高中数学必修二知识点考点及典型例题
高中数学必修二第六章平面向量及其应用重点知识点大全(带答案)
高中数学必修二第六章平面向量及其应用重点知识点大全单选题1、若M 为△ABC 的边AB 上一点,且AB⃑⃑⃑⃑⃑ =3AM ⃑⃑⃑⃑⃑⃑ ,则CB ⃑⃑⃑⃑⃑ =( ) A .3CM⃑⃑⃑⃑⃑⃑ −2CA ⃑⃑⃑⃑⃑ B .3CA ⃑⃑⃑⃑⃑ −2CM ⃑⃑⃑⃑⃑⃑ C .3CM ⃑⃑⃑⃑⃑⃑ +2CA ⃑⃑⃑⃑⃑ D .3CA ⃑⃑⃑⃑⃑ +2CM ⃑⃑⃑⃑⃑⃑ 答案:A解析:先用向量CB →,CA →表示向量CM →,再转化为用CA →,CM →表示CB →即可得答案.解:根据题意做出图形,如图,所以CM →=CB →+BM →=CB →+23BA →=CB →+23(CA →−CB →)=13CB →+23CA →,所以CB →= 3CM →−2CA →.故选:A.小提示:关键点睛:解题关键在于利用向量的线性运算进行求解,属于基础题2、已知向量a ,b ⃑ 满足|a |⃑⃑⃑⃑⃑ =1,a ⊥b ⃑ ,则向量a −2b ⃑ 在向量a 方向上的投影向量为( )A .aB .1C .-1D .−a答案:A分析:根据给定条件,求出(a −2b ⃑ )⋅a ,再借助投影向量的意义计算作答.因|a |⃑⃑⃑⃑⃑ =1,a ⊥b ⃑ ,则(a −2b ⃑ )⋅a =a 2−2b ⃑ ⋅a =1,令向量a −2b ⃑ 与向量a 的夹角为θ,于是得|a −2b ⃑ |cosθ⋅a ⃑ |a ⃑ |=(a ⃑ −2b ⃑ )⋅a ⃑ |a ⃑ |⋅a⃑ |a ⃑ |=a ,所以向量a −2b ⃑ 在向量a 方向上的投影向量为a .故选:A3、如图,四边形ABCD 是平行四边形,则12AC ⃑⃑⃑⃑⃑ +12BD ⃑⃑⃑⃑⃑⃑ =( )A .AB ⃑⃑⃑⃑⃑ B .CD ⃑⃑⃑⃑⃑C .CB ⃑⃑⃑⃑⃑D .AD ⃑⃑⃑⃑⃑答案:D分析:由平面向量的加减法法则进行计算.由题意得AC ⃑⃑⃑⃑⃑ =AB ⃑⃑⃑⃑⃑ +AD ⃑⃑⃑⃑⃑ ,BD ⃑⃑⃑⃑⃑⃑ =AD ⃑⃑⃑⃑⃑ −AB ⃑⃑⃑⃑⃑ ,所以12AC ⃑⃑⃑⃑⃑ +12BD ⃑⃑⃑⃑⃑⃑ =12(AB ⃑⃑⃑⃑⃑ +AD ⃑⃑⃑⃑⃑ +AD ⃑⃑⃑⃑⃑ −AB ⃑⃑⃑⃑⃑ )=AD ⃑⃑⃑⃑⃑ .故选:D.4、下列条件中能得到a ⃗=b ⃑⃗的是( )A .|a ⃗|=|b ⃑⃗|B .a ⃗与b ⃑⃗的方向相同;C .a ⃗=0⃑⃗,b ⃑⃗为任意向量D .a ⃗=0⃑⃗且b ⃑⃗=0⃑⃗答案:D分析:根据相等向量的概念,即可得到结果.由于a ⃗=b ⃑⃗,所以a ⃗与b ⃑⃗的大小相等,方向相同,故D 正确.故选:D.5、向量a ⃗,b ⃑⃗满足a ⃗=(1,√3),|b ⃑⃗|=1,|a ⃗+b ⃑⃗|=√3,则b ⃑⃗在a ⃗方向上的投影为()A .-1B .−12C .12D .1答案:B解析:根据题条件,先求出a ⃗⋅b ⃑⃗,再由向量数量积的几何意义,即可求出结果.因为向量a ⃗,b ⃑⃗满足a ⃗=(1,√3),|b ⃑⃗|=1,|a ⃗+b ⃑⃗|=√3,所以|a ⃗|2+2a ⃗⋅b ⃑⃗+|b ⃑⃗|2=3,即4+2a ⃗⋅b ⃑⃗+1=3,则a ⃗⋅b⃑⃗=−1, 所以b ⃑⃗在a ⃗方向上的投影为|b →|cos <a →,b →>=a →⋅b →|a →|=−12. 故选:B.6、在△ABC 中,内角A,B,C 的对边分别为a,b,c ,且a (sin A −sin B )+b sin B =c sin C,a +b =2c =2,则△ABC 的面积为( )A .3√38B .√34C .√32D .3√32 答案:B分析:由正弦定理化角为边结合余弦定理可求出C =π3,再由已知可求出ab =1,即可求出面积.因为a (sin A −sin B )+b sin B =c sin C ,由正弦定理得a (a −b )+b 2=c 2,即a 2+b 2−c 2=ab ,所以cos C =a 2+b 2−c 22ab =12, 又C ∈(0,π),所以C =π3.又a +b =2c =2,则c =1,a +b =2,由a 2+b 2−c 2=a 2+b 2−1= ab,(a +b)2−3ab =1,得ab =1.所以S △ABC =12ab sin C =12×1×1×sin π3=√34. 故选:B.7、在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于( )A .14B .34C .√24D .√23答案:B分析:利用余弦定理求得cosB .b 2=ac,c =2a ,则b 2=2a 2,由余弦定理得cosB =a 2+c 2−b 22ac =a 2+4a 2−2a 22a⋅2a =34. 故选:B8、在△ABC 中,若AB⃑⃑⃑⃑⃑ ⋅BC ⃑⃑⃑⃑⃑ +AB ⃑⃑⃑⃑⃑ 2=0,则△ABC 的形状一定是( ) A .等边三角形B .直角三角形C .等腰三角形D .等腰直角三角形答案:B分析:先利用数量积运算化简得到accosB =c 2,再利用余弦定理化简得解.因为AB ⃑⃑⃑⃑⃑ ⋅BC ⃑⃑⃑⃑⃑ +AB⃑⃑⃑⃑⃑ 2=0,所以accos(π−B)+c 2=0, 所以accosB =c 2,所以ac ×a 2+c 2−b 22ac =c 2,所以b 2+c 2=a 2,所以三角形是直角三角形.故选:B多选题9、下列结果为零向量的是( )A .AB ⃑⃑⃑⃑⃑ −(BC ⃑⃑⃑⃑⃑ +CA ⃑⃑⃑⃑⃑ )B .AB ⃑⃑⃑⃑⃑ −AC ⃑⃑⃑⃑⃑ +BD⃑⃑⃑⃑⃑⃑ −CD ⃑⃑⃑⃑⃑ C .OA ⃑⃑⃑⃑⃑ −OD ⃑⃑⃑⃑⃑⃑ +AD ⃑⃑⃑⃑⃑ D .NO ⃑⃑⃑⃑⃑⃑ +OP ⃑⃑⃑⃑⃑ +MN ⃑⃑⃑⃑⃑⃑⃑ −MP⃑⃑⃑⃑⃑⃑ 答案:BCD分析:根据向量加减法的运算方法即可逐项判断.A 项,AB⃑⃑⃑⃑⃑⃗−(BC ⃑⃑⃑⃑⃑⃗+CA ⃑⃑⃑⃑⃑⃗)=AB ⃑⃑⃑⃑⃑⃗−BA ⃑⃑⃑⃑⃑⃗=2AB ⃑⃑⃑⃑⃑⃗; B 项,AB ⃑⃑⃑⃑⃑⃗−AC ⃑⃑⃑⃑⃑⃗+BD ⃑⃑⃑⃑⃑⃑⃗−CD ⃑⃑⃑⃑⃑⃗=CB ⃑⃑⃑⃑⃑⃗+BC ⃑⃑⃑⃑⃑⃗=0⃑⃗;C 项,OA ⃑⃑⃑⃑⃑⃗−OD ⃑⃑⃑⃑⃑⃑⃗+AD ⃑⃑⃑⃑⃑⃗=DA ⃑⃑⃑⃑⃑⃗+AD ⃑⃑⃑⃑⃑⃗=0⃑⃗;D 项,NO ⃑⃑⃑⃑⃑⃑⃗+OP ⃑⃑⃑⃑⃑⃗+MN ⃑⃑⃑⃑⃑⃑⃑⃗−MP ⃑⃑⃑⃑⃑⃑⃗=NP ⃑⃑⃑⃑⃑⃑⃗+PN ⃑⃑⃑⃑⃑⃑⃗=0⃑⃗.故选:BCD.10、已知向量a ⃗=(1,−2),b⃑⃗=(−1,m),则( ) A .若a ⃗与b ⃑⃗垂直,则m =−1B .若a ⃗//b⃑⃗,则m =2 C .若m =1,则|a ⃗−b ⃑⃗|=√13D .若m =−2,则a ⃗与b⃑⃗的夹角为60° 答案:BC分析:利用向量垂直、平行的坐标表示求参数m ,即可判断A 、B 的正误;由m 的值写出b⃑⃗的坐标,再由向量坐标的线性运算及模长的坐标求法、夹角的坐标求法求|a ⃗−b ⃑⃗|、a ⃗与b⃑⃗的夹角,即可判断C 、D 正误. A :a ⃗与b ⃑⃗垂直,则−1−2m =0,可得m =−12,故错误;B:a⃗//b⃑⃗,则m−2=0,可得m=2,故正确;C:m=1有b⃑⃗=(−1,1),则a⃗−b⃑⃗=(2,−3),可得|a⃗−b⃑⃗|=√13,故正确;D:m=−2时,有b⃑⃗=(−1,−2),所以cos<a⃗,b⃑⃗>=a⃑⃗⋅b⃑⃗|a⃑⃗||b⃑⃗|=√5×√5=35,即a⃗与b⃑⃗的夹角不为60°,故错误.故选:BC11、(多选)已知向量a⃗,b⃑⃗,在下列命题中正确的是()A.若|a⃗|>|b⃑⃗|,则a⃗>b⃑⃗B.若|a⃗|=|b⃑⃗|,则a⃗=b⃑⃗C.若a⃗=b⃑⃗,则a⃗//b⃑⃗D.若|a⃗|=0,则a⃗=0答案:CD分析:根据向量相等和模值相等的区别分析四个选项便可得出答案.解:向量的模值可以比较大小,但是向量不能比较大小,故A错;向量的模值相等,只能证明大小相等并不能说明方向也相同,故B错;两个向量相等,这两个向量平行,所以C正确;模值为零的向量为零向量,故D正确故选:CD填空题12、《后汉书·张衡传》:“阳嘉元年,复造候风地动仪.以精铜铸成,员径八尺,合盖隆起,形似酒尊,饰以篆文山龟鸟兽之形.中有都柱,傍行八道,施关发机.外有八龙,首衔铜丸,下有蟾蜍,张口承之.其牙机巧制,皆隐在尊中,覆盖周密无际.如有地动,尊则振龙,机发吐丸,而蟾蜍衔之.振声激扬,伺者因此觉知.虽一龙发机,而七首不动,寻其方面,乃知震之所在.验之以事,合契若神.”如图,为张衡地动仪的结构图,现要在相距200km的A,B两地各放置一个地动仪,B在A的东偏北60°方向,若A地动仪正东方向的铜丸落下,B地东南方向的铜丸落下,则地震的位置在A地正东________________km.答案:100(√3+1)分析:依题意画出图象,即可得到A=60∘,B=75∘,C=45∘,AB=200,再利用正弦定理计算可得;解:如图,设震源在C处,则AB=200km,则由题意可得A=60∘,B=75∘,C=45∘,根据正弦定理可得200 sin45∘=ACsin75∘,又sin75∘=sin(45∘+30∘)=sin45∘cos30∘+cos45∘sin30∘=√22×√32+√22×12=√6+√24所以AC=200sin75∘sin45∘=200×√6+√24√22=100(√3+1),所以震源在A地正东100(√3+1)km处.所以答案是:100(√3+1)13、已知向量a⃗,b⃑⃗的夹角为120°,|a⃗|=2,|b⃑⃗|=1,若(a⃗+3b⃑⃗)⊥(2a⃗+λb⃑⃗),则实数λ=___________. 答案:−1分析:由(a⃗+3b⃑⃗)⊥(2a⃗+λb⃑⃗),可得(a⃗+3b⃑⃗)⋅(2a⃗+λb⃑⃗)=0,化简后结已知条件可求得答案解:因为向量a⃗,b⃑⃗的夹角为120°,|a⃗|=2,|b⃑⃗|=1,且(a⃗+3b⃑⃗)⊥(2a⃗+λb⃑⃗),所以(a ⃗+3b ⃑⃗)⋅(2a ⃗+λb ⃑⃗)=0,即2a ⃗2+(6+λ)a ⃗⋅b⃑⃗+3λb ⃑⃗2=0, 所以8+(6+λ)×2×1×(−12)+3λ=0,解得λ=−1,所以答案是:−114、设向量m ⃑⃑ =2a −3b ⃑ ,n ⃑ =4a −2b ⃑ ,p =3a +2b ⃑ ,若用m ⃑⃑ ,n ⃑ 表示p ,则p =________.答案:−74m ⃑⃑ +138n ⃑分析:根据平面向量基本定理进行求解即可.设p ⃗=xm ⃑⃑⃗+yn ⃑⃗,则有p ⃗=3a ⃗+2b ⃑⃗=x(2a ⃗−3b ⃑⃗)+y(4a ⃗−2b ⃑⃗)=(2x +4y)a ⃗+(−3x −2y)b⃑⃗, 得{2x +4y =3−3x −2y =2⇒{x =−74,y =138.,所以p ⃗=−74m ⃑⃑⃗+138n ⃑⃗, 所以答案是:−74m ⃑⃑⃗+138n ⃑⃗解答题 15、△ABC 的内角A,B,C 的对边分别为a,b,c ,已知asinAsinB +ccosA =(acosA +2b )cosB(1)求B ;(2)若b =2√3,AB⃑⃑⃑⃑⃑ ⋅CB ⃑⃑⃑⃑⃑ =6,求△ABC 的周长 答案:(1)B =π3;(2)6√3. 分析:(1)根据asinAsinB +ccosA =(acosA +2b )cosB ,利用正弦定理结合两角和与差的三角函数化简为2sinBcosB =sinB 求解;(2)利用余弦定理得到(a +c )2−3ac =12,然后由AB⃑⃑⃑⃑⃑ ⋅CB ⃑⃑⃑⃑⃑ =6求得ac 代入即可. (1)因为 asinAsinB +ccosA =(acosA +2b )cosB ,所以a (sinAsinB −cosAcosB )+ccosA =2bcosB ,所以−acos(A +B)+ccosA =2bcosB所以acosC +ccosA =2bcosB由正弦定理得sinAcosC +sinCcosA =2sinBcosB整理得sin (A +C )=2sinBcosB =sinB因为在△ABC 中,所以sinB ≠0,则2cosB =1所以B =π3 (2)由余弦定理得b 2=a 2+c 2−2accosB ,即(a +c )2−3ac =12,因为AB ⃑⃑⃑⃑⃑ ⋅CB ⃑⃑⃑⃑⃑ =BA ⃑⃑⃑⃑⃑ ⋅BC ⃑⃑⃑⃑⃑ =accosB =12ac =6, 所以ac =12,所以(a +c )2−36=12,解得a +c =4√3.所以△ABC 的周长是6√3小提示:方法点睛:在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.。
高中数学选择性必修二 4 3 1 1等比数列的概念和通项公式(知识梳理+例题+变式+练习)(含答案)
4.3.1.1等比数列的概念和通项公式知识点一 等比数列的概念(1)文字语言:一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q(q ≠0)表示. (2)符号语言:a n +1a n =q (q 为常数,n ∈N *)【重点总结】(1)由等比数列的定义知,数列除末项外的每一项都可能作分母,故每一项均不为0,因此公比也不为0,由此可知,若数列中有“0”项存在,则该数列不可能是等比数列.(2)“从第2项起”是因为首项没有“前一项”,同时注意公比是每一项与其前一项之比,前后次序不能颠倒.(3)定义中的“同一个常数”是定义的核心之一,一定不能把“同”字省略.要点二 等比中项如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项. 【重点总结】(1)若G 是a 与b 的等比中项,则G a =bG,所以G 2=ab ,G =±ab.(2)与“任意两个实数a ,b 都有唯一的等差中项A =a +b2”不同,只有当a 、b 同号时a 、b 才有等比中项,并且有两个等比中项,分别是ab 与-ab ;当a ,b 异号时没有等比中项.(3)在一个等比数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等比中项. 要点三 等比数列的通项公式设等比数列{a n }的公比为q ,则这个等比数列的通项公式是a n =11n a q (a 1,q ≠0且n ∈N *). 【重点总结】(1)已知首项a 1和公比q ,可以确定一个等比数列. (2)在公式a n =a 1q n -1中,有a n ,a 1,q ,n 四个量,已知其中任意三个量,可以求得第四个量,其中a 1,q 为两个基本量.(3)对于等比数列{a n },若q<0,则{a n }中正负项间隔出现,如数列1,-2,4,-8,16,…;若q>0,则数列{a n }各项同号.从而等比数列奇数项必同号;偶数项也同号.【基础自测】1.判断正误(正确的画“√”,错误的画“×”)(1)若一个数列为{a n },且满足a na n -1=q (n ≥2,q 为不等于0的常数),则这个数列是等比数列.( )(2)在等比数列{a n }中,若已知任意两项的值,则可以求出首项、公比和数列任一项的值.( ) (3)G 为a ,b 的等比中项⇔G 2=ab .( )(4)若一个数列从第二项开始,每一项都是它前后两项的等比中项,则这个数列是等比数列.( ) 【答案】(1)√(2)√(3)×(4)× 2.(多选题)下列数列不是等比数列的是( )A .2,22,3×22,… B.1a ,1a 2,1a3,…C .s -1,(s -1)2,(s -1)3,…D .0,0,0,… 【答案】ACD【解析】A 中,222≠3×2222,A 不是等比数列;B 中,1a 21a =1a 31a 2=…,B 是等比数列;C 中,当s =1时,不是等比数列;当s ≠1时,是等比数列,所以C 不是等比数列;D 显然不是等比数列.故选ACD. 3.已知{a n }是等比数列,a 1=1,a 4=22,则a 3=( ) A .±2 B .2 C .-2 D .4 【答案】B【解析】设等比数列{a n }的公比为q ,则有1×q 3=22=(2)3,∴q =2,∴a 3=a 4q=2,故选B.4.已知等比数列{a n }中,a 1=-2,a 3=-8,则a n =________. 【答案】-2n 或(-2)n【解析】∵a 1=-2,a 3=-8,∴a 3a 1=q 2=-8-2=4,∴q =±2,∴a n =(-2)·2n -1或a n =(-2)·(-2)n -1,即a n=-2n 或a n =(-2)n .题型一 等比数列通项公式的求法及应用 探究1 基本量的计算 【例1】在等比数列{a n }中 (1)a 4=2,a 7=8,求a n ;(2)a 2+a 5=18,a 3+a 6=9,a n =1,求n .【解析】(1)因为⎩⎪⎨⎪⎧ a 4=a 1q 3,a 7=a 1q 6,所以⎩⎪⎨⎪⎧a 1q 3=2, ①a 1q 6=8, ② 由②①得q 3=4,从而q =34,而a 1q 3=2, 于是a 1=2q 3=12,所以a n =a 1q n -1=22-53n .(2)方法一:由已知可得⎩⎪⎨⎪⎧a 2+a 5=a 1q +a 1q 4=18, ①a 3+a 6=a 1q 2+a 1q 5=9, ② 由②①得q =12,从而a 1=32.又a n =1,所以32×⎝⎛⎭⎫12n -1=1,即26-n =20,所以n =6. 方法二:因为a 3+a 6=q (a 2+a 5),所以q =12.由a 1q +a 1q 4=18,得a 1=32.由a n =a 1q n -1=1,得n =6. 【重点小结】 (1)由a 7a 4=q 3便可求出q ,再求出a 1,则a n =a 1·q n -1.(2)两个条件列出关于a 1,q 的方程组,求出a 1,q 后再由a n =1求n ;也可以直接先由q =a 3+a 6a 2+a 5入手.【方法归纳】等比数列通项公式的求法(1)根据已知条件,建立关于a 1,q 的方程组,求出a 1,q 后再求a n ,这是常规方法.(2)充分利用各项之间的关系,直接求出q 后,再求a 1,最后求a n ,这种方法带有一定的技巧性,能简化运算.探究2 等比数列的实际应用【例2】计算机的价格不断降低,若每台计算机的价格每年降低13,现在价格为8 100元的计算机3年后的价格可降低为( )A .300元B .900元C .2 400元D .3 600元 【答案】C【解析】降低后的价格构成以23为公比的等比数列,则现在价格为8 100元的计算机3年后的价格可降低为8 100×⎝⎛⎭⎫233=2 400(元). 【方法技巧】关于等比数列模型的实际应用题,先构造等比数列模型,确定a 1和q ,然后用等比数列的知识求解. 【跟踪训练1】(1)在等比数列{a n }中,a 3+a 4=4,a 2=2,则公比q 等于( ) A .-2 B .1或-2 C .1 D .1或2 【答案】B【解析】a 3+a 4=a 2q +a 2q 2=2q +2q 2=4, 即q 2+q -2=0,解得q =1或q =-2,故选B.(2)在等比数列{a n }中,a n >0,已知a 1=6,a 1+a 2+a 3=78,则a 2等于( ) A .12 B .18 C .24 D .36 【答案】B【解析】设公比为q ,由已知得6+6q +6q 2=78, 即q 2+q -12=0解得q =3或q =-4(舍去). ∴a 2=6q =6×3=18.故选B.(3)某林场的树木每年以25%的增长率增长,则第10年末的树木总量是今年的________倍. 【答案】1.259【解析】设这个林场今年的树木总量是m ,第n 年末的树木总量为a n ,则a n +1=a n +a n ×25%=1.25a n . 则a n +1a n=1.25,则数列{a n }是公比q =1.25的等比数列. 则a 10=a 1q 9=1.259 m.所以a 10a 1=1.259.题型二 等比中项【例3】已知等比数列的前三项和为168,a 2-a 5=42,求a 5,a 7的等比中项.【解析】设该等比数列的公比为q ,首项为a 1, 因为a 2-a 5=42,所以q ≠1,由已知,得⎩⎪⎨⎪⎧a 1+a 1q +a 1q 2=168a 1q -a 1q 4=42, 所以⎩⎪⎨⎪⎧ a 1(1+q +q 2)=168a 1q (1-q 3)=42①②因为1-q 3=(1-q )(1+q +q 2),所以由②除以①,得q (1-q )=14.所以q =12.所以a 1=4212-⎝⎛⎭⎫124=96.若G 是a 5,a 7的等比中项,则应有G 2=a 5a 7=a 1q 4·a 1q 6=a 21q 10=962×⎝⎛⎭⎫1210=9. 所以a 5,a 7的等比中项是±3. 【方法归纳】(1)首项a 1和q 是构成等比数列的基本量,从基本量入手解决相关问题是研究等比数列的基本方法. (2)解题时应注意同号的两个数的等比中项有两个,它们互为相反数,而异号的两个数没有等比中项. 【跟踪训练2】如果-1,a ,b ,c ,-9成等比数列,那么( ) A .b =3,ac =9 B .b =-3,ac =9 C .b =3,ac =-9 D .b =-3,ac =-9【答案】B【解析】∵-1,a ,b ,c ,-9成等比数列, ∴a 2=(-1)×b ,b 2=(-1)×(-9)=9 ∴b <0,∴b =-3.又b 2=ac ,∴ac =9.故选B.题型三 等比数列的判定与证明【例4】已知数列{a n }的前n 项和为S n ,S n =13(a n -1)(n ∈N *)(1)求a 1,a 2;(2)求证:数列{a n }是等比数列.【解析】(1)当n =1时,S 1=13(a 1-1)=a 1,解得:a 1=-12,当n =2时,S 2=13(a 2-1)=a 1+a 2,解得a 2=14.(2)证明:当n ≥2时,a n =S n -S n -1=13(a n -1)-13(a n -1-1),得a n a n -1=-12.又a 1=-12,所以{a n }是首项为-12,公比为-12的等比数列.【变式探究1】将本例中条件换为“数列{a n }满足a 1=1,a n +1=2a n +1”,求证:{a n +1}成等比数列,并求a n .【解析】由a n +1=2a n +1,∴a n +1+1=2(a n +1),∴a n +1+1a n +1=2,∴{a n +1}是以2为首项,2为公比的等比数列,∴a n +1=2×2n -1=2n , ∴a n =2n -1.【变式探究2】将本例中的条件换为“数列{a n }中,a 1=56,a n +1=13a n +⎝⎛⎭⎫12n +1”,求a n . 【解析】令a n +1-A ·⎝⎛⎭⎫12n +1=13⎣⎡⎦⎤a n -A ·⎝⎛⎭⎫12n ,则a n +1=13a n +A 3·⎝⎛⎭⎫12n +1. 由已知条件知A3=1,得A =3,所以a n +1-3×⎝⎛⎭⎫12n +1=13⎣⎡⎦⎤a n -3×⎝⎛⎭⎫12n . 又a 1-3×⎝⎛⎭⎫121=-23≠0, 所以⎩⎨⎧⎭⎬⎫a n -3×⎝⎛⎭⎫12n 是首项为-23,公比为13的等比数列. 于是a n -3×⎝⎛⎭⎫12n =-23×⎝⎛⎭⎫13n -1,故a n =3×⎝⎛⎭⎫12n -2×⎝⎛⎭⎫13n . 