点与任务1中位点是否有显著差异。

任务3:给出0-9手写数字集的特征提取和识别的基本方法。

数学建模技能大赛-决赛选答题(附答案)

数学建模技能大赛-决赛选答题(附答案)

【C1】U2合唱团在17分钟内得赶到演唱会场,途中必需跨过一座桥,四个人从桥的同一端出发,你得帮助他们到达另一端,天色很暗,而他们只有一只手电筒。

一次同时最多可以有两人一起过桥,而过桥的时候必须持有手电筒,所以就得有人把手电筒带来带去,来回桥两端。

手电筒是不能用丢的方式来传递的。

四个人的步行速度各不同,若两人同行则以较慢者的速度为准。

Bono需花1分钟过桥,Edge需花2分钟过桥,Adam需花5分钟过桥,Larry需花10分钟过桥。

他们要如何在17分钟内过桥呢?【C2】共有三类药,分别重1g,2g,3g,放到若干个瓶子中,现在能确定每个瓶子中只有其中一种药,且每瓶中的药片足够多,能只称一次就知道各个瓶子中都是盛的哪类药吗?如果有4类药呢?5类呢?N类呢(N可数)?如果是共有m个瓶子盛着n类药呢(m,n为正整数,药的质量各不相同但各种药的质量已知)?你能只称一次就知道每瓶的药是什么吗?注:当然是有代价的,称过的药我们就不用了。

【A3】周雯的妈妈是豫林水泥厂的化验员。

一天,周雯来到化验室做作业。

做完后想出去玩。

"等等,妈妈还要考你一个题目,"她接着说,"你看这6只做化验用的玻璃杯,前面3只盛满了水,后面3只是空的。

你能只移动1只玻璃杯,就便盛满水的杯子和空杯子间隔起来吗?" 爱动脑筋的周雯,是学校里有名的"小机灵",她只想了一会儿就做到了。

请你想想看,"小机灵"是怎样做的?【C4】假设有一个池塘,里面有无穷多的水。

现有2个空水壶,容积分别为5升和6升。

问题是如何只用这2个水壶从池塘里取得3升的水。

【C5】据说有人给酒肆的老板娘出了一个难题:此人明明知道店里只有两个舀酒的勺子,分别能舀7两和11两酒,却硬要老板娘卖给他2两酒。

聪明的老板娘毫不含糊,用这两个勺子在酒缸里舀酒,并倒来倒去,居然量出了2两酒,聪明的你能做到吗?【B6】假设排列着100个乒乓球,由两个人轮流拿球装入口袋,能拿到第100个乒乓球的人为胜利者。

2017年数学建模题目

2017年数学建模题目

2017年数学建模题目
2017年的数学建模题目可能会涉及到很多领域和知识点,这取决于具体的
赛事和组织者。

但我可以为你提供一些可能的题目,以供参考:
1. 城市交通流量预测:根据历史数据和实时数据,预测城市交通流量,为交通规划和调度提供决策支持。

2. 气候变化对农业的影响:分析气候变化对农作物生长和产量的影响,提出应对策略和措施。

3. 机器学习在医疗诊断中的应用:利用机器学习算法对医学影像数据进行分类和诊断,提高医疗效率和准确性。

4. 电商推荐系统:根据用户的购买记录和浏览行为,为用户推荐相关商品或服务,提高用户满意度和转化率。

5. 股票价格预测:根据历史股票数据和宏观经济指标,预测股票价格的走势,为投资者提供参考。

6. 物流优化:优化物流配送路线和车辆调度,降低运输成本和提高效率。

7. 能源消耗与碳排放:分析能源消耗和碳排放的关系,提出节能减排的方案和措施。

8. 社交网络分析:分析社交网络中的用户行为和关系,挖掘潜在的用户群体和市场机会。

9. 机器翻译:利用自然语言处理技术实现不同语言之间的自动翻译,提高跨语言交流的效率和准确性。

10. 图像识别:利用计算机视觉技术识别图像中的物体和特征,应用于安全监控、智能交通等领域。

这些题目只是可能的示例,具体的题目还需要根据赛事的要求和背景来定。

2017高教社杯全国大学生数学建模竞赛题目A.B

2017高教社杯全国大学生数学建模竞赛题目A.B

2016年高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题系泊系统的设计近浅海观测网的传输节点由浮标系统、系泊系统和水声通讯系统组成(如图1所示)。