【方法归纳】判定数列是等比数列的常用方法(1)定义法:a n +1a n =q (q 是常数)或a na n -1=q (q 是常数,n ≥2)⇔{a n }为等比数列.(2)等比中项法:a 2n +1=a n ·a n +2(a n ≠0,n ∈N *)⇔{a n }为等比数列.(3)通项公式法:a n =a 1q n -1(其中a 1,q 为非零常数,n ∈N *)⇔{a n }为等比数列. 【易错辨析】忽略等比数列各项的符号规律致错【例5】在等比数列{a n }中,a 5=1,a 9=81,则a 7=( ) A .9或-9 B .9 C .27或-27 D .-27 【答案】B【解析】由等比中项的性质得a 27=a 5a 9=81,∴a 7=±9,由于等比数列中的奇数项的符号相同,所以a 7=9,故选B. 【易错警示】 1. 出错原因没有弄清等比数列各项的符号规律,直接由等比中项得a 7=±9,错选A. 2. 纠错心得在等比数列中,奇数项的符号相同,偶数项的符号相同.解此类题时要小心谨慎,以防上当.一、单选题1.已知等比数列{}n a 中,3a 是1a ,2a 的等差中项,则数列{}n a 的公比为( ) A .12-或1B .12-C .12D .1【答案】A【分析】首先根据题意得到3122a a a =+,从而得到2210q q --=,再解方程即可. 【解析】由题知:3122a a a =+,所以221q q =+,即2210q q --=,解得12q =-或1q =.故选:A2.已知等比数列{}n a 满足2512,4a a ==,则公比q =( ) A .12-B .12C .2-D .2【答案】B 【分析】由352a a q =即可求出.【解析】 352a a q =,即3124q =,解得12q =. 故选:B .3.已知{}n a 为等比数列,n S 是它的前n 项和.若2312a a a ⋅=,且4a 与72a 的等差中项为54,则5S =( ) A .29 B .31 C .33 D .35【答案】B 【分析】设等比数列{}n a 的公比为q ,由已知可得q 和1a ,代入等比数列的求和公式即可 【解析】因为 2312a a a =23114a q a a ==,42a ∴=,3474452224a a a a q +=⨯=+, 所以11,162q a ==,551161231112S ⎛⎫- ⎪⎝⎭==-,故选:B.4.《莱茵德纸草书》(RhindPapyrus )是世界上最古老的数学著作之一.书中有这样一道题目:把93个面包分给5个人,使每个人所得面包个数成等比数列,且使较小的两份之和等于中间一份的四分之三,则最大的一份是( )个. A .12 B .24 C .36 D .48【答案】D 【分析】设等比数列{}n a 的首项为10a >,公比1q >,根据题意,由()()211513141931a q a q a q q ⎧+=⎪⎪⎨-⎪=⎪-⎩求解. 【解析】设等比数列{}n a 的首项为10a >,公比1q >,由题意得:123123453493a a a a a a a a ⎧+=⎪⎨⎪++++=⎩,即()()211513141931a q a q a q q ⎧+=⎪⎪⎨-⎪=⎪-⎩, 解得132a q =⎧⎨=⎩,所以45148a a q ==,故选:D5.在等比数列{}n a 中,若1614a a a ⋅⋅为定值,n T 为数列{}n a 的前n 项积,则下列各数为定值的是( ) A .11T B .12TC .13TD .14T【答案】C 【分析】根据等比数列的通项公式用1,a q 表示出1614a a a ,然后再分别表示出各选项中的积进行判断. 【解析】设公比为q ,则()35133186161411111a a a a a q a q a q a q =⋅==为定值,即61a q 为定值,(1)112(1)211111n n n n n n n T a a q a qa qa q--+++-=⋅==,11555111111()T a q a q ==,不是定值,1211126621211T a q a q ⎛⎫== ⎪⎝⎭,不是定值,13786131311()T a q a q ==,是定值,1413131414221411()T a q a q ⨯==,不是定值.故选:C .6.在各项都为正数的数列{}n a 中,首项12,n a S =为数列{}n a 的前n 项和,且()2121(42)0n n n S S a n ----=≥,则10S =( ) A .1022 B .1024C .2046D .2048【答案】C 【分析】当2n ≥时,1n n n a S S -=-,故可以得到()()11220n n n n a a a a --+-=,因为120n n a a -+>,进而得到120n n a a --=,所以{}n a 是等比数列,进而求出102046S = 【解析】由()2121(42)0n n n S S a n ----=≥,得22140nn a a --=,得()()11220n n n n a a a a --+-=, 又数列{}n a 各项均为正数,且12a =, ∴120n n a a -+>,∴120n n a a --=,即12nn a a -= ∴数列{}n a 是首项12a =,公比2q 的等比数列,其前n 项和()12122212n n nS +-==--,得102046S =,故选:C.7.已知数列{}n a 的前n 项和为n S ,若21n n S a =-,则202120221S a +=( )A .2B .1C .12D .13【答案】B 【分析】由21n n S a =-,根据n a 与n S 的关系,得出{}n a 是首项为1,公比为2的等比数列,结合等比数列的求和公式,即可求解. 【解析】由数列{}n a 的前n 项和21n n S a =-,当1n =时,可得11121a S a ==-,所以11a =;当2n ≥时,()112121n n n n n a S S a a --=-=---,所以12n n a a -=, 所以{}n a 是首项为1,公比为2的等比数列,所以202120212021122112S -==--,202120222a =,所以2021202211S a +=. 故选:B.8.在等比数列{}n a 中,()23122a a a a +=+,则数列{}n a 的公比q =( ) A .2 B .1 C .1-或1 D .1-或2【答案】D 【分析】用1,a q 表示出已知等式后可得结论. 【解析】由题意知()()211210a q q a q +-+=,所以()()120q q +-=,所以1q =-或2q.故选:D .二、多选题9.(多选题)已知等比数列{}n a 的前n 项和是n S ,则下列说法一定成立的是( ) A .若30a >,则20210a > B .若40a >,则20200a > C .若30a >,则20210S > D .若30a >,则20210S <【答案】ABC【分析】根据等比数列通项式,前n 项和n S 代入即可得出答案. 【解析】设数列{}n a 的公比为q ,当30a >,则2018202130a a q=>,A 正确; 当40a >,则2016202040a a q=>,B 正确. 又当1q ≠时,()20211202111a q qS -=-,当1q <时,2021202110,10,0q qS ->->∴>,当01q <<时,2021202110,10,0q q S ->->∴>,当1q >时,2021202110,10,0q qS -<-<∴>当1q =时,2021120210S a =>,故C 正确,D 不正确. 故选:ABC10.(多选题)若数列{a n }是等比数列,则下面四个数列中也是等比数列的有( ) A .{ca n }(c 为常数) B .{a n +a n +1}C .{a n ·a n +1)D .{}3n a【答案】CD 【分析】A. 由c =0判断;B.q =-1时判断;CD.由等比数列的定义判断. 【解析】当c =0时,{ca n }不是等比数列,故A 错误;当数列{a n }的公比q =-1时,a n +a n +1=0,{a n +a n +1}不是等比数列,故B 错误; 由等比数列的定义,选项CD 中的数列是等比数列,故CD 正确. 故选:CD11.设数列{}n a 是各项均为正数的等比数列,n T 是{}n a 的前n 项之积,227a =,369127a a a ⋅⋅=,则当n T 最大时,n 的值为( )A .4B .5C .6D .7【答案】AB【分析】 设等比数列{}n a 的公比为q ,求出q 的值,进而可求得数列{}n a 的通项公式,解不等式1n a ≥,求出n 的取值范围,即可得解.【解析】设等比数列{}n a 的公比为q ,则33696127a a a a ⋅⋅==,可得613a =,13q ∴==,所以,225212733n n n n a a q ---⎛⎫==⨯= ⎪⎝⎭, 令531n n a -=≥,解得5n ≤,故当n T 最大时,4n =或5.故选:AB.第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题12.在等比数列{}n a 中,1521,8,n a a a S ==是数列{}n a 的前n 项和,若63k S =,则k =________.【答案】6【分析】由1521,8a a a ==,解得2q求解. 【解析】在等比数列{}n a 中,设公比为q ,因为1521,8a a a ==,所以48,0q q q =≠,解得2q, 所以126312kk S -==-,解得6k =, 故答案为:613.在正项等比数列{}n a 中,若13a 、312a 、22a 成等差数列,则2021202020232022a a a a -=-________.【答案】19【分析】设正项等比数列{}n a 的公比为q ,则0q >,根据已知条件求出q 的值,再结合等比数列的基本性质可求得结果.【解析】设正项等比数列{}n a 的公比为q ,则0q >,因为13a 、312a 、22a 成等差数列,则31232a a a =+,即211132a q a a q =+, 可得2230q q --=,0q >,解得3q =, 因此,()20212020202120202202320222021202019a a a a a a q a a --==--. 故答案为:19. 14.已知正项数列{}n a 的前n 项和为n S ,若241,4n n a S b a a +==,数列{}n a 的通项公式为___________. 【答案】21()2n n a -= 【分析】当1n =时,求得102b a =>,再由n n S a b =-+,得到11(2)n n S a b n --=-+≥, 相减可得120n n a a --=,结合等比数列的通项公式,求得b ,进而求得数列的通项公式.【解析】由题意,正项数列{}n a 满足241,4n n a S b a a +==, 当1n =时,可得1111a S a a b =++=,则102b a =>, 由n n S a b =-+,则11(2,)n n S a b n n N +--=-+≥∈,两式相减可得120n n a a --=,所以1(22)1,n n n n N a a +-≥=∈, 即数列{}n a 为公比为12的等比数列, 所以2416,4b a a b ==,所以2441461a b a b =⨯=,解得4b =, 所以122b a ==,所以数列{}n a 的通项公式为1121112()()22n n n n a a q ---==⨯=.故答案为:21()2n n a -=.四、解答题15.已知n S 为数列{}n a 的前n 项和,12a =,172n n S a ++=,2211log log n n n b a a +=⋅,n T 为数列{}n b 的前n 项和.(1)求数列{}n a 的通项公式;(2)若2022n m T >对所有*n N ∈恒成立,求满足条件m 的最小整数值.【答案】(1)322n n a -= (2)674【分析】(1)利用递推公式,结合前n 项和与第n 项的关系、等比数列的定义进行求解即可; (2)根据对数的运算性质,结合裂项相消法进行求解即可.(1)由题意172n n S a ++=,当2n ≥时,172n n S a -+=,两式相减得:17n n n a a a +=-,即:()182n n a a n +=≥,所以2n ≥时,{}n a 为等比数列又因为1n =时,217272216a S =+=⨯+=, 所以218a a =, 所以,对所有*n N ∈,{}n a 是以2为首项,8为公比的等比数列,所以132282n n n a --=⨯=;(2) 由题知:32312212211log log log 2log 2n n n n n b a a -++==⋅⋅ ()()13231n n =-+11133231n n ⎛⎫=- ⎪-+⎝⎭所以12111111111134473231331n n T b b b n n n ⎛⎫⎛⎫=+++=-+-++-=- ⎪ ⎪-++⎝⎭⎝⎭所以111202220221674167433131n T n n ⎛⎫⎛⎫=⨯-=-< ⎪ ⎪++⎝⎭⎝⎭所以满足2022n m T >恒成立的最小m 值为674.16.等差数列{}n a 中,13a =,前n 项和为n S ,等比数列{}n b 各项均为正数,11b =,且2212b S +=,{}n b 的公比22S q b =. (1)求n a 与n b ;(2)求12111nS S S +++. 【答案】(1)33(1)3n a n n =+-=,13n n b -=(2)()231n n + 【分析】(1)由{}n b 的公比22S q b =及2212b S +=可解得3q =,由11b =则n b 可求,又由22S q b =可得29S =,26a =,213d a a =-=,则n a 可求;(2)由(1)可得3(1)2n n n S +=,则122113(1)31n S n n n n ⎛⎫==- ⎪++⎝⎭,故由裂项相消法可求12111nS S S +++. (1) 等差数列{}n a 中,13a =,前n 项和为n S ,等比数列{}n b 各项均为正数,11b =,且2212b S +=,{}n b 的公比22S q b =,222212S q b b S ⎧=⎪⎨⎪+=⎩,解得3q =,13n n b -=. {}n b 各项均为正数,∴3q =,13n n b -=.由23b =,得29S =,26a =,213d a a =-=,∴()3313n a n n =+-=. (2)3(1)3(1)322n n n n n S n -+=+=, 122113(1)31n S n n n n ⎛⎫==- ⎪++⎝⎭,12111211111132231n S S S n n ⎛⎫+++=-+-++- ⎪+⎝⎭ 2121313(1)n n n ⎛⎫=-= ⎪++⎝⎭. 17.已知数列{a n }中,a 1=4,a n +1=2a n -5,求证{a n -5}是等比数列.【答案】证明见解析【分析】由a n +1-5=2(a n -5)结合等比数列的定义证明即可.【解析】证明:由a n +1=2a n -5得a n +1-5=2(a n -5). 又a 1-5=-1≠0,故数列{a n -5}是首项为-1,公比为2的等比数列.。
高中数学必修2知识点加例题加课后习题
高中数学必修二第一章 空间几何体1.1空间几何体的结构 1、棱柱定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱'''''E D C B A ABCDE -几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
2、棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥'''''E D C B A P -几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
3、棱台定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如四棱台ABCD—A'B'C'D'几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点4、圆柱定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
5、圆锥定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
6、圆台定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
高中必刷题 数学必修第二册
高中必刷题数学必修第二册高中必刷题:数学必修第二册数学是高中阶段学习的一门重要学科,而必修第二册是数学学习的重要一环。
为了帮助同学们更好地掌握数学知识,提高数学成绩,以下是高中必刷题:数学必修第二册中的一些重要知识点和题目。
希望这些题目和解析能够对你有所帮助。
1. 数列与数列的运算数列是高中数学中非常重要的概念之一。
在必修第二册中,同学们需要重点掌握数列的定义,常见数列的表示方法以及数列的运算。
例题:已知等差数列{an}的通项公式为an = 3n + 2,求前5项的和Sn。
解析:根据等差数列的通项公式,我们可以依次计算出前5项的值为5, 8, 11, 14, 17,然后再将它们相加即可得到结果35。
2. 平面向量与向量的运算平面向量是高中数学中另一个重要的概念。
在必修第二册中,同学们需要学习平面向量的定义、表示方法以及向量的运算。
例题:已知向量a = (3, 2)和向量b = (-1, 4),求2a - b的模长。
解析:首先,将向量a和b进行运算得到2a - b = (2*3 - (-1), 2*2 - 4) = (7, 0)。
然后,根据平面向量的模长公式,计算得到2a - b的模长为√(7^2 + 0^2) = 7。
3. 三角函数的概念与性质三角函数是高中数学中非常重要的概念之一。
在必修第二册中,同学们需要掌握三角函数的定义、性质以及简单的计算。
例题:已知tanθ = 2,且θ为第二象限角,求cosθ的值。
解析:首先,根据tanθ的定义可知,tanθ = sinθ / cosθ。
由此可推出,sinθ = 2cosθ。
然后,利用三角函数的性质sin^2θ + cos^2θ = 1,代入sinθ = 2cosθ得到(2cosθ)^2 + cos^2θ = 1,解得cosθ = -1/√5。
4. 二次函数与图像二次函数是高中数学中的重点内容之一。
在必修第二册中,同学们需要学习二次函数的定义、性质以及二次函数图像的绘制。
高中数学必修2(人教A版)第一章几何空间体1.1知识点总结含同步练习及答案
描述:例题:描述:高中数学必修2(人教A版)知识点总结含同步练习题及答案第一章 空间几何体 1.1 空间几何体的结构一、学习任务认识柱、锥、台、球及其简单组合体的结构特征,能运用这些结构特征描述现实生活中简单物体的结构.二、知识清单典型空间几何体空间几何体的结构特征 组合体展开图 截面分析三、知识讲解1.典型空间几何体空间几何体的概念只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.2.空间几何体的结构特征多面体由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点;连接不在同一个面上的两个顶点的线段叫做多面体的对角线.按多面体的面数可把多面体分为四面体、五面体、六面体.其中,四个面均为全等的正三角形的四面体叫做正四面体.旋转体由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.这条定直线叫做旋转体的轴.棱柱的结构特征一般地,有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱(prism).棱柱中,两个互相平行的面叫做底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的用一个平行于棱锥底面的平面去截棱锥,得到两个几何体,一个是______,另一个是______.解:棱锥;棱台.⋯⋯余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的顶点.底面是三角形、四边形、五边形的棱柱分别叫做三棱柱、四棱柱、五棱柱,可以用表示底面各顶点的字母或一条对角线端点的字母表示棱柱,如下图的六棱柱可以表示为棱柱或棱柱 .侧棱与底面不垂直的棱柱叫做斜棱柱;侧棱与底面垂直的棱柱叫做直棱柱;底面是正多边形的直棱柱叫做正棱柱;底面是平行四边形的棱柱叫做平行六面体;侧棱与底面垂直的平行六面体叫做直平行六面体.棱锥的结构特征一般地,有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥(pyramid).这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱.底面是三角形、四边形、五边形的棱锥分别叫做三棱锥、四棱锥、五棱锥其中三棱锥又叫四面体.棱锥也用表示顶点和底面各顶点的字母或者用表示顶点和底面一条对角线端点的字母来表示,如下图的四棱锥表示为棱锥 或者棱锥 .棱锥的底面是正多边形,且它的顶点在过底面中心且与底面垂直的直线上,这个棱锥叫做正棱锥.正棱锥各侧面都是全等的等腰三角形,这些等腰三角形底边上的高都相等,叫做棱锥的斜高.⋯⋯⋯⋯ABCDEF−A′B′C′D′E′F′DA′⋯⋯⋯⋯S−ABCD S−AC棱台的结构特征用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台(frustum of a pyramid).原棱锥的底面和截面分别叫做棱台的下底面和上底面;其他各面叫做棱台的侧面;相邻两侧面的公共边叫做棱台的侧棱;两底面的距离叫做棱台的高.由正棱锥截得的棱台叫做正棱台,正棱台的各个侧面都是全等的等腰梯形,这些等腰梯形的高叫做棱台的斜高.圆柱的结构特征以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱(circular cylinder).旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线.圆锥的结构特征以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥(circular cone).圆台的结构特征例题:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台(frustum of a cone).棱台与圆台统称为台体.球的结构特征以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球(solid sphere).半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径.球常用表示球心的字母 表示.O下列命题中,正确的是( )A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱B.棱柱中互相平行的两个面叫做棱柱的底面C.棱柱的侧面是平行四边形,而底面不是平行四边形D.棱柱的侧棱长相等,侧面是平行四边形解:D如图(1),满足 A 选项条件,但不是棱柱;对于 B 选项,如图(2),构造四棱柱,令四边形 是梯形,可知 ,但这两个面不能作为棱柱的底面;C选项中,若棱柱是平行六面体,则它的底面是平行四边形.ABCD−A1B1C1D1ABCD面AB∥面DCB1A1C1D1若正棱锥的底面边长与侧棱长相等,则该棱锥一定不是( )A.三棱锥 B.四棱锥 C.五棱锥 D.六棱锥解:D如下图,正六边形 中,,那么正六棱锥中,,即侧棱长大于底面边长.ABCDEF OA=OB=⋯=AB S−ABCDEF SA>OA=AB描述:3.组合体简单组合体的构成有两种基本形式:一种是由简单几何体拼接而成,一种是由简单几何体截去或挖去一部分而成.如图所示的几何体中,是台体的是( )A.①② B.①③ C.③ D.②③解:C利用棱台的定义求解.①中各侧棱的延长线不能交于一点;②中的截面不平行于底面;③中各侧棱的延长线能交于一点且截面与底面平行.有下列四种说法:①圆柱是将矩形旋转一周所得的几何体;②以直角三角形的一直角边为旋转轴,旋转所得几何体是圆锥;③圆台的任意两条母线的延长线,可能相交也可能不相交;④半圆绕其直径所在直线旋转一周形成球.其中错误的有( )A.个 B. 个 C. 个 D. 个解:D圆柱是矩形绕其一条边所在直线旋转形成的几何体,故①错;以直角三角形的一条直角边所在直线为轴,旋转一周,才能构成圆锥,②错;圆台是由圆锥截得,故其任意两条母线延长后一定交于一点,③错;半圆绕其直径所在直线旋转一周形成的是球面,故④错误.1234例题:描述:4.展开图空间形体的表面在平面上摊平后得到的图形,是画法几何研究的一项内容.描述图中几何体的结构特征.解:图(1)所示的几何体是由两个圆台拼接而成的组合体;图(2)所示的几何体是由一个圆台挖去一个圆锥得到的组合体;图(3)所示的几何体是在一个圆柱中间挖去一个三棱柱后得到的组合体.下图中的几何体是由哪个平面图形旋转得到的( )解:D)不在同一平面内的有______对.3内.解:C描述:例题:5.截面分析截面用平面截立体图形所得的封闭平面几何图形称为截面.平行截面、中截面与立体图形底面平行的截面称为平行截面,等分立体图形的高的平行截面称为中截面.轴截面包含立体图形的轴线的截面称为轴截面.球截面球的截面称为球截面.球的任意截面都是圆,其中通过球心的截面称为球的大圆,不过球心的截面称为球的小圆.球心与球的截面的圆心连线垂直于截面,并且有 ,其中 为球的半径, 为截面圆的半径, 为球心到截面的距离.+=r 2d 2R 2R r d 下面几何体的截面一定是圆面的是( )A.圆台 B.球 C.圆柱 D.棱柱解:B如图所示,是一个三棱台 ,试用两个平面把这个三棱台分成三部分,使每一部分都是一个三棱锥.解:如图,过 ,, 三点作一个平面,再过 ,, 作一个平面,就把三棱台分成三部分,形成的三个三棱锥分别是 ,,.ABC −A ′B ′C ′A ′B C A ′B C ′ABC −A ′B ′C ′−ABC A ′−B B ′A ′C ′−BC A ′C ′如图,正方体 中,,, 分别是 ,, 的中点,那么正方体中过点 ,, 的截面形状是( )A.三角形 B.四边形 C.五边形 D.六边形ABCD −A 1B 1C 1D 1P Q R AB AD B 1C 1P QR作截面图如图所示,可知是六边形.ii)若两平行截面在球心的两侧,如图(2)所示,则 解:四、课后作业 (查看更多本章节同步练习题,请到快乐学)答案:1.如图,能推断这个几何体可能是三棱台的是 .A .B .C .D .C ()=2,AB =3,=3,BC =4A 1B 1B 1C 1=1,AB =2,=1.5,BC =3,=2,AC =3A 1B 1B 1C 1A 1C 1=1,AB =2,=1.5,BC =3,=2,AC =4A 1B 1B 1C 1A 1C 1AB =,BC =,CA =A 1B 1B 1C 1C 1A 1答案:2. 纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标" "的面的方位是 .A .南B .北C .西D .下B △()3. 向高为 的水瓶中注水,注满为止,如果注水量 与水深 的函数关系的图象如图所示,那么水瓶的形状是.A .H V h ()高考不提分,赔付1万元,关注快乐学了解详情。
高中数学必修二 专题02 平面向量的基本定理、坐标运算及数量积(重难点突破)(含答案)
专题02 平面向量的基本定理、坐标运算及数量积一、考情分析二、题型分析(一) 平面向量的基本定理与坐标表示知识点1 平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2,其中e 1,e 2是一组基底.例1.(1).(2019·四川雅安中学高一月考)以下四组向量能作为基底的是( )A .B .C .D .12(1,2),(2,4)e e ==12(3,1),(1,3)e e =-=-12(2,1),(2,1)e e ==--121(,0),(3,0)2e e ==【答案】B【解析】对于,与共线,不能作为基底;对于,与不共线,能作为基底;对于,与共线,不能作为基底;对于,与共线,不能作为基底,故选B. (2).(2019·江西高一期末)设是平面内的一组基底,则下面四组向量中,能作为基底的是( )A .与B .与C .与D .与 【答案】C【解析】由是平面内的一组基底,所以和不共线,对应选项A :,所以这2个向量共线,不能作为基底;对应选项B :,所以这2个向量共线,不能作为基底; 对应选项D :,所以这2个向量共线,不能作为基底; 对应选项C :与不共线,能作为基底.故选:C .A 114220,e ⨯-⨯=∴2eB ()()1331180,e ⨯--⨯-=≠∴2eC ()()121120,e ⨯--⨯-=∴2eD 110030,2e ⨯-⨯=∴2e 12,e e 21e e -12e e -1223e e +1246e e --12e e +12e e -121128e e -+1214e e -12,e e 1e 2e 21e e -()12e e =--1223e e +()121462e e =---121128e e -+121124e e ⎛⎫=-- ⎪⎝⎭12e e +12e e -(3).(2020·内蒙古高三月考)在正方形中,点为内切圆的圆心,若,则的值为( )A .B .C .D .【答案】D【解析】连并延长到与相交于点,设正方形的边长为1,则,设内切圆的半径为,则,可得. 设内切圆在边上的切点为,则,有,,故. 故选:DABCD O ABC ∆AO xAB yAD =+xy 1434-1412OB AC HABCD 122BH BD ==ABC ∆r)1BH OH OB r r =+=+==r =ABC ∆AB E ()1AO AE EO r AB r AD=+=-+22222112222AB AD AB AD ⎛⎛⎫-=-+=+- ⎪⎪⎝⎭⎝⎭x =1y =-11222xy ⎛⎫=-= ⎪ ⎪⎝⎭【变式训练1】.(2020·北京高三开学考试)在平行四边形ABCD 中,,,,则 .(用表示) 【答案】 【解析】如图:=-=+2=+=-+(-)=-+ =.故本题答案为. 【变式训练2】.(2020·辽宁高考模拟)在中,,,若,则( )A .B .C .D .【答案】D【解析】因为,所以点是的中点,又因为,所以点是的中点,所以有:,因此1AB e =2AC e =14NC AC =12BM MC =MN =12,e e 1225312e e -+MN CN CM CN BM CN 23BC 14AC 23AC AB 214e 212()3e e -1225312e e -+1225312e e -+ABC ∆2AB AC AD +=0AE DE +=EB xAB y AC =+3y x =3x y =3y x =-3x y =-2AB AC AD +=D BC 0AE DE +=E AD 11131()22244BE BA AE AB AD AB AB AC AB AC =+=-+=-+⨯+=-+,故本题选D. 31,344x y x y =-=⇒=-(二) 平面向量的坐标运算知识点2 平面向量的坐标运算(1)若a =(x 1,y 1),b =(x 2,y 2)(b ≠0),则a±b =(x 1±x 2,y 1±y 2).(2)若A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1). (3)若a =(x ,y ),λ∈R ,则λa =(λx ,λy ).(4)a ·b =x 1x 2+y 1y 2.(5)|a |=x 21+y 21.若A (x 1,y 1),B (x 2,y 2),则|AB →|=(x 1-x 2)2+(y 1-y 2)2.例2.(1).(2020·福建高三月考)已知,若,则的坐标为( )A .B .C .D . 【答案】D【解析】设,因为,所以.所以,所以, 解得: ,.所以.故选D. (2).(2019·湖南高一期末)已知,,则( ) A .2 BC .4 D.【答案】C 【解析】由题得=(0,4)所以.故选:C(5,2),(4,3)a b =-=--230a b c -+=c 8(1,)3138(,)33-134(,)33134(,)33--(,)c x y =230a b c -+=(5,2)2(4,3)3(,)(0,0)x y ----+=(583,263)(0,0)x y ++-++=1330,430x y +=+=133x 43y =-134(,)33c =--()0,1A -()0,3B ||AB =AB ||04AB =+=【变式训练1】.(2020·湖北高一期中)已知向量,向量.(1)求向量的坐标;(2)当为何值时,向量与向量共线.【答案】(1)(2)【解析】(1)(2),∵与共线,∴∴【变式训练2】.(2018·上海市嘉定区封浜高级中学高二期中)已知,为坐标原点.(1) 求向量的坐标及;(2) 若,求与同向的单位向量的坐标. 【答案】(1) ,;(2).【解析】 (1),.(2),, 与同向的单位向量. ()1,2a =()3,2b =-2a b -k ka b +2a b -()7,2-12k =-()()()21,223,27,2a b -=--=-()()()1,23,23,22ka b k k k +=+-=-+()()()21,223,27,2a b -=--=-ka b +2a b -()()72223k k +=--12k =-(3,4),(5,10)A B ---O AB AB OC OA OB =+OC ()8,6AB =-10AB =21010OC n OC ⎛==- ⎝⎭()8,6AB =-2810AB ∴==()()()3,45,102,14OC OA OB =+=--+-=-22OC ==∴OC 21010OC n OC ⎛==- ⎝⎭(三) 平面向量的数量积知识点3.平面向量数量积1.平面向量数量积的有关概念(1)向量的夹角:已知两个非零向量a 和b ,记OA→=a ,OB →=b ,则∠AOB =θ(0°≤θ≤180°)叫作向量a 与b 的夹角.(2)数量积的定义:已知两个非零向量a 和b ,它们的夹角为θ,则数量|a ||b |cos θ叫作a 与b 的数量积,记作a ·b ,即a ·b =|a ||b |cos θ.规定:0·a =0.(3)数量积的几何意义:数量积a ·b 等于a 的模|a |与b 在a 的方向上的投影|b |cos θ的乘积.2.平面向量数量积的性质设a ,b 都是非零向量,e 是与b 方向相同的单位向量,θ是a 与e 的夹角,则(1)e·a =a·e =|a|cos θ.(2)当a 与b 同向时,a·b =|a||b|;当a 与b 反向时,a·b =-|a||b|.特别地,a·a =|a|2或|a|=a ·a .(3)cos θ=a·b |a||b|.(4)|a·b|≤|a||b|.3.平面向量数量积的坐标表示设a =(x 1,y 1),b =(x 2,y 2),a ,b 的夹角为θ,则(1)a ·b =x 1x 2+y 1y 2.(2)|a |=x 21+y 21.若A (x 1,y 1),B (x 2,y 2),则|AB →|=(x 1-x 2)2+(y 1-y 2)2.(3)cos θ=x 1x 2+y 1y 2x 21+y 21·x 22+y 22.(4)a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0.例3.(1)(2020·浙江高一期末)已知向量,,则__________,与方向相反的单位向量__________.【解析】依题意,故与方向相反的单位向量为. (2).(2019·全国高考真题)已知=(2,3),=(3,t ),=1,则= A .-3B .-2C .2D .3 【答案】C 【解析】 由,,得,则,.故选C【变式训练1】.(2019·安徽高三月考(理))已知,,均为单位向量,与的夹角为,则的最大值为( ) ()3,4a =()1,2b =-2a b +=a c =34,55⎛⎫-- ⎪⎝⎭()21,8a b +=2218a b +=+=a c ()()()3,43,434,5553,4a a -----⎛⎫===-- ⎪---⎝⎭AB AC ||BC AB BC ⋅(1,3)BC AC AB t =-=-211BC ==3t =(1,0)BC =(2,3)(1,0)21302AB BC ==⨯+⨯=a b c a b 60()(2)c a c b +⋅-A .BC .2D . 3【答案】B 【解析】设与的夹角为,因为,,所以,所以,所以.故选:B .【变式训练2】.(2020·四川高一月考)已知,若,则实数=__________;=__________. 【答案】0 0【解析】∵,∴,∵,∴,解得. 故答案为.【变式训练3】.(2019·江苏高考真题)如图,在中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点.若,则的值是_____. 32c 2a b -θ222|2|443a b a a b b -=-⋅+=|2|3a b -=2()(2)(2)21|||2|cos 1c a c b cc a b a b c a b θ+⋅-=+⋅--⋅=+⋅--()(2)3cos c a c b θ+⋅-=max =cos 1θ=()()1,3,1,2a b ==-0a b λμ+=λμ()()1,3,1,2a b ==-()()()1,31,2,32a b λμλμλμλμ+=+-=+-0a b λμ+=0320λμλμ+=⎧⎨-=⎩0λμ=⎧⎨=⎩0,0λμ==ABC O 6AB AC AO EC ⋅=⋅ABAC. 【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 中点,知BF =FE =EA ,AO =OD ., 得即故. 【变式训练4】.(2020·浙江高一期中)已知为单位向量,. (1)求;(2)求与的夹角的余弦值;()()()3632AO EC AD AC AE AB AC AC AE =-=+-()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭2213,22AB AC =3,AB AC =AB AC=,a b 12a b ⋅=2a b +2a b +b θ【答案】(1;(2).【解析】由题得; 由题得与的夹角的余弦值为故答案为:(1;(2.7222=4++4=5+4a b a b a b +⋅⋅2a b +b θ(2)2cos |2|||7a b b a b a b b θ+⋅⋅====+(四) 平面向量的应用(平行与垂直)知识点1 平面向量的平行与垂直若a =(x 1,y 1),b =(x 2,y 2)(b ≠0),则a±b =(x 1±x 2,y 1±y 2).(1)如果a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件为x 1y 2-x 2y 1=0.a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0.判断三点是否共线,先求每两点对应的向量,然后再按两向量共线进行判定.(2)如果a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0.x 1y 2-x 2y 1=0与x 1x 2+y 1y 2=0不同,前者是两向量a =(x 1,y 1),b =(x 2,y 2)共线的充要条件,后者是它们垂直的充要条件.例4.(1)(2020·江西高一期末)已知向量,,若,则( )A .B .C .D .【答案】D 【解析】向量,,且,,解得. 故选:D.(2).(多选题)已知向量a =(2,1),b =(1,﹣1),c =(m ﹣2,﹣n ),其中m ,n 均为正数,且(a b -)∥c ,下列说法正确的是( )A .a 与b 的夹角为钝角()1,a m =()2,5b =//a b m =152-25-52()1,a m =()2,5b =//a b 25m ∴=52m =B .向量a 在bC .2m +n =4D .mn 的最大值为2 【答案】CD对于A ,向量a =(2,1),b =(1,﹣1),则2110a b ⋅=-=>,则,a b 的夹角为锐角,错误;对于B ,向量a =(2,1),b =(1,﹣1),则向量a 在b 方向上的投影为22a b b⋅=,错误; 对于C ,向量a =(2,1),b =(1,﹣1),则a b -= (1,2),若(a b -)∥c ,则(﹣n )=2(m ﹣2),变形可得2m +n =4,正确;对于D ,由C 的结论,2m +n =4,而m ,n 均为正数,则有mn 12= (2m •n )12≤ (22m n +)2=2,即mn 的最大值为2,正确; 故选:CD.【变式训练1】(2020·浙江高一期中)已知向量满足.若,则 _______; ______.【答案】【解析】因为,所以(1)×m 4=0,所以m= 4.所以故答案为:(1). (2).【变式训练2】.(2020广东高一期末)已知, ;(1) 若,求的值;,a b (1,2),(2,)a b m =-=//a b m =||b =4-//a b ---2||=2+b =(4-)cos ,1(),sin ,1(θθ==b aR ∈θ)0,2(=+b a θθθcos sin 2sin 2+(2)若,,求的值.【答案】(1)(2) 【解析】(1),∴, ……1分∴ ; ……3分∴. ……7分(2), ……8分∴,两边平方得, ……10分 ,且, ∴∴, ……12分 ∴. ……分)51,0(=-b a(,2)θππ∈θθcos sin +12-75-)cos ,1(),sin ,1(θθ==b a)0,2()cos sin ,2(=+=+θθb asin cos 0,tan 1θθθ+=∴=-1tan tan 2tan cos sin cos sin 2sin cos sin 2sin 222222++=++=+θθθθθθθθθθθ21-=)51,0()cos sin ,0(=-=-θθb a51cos sin =-θθ2512cos sin =θθ(,2)θππ∈02512cos sin >=θθ⎪⎭⎫⎝⎛∈ππθ23,0cos sin <+θθ57cos sin 21cos sin -=+-=+θθθθ14。
高中数学选择性必修二 4 1 2数列的递推公式(知识梳理+例题+变式+练习)(含答案)