某型传输节点的浮标系统可简化为底面直径2m、高2m的圆柱体,浮标的质量为1000kg。

系泊系统由钢管、钢桶、重物球、电焊锚链和特制的抗拖移锚组成。

锚的质量为600kg,锚链选用无档普通链环,近浅海观测网的常用型号及其参数在附表中列出。

钢管共4节,每节长度1m,直径为50mm,每节钢管的质量为10kg。

要求锚链末端与锚的链接处的切线方向与海床的夹角不超过16度,否则锚会被拖行,致使节点移位丢失。

水声通讯系统安装在一个长1m、外径30cm的密封圆柱形钢桶内,设备和钢桶总质量为100kg。

钢桶上接第4节钢管,下接电焊锚链。

钢桶竖直时,水声通讯设备的工作效果最佳。

若钢桶倾斜,则影响设备的工作效果。

钢桶的倾斜角度(钢桶与竖直线的夹角)超过5度时,设备的工作效果较差。

为了控制钢桶的倾斜角度,钢桶与电焊锚链链接处可悬挂重物球。

图1 传输节点示意图(仅为结构模块示意图,未考虑尺寸比例)系泊系统的设计问题就是确定锚链的型号、长度和重物球的质量,使得浮标的吃水深度和游动区域及钢桶的倾斜角度尽可能小。

问题1某型传输节点选用II型电焊锚链22.05m,选用的重物球的质量为1200kg。

现将该型传输节点布放在水深18m、海床平坦、海水密度为1.025×103kg/m3的海域。

若海水静止,分别计算海面风速为12m/s和24m/s时钢桶和各节钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域。

问题2在问题1的假设下,计算海面风速为36m/s时钢桶和各节钢管的倾斜角度、锚链形状和浮标的游动区域。

请调节重物球的质量,使得钢桶的倾斜角度不超过5度,锚链在锚点与海床的夹角不超过16度。

问题3 由于潮汐等因素的影响,布放海域的实测水深介于16m~20m之间。

2017数学建模国赛

2017数学建模国赛

2017高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。

如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号(从A/B/C/D中选择一项填写):我们的报名参赛队号(12位数字全国统一编号):参赛学校(完整的学校全称,不含院系名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期:年月日(此承诺书打印签名后作为纸质论文的封面,注意电子版论文中不得出现此页。

以上内容请仔细核对,如填写错误,论文可能被取消评奖资格。

)赛区评阅编号(由赛区组委会填写):2017高教社杯全国大学生数学建模竞赛编号专用页送全国评阅统一编号(由赛区组委会填写):全国评阅随机编号(由全国组委会填写):关于CT系统参数标定与成像的中心测定一问题提出1.1 引言断层成像(CT)作为一种重要的无损探测技术,能利用多个投影视角下的X 射线投影数据得到物体的内部和外部的结构特征的二维或三维图像。

它以无损、高精度、三维可视化等优点,在工业上有重要的应用。

由于扫描对象的多样新,CT扫描方式也越来越灵活。

截止到目前一共有五代CT系统。

云南财经大学2017年数学建模竞赛

云南财经大学2017年数学建模竞赛

云南财经大学2017年数学建模竞赛校内选拔赛题目注意事项:(1)请希望参加今年全国大学生数学建模竞赛的同学积极参加校内选拔赛,但是要务必能够保证八月二十一号提前一周回校参加集训,九月14日(周四)二十点至九月十七日二十四点参加比赛。

(2)请各位同学下列3个问题中选一个问题作答,不超过3人组队,按照2016年全国大学生数学建模竞赛(cumcm)模板和格式要求书写论文(见附件)。

(2)论文写好后,打印纸质文件,于6月日点前将论文发送到办公室王天友老师,同时填写报名表。

请先仔细阅读“论文格式规范”A题护士工作时间的安排某医院的心脑血管科需要制定护士的工作时间表。

在心脑血管科的一个工作日分为12个两小时的时段,每个时段的人员要求不同。

例如,在夜间只要求有很少几名护士就足够了,但在早晨为了给病人提供特殊报务,需要很多护士。

表B1列出了每个时段的人员需求量。

表B1 每个时段的人员需求编号时段需要护士人数1 0:00——2:00 152 2:00——5:00 153 4:00——6:00 154 6:00——8:00 355 8:00——10:00 406 10:00——12:00 407 12:00——14:00 408 14:00——16:00 309 16:00——18:00 3110 18:00——20:00 3511 20:00——22:00 3012 22:00——24:00 20问题1:(1)为满足需求最少需要多少名护士?这里假定每位护士每天工作8小时,且在工作4小时后需要休息1小时。