4.1.2 数列的递推公式知识点一数列的递推公式如果一个数列的相邻两项或多项之间的关系可以用一个式子来表示,那么这个式子叫做这个数列的递推公式.数列递推公式与通项公式的关系:递推公式表示a n 与它的前一项a n -1(或前n 项)之间的关系,而通项公式表示a n 与n 之间的关系. 要点二 a n 与S n 的关系1.前n 项和S n :把数列{a n }从第1项起到第n 项止的各项之和,称为数列{a n }的前n 项和,记作S n ,即S n =12n a a a +++ 2.a n 与S n 的关系:a n =11,1,2n n S n S S n -=⎧⎨-≥⎩【基础自测】1.判断正误(正确的画“√”,错误的画“×”) (1)根据通项公式可以求出数列的任意一项.( ) (2)有些数列可能不存在最大项.( ) (3)递推公式是表示数列的一种方法.( ) (4)所有的数列都有递推公式.( ) 【答案】(1)√(2)√(3)√(4)×2.数列{a n }中,a n +1=a n +2-a n ,a 1=2,a 2=5,则a 5=( ) A .-3 B .-11 C .-5 D .19 【答案】D【解析】a 3=a 2+a 1=5+2=7,a 4=a 3+a 2=7+5=12,a 5=a 4+a 3=12+7=19,故选D. 3.数列{a n }中,a n =2n 2-3,则125是这个数列的第几项( ) A .4 B .8 C .7 D .12 【答案】B【解析】令2n 2-3=125得n =8或n =-8(舍),故125是第8项.故选B. 4.已知数列{a n }的前n 项和为S n =n 2,则a n =________. 【答案】2n -1【解析】当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=n 2-n 2+2n -1=2n -1.当n =1时,a 1=S 1=1满足上式,所以{a n }的通项公式为a n =2n -1.题型一 数列中项与项数关系的判断(1)写出数列的一个通项公式,并求出它的第20项;(2)判断42和10是不是该数列中的项?若是,指出是数列的第几项,若不是,请说明理由.【解析】(1)由于22=8,所以该数列前4项中,根号下的数依次相差3,所以它的一个通项公式为a n =3n -1;a 20=3×20-1=59.(2)令3n -1=42,两边平方得3n =33,解得n =11,是正整数令3n -1=10,两边平方得n =1013,不是整数.∴42是数列的第11项,10不是数列中的项. 【方法归纳】(1)由通项公式写出数列的指定项,主要是对n 进行取值,然后代入通项公式,相当于函数中,已知函数解析式和自变量的值求函数值.(2)判断一个数是否为该数列中的项,其方法是可由通项公式等于这个数求方程的根,根据方程有无正整数根便可确定这个数是否为数列中的项.(3)在用函数的有关知识解决数列问题时,要注意它的定义域是N *(或它的有限子集{1,2,3,…,n })这一约束条件.【跟踪训练1】已知数列{a n }的通项公式为a n =3n 2-28n . (1)写出此数列的第4项和第6项;(2)问-49是否是该数列的一项?如果是,应是哪一项?68是否是该数列的一项呢? 【解析】(1)a 4=3×42-28×4=-64, a 6=3×62-28×6=-60.(2)由3n 2-28n =-49解得n =7或n =73(舍去),所以-49是该数列的第7项.由3n 2-28n =68解得n =-2或n =343,所以68不是该数列的一项.题型二 已知S n 求a n例2 设S n 为数列{a n }的前n 项和,S n =2n 2-30n .求a n . 【解析】当n ≥2时,a n =S n -S n -1=2n 2-30n -[2(n -1)2-30(n -1)]=4n -32 当n =1时,a 1=S 1=-28,适合上式, 所以a n =4n -32.借助a n =⎩⎪⎨⎪⎧S 1,(n =1)S n -S n -1(n ≥2)【变式探究1】将本例中的“S n =2n 2-30n ”换为“S n =2n 2-30n +1”,求a n . 【解析】当n =1时,a 1=S 1=2×1-30×1+1=-27. 当n ≥2时,a n =S n -S n -1=2n 2-30n +1-[2(n -1)2-30(n -1)+1] =4n -32.验证当n =1时,上式不成立∴a n =⎩⎪⎨⎪⎧-27,n =14n -32,n ≥2.方法归纳已知数列{a n }的前n 项和公式S n ,求通项公式a n 的步骤: (1)当n =1时,a 1=S 1.(2)当n ≥2时,根据S n 写出S n -1,化简a n =S n -S n -1.(3)如果a 1也满足当n ≥2时,a n =S n -S n -1的通项公式,那么数列{a n }的通项公式为a n =S n -S n -1;如果a 1不满足当n ≥2时,a n =S n -S n -1的通项公式,那么数列{a n }的通项公式要分段表示为a n =⎩⎪⎨⎪⎧S 1,n =1S n -S n -1,n ≥2.【跟踪训练2】已知数列:a 1+3a 2+32a 3+…+3n -1a n =n 3,求a n .【解析】当n ≥2时,由a 1+3a 2+32a 3+…+3n -1a n =n 3,得a 1+3a 2+32a 3+…+3n -2a n -1=n -13,两式相减得3n -1a n =n 3-n -13=13,则a n =13n .当n =1时,a 1=13,满足a n =13n ,所以a n =13n .题型三 由数列递推公式求通项公式【例3】已知数列{a n }中,a 1=1,a n +1=a n +n +1,则a n =________.【答案】n (n +1)2【解析】∵a n +1=a n +n +1,a 1=1,∴a n +1-a n =n +1, ∴a n -a n -1=n ,a n -1-a n -2=n -1,…,a 2-a 1=2 以上式子相加得: a n -a 1=2+3+…+n∴a n =1+2+3+…+n =n (n +1)2.变形为:a n +1-a n =n +1,照此递推关系写出前n 项中任意相邻两项的关系,这些式子两边分别相加可求. 【变式探究2】若将“a n +1=a n +n +1”改为“a n +1=nn +1a n”,则a n =________.【答案】1n【解析】∵a n +1=n n +1a n ,a 1=1,∴a n +1a n =nn +1,∴a n a n -1=n -1n ,a n -1a n -2=n -2n -1,…,a 2a 1=12,以上式子两边分别相乘得:a n a 1=n -1n ×n -2n -1×…×12=1n∴a n =1n a 1=1n .【方法归纳】由数列的递推公式求通项公式时,若递推关系为a n +1=a n +f (n )或a n +1=g (n )·a n ,则可以分别通过累加法或累乘法求得通项公式,即:(1)累加法:当a n =a n -1+f (n )时,常用a n =a n -a n -1+a n -1-a n -2+…+a 2-a 1+a 1求通项公式.(2)累乘法:当a n a n -1=g (n )时,常用a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1求通项公式.【跟踪训练3】在数列{a n }中,a 1=2,a n +1=a n +ln ⎝⎛⎭⎫1+1n ,则a n =( ) A .2+ln n B .2+(n -1)ln n C .2+n ln n D .1+n +ln n 【答案】A【解析】∵在数列{a n }中,a n +1-a n =ln ⎝⎛⎭⎫1+1n =ln n +1n∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=ln n n -1+ln n -1n -2+…+ln 21+2=ln ⎝⎛⎭⎪⎫n n -1·n -1n -2·…·21+2=2+ln n .故选A.【易错辨析】数列中忽视n 的限制条件致误【例4】设S n 为数列{a n }的前n 项和,log 2(S n +1)=n +1,则a n =________.【答案】⎩⎪⎨⎪⎧3,n =12n ,n ≥2【解析】由log 2(S n +1)=n +1得S n +1=2n +1,∴S n =2n +1-1当n ≥2时a n =S n -S n -1=2n +1-1-2n +1=2n .当n =1时,a 1=S 1=3.经验证不符合上式.∴a n =⎩⎪⎨⎪⎧3,n =12n ,n ≥2.【易错警示】1. 出错原因忽视n =1的情况致错,得到错误答案:a n =2n . 2. 纠错心得已知a n 与S n 的关系求a n 时,常用a n =S n -S n -1(n ≥2)来求a n ,但一定要注意n =1的情况.一、单选题1.设数列{}n a 的前n 项和为n S ,11a =,2(1)nn S a n n =+-,(*n N ∈),若()22112n S S S n n+++--2013=,则n 的值为( ). A .1007 B .1006 C .2012 D .2014【答案】A 【分析】根据数列n a 与n S 的关系证得数列n S n ⎧⎫⎨⎬⎩⎭是以1为首项,以2为公差的等差数列,利用等差数列的前n 项和公式求出题中的式子,化简计算即可. 【解析】2(1)nn S a n n=+-, 12(1)(2)nn n S S S n n n-∴-=+-, 整理可得,1(1)2(1)n n n S nS n n ---=-, 两边同时除以(1)n n -可得12(2)1n n S S n n n --=-,又111S = ∴数列n S n ⎧⎫⎨⎬⎩⎭是以1为首项,以2为公差的等差数列,2321(1)23nS S S S n n∴++++-- 2(1)12(1)2n n n n -=⨯+⨯-- 22(1)n n =--21n =-,由题意可得,212013n -=, 解得1007n =. 故选:A .2.南宋数学家杨辉在《解析九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列,如数列1,3,6,10,前后两项之差得到新数列2,3,4,新数列2,3,4为等差数列,这样的数列称为二阶等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数列的第19项为( ) A .171 B .190 C .174 D .193【答案】C 【分析】根据题意可得数列3,4,6,9,13,18,24,⋯,满足:11(2)n n a a n n --=-,13a =,从而利用累加法即可求出n a ,进一步即可得到19a 的值. 【解析】3,4,6,9,13,18,24,后项减前项可得1,2,3,4,5,6,所以()1112,3n n a a n n a --=-≥=, 所以()()()112211n n n n n a a a a a a a a ---=-+-++-+()()1213n n =-+-+++()()()111133,222n n n n n -+⋅--=+=+≥.所以19191831742a ⨯=+=. 故选:C3.在数列{}n a 中,11a =,121nn n a a +-=-,则9a =( )A .512B .511C .502D .503【答案】D 【分析】利用累加法先求出通项即可求得答案. 【解析】因为11a =,121nn n a a +-=-,所以()()()121321n n n a a a a a a a a -=+-+-++-=()()()21211(21)21211222(1)2n n n n n --+-+-++-=++++--=-,所以9929503a =-=.故选:D. 4.数列23,45,69,817,1033,…的一个通项公式为( )A .221n n n a =+ B .2221n n n a +=+ C .1121n n n a ++=-D .12222n n n a ++=+【答案】A 【分析】根据数列中项的规律可总结得到通项公式. 【解析】1221321⨯=+,2422521⨯=+,3623921⨯=+,48241721⨯=+,510253321⨯=+, ∴一个通项公式为:221n nna =+. 故选:A.5.下列命题不正确的是( )A 的一个通项公式是n aB .已知数列{},3n n a a kn =-,且711a =,则1527a =C .已知数列{}n a 的前n 项和为()*,25n n n S S n N =-∈,那么123是这个数列{}n a 的第7项D .已知()*1n n a a n n N +=+∈,则数列{}n a 是递增数列【答案】C 【分析】A:根据被开方数的特征进行判断即可;B:运用代入法进行求解判断即可;C:根据前n项和与第n项之间的关系进行求解判断即可;D:根据递增数列的定义进行判断即可.【解析】对于A31⇒⨯na⇒=A正确;对于B,3na kn=-,且7151122327na k a n a=⇒=⇒=-⇒=,B正确;对于C,()*25nnS n N=-∈,13a=-,当2,n n N*≥∈时,111222n n nn n na S S---=-=-=,12127n-=,无正整数解,所以123不是这个数列{}n a的第7项,C错误;对于D.由()*11,0n n n na a n n N a a n++=+∈-=>,易知D正确,故选:C.6.已知数列{}n a的前n项和2nS n=,则数列11n na a+⎧⎫⎨⎬⎩⎭的前99项和为()A.1168B.1134C.198199D.99199【答案】D【分析】先根据11,2,1n nnS S naS n--≥⎧=⎨=⎩,求出21na n=-,然后利用裂项相消求和法即可求解.【解析】解:因为数列{}n a的前n项和2nS n=,2121nS n n-=-+,两式作差得到21(2)na n n=-≥,又当1n=时,21111a S===,符合上式,所以21na n=-,111111(21)(21)22121n na a n n n n+⎛⎫==-⎪-+-+⎝⎭,所以12233411111n na a a a a a a a+++++=111111111111233557212122121n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-=-= ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, 所以12233499100111199992991199a a a a a a a a ++++==⨯+. 故选:D.7.数列{}n a 中的前n 项和22nn S =+,数列{}2log n a 的前n 项和为n T ,则20T =( ).A .190B .192C .180D .182【答案】B 【分析】根据公式1n n n a S S -=-计算通项公式得到14,12,2n n n a n -=⎧=⎨≥⎩,故2,11,2n n b n n =⎧=⎨-≥⎩,求和得到答案.【解析】当1n =时,111224a S ==+=;当2n ≥时,()11112222222n n n n n n n n a S S ----=-=+-+=-=,经检验14a =不满足上式,所以14,12,2n n n a n -=⎧=⎨≥⎩, 2log n n b a =,则2,11,2n n b n n =⎧=⎨-≥⎩,()201911921922T ⨯+=+=. 故选:B.8.已知数列{}n a 满足11a =,()()()11*12n n n n a a a a n N n n ++-=∈++,则10a 的值为( )A .1231B .2231C .1D .2【答案】B 【分析】首先根据已知条件得到1111112n n a a n n +-=-++,再利用累加法求解即可. 【解析】 因为()()()*1112n n n n a a n n n N a a ++++=∈-,所以()()()*11112nn n n a a n N a a n n ++-=∈++, 所以()()111111212n n n n a a a a n n n n ++-==-++++,即1111112n n a a n n +-=-++,当2n ≥时,11221111111n n n n a a a a a a ---⎛⎫⎛⎫⎛⎫-+-+⋯+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1111111123n n n n ⎛⎫⎛⎫⎛⎫=-+-+⋯+- ⎪⎪+ ⎪ ⎝⎭⎝⎭-⎝⎭, 1111121n a a n -=-+,解得()11131122122n n n a n n +=-+=≥++ 当1n =时,上式成立,故2231n n a n +=+,故102022230131a +==+. 故选:B二、多选题9.数列{a n }的前n 项和为S n ,()*111,2N n n a a S n +==∈,则有( )A .S n =3n -1B .{S n }为等比数列C .a n =2·3n -1D .21,123,2n n n a n -=⎧=⎨⋅≥⎩【答案】ABD 【分析】根据11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求得n a ,进而求得n S 以及判断出{}n S 是等比数列.【解析】依题意()*111,2N n n a a S n +==∈,当1n =时,2122a a ==, 当2n ≥时,12n n a S -=,11222n n n n n a a S S a +--=-=,所以13n n a a +=,所以()2223232n n n a a n --=⋅=⋅≥,所以21,123,2n n n a n -=⎧=⎨⋅≥⎩. 当2n ≥时,1132n n n a S -+==;当1n =时,111S a ==符合上式,所以13n n S -=.13n nS S +=,所以数列{}n S 是首项为1,公比为3的等比数列. 所以ABD 选项正确,C 选项错误.故选:ABD10.已知数列{}n a 的前n 项和22n n nS +=,数列{}n b 满足1n n b a =,若n b ,2n b +,n k b +(k *∈N ,2k >)成等差数列,则k 的值不可能是( ) A .4 B .6 C .8 D .10【答案】AD 【分析】利用n a 与n S 的关系,求得n a ,进而求得n b ,然后根据n b ,2n b +,n k b +(k *∈N ,2k >)成等差数列,得到n 与k 的关系,进而求得答案.【解析】当1n =时,11212a S ===,当2n ≥时,()()2211122n n n n n n n a S S n --+++=-=-=,故n a n =(N n *∈),11n n b a n ==(N n *∈).因为n b ,2n b +,n k b +(N k *∈,2k >)成等差数列,所以22n n n k b b b ++=+,即2112n n n k=+++,所以48422n k n n ==+--,(2k >,N k *∈),从而2n -的取值为1,2,4,8,则对应的k 的值为12,8,6,5,所以k 的值不可能是4,10, 故选:AD .第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题11.数列{}n a 的前n 项的和231n S n n =++,n a =________.【分析】利用2n 时,1n n n a S S -=-求n a ,同时注意11a S =. 【解析】解析:由题可知,当2n 时,1n n n a S S -=-22313(1)(1)1n n n n ⎡⎤=++--+-+⎣⎦62n =-,当1n =时,113115a S ==++=,故答案为:5,162,2n n n =⎧⎨-⎩.12.设数列{a n }的前n 项和为S n =2n -3,则a n =________.【答案】【解析】解析 当n ≥2时,a n =S n -S n -1=(2n -3)-[2(n -1)-3]=2,又a 1=S 1=2×1-3=-1,故a n =13.已知数列{}n a 的前n 项和为n S ,若n n a b S +=,2414a a =,则数列{}n a 的通项公式为___________. 【答案】212n -⎛⎫ ⎪⎝⎭或212n -⎛⎫- ⎪⎝⎭【分析】 由n n a b S +=可得数列{}n a 是公比为12的等比数列,然后根据2414a a =求出21a =即可. 【解析】因为n n a b S +=,所以当1n =时,1112b a S a +==,即12b a = 当2n ≥时,11n n b a S --+=,然后可得10n n n a a a --+=,即()1122n n a a n -=≥ 所以数列{}n a 是公比为12的等比数列 所以21124b a a ==,4111816a a b ==, 因为22411644a ab ==,所以4b =±, 当4b =时, 21a =,2221122n n n a a --⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭当4b =-时, 21a =-,2221122n n n a a --⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭故答案为:212n -⎛⎫ ⎪⎝⎭或212n -⎛⎫- ⎪⎝⎭四、解答题 14.已知数列{}n a 的前n 项和()2*2n S n kn k N =-+∈,且n S 的最大值为4.(1)求常数k 及n a ;(2)设()17n n b n a =-,求数列{}n b 的前n 项和n T . 【答案】(1)2k =,25n a n =-+ (2)2(1)n n T n =+ 【分析】(1)由于()222*2()n S n kn n k k k N =-+=--+∈,则可得24k =,从而可求出2k =,然后利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求出n a , (2)由(1)可得11121n b n n ⎛⎫=- ⎪+⎝⎭,然后利用裂项相消求和法求解即可 (1)因为()222*2()n S n kn n k k k N =-+=--+∈,所以当n k =时,n S 取得最大值2k , 所以24k =,因为*k N ∈,所以2k =,所以24n S n n =-+,当1n =时,11143a S ==-+=,当2n ≥时,2214[(1)4(1)]25n n n a S S n n n n n -=-=-+---+-=-+,13a =满足上式,所以25n a n =-+(2)由(1)可得()()11111177252(1)21n n b n a n n n n n n ⎛⎫====- ⎪-+-++⎝⎭, 所以1111111112222321n T n n ⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⋅⋅⋅+⨯- ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭ 111212(1)n n n ⎛⎫=-= ⎪++⎝⎭ 15.已知数列{}n a 满足()23*1232222n n a a a a n n N ++++=∈,求数列{}n a 的通项公式.【答案】12n na =【分析】 先根据前n 项和与通项的关系得12n n a =,再检验1n =时也满足条件即可求得答案. 【解析】因为23*1232222()n n a a a a n n N ++++=∈①, 所以()2311231222212n n a a a x a n n --++++=-≥②, ①-②得21(2)n n a n =≥,即 12n n a =, 当1n =时,112a =,满足12n n a =, 所以12n na = 16.已知数列{}n a 的前n 项和112n n S ⎛⎫=+ ⎪⎝⎭,求数列{}n a 的通项公式. 【答案】312122n n n a n ⎧=⎪⎪=⎨⎛⎫⎪-≥ ⎪⎪⎝⎭⎩ 【分析】根据n S 与n a 的关系式,求解数列的通项公式即可.需要注意验证首项.【解析】()111111222n n n n S S n --⎛⎫⎛⎫=+∴=+≥ ⎪ ⎪⎝⎭⎝⎭①②-①②得()122n n a n ⎛⎫=-≥ ⎪⎝⎭ 根据题意,1111311222a S ⎛⎫==+=≠- ⎪⎝⎭ 所以数列的通项公式为312122n n n a n ⎧=⎪⎪=⎨⎛⎫⎪-≥ ⎪⎪⎝⎭⎩。
高中数学必修2第二章点、线、面的位置关系知识点+习题+答案
D B A α 相交直线:同一平面内,有且只有一个公共点; ] ]; a 来表 a a 线线平行 A ·α C ·B · A · α P· αLβ 共面直线p线面平行 面面平行 作用:可以由平面与平面平行得出直线与直线平行叫做垂足。
叫做垂足。
的垂线,则这两个ba第 3 页 共 3 页aa b a b //,a a a ÞþýüË^^1、性质定理:垂直于同一个平面的两条直线平行。
符号表示:符号表示:b a b a //,Þ^^a a 2、性质定理:一条直线与一个平行垂直,那么过这条直线的平面也与此平面垂直 符号表示:b a b a ^ÞÌ^a a ,2.3.4平面与平面垂直的性质1、性质定理:、性质定理: 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。
符号表示:b b a a b a ^Þïþïýü=^Ì^a l l a a ,2、性质定理:垂直于同一平面的直线和平面平行。
符号表示:符号表示:符号表示:一、异面直线所成的角一、异面直线所成的角1.已知两条异面直线,a b ,经过空间任意一点O 作直线//,//a a b b ¢¢, 我们把a ¢与b ¢所成的锐角(或直角)叫异面直线,a b 所成的角。
所成的角。
2.角的取值范围:090q <£°;垂直时,异面直线当b a ,900=q二、直线与平面所成的角二、直线与平面所成的角1. 定义:平面的一条斜线和它在平面上的射影所成的锐角,叫这条斜线和这个平面所成的角2.角的取值范围:°°££900q 。
三、两个半平面所成的角即二面角:三、两个半平面所成的角即二面角: 1、从一条直线出发的两个半平面所组成的图形叫做二面角。
高中数学必修2第三章知识点+习题+答案
高中数学必修2第三章知识点+习题+答案(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第三章直线与方程直线的倾斜角和斜率倾斜角和斜率1、直线的倾斜角的概念:当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时, 规定α= 0°.2、倾斜角α的取值范围: 0°≤α<180°.当直线l与x轴垂直时, α= 90°.3、直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k = tanα⑴当直线l与x轴平行或重合时, α=0°, k = tan0°=0;⑵当直线l与x轴垂直时, α= 90°, k 不存在.由此可知, 一条直线l的倾斜角α一定存在,但是斜率k不一定存在.4、直线的斜率公式:给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率:斜率公式:两条直线的平行与垂直1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2, 那么一定有L1∥L22、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即直线的点斜式方程1、 直线的点斜式方程:直线l 经过点),(000y x P ,且斜率为k )(00x x k y y -=-2、、直线的斜截式方程:已知直线l 的斜率为k ,且与y 轴的交点为),0(bb kx y +=直线的两点式方程1、直线的两点式方程:已知两点),(),,(222211y x P x x P 其中),(2121y y x x ≠≠ ),(1212112121y y x x x x x x y y y y ≠≠--=--2、直线的截距式方程:已知直线l 与x 轴的交点为A )0,(a ,与y 轴的交点为B ),0(b ,其中0,0≠≠b a 直线的一般式方程1、直线的一般式方程:关于y x ,的二元一次方程0=++C By Ax (A ,B 不同时为0)2、各种直线方程之间的互化。
高中数学必修二第九章统计基础知识点归纳总结(带答案)
高中数学必修二第九章统计基础知识点归纳总结单选题1、下列调查所抽取的样本具有代表性的是()A.利用某地七月份的日平均最高气温值估计该地全年的日平均最高气温B.在农村调查市民的平均寿命C.利用一块实验水稻田的产量估计水稻的实际产量D.为了了解一批洗衣粉的质量情况,从仓库中任意抽取100袋进行检验答案:D分析:根据抽取样本要具的广泛性和代表性,抽取的样本必须是随机的,逐个分析判断即可A项中某地七月份的日平均最高气温值不能代表全年的日平均最高气温;B项中在农村调查得到的平均寿命,不具代表性;C项中利用一块实验水稻田的产量估计水稻的实际产量,不具代表性;D项抽取的样本是随机的,具有代表性.故选:D2、为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是()A.该地农户家庭年收入低于4.5万元的农户比率估计为6%B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%C.估计该地农户家庭年收入的平均值不超过6.5万元D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间答案:C分析:根据直方图的意义直接计算相应范围内的频率,即可判定ABD,以各组的中间值作为代表乘以相应的频率,然后求和即得到样本的平均数的估计值,也就是总体平均值的估计值,计算后即可判定C.因为频率直方图中的组距为1,所以各组的直方图的高度等于频率.样本频率直方图中的频率即可作为总体的相应比率的估计值.该地农户家庭年收入低于4.5万元的农户的比率估计值为0.02+0.04=0.06=6%,故A正确;该地农户家庭年收入不低于10.5万元的农户比率估计值为0.04+0.02×3=0.10=10%,故B正确;该地农户家庭年收入介于4.5万元至8.5万元之间的比例估计值为0.10+0.14+0.20×2=0.64=64%> 50%,故D正确;该地农户家庭年收入的平均值的估计值为3×0.02+4×0.04+5×0.10+6×0.14+7×0.20+8×0.20+ 9×0.10+10×0.10+11×0.04+12×0.02+13×0.02+14×0.02=7.68(万元),超过6.5万元,故C错误.综上,给出结论中不正确的是C.故选:C.小提示:本题考查利用样本频率直方图估计总体频率和平均值,属基础题,样本的频率可作为总体的频率的估计值,样本的平均值的估计值是各组的中间值乘以其相应频率然后求和所得值,可以作为总体的平均值的×组距.估计值.注意各组的频率等于频率组距3、下列调查方式合适的是().A.为了了解一批头盔的抗压能力,采用普查的方式B.为了了解一批玉米种子的发芽率,采用普查的方式C.为了了解一条河流的水质,采用抽查的方式D.为了了解一个寝室的学生(共5个人)每周体育锻炼的时间,采用抽查的方式答案:C分析:根据抽查和普查的特点,对每个选项进行逐一分析,即可判断和选择.对于选项A,采用普查的方式测试头盔的抗压能力,成本较高,不适合,故A错误;对于选项B,采用普查的方式测试玉米种子的发芽率,较为繁琐且工作量较大,不适合,故B错误;对于选项C,采用抽查的方式了解河流的水质,适合,故C正确;对于选项D,为了了解5个人每周体育锻炼的时间,适合采用普查的方式,故D错误.故选:C.4、2021年3月12日是全国第43个植树节,为提高大家爱劳动的意识,某中学组织开展植树活动,并收集了高三年级1~11班植树量的数据(单位:棵),绘制了下面的折线图.根据折线图,下列结论不正确的是()A.各班植树的棵数不是逐班增加的B.4班植树的棵数低于11个班的平均值C.各班植树棵数的中位数为6班对应的植树棵数D.1至5班植树的棵数相对于6至11班,波动更小,变化比较平稳答案:C分析:从图中直接观察可以判定AD正确,结合平均数的定义,将比4班多的里面取出部分补到比4班少的班中,可以使得4班的植树量最少,从而判定B正确;结合中位数的定义可以判定C错误.从图可知,2班的植树量少于1班,8班的植树量少于7班,故A正确;4班的指数棵数为10,11个班中只有2、3、8班三个的植树棵数少于10,且大于5棵,其余7个班的植树棵数都超过10棵,且有6、7、9、10、11班五个班的植树棵数都不少于15棵,将这五个班中的植树棵数各取出5棵,加到2、3、8班中取,除4班外,其余各班的植树棵数都超过了4班,所以4班植树的棵数低于11个班的平均值,故B正确;比6班植树多的只有9、10、11三个班,其余七个班都比6班少,故6班所对应的植树棵数不是中位数,故C是错误的;1到5班的植树棵数的极差在10以内,6到11班的植树棵数的极差超过了15,另外从图明显看出,1至5班植树的棵数相对于6至11班,波动更小,变化比较平稳,故D正确;综上,不正确的只有C,故选:C.小提示:本题考查频数折线图的意义,涉及平均数,中位数,波动大小的判定,难点是平均数的估算,这里采用取长补短法进行估算,可以避免数字的计算.5、2020年广东12月份天气预报历史记录中1号至8号的数据如表所示,则()C.这8天的最低气温的极差为5°C D.这8天的最低气温的中位数为11.5°C答案:D分析:由极差等于一组数据中的最大值与最小值的差,并根据中位数的定义,求最高、最低气温数据的中位数即可判断各项的正误.=22°C,这8天的最低气温的这8天的最高气温的极差为23−19=4°C,这8天的最高气温的中位数为21+232=11.5°C,故选:D.极差为15−9=6°C,这8天的最低气温的中位数为11+1226、某工厂利用随机数表对生产的50个零件进行抽样测试,先将50个零件进行编号,编号分别为01,02,…,50,从中抽取5个样本,下面提供随机数表的第1行到第2行:66674037146405711105650995866876832037905716031163149084452175738805905223594310若从表中第1行第9列开始向右依次读取数据,则得到的第4个样本编号是()A.10B.09C.71D.20答案:B分析:按照题意依次读出前4个数即可.从随机数表第1行的第9列数字开始由左向右每次连续读取2个数字,删除超出范围及重复的编号,符合条件的编号有14,05,11,09,所以选出来的第4个个体的编号为09,故选:B7、为了更好地支持“中小型企业”的发展,某市决定对部分企业的税收进行适当的减免,某机构调查了当地的中小型企业年收入情况,并根据所得数据画出了样本的频率分布直方图,下面三个结论:①样本数据落在区间[300,500)的频率为0.45;②如果规定年收入在500万元以内的企业才能享受减免税政策,估计有55%的当地中小型企业能享受到减免税政策;③样本的中位数为480万元.其中正确结论的个数为A.0B.1C.2D.3答案:D解析:根据直方图求出a=0.0025,求出[300,500)的频率,可判断①;求出[200,500)的频率,可判断②;根据中位数是从左到右频率为0.5的分界点,先确定在哪个区间,再求出占该区间的比例,求出中位数,判断③.由(0.001+0.0015+0,002+0.0005+2a)×100=1,a=0.0025,[300,500)的频率为(0.002+0.0025)×100=0.45,①正确;[200,500)的频率为(0.0015+0.002+0.0025)×100=0.55,②正确;[200,400)的频率为0.3,[200,500)的频率为0.55,中位数在[400,500)且占该组的4,5×100=480,③正确.故中位数为400+0.5−0.30.25故选:D.小提示:本题考查补全直方图,由直方图求频率和平均数,属于基础题8、2021年是中国共产党成立100周年,某学校团委在7月1日前,开展了“奋斗百年路,启航新征程”党史知识竞赛.团委工作人员将进入决赛的100名学生的分数(满分100分且每人的分值为整数)分成6组:[70,75),[75,80),[80,85),[85,90),[90,95),[95,100]得到如图所示的频率分布直方图,则下列关于这100名学生的分数说法错误的是()A.分数的中位数一定落在区间[85,90)B.分数的众数可能为97C.分数落在区间[80,85)内的人数为25D.分数的平均数约为85答案:B分析:根据小矩形的面积之和等于1,求出b=0.05,根据中位数的求法可判断A;根据众数的求法可判断B;由在区间[80,85)上的概率可判断C;由平均数的的计算公式:小矩形的底边中点横坐标与小矩形面积的乘积之和可判断D.A,由频率分布直方图可得(0.01+0.02×2+0.03+b+0.07)×5=1,解得b=0.05,前三组的概率为(0.02×2+0.05)×5=0.45<0.5,前四组的概率为(0.02×2+0.05+0.07)×5=0.7>0.5,所以分数的中位数一定落在第四组[85,90)内,故A正确;B,分数的众数可能为87.5,故B错误;C,分数落在区间[80,85)内的人数约为0.05×5×100=25,故C正确.D,分数的平均数为:72.5×0.02×5+77.5×0.02×5+82.5×0.05×5+87.5×0.07×5+92.5×0.03×5+97.5×0.01×5=85,故D正确.故选:B多选题9、2020年突如其来的新冠肺炎疫情对房地产市场造成明显的冲击,如图为某市2020年国庆节7天假期的楼房认购量与成交量的折线图,某同学根据折线图对这7天的认购量(单位:套)与成交量(单位:套)作出如下判断,则判断正确的是()A.日成交量的中位数是16B.日成交量超过平均成交量的只有1天C.10月7日认购量量的增长率大于10月7日成交量的增长率D.日认购量的方差大于日成交量的方差答案:BD解析:根据拆线图判断各数据特征后判断各选项.由拆线图日成交量的中位数是26,A错;日成交量均值为13+8+32+16+26+38+1667≈42.7,大于均值的只有一天,B正确;10月7日认购量量的增长率为y1=276−112112≈1.464,成交量的增长率为y2=166−3838≈3.368,显然C错;日认购量的均值为223+105+91+107+100+112+276≈144.857,7由各数据与均值的差可以看出日认购量的方差大于日成交量的方差,D正确.故选:BD.小提示:关键点点睛:本题考查统计图表,考查拆线图的识别.解题关键是由拆线图得出各数据,然后求得各数据特征.如中位数,均值,增长率,方差,解题中还要善于估值,如本题中的方差,从而大致比较出大小.10、成立时间少于10年.估值超过10亿美元且未上市的企业,称为独角兽企业.2021年中国新经济独角兽企业分布较广泛、覆盖居民生活的各个方面.如图为2021年中国新经济独角兽企业TOP200的行业分布图,中国新经济独角兽企业TOP200榜单中,京、沪、粤三地的企业数量共同占比达到69%.下列说法正确的是()A.随着智能出行与共享经济观念的普及,汽车交通行业备受投资者关注B.这12个行业TOP200榜单中独角兽企业数量的中位数是17C.中国新经济独角兽企业TOP200榜单中,京、沪、粤三地的企业超过130家D.2021年中国新经济独角兽企业TOP200榜单中汽车交通、企业服务、文化娱乐的企业数量共同占比超过40% 答案:ABC分析:结合图表对选项进行分析,由此确定正确选项.A选项,由图可知,汽车交通行业独角兽企业TOP200榜单中数量最多,是由A选项正确.=17,B选项正确.B选项,数据为8,8,12,13,16,17,17,18,18,19,25,29,中位数为17+172C选项,200×69%=138>130,所以C选项正确.×100%=36.5%<40%,D选项错误.D选项,汽车交通、企业服务、文化娱乐占比29+25+19200故选:ABC11、立德中学举行党史知识竞赛,对全校参赛的1000名学生的得分情况进行了统计,把得分数据按照[50,60)、[60,70)、[70,80)、[80,90)、[90,100]分成5组,绘制了如图所示的频率分布直方图,根据图中信息,下列说法正确的是()A.图中的x值为0.020B.这组数据的极差为50C.得分在80分及以上的人数为400D.这组数据的平均数的估计值为77答案:ACD分析:根据频率分布直方图中所有长方形的面积和为1,以及极值、频数以及平均数的计算,对每个选项进行逐一分析,即可判断和选择.由(0.005+x+0.035+0.030+0.010)×10=1,可解得x=0.020,故选项A正确;频率分布直方图无法看出这组数据的最大值和最小值,故选项B不正确;得分在80分及以上的人数的频率为(0.030+0.010)×10=0.4,故人数为1000×0.4=400,故选项C正确;这组数据的平均数的估计值为:55×0.05+65×0.2+75×0.35+85×0.3+95×0.1=77故选项D正确.故选:ACD.填空题12、某学校有高中学生1000人,其中高一年级、高二年级、高三年级的人数分别为320,300,380,为了调查学生参加“社区志愿服务”的意向,现采用分层抽样的方法从该校学生中抽取一个样本量为200的样本,那么应抽取高二年级学生的人数为________答案:60分析:根据分层抽样,每层的抽样比相同计算即可.因为学校有高中学生1000人,抽取一个样本量为200的样本,故应抽取高二年级学生的人数为2001000×300=60.所以答案是:6013、有一组样本数据x1,x2,x3,x4,该样本的平均数和方差均为m.在该组数据中加入一个数m,得到新的样本数据,则新样本数据的方差为__________.答案:45m##0.8m分析:由平均数和方差的计算公式直接计算即可.样本数据x1,x2,x3,x4,该样本的平均数和方差均为m,在该组数据中加入1个数m,则新样本数据的平均数x̅=15×(4×m+m)=m,方差为s2=15×[4×m+(m−m)2]=45m.所以答案是:45m.14、由6个实数组成的一组数据的方差为S12,将其中一个数5改为2,另一个数4改为7 ,其余的数不变,得到新的一组数据的方差为S22,则S22−S12=________.答案:2分析:根据平均数和方差的定义进行求解即可.因为将其中一个数5改为2,另一个数4改为7,其余的数不变,所以这6个实数组成的一组数据的平均数不变,设为x,设没有变化的4个数与平均数差的平方和为S,所以S22−S12=[S+(2−x)2+(7−x)2]−[S+(5−x)2+(4−x)2]6=2,所以答案是:2解答题15、从甲、乙两人中选选拔一人参加射击比赛,对他们的射击水平进行了测试,两人在相同条件下各射击10次,命中的环数如下:甲78686591074乙9578768677(1)分别计算甲、乙两人射击命中环数的平均数:(2)选派谁去参赛更好?请说明理由.答案:(1)甲乙的平均数均为7;(2)选派乙,理由见解析.分析:(1)应用平均数的求法求甲乙平均数;(2)由(1)知甲乙平均数相同,求出甲乙的方差并比较大小,即可确定选派方法.(1)由题设,甲的平均数为x̅1=7+8+6+8+6+5+9+10+7+410=7,乙的平均数为x̅2=9+5+7+8+7+6+8+6+7+710=7.(2)甲的方差为s12=110∑(x i−x̅1)210i=1=0+1+1+1+1+4+4+9+0+910=3,乙的方差为s22=110∑(x i−x̅2)210i=1=4+4+0+1+0+1+1+1+0+010=1.2.由(1)知:x̅1=x̅2,而s12>s22,所以选派乙去参赛更好.。
高中数学必修2《 函数概念与基本性质》知识点
第2讲函数及其表示方法2.1映射1、映射的概念f设有两个集合、,通过在中都有唯一确定的元素与之对应,称映射.A B x A f B y A B∀∈−−→原象:象:说明:映射是一种对应关系,对应关系一般有4种类型,但只有“一对一”、“多对一”才构成映射关系.下列对应中有几项是映射?考点1 映射【例1】【例2】一、选择题1.给出下列四个命题:(1)若A={整数},B={正奇数},则一定不能建立从集合A到集合B的映射;(2)若A是无限集,B是有限集,则一定不能建立从集合A到集合B的映射;(3)若A={a},B={1,2},则从集合A到集合B只能建立一个映射;(4)若A={1,2},B={a},则从集合A到集合B只能建立一个映射.其中正确命题的个数是( )A.0个B.1个C.2个D.3个2.下列从P到Q的各对应关系f中,不是映射的是( )A .P =N ,Q =N *,f :x →|x -8|B .P ={1,2,3,4,5,6},Q ={-4,-3,0,5,12},f :x →x (x -4)C .P =N *,Q ={-1,1},f :x →(-1)xD .P =Z ,Q ={有理数},f :x →x 23.已知集合M ={x |0≤x ≤6},P ={y |0≤y ≤3},则下列对应关系中,不能看做从M 到P 的映射的是( )A .f :x →y =12xB .f :x →y =13xC .f :x →y =xD .f :x →y =16x4.集合A ={a ,b ,c },B ={d ,e }则从A 到B 可以建立不同的映射个数为( ) A .5 B .6 C .8 D .9详解答案 1[答案] B[解析] 对于(1)f :A →B 对应法则f :x →2|x |+1故(1)错;(2)f :R →{1},对应法则f :x →1,(2)错;(3)可以建立两个映射,(3)错;(4)正确,故选B.2[答案] A[解析] 对于选项A ,当x =8时,|x -8|=0∉N *, ∴不是映射,故选A. 3[答案] C[解析] 对于选项C ,当x =6时,y =6,当6∉P ,故选C. 4[答案] C[解析] 用树状图写出所有的映射为:a →d ⎩⎪⎨⎪⎧b →d ⎩⎨⎧ c →d c →eb →e ⎩⎨⎧c →d c →e a →e ⎩⎪⎨⎪⎧b →d ⎩⎨⎧ c →d c →eb →e ⎩⎨⎧c →d c →e 共8个.2.2函数及其表示1、函数的概念:非空数集A 到非空数集B 的映射,叫函数。
高中数学必修二第六章平面向量及其应用必考知识点归纳(带答案)