(2)如果满足需求的排班方案不止一种,请给出你认为最合理的排班方案,并说明其理由。

问题2:目前心脑血管科只有80名护士,如果这个数目不能满足指定的需求,只能考虑让部分护士加班。

如果加班,每天加班的时间为2小时,且紧随在后一个4小时工作时段之后,中间没有休息。

(1)请给出护士工作时间安排的方案,以使需要加班的护士数目最少。

2017年数学建模竞赛C题CUMCM-2017-problem-C

2017年数学建模竞赛C题CUMCM-2017-problem-C

2017年高教社杯全国大学生数学建模竞赛题目
(请先阅读“全国大学生数学建模竞赛论文格式规范”)
C题颜色与物质浓度辨识
比色法是目前常用的一种检测物质浓度的方法,即把待测物质制备成溶液后滴在特定的白色试纸表面,等其充分反应以后获得一张有颜色的试纸,再把该颜色试纸与一个标准比色卡进行对比,就可以确定待测物质的浓度档位了。

由于每个人对颜色的敏感差异和观测误差,使得这一方法在精度上受到很大影响。

随着照相技术和颜色分辨率的提高,希望建立颜色读数和物质浓度的数量关系,即只要输入照片中的颜色读数就能够获得待测物质的浓度。

试根据附件所提供的有关颜色读数和物质浓度数据完成下列问题:
1.附件Data1.xls中分别给出了5种物质在不同浓度下的颜色读数,讨论
从这5组数据中能否确定颜色读数和物质浓度之间的关系,并给出一些准则来评价这5组数据的优劣。

2.对附件Data2.xls中的数据,建立颜色读数和物质浓度的数学模型,并
给出模型的误差分析。

3.探讨数据量和颜色维度对模型的影响。

【2017年整理】数学建模试题与答案

【2017年整理】数学建模试题与答案

【2017年整理】数学建模试题与答案华南农业大学期末考试试卷(A卷)2009学年第二学期考试科目: 数学模型考试类型:(闭卷) 考试时间: 120分钟学号姓名年级专业题号 1 2 3 4 5 6 7 8 9 总分得分评阅人1、 (13分)设已知某正方形板材边长20cm,现将之加工出半径为1cm的得分圆盘,请对下面给出的两种排列方法,写出能加工出的尽可能多的圆盘数。

(1) 排列1:圆盘中心按正方形排列(如右图)的尽可能多的圆盘数。

(4分)2020,,100 解:圆盘总数: 22排列2:圆盘中心按六角形排列(如右图)的尽可能多的圆盘数。

(4分)202,,,解:行数: ,,111,,3,,2011,圆盘总数: 11105,,,22(2) 设计出不同于(1)(2)的方案,且加工出的圆盘更多。

(5分)解:前三行正方形,后八行六角形,圆盘总数为106得分 2、 (10分)在举重比赛中,运动员在高度和体重方面差别很大,请就下面两种假设,建立一个举重能力和体重之间关系的模型:(1) 假设肌肉的强度和其横截面的面积成比例。

5分(2) 假定体重中有一部分是与成年人的尺寸无关,请给出一个改进模型。

5分解:设体重w(千克)与举重成绩y (千克)(1) 由于肌肉强度(I)与其横截面积(S)成比例,所以 y I S2 设h为个人身高,又横截面积正比于身高的平方,则S , h32 再体重正比于身高的三次方,则w , h 3ykw, 故举重能力和体重之间关系的模型为:(2) 体重中与成年人尺寸无关的重量为a, 则一个最粗略的模型为 2 3ykwa,,(),更好的模型: ykwa,,()得分3、 (10分)在超币购物时你压意到大包发商品比小包装面品便宜这种现象1了吗,比如洁银牙膏50g装的每支1.50元,120g装的每支3.00元,二者单位重量的价格比是1.2:1,试用比例方法构造模型解释这个现象。

(1)请写出商品价恪c与商品重量w的关系,其中价格由生产成本、包装成本和其它成本等决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

云南财经大学2017年数学建模竞赛
校内选拔赛题目
注意事项:
(1)请希望参加今年全国大学生数学建模竞赛的同学积极参加校内选拔赛,但是要务必能够保证八月二十一号提前一周回校参加集训,九月14日(周四)二十点至九月十七日二十四点参加比赛。