高中数学必修二第六章平面向量及其应用必考知识点归纳单选题1、已知向量a⃑=(1,−√7),|b⃑⃑|=3,a⃑⋅b⃑⃑=3√6,则a⃑与b⃑⃑的夹角为()A.π6B.π4C.π3D.2π3答案:A分析:先计算向量a⃑的模,再根据向量数量积的定义,将a⃑⋅b⃑⃑=3√6展开,即可求得答案. 因为a⃑=(1,−√7),所以|a⃑|=√12+(−√7)2=2√2,又因为a⃑⋅b⃑⃑=3√6,设a⃑与b⃑⃑的夹角为θ,θ∈[0,π],所以|a⃑||b⃑⃑|cosθ=3√6,即2√2×3×cosθ=3√6,解得cosθ=√32,故θ=π6,故选:A.2、在△ABC中,角A,B,C的对边分别为a,b,c,且B=π3,b=3,a=√3,则c=().A.√3B.2√3C.3−√3D.3答案:B分析:利用余弦定理可构造方程直接求得结果.在△ABC中,由余弦定理得:b2=a2+c2−2accosB=3+c2−√3c=9,即c2−√3c−6=0,解得:c=2√3或c=−√3(舍),∴c=2√3.故选:B.3、已知向量a⃑与b⃑⃑的夹角为π6,且|a⃑|=2|b⃑⃑|=2,则a⃑⋅b⃑⃑=()A.√3B.1C.2√3D.2答案:A解析:利用向量数量积的定义即可求解.由|a⃑|=2|b⃑⃑|=2,则|a⃑|=2,|b⃑⃑|=1,又向量a⃑与b⃑⃑的夹角为π6,所以a⃑⋅b⃑⃑=|a⃑||b⃑⃑|cos⟨a⃑,b⃑⃑⟩=2×1×√32=√3.故选:A小提示:本题考查了向量数量积的定义,考查了基本运算求解能力,属于基础题.4、已知向量a⃗=(√3,1),b⃑⃗=(−√3,1),则a⃗与b⃑⃗的夹角为()A.30°B.60°C.120°D.150°答案:C分析:根据数量积的夹角公式进行求解,再结合平面向量夹角范围即可得到答案解:cos⟨a⃗,b⃑⃑⟩=a⃑⃗⋅b⃑⃑|a⃑⃗||b⃑⃑|=−3+12×2=−12,因为0°≤⟨a⃗,b⃑⃑⟩≤180°,所以⟨a⃗,b⃑⃑⟩=120°,故选:C5、△ABC的内角A、B、C的对边分别为a、b、c,C=30∘,c=10.如果△ABC有两解,则a的取值范围是()A.[10,20]B.[10,10√3]C.(10,10√3)D.(10,20)答案:D分析:作出图形,根据题意可得出关于a的不等式,由此可解得a的取值范围.如下图所示:因为△ABC有两解,所以asinC=12a<c=10<a,解得10<a<20.故选:D.6、如图,△ABC中,角C的平分线CD交边AB于点D,∠A=2π3,AC=2√3,CD=3√2,则BC=()A.3√3B.4C.4√2D.6答案:D分析:△ACD中由正弦定理求得∠ADC后可得∠ACD,从而得∠ACB,B角,得AB,用余弦定理可得BC.在△ACD中,根据正弦定理得sin∠ADC=AC⋅sinACD =2√3×√323√2=√22,由∠ADC<∠A,所以∠ADC=π4,所以∠ACD=π−2π3−π4=π12,所以∠ACB=π6,则∠B=π6,所以AB=AC=2√3,在△ABC中,由余弦定理得BC2=(2√3)2+(2√3)2−2×2√3×2√3×(−12)=36,所以BC=6.故选:D.小提示:关键点点睛:本题主要考查正弦定理,余弦定理,特殊角的三角函数值等基础知识,解题时对照已知条件选用恰当的公式进行计算.如先在△ACD中选用正弦定理求得两边中另一边的对角,可得三角形的第三角,这样图形听所有角都已知,然后再求选用公式求边.本题也可以不用余弦定理求边BC.7、如图,四边形ABCD是平行四边形,则12AC⃑⃑⃑⃑⃑⃑+12BD⃑⃑⃑⃑⃑⃑⃑=()A .AB ⃑⃑⃑⃑⃑⃑B .CD ⃑⃑⃑⃑⃑⃑C .CB ⃑⃑⃑⃑⃑⃑D .AD ⃑⃑⃑⃑⃑⃑ 答案:D分析:由平面向量的加减法法则进行计算. 由题意得AC ⃑⃑⃑⃑⃑⃑=AB ⃑⃑⃑⃑⃑⃑+AD ⃑⃑⃑⃑⃑⃑,BD ⃑⃑⃑⃑⃑⃑⃑=AD ⃑⃑⃑⃑⃑⃑−AB⃑⃑⃑⃑⃑⃑, 所以12AC ⃑⃑⃑⃑⃑⃑+12BD ⃑⃑⃑⃑⃑⃑⃑=12(AB ⃑⃑⃑⃑⃑⃑+AD ⃑⃑⃑⃑⃑⃑+AD ⃑⃑⃑⃑⃑⃑−AB ⃑⃑⃑⃑⃑⃑)=AD ⃑⃑⃑⃑⃑⃑.故选:D.8、若|AB ⃑⃑⃑⃑⃑⃑|=5,|AC ⃑⃑⃑⃑⃑⃑|=8,则|BC ⃑⃑⃑⃑⃑⃑|的取值范围是( ) A .[3,8]B .(3,8) C .[3,13]D .(3,13) 答案:C分析:利用向量模的三角不等式可求得|BC⃑⃑⃑⃑⃑⃑|的取值范围. 因为|BC ⃑⃑⃑⃑⃑⃑|=|AC ⃑⃑⃑⃑⃑⃑−AB ⃑⃑⃑⃑⃑⃑|,所以,||AC ⃑⃑⃑⃑⃑⃑|−|AB ⃑⃑⃑⃑⃑⃑||≤|BC ⃑⃑⃑⃑⃑⃑|≤|AC ⃑⃑⃑⃑⃑⃑|+|AB ⃑⃑⃑⃑⃑⃑|,即3≤|BC ⃑⃑⃑⃑⃑⃑|≤13. 故选:C. 多选题9、设△ABC 的内角A 、B 、C 所对边的长分别为a 、b 、c ,下列命题正确的是( ) A .若a 2+b 2<c 2,则C >π2B .若ab =c 2,则C ≥π3 C .若a 3+b 3=c 3,则C <π2 D .若a +b =2c ,则C >π2 答案:AC分析:利用余弦定理及基本不等式一一判断即可; 解:对于A 选项,a 2+b 2<c 2,可以得出cosC =a 2+b 2−c 22ab <0,∴C >π2,故A 正确;对于B 选项,因为ab =c 2,所以cos C =a 2+b 2−c 22ab≥2ab−ab 2ab=12,当且仅当a =b 时取等号,因为C ∈(0,π),所以0<C ≤π3,故B 错误;对于C 选项,假设C ≥π2,则c >a ,c >b ,则c 2≥a 2+b 2,所以c 3≥a 2c +b 2c >a 3+b 3与a 3+b 3=c 3矛盾,∴C <π2,故C 正确,对于D 选项,取a =b =c =2,满足a +b =2c ,此时C =π3,故D 错误;故选:AC.10、已知△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c 且a =6,4sin B =5sin C ,有以下四个命题中正确命题有 ( )A .△ABC 的面积的最大值为40B .满足条件的△ABC 不可能是直角三角形 C .当A =2C 时,△ABC 的周长为15D .当A =2C 时,若O 为△ABC 的内心,则△AOB 的面积为√7 答案:ACD分析:对于A ,运用圆的方程和三角形的面积公式,即可得到所求最大值;对于B ,考虑勾股定理的逆定理,即可判断;对于C ,运用正弦定理可得4b =5c ,运用三角函数的恒等变换,即可得到所求周长;对于D ,运用正弦定理和三角函数的恒等变换、三角形的面积公式和等积法,即可得到所求面积. 以BC 的中点为坐标原点,BC 所在直线为x 轴,可得B (﹣3,0),C (3,0), 4sin B =5sin C ,可得4b =5c ,设A (m ,n ),可得4√(m −3)2+n 2=5√(m +3)2+n 2,平方可得16(m 2+n 2﹣6m +9)=25(m 2+n 2+6m +9), 即有m 2+n 2+823m +9=0,化为(m +413)2+n 2=(403)2,则A 的轨迹为以(﹣413,0),半径为403的圆,可得△ABC 的面积的最大值为12×6×403=40, 故A 对;a =6,4sin B =5sin C 即4b =5c ,设b =5t ,c =4t ,由36+16t 2=25t 2,可得t =43,满足条件的△ABC 可能是直角三角形,故B 错误;a =6,4sin B =5sin C ,A =2C ,可得B =π﹣3C ,由正弦定理可得4b =5c ,可得b =5c4,由b sinB =csinC ,可得5c 4sin(π−3C)=csinC =5c 4sinC (4cos 2C−1),由sin C ≠0,可得:4cos 2C ﹣1=54,解得:cos C =34,或﹣34(舍去),sin C =√1−cos 2C =√74,可得sin A =2sin C cos C =2×34×√74=3√78, 3√78=√74,可得:c =4,b =5,则a +b +c =15,故C 对;a =6,4sin B =5sin C ,A =2C ,可得B =π﹣3C ,由正弦定理可得4b =5c ,可得b =5c4,由b sinB=csinC,可得5c 4sin(π−3C)=csinC =5c 4sinC (4cos 2C−1),由sin C ≠0,可得:4cos 2C ﹣1=54,解得:cos C =34,或﹣34(舍去), sin C =√1−cos 2C =√74,可得:sin A =2sin C cos C =2×34×√74=3√78, 3√78=c √74,可得:c =4,b =5,S △ABC =12bc sin A =12×5×4×3√78=15√74. 设△ABC 的内切圆半径为R ,则R =2Sa+b+c=2×15√744+5+6=√72,S △ABO =12cR =12×4×√72=√7.故D 对.故选:ACD .小提示:本题考查三角形的正弦定理和面积公式的运用,考查三角函数的恒等变换,考查转化思想和运算能力,属于难题.11、已知向量a ⃑=(2,1),b ⃑⃑=(−3,1),则( ) A .(a ⃑+b ⃑⃑)⊥a ⃑B .|a ⃑+2b⃑⃑|=6 C .向量a ⃑在向量b ⃑⃑上的投影向量是(−65,25)D .(2√55,√55)是向量a ⃑的单位向量答案:AD分析:根据向量坐标的线性运算及数量积的坐标运算即可判断判断A ; 根据向量坐标的线性运算及向量的模的坐标运算即可判断判断B ; 根据投影向量的计算公式即可判断C ; 判断向量(2√55,√55)是否与向量a ⃑共线,及模是否为1,即可判断D.解:对于A ,a ⃑+b ⃑⃑=(−1,2),则(a ⃑+b ⃑⃑)⋅a ⃑=−2+2=0, 所以(a ⃑+b ⃑⃑)⊥a ⃑,故A 正确;对于B ,a ⃑+2b ⃑⃑=(−4,3),则|a ⃑+2b ⃑⃑|=5,故B 错误; 对于C ,向量a ⃑在向量b ⃑⃑上的投影向量为|a ⃑|⋅cos⟨a ⃑,b ⃑⃑⟩⋅b⃑⃑|b⃑⃑|=a⃑⃑⋅b ⃑⃑|b⃑⃑|⋅b⃑⃑|b⃑⃑|=−5b ⃑⃑10=(32,−12),故C 错误; 对于D ,因为向量(2√55,√55)的模等于1,2√55×1−2×√55=0,所以向量(2√55,√55)与向量a ⃑共线,故(2√55,√55)是向量a ⃑的单位向量,故D 正确.故选:AD. 填空题12、骑自行车是一种能有效改善心肺功能的耐力性有氧运动,深受大众喜爱,如图是某一自行车的平面结构示意图,已知图中的圆A (前轮),圆D (后轮)的半径均为√3,△ABE ,△BEC ,△ECD 均是边长为4的等边三角形,设点P 为后轮上的一点,则在骑动该自行车的过程中,AC⃑⃑⃑⃑⃑⃑⋅BP ⃑⃑⃑⃑⃑⃑的最大值为___________.答案:36分析:由题意以AD 所在的直线为x 轴,以点D 为坐标原点建立平面直角坐标系,将所涉及的点的坐标求出,其中P 点坐标借助于三角函数表示,则所求的结果即可转化为三角函数的最值问题求解.由题意圆D (后轮)的半径均为√3,△ABE ,△BEC ,△ECD 均是边长为4的等边三角形,点P 为后轮上的一点,如图以AD 所在的直线为x 轴,以点D 为坐标原点建立平面直角坐标系:则A (−8,0),B(−6,2√3),C(−2,2√3).圆D 的方程为x 2+y 2=3,设P(√3cosα,√3sinα), 所以AC⃑⃑⃑⃑⃑⃑=(6,2√3),BP ⃑⃑⃑⃑⃑⃑=(√3cosα+6,√3sinα−2√3), 故AC⃑⃑⃑⃑⃑⃑⋅BP ⃑⃑⃑⃑⃑⃑=6sinα+6√3cosα+24=12sin (α+π3)+24≤12+24=36. 所以答案是:36.13、海伦公式是利用三角形的三条边的边长a ,b ,c 直接求三角形面积S 的公式,表达式为:S =√p(p −a)(p −b)(p −c),p =a+b+c 2;它的特点是形式漂亮,便于记忆.中国宋代的数学家秦九韶在1247年独立提出了“三斜求积术”,虽然它与海伦公式形式上有所不同,但它与海伦公式完全等价,因此海伦公式又译作海伦-秦九韶公式.现在有周长为10+2√7的△ABC 满足sinA:sinB:sinC =2:3:√7,则用以上给出的公式求得△ABC 的面积为___________. 答案:6√3分析:由正弦定理得三角形三边之比,由周长求出三边,代入公式即可. ∵sinA:sinB:sinC =2:3:√7,∴a:b:c =2:3:√7, ∴△ABC 周长为10+2√7,即a +b +c =10+2√7, ∴a =4,b =6,c =2√7,∴p =4+6+2√72=5+√7,∴△ABC 的面积S =√(5+√7)(1+√7)(√7−1)(5−√7)=6√3. 所以答案是:6√3.14、已知P ,Q 分别是四边形ABCD 的对角线AC 与BD 的中点,BC ⃑⃑⃑⃑⃑⃑=a ⃑,DA ⃑⃑⃑⃑⃑⃑=b ⃑⃑,且a ⃑,b ⃑⃑是不共线的向量,则向量PQ⃑⃑⃑⃑⃑⃑=___________. 答案:−12a ⃑−12b⃑⃑ 分析:取AB 的中点E ,连接PE,QE ,然后利用向量的加法法则和三角形中位线定理求解. 如图,取AB 的中点E ,连接PE,QE ,因为P ,Q 分别是四边形ABCD 的对角线AC 与BD 的中点,BC ⃑⃑⃑⃑⃑⃑=a ⃑,DA ⃑⃑⃑⃑⃑⃑=b⃑⃑ 所以PE ⃑⃑⃑⃑⃑⃑=12CB ⃑⃑⃑⃑⃑⃑=−12a ⃑,EQ ⃑⃑⃑⃑⃑⃑=12AD ⃑⃑⃑⃑⃑⃑=−12b⃑⃑, 所以PQ ⃑⃑⃑⃑⃑⃑=PE ⃑⃑⃑⃑⃑⃑+EQ ⃑⃑⃑⃑⃑⃑=12CB ⃑⃑⃑⃑⃑⃑+12AD ⃑⃑⃑⃑⃑⃑=−12a ⃑−12b⃑⃑. 所以答案是:−12a ⃑−12b⃑⃑解答题15、已知向量a ⃑与b ⃑⃑的夹角为120∘,|a ⃑|=3,|b ⃑⃑|=2. (1)求(2a ⃑+b ⃑⃑)⋅(a ⃑−2b ⃑⃑)的值; (2)求|2a ⃑+b ⃑⃑|的值. 答案:(1)19;(2)2√7.分析:(1)由向量数量积的定义计算即可求解; (2)先计算|2a ⃑+b ⃑⃑|2=(2a ⃑+b ⃑⃑)2的值,再开方即可求解. (1)因为|a ⃑|=3,|b ⃑⃑|=2,且a ⃑,b ⃑⃑的夹角为120∘, 所以a ⃑⋅b ⃑⃑=|a ⃑|⋅|b⃑⃑|⋅cos120∘=3×2×(−12)=−3, 所以(2a ⃑+b ⃑⃑)⋅(a ⃑−2b ⃑⃑)=2a ⃑2−3a ⃑⋅b⃑⃑−2b ⃑⃑2=2|a⃑|2−3a⃑⋅b⃑⃑−2|b⃑⃑|2=2×9−3×(−3)−2×4=19;(2)|2a⃑+b⃑⃑|2=(2a⃑+b⃑⃑)2=4|a⃑|2+4a⃑⋅b⃑⃑+|b⃑⃑|2=36−12+4=28,所以|2a⃑+b⃑⃑|=2√7.。
高中数学必修二点线面知识点及练习
第一节空间点、直线、平面的位置关系精讲公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内符号语言表示: A 三1, B 三1, Aw 很,B : = 1 二很公理2:经过不在同一条直线上的三点,有且只有一个平面。
推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。
公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线公理4:平行于同一条直线的两条直线互相平行1. 空间直线与直线之间的位置关系2. 空间直线与平面之间的位置关系3. 平面与平面之间的位置关系:4. 空间中的平行问题线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。
线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交, 平面与平面平行的判定及其性质两个平面平行的判定定理1. 如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行2. 如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。
3. 垂直于同一条直线的两个平面平行,两个平面平行的性质定理1. 如果两个平面平行,那么某一个平面内的直线与另一个平面平行。
2. 如果两个平行平面都和第三个平面相交,那么它们的交线平行。
5. 空间中的垂直问题线面垂直平面和平面垂直垂直关系的判定和性质定理线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面, 性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。
面面垂直的判定定理和性质定理判定定理:如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直。
性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。
点线面位置关系精炼1. 下列命题中,错误的是............................... ( )A. 平行于同一个平面的两个平面平行B. 平行于同一条直线的两个平面平行C. 一个平面与两个平行平面相交,交线平行D. —条直线与两个平行平面中的一个相交,则必与另一个相交2. 直线a,b,c及平面a , B , Y ,下列命题正确的是.................... ( )A、若a:_ a, b:_ a ,c 丄a, c丄b 贝U c丄aB、若b:_ a , allb贝U all aC 若all a , aAp =b 则allbD 、若a丄a , b 丄a 则allb3. 下列命题中正确的是.......................... ( )A. 如果一个平面内两条直线都平行于另一平面,那么这两个平面平行。
人教版高中数学【必修二】[知识点整理及重点题型梳理]_圆的方程_提高
人教版高中数学必修二知识点梳理重点题型(常考知识点)巩固练习圆的方程【学习目标】1.掌握圆的标准方程的特点,能根据所给有关圆心、半径的具体条件准确地写出圆的标准方程,能运用圆的标准方程正确地求出其圆心和半径,解决一些简单的实际问题,并会推导圆的标准方程.2.掌握圆的一般方程的特点,能将圆的一般方程化为圆的标准方程从而求出圆心的坐标和半径;能用待定系数法,由已知条件导出圆的方程.【要点梳理】【圆的方程370891 知识要点】 要点一:圆的标准方程222()()x a y b r -+-=,其中()a b ,为圆心,r 为半径.要点诠释:(1)如果圆心在坐标原点,这时00a b ==,,圆的方程就是222x y r +=.有关图形特征与方程的转化:如:圆心在x 轴上:b=0;圆与y 轴相切时:||a r =;圆与x 轴相切时:||b r =;与坐标轴相切时:||||a b r ==;过原点:222a b r +=(2)圆的标准方程222()()x a y b r -+-=⇔圆心为()a b ,,半径为r ,它显现了圆的几何特点.(3)标准方程的优点在于明确指出了圆心和半径.由圆的标准方程可知,确定一个圆的方程,只需要a 、b 、r 这三个独立参数,因此,求圆的标准方程常用定义法和待定系数法.要点二:点和圆的位置关系 如果圆的标准方程为222()()x a y b r -+-=,圆心为()C a b ,,半径为r ,则有(1)若点()00M x y ,在圆上()()22200||CM r x a y b r ⇔=⇔-+-=(2)若点()00M x y ,在圆外()()22200||CM r x a y b r ⇔>⇔-+->(3)若点()00M x y ,在圆内()()22200||CM r x a y b r ⇔<⇔-+-<要点三:圆的一般方程当2240D E F +->时,方程220x y Dx Ey F ++++=叫做圆的一般方程.,22D E ⎛⎫-- ⎪⎝⎭为圆心,为半径. 要点诠释:由方程220x y Dx Ey F ++++=得22224224D E D E F x y +-⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭(1)当2240D E F +-=时,方程只有实数解,22D E x y =-=-.它表示一个点(,)22D E--. (2)当2240D E F +-<时,方程没有实数解,因而它不表示任何图形.(3)当2240D E F +->时,可以看出方程表示以,22D E ⎛⎫-- ⎪⎝⎭为半径的圆. 要点四:几种特殊位置的圆的方程求圆的方程常用“待定系数法”.用“待定系数法”求圆的方程的大致步骤是: (1)根据题意,选择标准方程或一般方程.(2)根据已知条件,建立关于a b r 、、或D E F 、、的方程组.(3)解方程组,求出a b r 、、或D E F 、、的值,并把它们代入所设的方程中去,就得到所求圆的方程. 要点六:轨迹方程求符合某种条件的动点的轨迹方程,实质上就是利用题设中的几何条件,通过“坐标法”将其转化为关于变量,x y 之间的方程.1.当动点满足的几何条件易于“坐标化”时,常采用直接法;当动点满足的条件符合某一基本曲线的定义(如圆)时,常采用定义法;当动点随着另一个在已知曲线上的动点运动时,可采用代入法(或称相关点法).2.求轨迹方程时,一要区分“轨迹”与“轨迹方程”;二要注意检验,去掉不合题设条件的点或线等. 3.求轨迹方程的步骤:(1)建立适当的直角坐标系,用(,)x y 表示轨迹(曲线)上任一点M 的坐标; (2)列出关于,x y 的方程;(3)把方程化为最简形式;(4)除去方程中的瑕点(即不符合题意的点); (5)作答. 【典型例题】类型一:圆的标准方程例1.求满足下列条件的各圆的方程: (1)圆心在原点,半径是3;(2)已知圆C 经过(5,1),(1,3)A B 两点,圆心在x 轴上; (3)经过点()5,1P ,圆心在点()8,3C -.【思路点拨】一般情况下,如果已知圆心或易于求出圆心,可用圆的标准方程来求解,用待定系数法,求出圆心坐标和半径.【答案】(1)229x y +=(2)22(2)10x y -+=(3)()()228325x y -++= 【解析】(1)229x y +=(2)线段AB 的中垂线方程为240x y --=,与x 轴的交点(2,0)即为圆心C 的坐标,所以半径为||CB =,所以圆C 的方程为22(2)10x y -+=.(3)解法一:∵圆的半径||5r CP ===,圆心在点()8,3C -∴圆的方程是()()228325x y -++=解法二:∵圆心在点()8,3C -,故设圆的方程为()()22283x y r -++=又∵点()5,1P 在圆上,∴()()2225813r -++=,∴225r =∴所求圆的方程是()()228325x y -++=.【总结升华】确定圆的方程的主要方法是待定系数法,即列出关于a 、b 、r 的方程组,求a 、b 、r 或直接求出圆心(a ,b )和半径r ,一般步骤为:(1)根据题意,设所求的圆的标准方程为(x―a)2+(y―b)2=r 2; (2)根据已知条件,建立关于a 、b 、r 的方程组;(3)解方程组,求出a 、b 、r 的值,并把它们代入所设的方程中去,就得到所求圆的方程.举一反三:【变式1】圆心是(4,―1),且过点(5,2)的圆的标准方程是( ) A .(x―4)2+(y+1)2=10 B .(x+4)2+(y―1)2=10C .(x―4)2+(y+1)2=100D .22(4)(1)x y -++=【答案】A例2.(2015秋 湖北宜昌月考)求下列各圆的标准方程: (1)圆心在直线y =0上,且圆过两点A (1,4),B (3,2);(2)圆心在直线2x +y =0上,且圆与直线x +y ―1=0切于点M (2,―1). 【思路点拨】(1)求出圆心和半径,即可求圆C 的方程;(2)设出圆心坐标,列方程组解之.其中由圆心在直线2x +y =0上得出一个方程;再由圆心到直线x +y ―1=0的距离即半径得出另一个方程.【答案】(1)22(1)20x y ++=;(2)22(1)(2)2x y -++= 【解析】(1)∵圆心在直线y =0上, ∴设圆心坐标为C (a ,0), 则|AC |=|BC |,= 即 22(1)16(3)4a a -+=-+, 解得a =―1,即圆心为(―1,0),半径||r AC ===, 则圆的标准方程为 22(1)20x y ++=, (2)设圆心坐标为(a ,b ),则20a b +=⎧⎪=解得a =1,b =-2,∴r =∴要求圆的方程为 22(1)(2)2x y -++=. 举一反三:【圆的方程370891 典型例题1】【变式1】(1)过点(2,3),(2,5)A B ---且圆心在直线230x y --=上;(2)与x 轴相切,圆心在直线30x y -=上,且被直线0x y -=截得的弦长为 【答案】(1)22(1)(2)10x y +++=(2)22(1)(3)9x y -+-=或22(1)(3)9x y +++= 【解析】(1)设圆的方程为:()222()x a y b r -+-=,则()()()()2222222325230a b r a b r a b ⎧-+--=⎪⎪--+--=⎨⎪--=⎪⎩,解得:21,2,10a b r =-=-= 所求圆的方程为:22(1)(2)10x y +++=(2)设圆的方程为:()222()x a y b r -+-=,则()222230142r b a b a b r ⎧=⎪⎪-=⎨⎪-+=⎪⎩解得:2139a b r ⎧=⎪=⎨⎪=⎩或2139a b r ⎧=-⎪=-⎨⎪=⎩ 所求圆的方程为:22(1)(3)9x y -+-=或22(1)(3)9x y +++=.类型二:圆的一般方程例3.已知直线x 2+y 2―2(t+3)x+2(1―4t 2)y+16t 4+9=0表示一个圆. (1)求t 的取值范围;(2)求这个圆的圆心和半径;(3)求该圆半径r 的最大值及此时圆的标准方程.【思路点拨】若一个圆可用一般方程表示,则它具备隐含条件D 2+E 2―4F >0,解题时,应充分利用这一隐含条件.【答案】(1)117t -<<(2)(t+3,4t 2-1)3222413167497x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭【解析】(1)已知方程表示一个圆⇔D 2+E 2―4F >0,即4(t+3)2+4(1―4t 2)2―4(16t 4+9)>0,整理得7t 2―6t―1<0117t ⇔-<<. (2)圆的方程化为[x―(t+3)]2+[y+(1―4t 2)]2=1+6t―7t 2. ∴它的圆心坐标为(t+3,4t 2-1).(3)由7r ===≤. ∴r的最大值为7,此时圆的标准方程为 222413167497x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭.【总结升华】 在本例中,当t 在1,17⎛⎫-⎪⎝⎭中任取一个值,它对应着一个不同的圆,它实质上是一系列的圆,因此本例中的圆的方程实质上是一个圆系方程,由2341x t y t =+⎧⎨=-⎩得y=4(x―3)2―1,再由117t -<<,知2047x <<,因此它是一个圆心在抛物线2204(3)147y x x ⎛⎫=--<< ⎪⎝⎭的圆系方程. 举一反三:【圆的方程370891 典型例题2】【变式1】(1)求过(2,2),(5,3),(3,1)A B C -的圆的方程,及圆心坐标和半径; (2)求经过点(2,4)A --且与直线3260x y +-=相切于点(8,6)的圆的方程. 【答案】(1)()224(1)5x y -+-= (4,1)(2)22113300x y x y +-+-=【解析】(1)法一:设圆的方程为:220x y Dx Ey F ++++=,则8220345301030D E F D E F D E F +++=⎧⎪+++=⎨⎪+-+=⎩,解得:8212D E F =-⎧⎪=-⎨⎪=⎩所以所求圆的方程为:228220x y x y +--+=,即()224(1)5x y -+-=,所以圆心为(4,1),法二:线段AB 的中点为为75,22⎛⎫⎪⎝⎭,321523AB k -==-线段AB 的中垂线为57322y x ⎛⎫-=-- ⎪⎝⎭,即3130x y --= 同理得线段BC 中垂线为260x y +-=联立2603130x y x y +-=⎧⎨+-=⎩,解得41x y =⎧⎨=⎩所以所求圆的方程为(4,1),半径r ==所以()224(1)5x y -+-=.(2)法一:设圆的方程为:220x y Dx Ey F ++++=,则2024062382100860D E F ED DEF --+=⎧⎪⎪+⎪=⎨⎪+⎪⎪+++=⎩,解得:11330D E F =-⎧⎪=⎨⎪=-⎩ 所以圆的方程为22113300x y x y +-+-=.法二:过点B 与直线3260x y +-=垂直的直线是3180x y --=, 线段AB 的中垂线为40x y +-=,由318040x y x y --=⎧⎨+-=⎩得:圆心坐标为113,22⎛⎫- ⎪⎝⎭,由两点间距离公式得半径21252r =,所以圆的方程为22113125222x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭.【变式2】判断方程ax 2+ay 2―4(a―1)x+4y=0(a≠0)是否表示圆,若表示圆,写出圆心和半径长.【答案】表示圆,圆心坐标2(1)2,a aa -⎛⎫- ⎪⎝⎭,半径2222||a a r a -+= 【变式3】方程2222210x y ax ay a a +++++-=表示圆,则a 的取值范围是 A .2a <-或23a > B .203a -<< C .20a -<< D .223a -<< 【答案】D【解析】方程x 2+y 2+ax+2ay+2a 2+a-1=0转化为2223()124a x y a a a ⎛⎫+++=--+ ⎪⎝⎭,所以若方程表示圆,则有23104a a --+>,∴ 23440a a +-<,∴ 223a -<<. 例4.(1)△ABC 的三个顶点分别为A (―1,5),B (―2,―2),C (5,5),求其外接圆的方程; (2)圆C 过点P (1,2)和Q (―2,3),且圆C 在两坐标轴上截得的弦长相等,求圆C 的方程. 【思路点拨】在(1)中,由于所求的圆过三个点,因而选用一般式,从而只要确定系数D 、E 、F 即可;注意到三角形外接圆的圆心为各边的垂直平分线的交点,所以也可先求圆心,再求半径,从而求出圆的方程.在(2)中,可用圆的一般方程,但这样做计算量较大,因此我们可以通过作图,利用图形的直观性来进行分析,从而得到圆心或半径所满足的条件.【答案】(1)x 2+y 2―4x―2y―20=0(2)(x+1)2+(y―1)2=5或(x+2)2+(y+2)2=25 【解析】(1)解法一:设所求的圆的方程为x 2+y 2+Dx+Ey+F=0,由题意有5260228055500D E F D E F D E F -+++=⎧⎪--++=⎨⎪+++=⎩,解得4220D E F =-⎧⎪=-⎨⎪=-⎩. 故所求的圆的方程为x 2+y 2―4x―2y―20=0.解法二:由题意可求得AC 的中垂线的方程为x=2,BC 的中垂线方程为x+y―3=0.∴圆心是两中垂线的交点(2,1),∴半径22(21)(15)5r =++-=,∴所求的圆的方程为(x―2)2+(y―1)2=25,即x 2+y 2―4x―2y―20=0.(2)解法一:如右图所示,由于圆C 在两坐标轴上的弦长相等,即|AD|=|EG|,所以它们的一半也相等,即|AB|=|GF|,又|AC|=|GC|,∴Rt △ABC ≌Rt △GFC ,∴|BC|=|FC|. 设C (a ,b ),则|a|=|b|. ①又圆C 过点P (1,2)和Q (―2,3), ∴圆心在PQ 的垂直平分线上,即51322y x ⎛⎫-=+ ⎪⎝⎭,即y=3x+4,∴b=3a+4. ②由①知a=±b ,代入②得11a b =-⎧⎨=⎩或22a b =-⎧⎨=-⎩.∴22(1)(2)5r a b =-+-=或5.故所求的圆的方程为(x+1)2+(y―1)2=5或(x+2)2+(y+2)2=25.即x 2+y 2+2x―2y―3=0或x 2+y 2+4x+4y―17=0. 解法二:设所求的圆的方程为x 2+y 2+Dx+Ey+F=0. ∵圆C 过点P (1,2)和Q (-2,3),∴22122049230D E F D E F ⎧++++=⎨+-++=⎩,解得38117E D F D =-⎧⎨=-⎩.∴圆C 的方程为x 2+y 2+Dx+(3D―8)y+11―7D=0,将y=0代入得x 2+Dx+11―7D=0. ∴圆C 在x 轴上截得的弦长为212||4(117)x x D D -=--.将x=0代入得y 2+(3D―8)y+11―7D=0,∴圆C 在y 轴上截得的弦长为212||(38)4(117)y y D D -=---.由题意有224(117)(38)4(117)D D D D --=---,即D 2―4(11―7D)=(3D―8)2―4(11―7D),解得D=4或D=2.故所求的圆的方程为x 2+y 2+4x+4y―7=0或x 2+y 2+2x―2y―3=0.【总结升华】 (1)本例(1)的解法二思维迂回链过长,计算量过大,而解法一则较为简捷,因此,当所有已知的条件与圆心和半径都无直接关系,在求该圆的方程时,一般设圆的方程为一般方程,再用待定系数法来确定系数即可.(2)本例(2)中,尽管所给的条件也都与圆心和半径无直接关系,但可通过画图分析,利用平面几何知识,找到与圆心和半径相联系的蛛丝马迹,从而避免了选用圆的一般方程带来的繁琐的计算.(3)一般地,当给出了圆上的三点坐标,特别是当这三点的横坐标和横坐标之间、纵坐标和纵坐标之间均不相同时,选用圆的一般方程比选用圆的标准方程简捷;而在其他情况下的首选应该是圆的标准方程,此时要注意从几何角度来分析问题,以便找到与圆心和半径相联系的可用条件.举一反三:【变式1】如图,等边△ABC 的边长为2,求这个三角形的外接圆的方程,并写出圆心坐标和半径长.【答案】30,3⎛⎫ ⎪ ⎪⎝⎭,233,223433x y ⎛⎫+-= ⎪ ⎪⎝⎭ 类型三:点与圆的位置关系例5.判断点M (6,9),N (3,3),Q (5,3)与圆(x ―5)2+(y ―6)2=10的位置关系. 【答案】M 在圆上 N 在圆外 Q 在圆内 【解析】∵圆的方程为(x ―5)2+(y ―6)2=10, 分别将M (6,9),N (3,3),Q (5,3)代入得 (6―5)2+(9―6)2=10,∴M 在圆上; (3―5)2+(3―6)2=13>10,∴N 在圆外;(5―5)2+(3―6)2=9<10,∴Q 在圆内.【总结升华】点与圆的位置关系,从形的角度来看,设圆心为O ,半径为r ,则点P 在圆内⇔|PQ |<r ;点P 在圆上⇔|PQ |=r ;点P 在圆外⇔|PO |>r .从数的角度来看,设圆的标准方程为(x ―a )2+(y ―b )2=r 2,圆心为A (a ,b ),半径为r ,则点M (x 0,y 0)在圆上⇔(x 0―a )2+(y 0―b )2=r 2;点M (x 0,y 0)在圆外⇔(x 0―a )2+(y 0―b )2>r 2;点M (x 0,y 0)在圆内⇔(x 0―a )2+(y 0―b )2<r 2.举一反三:【变式1】点(a +1,a ―1)在圆22240x y ay +--=的内部,则a 的取值范围是________. 【思路点拨】直接把点(a +1,a ―1)代入圆的方程左边小于0,解不等式可得a 的范围. 【答案】(-∞,1) 【解析】∵点(a +1,a ―1)在圆22240x y ay +--=的内部(不包括边界), ∴ 22(1)(1)2(1)40a a a a ++----<,整理得:a <1. 故答案为:(-∞,1). 类型四:轨迹问题 例6.(2016 广东中山市模拟)已知曲线C 上任意一点到原点的距离与到A (3,―6)的距离之比均为12. (1)求曲线C 的方程. (2)设点P (1,―2),过点P 作两条相异直线分别与曲线C 相交于B ,C 两点,且直线PB 和直线PC 的倾斜角互补,求证:直线BC 的斜率为定值.【思路点拨】(1)利用直接法,建立方程,即可求曲线C 的方程.(2)直线与圆的方程联立,求出A ,B 的坐标,利用斜率公式,即可证明直线BC 的斜率为定值.【答案】(1)22(1)(2)20x y ++-=;(2)直线BC 的斜率为定值12-. 【解析】(1)曲线C 上的任意一点为Q (x ,y ),221(1)(2)202x y =⇒++-= (2)证明:由题意知,直线PB 和直线PC 的斜率存在,且互为相反数,P (1,―2), 故可设P A :y +2=k (x ―1), 由2222222(1)(1)2(14)830(1)(2)20y k x k x k k x k k x y +=-⎧⇒++--++-=⎨++-=⎩因为点P 的横坐标x =1一定是该方程的解,故可得22831A k k x k +-=+, 同理,22831B k k x k --=+,所以(1)(1)2()12B A B A B A AB B A B A B A y y k x k x k k x x k x x x x x x ------+====----故直线BC 的斜率为定值12-. 【总结升华】本例求轨迹方程的方法是直接法.用直接法求曲线方程的步骤如下: (1)建系设点:建立适当的直角坐标系,设曲线上任一点坐标为M (x ,y ); (2)几何点集:写出满足题设的点M 的集合P ={M |P (M )};(3)翻译列式:将几何条件P (M )用坐标x 、y 表示,写出方程f (x ,y )=0; (4)化简方程:通过同解变形化简方程;(5)查漏除杂:验证方程表示的曲线是否为已知的曲线,重点检查方程表示的曲线是否有多余的点,曲线上是否有遗漏的点. 例7.已知定点A (4,0),P 点是圆x 2+y 2=4上一动点,Q 点是AP 的中点,求Q 点的轨迹方程. 【答案】(x―2)2+y 2=1【解析】 设Q 点坐标为(x ,y ),P 点坐标为(x ',y '),则4'2x x +=且0'2y y +=,即x '=2x―4,y '=2y .又P 点在圆x 2+y 2=4上,∴x '2+y '2=4,将x '=2x―4且y '=2y 代入得(2x―4)2+(2y)2=4,即(x―2)2+y 2=1.故所求的轨迹方程为(x―2)2+y 2=1.【总结升华】 本题是求轨迹时常用的方法——代入法,对于“双动点”问题,即若已知一动点在某条曲线上运动而求另一动点的轨迹方程时,通常用这一方法.代入法是先设所求轨迹的动点坐标为(x ,y ),在已知曲线上运动的点的坐标为(x ',y '),用x ,y 表示x ',y ',即x '=f (x,y),y '=g (x,y),并将它代入到已知曲线方程,即求出所求动点的轨迹方程.一般情况下,证明可以省略不写,如有特殊情况,可适当予以说明,即扣除不合题意的解或补上失去的解.举一反三:【变式1】已知定点A (2,0),点Q 是圆x 2+y 2=1上的动点,∠AOQ 的平分线交AQ 于M ,当Q 点在圆上移动时,求动点M 的轨迹方程.【答案】222439x y ⎛⎫-+= ⎪⎝⎭【圆的方程370891 典型例题5】【变式2】平面内到两定点距离的比值是一个不等于1的常数的动点的轨迹是一个圆.【解析】以两定点所在的直线为x 轴,以两定点所在线段的中垂线为y 轴建立直角坐标系,设两定点分别为()1,0,(1,0)A B -,设动点(,)P x y ,则||(1)||PA c c PB =≠,c =,整理得:()2222221(1)(22)10cxc y c x c -+-+++-=所以222222101c x y x c ++++=-,即()22222221411c c x y c c ⎛⎫+++= ⎪-⎝⎭- 所以动点的轨迹是一个圆.。
(人教版)高中数学必修二_知识点、考点及典型例题解析(全)
必修二第一章 空间几何体 知识点:1、空间几何体的结构⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。
⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。
⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。
2、长方体的对角线长2222c b a l ++=;正方体的对角线长a l 3=3、球的体积公式:334 R V π=,球的表面积公式:24 R S π= 4、柱体h s V ⋅=,锥体h s V ⋅=31,锥体截面积比:222121h h S S =5、空间几何体的表面积与体积⑴圆柱侧面积;lr S ⋅⋅=π2侧面⑵圆锥侧面积:lr S ⋅⋅=π侧面典型例题:★例1:下列命题正确的是( ) A.棱柱的底面一定是平行四边形 B.棱锥的底面一定是三角形C.棱柱被平面分成的两部分可以都是棱柱 D.棱锥被平面分成的两部分不可能都是棱锥★★例2:若一个三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的( )A 21倍 B 42倍 C 2倍 D 2倍★例3:已知一个几何体是由上、下两部分构成的一个组合体,其三视图如下图所示,则这个组合体的上、下两部分分别是( ) A.上部是一个圆锥,下部是一个圆柱 B.上部是一个圆锥,下部是一个四棱柱C.上部是一个三棱锥,下部是一个四棱柱★★例4:一个体积为38cm 的正方体的顶点都在球面上,则球的表面积是A .28cm πB 212cm π. C 216cm π. D .220cm π二、填空题★例1:若圆锥的表面积为a 平方米,且它的侧面展开图是一个半圆,则这个圆锥的底面的直径为_______________.★例2:球的半径扩大为原来的2倍,它的体积扩大为原来的 _________ 倍. 第二章 点、直线、平面之间的位置关系 知识点:1、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内。
高中数学必修2空间几何典型例题及讲解
数学必修2第一章一、学习目标:1. 认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。
2. 能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图与直观图,能识别上述三视图与直观图所表示的立体模型。
二、重点、难点:重点:空间几何体中的棱柱、棱锥、棱台、圆柱、圆锥、圆台、球的结构特征;空间几何体的三视图与直观图的画法。
难点:柱、锥、台、球结构特征的概括;识别三视图所表示的空间几何体;几何体的侧面展开图,计算组合体的表面积和体积。
三、考点分析:三视图是新课程改革中出现的内容,是新课程高考的热点之一,几乎每年都考,同学们要予以足够的重视。
在高考中经常以选择、填空题的形式出现,属于基础或中档题,但也要关注三视图以提供信息为目的,出现在解答题中。
这部分知识主要考查学生的空间想象能力与计算求解能力。
1. 多面体棱柱、棱锥、棱台2. 旋转体圆柱、圆锥、圆台、球3. 三视图(1)正视图、侧视图、俯视图(2)三种视图间的关系4. 直观图水平放置的平面图形的直观图的斜二测画法表中S表示面积,c′、c分别表示上、下底面的周长,h表示高度,h′表示斜高,l 表示侧棱长。
5. 旋转体的面积和体积公式表中l、h分别表示母线长、高,r表示圆柱、圆锥与球冠的底面半径,r1、r2分别表示圆台上、下底面的半径,R表示半径。
知识点一柱、锥、台、球的结构特征例1. 下列叙述正确的是()①有两个面平行,其余各面都是平行四边形的几何体叫棱柱。
②两个底面平行且相似,其余各面都是梯形的多面体是棱台。
③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台。
④直角三角形绕其一条边旋转得到的旋转体是圆锥。
⑤直角梯形以它的一条垂直于两底边的腰所在的直线为旋转轴,其余三边旋转形成的面围成的旋转体叫圆台。
⑥用一个平面去截圆锥,底面和截面之间的部分是圆台。
⑦通过圆锥侧面上一点,有无数条母线。
⑧以半圆的直径所在直线为旋转轴,半圆面旋转一周形成球体。
高中数学必修2知识点(完整知识点梳理及经典例题答案详解)
第一讲空间几何体热点一空间几何体与三视图知识点识与画三视图的关键点(1)要牢记三视图的观察方向和长、宽、高的关系,三视图的正(主)视图、侧(左)视图、俯视图分别是从物体的正前方、正左方、正上方看到的物体轮廓线的正投影围成的平面图形,反映了一个几何体各个侧面的特点.正(主)视图反映物体的主要形状特征,是三视图中最重要的视图;俯视图要和正(主)视图对正,画在正(主)视图中的正下方;侧(左)视图要画在正(主)视图的正右方,高度要与正(主)视图平齐.(2)要熟悉各种基本几何体的三视图.同时要注意画三视图时,能看到的轮廓线画成实线,看不到的轮廓线画成虚线.[命题方向]由三视图判断几何体的结构特征.2.由几何体判断三视图问题.例、(2014年武汉调研)已知以下三视图中有三个同时表示某一个三棱锥,则不是该三棱锥的三视图是()例、(2014年江西高考)一几何体的直观图如图,下列给出的四个俯视图中正确的是( )热点二 空间几何体的表面积与体积知识点三视图往往与几何体的体积、表面积以及空间线面关系等问题相结合,解决此类问题的关键是由三视图准确确定空间几何体的形状及其结构特征S=πR 2[命题方向]空间几何体的表面积求法空间几何体的体积求法.例、一个几何体的三视图如图所示,则该几何体的体积为( )例、(2014年浙江高考)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是( )A .90 cm 22()S r rl r r l πππ=+=+圆锥表面积22()S r r r l rl π''=+++圆台表面积B .129 cm 2C .132 cm 2D .138 cm 2热点三 多面体与球知识点多面体与球接、切问题求解方法(1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.(2)若球面上四点P 、A 、B 、C 构成的三条线段P A 、PB 、PC 两两互相垂直,且P A =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,根据4R 2=a 2+b 2+c 2求解.命题方向] 1.球的表面积与体积问题.2.与球有关的组合体问题例、(2014年陕西高考)已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为( )A.32π3 B .4π 3V R π=柱313V R π=锥C .2π D.4π3例、长方体ABCD -A 1B 1C 1D 1的各个顶点都在表面积为16π的球O 的球面上,其中AB ∶AD ∶AA 1=2∶1∶3,则四棱锥O -ABCD 的体积为( ) A.263B.63 C .2 3D .3热点四 空间线面位置关系的判断知识点空间线面位置关系的判断方法(1)借助空间线面位置关系的线面平行、面面平行、线面垂直、面面垂直的判定定理和性质定理逐项判断来解决问题.(2)借助空间几何模型,如从长方体模型、四面体模型等模型中观察线面位置关系,结合有关定理作出选择“点P 在直线l 上”,“点A 在平面点P 在直线l 外”,“点A 在平面α外”直线 l 在平面α内,或者说平面α经过直线 l公理 1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.,P l A α∈∈,P l A α∈∈,,,A l B l A B l ααα∈∈∈∈⇒⊂且公理2 过不在一条直线上的三点,有且只有一个平面. 公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 2.公理4①平行于同一条直线的两条直线互相 平行②等角定理空间中如果两个角的两边分别对应平行,那么这两个角 相等 .我们规定两条平行直线的夹角为0°,那么两条异面直线所成的角的取值范围是什么? 如果两条异面直线所成角为900,那么这两条直线垂直.记直线a 垂直于b 为:a ⊥b[命题方向]在选择、填空中考查空间线面平行、垂直关系的问题.例、(2014年广东高考)若空间中四条两两不同的直线l 1,l 2,l 3,l 4,满足l 1⊥l 2,l 2⊥l 3,l 3⊥l 4,则下列结论一定正确的是( )A .l 1⊥l 4B .l ∥l 4C .l 1与l 4既不垂直也不平行D .l 1与l 4的位置关系不确定,l P β=且,l P β=且0,2π⎛⎤ ⎥⎝⎦例、已知m,n是两条不同直线,α,β,γ是三个不同平面,则下列正确的是()A.