(2)请各位同学下列3个问题中选一个问题作答,不超过3人组队,按照2016年全国大学生数学建模竞赛(cumcm)模板和格式要求书写论文(见附件)。

(2)论文写好后,打印纸质文件,于6月日点前将论文发送到办公室王天友老师,同时填写报名表。

请先仔细阅读“论文格式规范”
A题护士工作时间的安排
某医院的心脑血管科需要制定护士的工作时间表。

在心脑血管科的一个工作日分为12个两小时的时段,每个时段的人员要求不同。

例如,在夜间只要求有很少几名护士就足够了,但在早晨为了给病人提供特殊报务,需要很多护士。

表B1列出了每个时段的人员需求量。

表B1 每个时段的人员需求
编号时段需要护士人数
1 0:00——2:00 15
2 2:00——5:00 15
3 4:00——6:00 15
4 6:00——8:00 35
5 8:00——10:00 40
6 10:00——12:00 40
7 12:00——14:00 40
8 14:00——16:00 30
9 16:00——18:00 31
10 18:00——20:00 35
11 20:00——22:00 30
12 22:00——24:00 20
问题1:(1)为满足需求最少需要多少名护士?这里假定每位护士每天工作8小时,且在工作4小时后需要休息1小时。

(2)如果满足需求的排班方案不止一种,请给出你认
为最合理的排班方案,并说明其理由。

问题2:目前心脑血管科只有80名护士,如果这个数目不能满足指定的需求,只能考虑让部分护士加班。

如果加班,每天加班的时间为2小时,且紧随在后一个4小时工作时段之后,中间没有休息。

(1)请给出护士工作时间安排的方案,以使需要加班的护士数目最少。

(2)如果排班(包括加班)的方案不止一种,请给出你认为最合理的排班和加班方案,并说明其理由。

B 题:计算机绘图与运动控制
计算机辅助绘图目前有着广泛应用,已成为计算机辅助设计的基础。

本问题就是利用数学建模的方法研究计算机绘图以及运动控制的基本原理。

问题1:绘图。

在计算机屏幕上随机地画4个点,分别为()()()332211,,,,,y x C y x B y x A 和()44,y x D ,利用这4个的信息绘制出一条曲线,其中A 为曲线的起点,D 为曲线的终点,B 和C 为控制点。

曲线在起点A 处,以BA 方向为切线方向,在终点D 处,以CD 方向为切线方向。

(1) 使用参数方程()()⎩
⎨⎧≤≤==10,t t y y t x x 来描述这条曲线,但由于满足上述条件的曲线有无穷条,请增加一些条件,使它表示一条曲线,并且具有形式简单(如多项式)、曲线光滑(如连续可微)和美观等特点。

(2) 根据你的模型写出由以下4点()()()()2,2,3,3,3,1,1,1D C B A 构成曲线的参数方程,并
有绘出这条曲线(同时在图上标注这4个点,和相应的切线)。

问题2:运动控制。

计算机辅助设计有时需要对沿着指定的运动路径的空间位置进行
精确的控制,而参数方程()()
⎩⎨⎧≤≤==10,t t y y t x x 给出的曲线一般是达不到这一效果。

简单
地说,如果将参数t 作n 等分,而对应的曲线弧长并不是n 等分的。

例如,需要控制的曲线由下列参数方程表示
()().10,7.29.03.05.17.49.33.05.0323
2⎩⎨⎧≤≤-++=-++=t t t t t y t t t t x (1-1)
如果将参数t 作4等分,即1,4
3,21,41,0=t ,而这些点对应的曲线弧长并不是4等分的(请大家绘图验证这一点)。

你的任务是:
(1)给出将弧长作n等分的数学模型(或计算公式);
使用你的模型(或计算公式),将参数方程(1-1)所绘出曲线的弧长4等分和10等分。

绘出参数方程(1-1)的控制曲线,并标注出弧长4等分和10等分的等分点。

C题:河流输沙分析
中国幅员辽阔,江河众多,比较大的河流有包括长江、黄河、淮河、海河、珠江、松花江、辽河、钱塘江、闽江、塔里木河和黑河共11条河流。

泥沙是河流中的重要的水文现象,对河道变化有重大影响,例如黄河就是著名的多沙河流。

附件中的11个文件来自于中华人民共和国水利部(网址:/zwzc/hygb/),分别是2004年到2014年全国主要河流的泥沙公报。

其它所需数据也可从该网站下载或查阅有关资料。

请你根据这些公报完成以下问题:
(1)请选择多条河流,收集并整理与评估河流输沙能力与特点相关的数据;
(2)对(1)中所选择的这些河流,建立模型评价分析它们的输沙能力与特点;
(3)请预测(1)中这些河流在2016年的相关数据。

相关文档
最新文档