若m∥α,n∥α,则m∥nB.若α⊥γ,β⊥γ,则α∥βC.若m∥α,m∥β,则α∥βD.若m⊥α,n⊥α,则m∥n[注意事项]1.割、补法是把不规则几何体转化为可求体积的几何体的常用方法.2.等体积转化法适合于三棱锥.第二讲高考中的立体几何热点一空间位置关系的证明知识点找中点构造平行四边形是立体几何中证明平行问题的一个重要技巧,具体解题时可以充分利用平行关系的传递性,把已知条件中的平行关系集中到我们需要的平行四边形中;垂直关系的证明中,线面垂直的证明方法主要有三个,一是利用判定定理,二是利用两条平行线中的一条垂直于这个平面,则另一条也垂直于这个平面,三是根据面面垂直的性质定理.两个平面的位置关系有且只有两种①两个平面平行——没有公共点②两个平面相交——有一条公共直线.一条直线和一个平面的位置关系有且只有以下三种:(1)直线在平面内——有无数个公共点.(2)直线和平面相交——有且只有一个公共点.(3)直线和平面平行——无公共点.二、和平面相交或平行的情况统称为直线在平面外.判定定理如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行.1、平面平行的判定判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.2、:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.3、:如果一条直线与平面内的任意一条直线都垂直,则称这条直线与这个平面垂直.定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.4、以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.5、一个平面经过另一个平面的垂线,则这两个平面垂直.证明直线和平面垂直的常用方法有6、结论:(1)利用判定定理;1.⎭⎪⎬⎪⎫a ∥αb ⊂α⇒a ,b 没有公共点,即a ,b 平行或异面.2.a ∥α的判定和性质定理使用的区别:如果结论中有a ∥α,则要用判定定理,在α内找与a 平行的直线;若条件中有a ∥α,则要用性质定理,找(或作)过a 且与α相交的平面.3.当直线与平面平行时,直线上任一点到平面的距离叫做直线与平面的距离.(2)利用判定定理的推论(a ∥b ,a ⊥α⇒b ⊥α);(3)利用面面平行的性质(a ⊥α,α∥β⇒a ⊥β);平面与平面平行的几个有用性质①两个平面平行,其中一个平面内的任意一条直线平行于另一个平面.②夹在两个平行平面之间的平行线段长度相等.③经过平面外一点有且只有一个平面与已知平面平行.④两条直线被三个平行平面所截,截得的对应线段成比例.⑤如果两个平面分别平行于第三个平面,那么这两个平面互相平行.⑥如果一个平面内有两条相交直线分别平行于另一个平面内的两条直线,那么这两个平面平行(4)利用面面垂直的性质.当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.[命题方向]1.证明线、面平行问题.2.证明线、面垂直问题.例、(2014年山东高考)如图,四棱锥P -ABCD 中,AP ⊥平面PCD ,AD ∥BC ,AB =BC =12AD ,E ,F 分别为线段AD ,PC 的中点.(1)求证:AP ∥平面BEF ;(2)求证:BE ⊥平面P AC .例、如图,在三棱锥P ABC 中,D ,E ,F 分别为棱PC ,AC ,AB 的中点.已知P A ⊥AC ,P A =6,BC =8,DF =5.求证:(1)直线P A ∥平面DEF ;(2)平面BDE ⊥平面ABC .热点二空间几何体的体积、面积与位置关系问题[命题方向]1.空间几何体的体积、面积求法.2.空间位置关系的证明.例、(2014年辽宁高考)如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F,G分别为AC,DC,AD的中点.(1)求证:EF⊥平面BCG;(2)求三棱锥D -BCG的体积.例、(2014年新课标卷Ⅱ)如图,四棱锥P-ABCD中,底面ABCD 为矩形,P A⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设AP=1,AD=3,三棱锥P-ABD的体积V=34,求A到平面PBC的距热点三探索存在性问题知识点求三棱锥体积的方法:(1)直接法:V=13Sh;(2)转换顶点法:V P-ABC=V A-PBC=V B -P AC=V C -P AB;(3)间接法:体积分割或体积差方法.[命题方向]1.与位置有关的存在性问题.2.与长度、角度有关的存在性问题.(2014年四川高考)11 ACC1A1都为矩形.(1)若AC⊥BC,证明:直线BC⊥平面ACC1A1;(2)设D,E分别是线段BC,CC1的中点,在线段AB上是否存在一点M,使直线DE∥平面A1MC?请证明你的结论.例、如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视图的侧视图、俯视图.在直观图中,M是BD的中点.侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.(1)求出该几何体的体积;(2)求证:EM∥平面ABC;(3)试问在棱DC上是否存在点N,使NM⊥平面BDE ?若存在,确定点N的位置;若不存在,请说明理由.[注意事项]研究与空间几何体有关的最值问题要注意变量取值的范围第三讲直线与圆热点一直线方程知识点1.求解两条直线平行的问题时,在利用A1B2-A2B1=0建立方程求出参数的值后,要注意代入检验,排除两条直线重合的可能性.2.求直线方程就是求出确定直线的几何要素,即直线经过的点和直线的倾斜角,当直线的斜率存在时,只需求出直线的斜率和直线经过的点即可.对于直线的点斜式方程和两点式方程,前者是直线的斜率和直线经过的一点确定直线,后者是两点确定直线解决探索存在性问题往往要把成立的结论当作条件,据此列出方程式方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等,对于探索点的位置是否存在时,多数情况下先猜测位置点再给出证明1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴 正向线l 上 方向之间所成的角α叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为 0度 ; (2)倾斜角的范围为 (0o -180o 】 2.直线的斜率(1)定义:一条直线的倾斜角α的 正切值叫做这条直线的斜率,斜率常用小写字母k 表示,即k =tan α,倾斜角是90°的直线斜率不存在;(2)范围:全体实数R . (3)过两点的直线的斜率公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式为kP 1P 2= .1.两条直线平行y 2-y 1x 2-x 1对于两条不重合的直线l1,l2,其斜率分别为k1,k2,则有l1∥l2⇔.特别地,当直线l1,l2的斜率都不存在时l1与l2的关系为k=1k22.两条直线垂直如果两条直线l1,l2斜率存在,设为k1,k2,则l1⊥l2⇔k k2=-1[命题方向]1.两直线位置关系的判断与应用,多与充要性判断结合考查.2.直线方程的求法.例、“a=-1”是“直线ax+y+1=0与直线x+ay+2=0平行”的() A.充分不必要条件B.必要不充分条件C.既不充分也不必要条件D.充要条件例、(2014年大连一模)直线l过点(-1,2)且与直线2x-3y-1=0垂直,则l的方程是()A.3x+2y-1=0B.3x+2y+7=0C.2x-3y+5=0 D.2x-3y+8=0热点二圆的方程知识点求圆的方程一般有两类方法:(1)几何法,通过研究圆的性质、直线和圆、圆与圆的位置关系,进而求得圆的基本量和方程;(2)代数法,即用待定系数法先设出圆的方程,再由条件求得各系数. 命题方向]1.圆的方程求法.2.与圆有关的最值问题.例、(2014年潍坊二模)圆心在y 轴上,半径为1,且过点(1,2)的圆的方程是( )A .x 2+(y -2)2=1B .x 2+(y +2)2=1C .(x -1)2+(y -3)2=1D .x 2+(y -3)2=1例、(2014年江西高考)在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x +y -4=0相切,则圆C 面积的最小值为( )A.45πB.34π C .(6-25)πD.54π例、圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________.热点三 直线与圆的位置关系1.直线和圆的位置关系的判断方法直线l :Ax +By +C =0(A 2+B 2≠0)与圆:(x -a )2+(y -b )2=r 2(r >0)的位置关系如表.2.弦长与切线长的计算方法(1)弦长的计算:直线l与圆C相交于A,B两点,则|AB|=2r2-d2 (其中d为弦心距).(2)切线长的计算:过点P向圆引切线P A,则|P A|=|PC|2-r2(其中C为圆心).3.圆上的点到直线的距离的求解策略(1)转化为两平行线间的距离以及直线与圆的交点个数求解.(2)转化为圆心到直线的距离与半径之间的关系求解.(3)直接设点,利用方程思想解决.[命题方向]1.圆的切线问题.2.直线与圆相交弦长问题.3.圆与圆的位置关系.例、(2014年合肥二模)已知圆C1:(x-a)2+(y+2)2=4与圆C2:(x+b)2+(y+2)2=1外切,则ab的最大值为()A.62 B.32C.94D .2 3例、(2014年全国大纲卷)直线l 1和l 2是圆x 2+y 2=2的两条切线.若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于________[注意事项]1.准确理解待求量的几何意义,准确转化为直线与直线及直线与圆的相应的位置关系.2.涉及切线长的最值时,要注意切线,圆心与切点的连线以及圆心与切线段另一端点的连线组成一直角三角形。
人教版高中数学【必修二】[知识点整理及重点题型梳理]_平面_提高
人教版高中数学必修二知识点梳理重点题型(常考知识点)巩固练习平面【学习目标】1 .利用生活中的实物对平面进行描述;理解平面的概念,掌握平面的画法及表示方法.2 .重点掌握平面的基本性质.3 .能利用平面的性质解决有关问题.【要点梳理】[空间点线面之间的位置关系知识讲解】要点一、平面的基本概念1 .平面的概念:“平面”是一个只描述而不定义的原始概念,常见的桌面、黑板面、平静的水面等都给我们以平面的形象几何里的平面就是从这些物体中抽象出来的,但是,几何里的平面是无限延展的.要点诠释:(1) “平面”是平的(这是区别“平面”与“曲面”的依据);(2) “平面”无厚薄之分;(3) “平面”无边界,它可以向四周无限延展,这是区别“平面”与“平面图形”的依据.2 .平面的画法:通常画平行四边形表示平面.要点诠释:(1)表示平面的平行四边形,通常把它的锐角画成45 ,横边长是其邻边的两倍;(2)两个相交平面的画法:当一个平面的一部分被另一个平面遮住时,把被遮住的部分的线段画为虚线或者不画:3 .平面的表示法:(1)用一个希腊字母表示一个平面,如平面a、平面0、平面7等;(2)用表示平面的平行四边形的四个字母表示,如平面ABCD ;(3)用表示平面的平行四边形的相对两个顶点的两个字母表示,如平面AC或者平面BD ;4 .点、直线、平面的位置关系:(1)点A在直线a上,记作Awa;点A在直线a外,记作Ac a ;⑵点A在平面a上,记作Asa ;点A在平面a外,记作A氏a ;(3)直线I在平面a内,记作lua:直线I不在平面a内,记作l(za.要点二、平面的基本性质平面的基本性质即书中的三个公理,它们是研究立体几何的基本理论基础.1 .公理1:(1)文字语言表述:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内;⑵符号语言表述:AeI , B G I , Awa, Bea =>I ca ;(3)图形语言表述:要点诠释:公理1是判断直线在平面内的依据.证明一条直线在某一平面内,只需证明这条直线上有两个不同的点在该平面内.“直线在平面内”是指“直线上的所有点都在平面内”2 .公理2:(1)文字语言表述:过不在一条直线上的三点,有且只有一个平面:(2)符号语言表述:A、B、C三点不共线=有且只有一个平面a ,使得Awa, Bea, Cea;(3)图形语言表述:要点诠释:公理2的作用是确定平面,是把^间问题化归成平面问题的重要依据.它还可用来证明“两个平面重合”.特别要注意公理2中“不在一条直线上的三点”这一条件.“有且只有一个”的含义可以分开来理解.“有”是说明“存在”,“只有一个”说明“唯一”,所以“有且只有一个”也可以说成“存在”并且“唯一”,与确定同义.(4)公理2的推论:①过一条直线和直线外一点,有且只有一个平面:②过两条相交直线,有且只有一个平面;③过两条平行直线,有且只有一个平面.(5)作用:确定一个平面的依据.3 .公理3:(1)文字语言表述:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线:(2)符号语言表述:Pwa nPnanP = l且P E I;(3)图形语言表述:要点诠释:公理3的作用是判定两个平面相交及证明点在直线上的依据.要点三、点线共面的证明所谓点线共面问题就是指证明一些点或直线在同一个平面内的问题.1 .证明点线共面的主要依据:(1)如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内(公理1):②经过不在同一条直线上的三点,有且只有一个平面(公理2及期隹论).2 .证明点线共面的常用方法:(1)纳入平面法:先确定一个平面,再证明有关点、线在此平面内;20辅助平面法:先证明有关的点、线确定平面。
高一数学必修2例题知识点
高一数学必修2例题知识点数学作为一门基础学科,对于每个高中生来说都是必修课程。
在高一数学必修2的学习过程中,我们会遇到许多例题,通过解题可以增强对知识点的理解。
下面,我将结合一些例题,逐个讲解高一数学必修2中的一些重要知识点。
一、函数的概念函数是数学中的一种基本概念,它描述了一个集合与另一个集合之间的对应关系。
例如,将自然数集合N中的每个数x与它的平方x²对应,得到一个新的集合,即平方数集合。
这个对应关系可以用函数的定义来表示:y=x²。
其中,x称为自变量,y称为因变量。
二、函数的表示方法函数可以用不同的表示方法来表达。
最常见的是用解析式表示,如y=x²。
这个解析式表示了x与y的对应关系。
其他表示方法还包括图像表示和函数表达,通过这些表示方法可以更加直观地理解函数的特点。
三、函数的性质在学习函数时,了解函数的性质对于解题非常重要。
函数的性质包括奇偶性、单调性和最值等。
1. 奇偶性:函数的奇偶性描述了函数图像的对称性。
若函数满足f(-x) = f(x),则它是偶函数;若函数满足f(-x) = -f(x),则它是奇函数。
2. 单调性:函数的单调性描述了函数图像的递增或递减性。
若函数的值随着自变量的增大而增大,称为递增函数;若函数的值随着自变量的增大而减小,称为递减函数。
3. 最值:函数的最值是函数在定义域上的最大值和最小值。
求函数的最值可以通过求导数的方法来进行。
四、直线与圆的性质在高一数学必修2中,直线与圆是两个比较重要的图形。
了解它们的性质对于解题有很大的帮助。
1. 直线的斜率:直线的斜率是描述直线斜率的一个重要概念。
直线的斜率用k表示,对于直线的两个不同点(x₁, y₁)和(x₂, y₂)来说,斜率k可表示为k = (y₂-y₁)/(x₂-x₁)。
2. 圆的方程:圆的方程是描述圆的一个重要表达式。
对于圆的圆心为(a, b),半径为r的圆,它的方程可以表示为(x-a)² + (y-b)² = r²。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修二
第一章 空间几何体 知识点:
1、空间几何体的结构
⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。
⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。
⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。
2、长方体的对角线长2222c b a l ++=;正方体的对角线长a l 3=
3、球的体积公式:33
4
R V π=
,球的表面积公式:24 R S π= 4、柱体h s V ⋅=,锥体h s V ⋅=31,锥体截面积比:22
2
1
21h h S S =
5、空间几何体的表面积与体积
⑴圆柱侧面积;
l r S ⋅⋅=π2侧面
⑵圆锥侧面积:
l r S ⋅⋅=π侧面
典型例题:
★例1:下列命题正确的是( ) A.棱柱的底面一定是平行四边形 B.棱锥的底面一定是三角形
C.棱柱被平面分成的两部分可以都是棱柱 D.棱锥被平面分成的两部分不可能都是棱锥
★★例2:若一个三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的( )
A 21倍
B 42
倍 C 2倍 D 2倍
★例3:已知一个几何体是由上、下两部分构成的一个组合体,其三视图如下图所示,则这个组合体的上、下两部分分别是( ) A.上部是一个圆锥,下部是一个圆柱 B.上部是一个圆锥,下部是一个四棱柱
C.上部是一个三棱锥,下部是一个四棱柱
★★例4:一个体积为38cm 的正方体的顶点都在球面上,则球的表面积是
A .28cm π
B 2
12cm π. C 216cm π. D .220cm π
二、填空题
★例1:若圆锥的表面积为a 平方米,且它的侧面展开图是一个半圆,则这个圆锥的底面的直径为_______________.
★例2:球的半径扩大为原来的2倍,它的体积扩大为原来的 _________ 倍. 第二章 点、直线、平面之间的位置关系 知识点:
1、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内。
2、公理2:过不在一条直线上的三点,有且只有一个平面。
3、公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点
的公共直线。
4、公理4:平行于同一条直线的两条直线平行.
5、定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。
6、线线位置关系:平行、相交、异面。
7、线面位置关系:直线在平面内、直线和平面平行、直线和平面相交。
8、面面位置关系:平行、相交。
9、线面平行: ⑴判定:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(简
称线线平行,则线面平行)。
⑵性质:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与
该直线平行(简称线面平行,则线线平行)。
10、面面平行:
⑴判定:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简
称线面平行,则面面平行)。
⑵性质:如果两个平行平面同时和第三个平面相交,那么它们的交线平行(简称
面面平行,则线线平行)。
11、线面垂直:
⑴定义:如果一条直线垂直于一个平面内的任意一条直线,那么就说这条直线和
这个平面垂直。
⑵判定:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直
(简称线线垂直,则线面垂直)。
⑶性质:垂直于同一个平面的两条直线平行。
12、面面垂直:
⑴定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。
⑵判定:一个平面经过另一个平面的一条垂线,则这两个平面垂直(简称线面垂直,
则面面垂直)。
⑶性质:两个平面互相垂直,则一个平面内垂直于交线的直线垂直于另一个平面。
(简称面面垂直,则线面垂直)。
典型例题:
★例1:一棱锥被平行于底面的平面所截,若截面面积与底面面积之比是1:2,则此棱锥的
高(自上而下)被分成两段长度之比为
A 、1:2
B 、1:4
C 、1:)12(+
D 、1:)12(-
★ 例2:已知两个不同平面α、β及三条不同直线a 、b 、c ,βα⊥,c =βα ,β⊥a ,
b a ⊥,
c 与b 不平行,则( )
A. β//b 且b 与α相交
B. α⊄b 且β//b
C. b 与α相交
D. α⊥b 且与β不相交
★★ 例3:有四个命题:①平行于同一直线的两条直线平行;②垂直于同一平面的两条直线平行;③平行于同一直线的两个平面平行;④垂直于同一平面的两个平面平行。
其中正确的是 ( )
A .①②
B .②③
C .③④
D .①④
★★例4:在正方体1111D C B A ABCD -中,F E ,分别是1CC DC 和的中点.求证:
ADF E D 平面⊥1
例5:如图,在正方体ABCD -A1B1C1D1中,E 、F 为
棱AD 、AB 的中点.
(1)求证:EF ∥平面CB1D1;
(2)求证:平面CAA1C1⊥平面CB1D1
第三章 直线与方程 知识点:
1、倾斜角与斜率:1
21
2tan x x y y k --==α
2、直线方程:
⑴点斜式:()00x x k y y -=- ⑵斜截式:b kx y +=
⑶两点式:
121
121y y y y x x x x --=
-- ⑷截距式:
1x y
a b
+= ⑸一般式:0=++C By Ax
A 1
3、对于直线:222111:,:b x k y l b x k y l +=+=有: ⑴⎩⎨
⎧≠=⇔2
12
121//b b k k l l ;
⑵1l 和2l 相交12k k ⇔≠; ⑶1l 和2l 重合⎩⎨
⎧==⇔2
12
1b b k k ;
⑷12121-=⇔⊥k k l l . 4、对于直线:
:,0:22221111=++=++C y B x A l C y B x A l 有:
⑴⎩⎨
⎧≠=⇔1
2211
22121//C B C B B A B A l l ;
⑵1l 和2l 相交1221B A B A ≠⇔; ⑶1l 和2l 重合⎩⎨
⎧==⇔1
2211
221C B C B B A B A ;
⑷0212121=+⇔⊥B B A A l l . 5、两点间距离公式:()()21221221y y x x P P -+-=
6、点到直线距离公式:2
2
00B
A C
By Ax d +++=
7、两平行线间的距离公式:
1l :01=++C By Ax 与2l :02=++C By Ax 平行,则2
2
21B
A C C d +-=
典型例题:
★例1:若过坐标原点的直线l 的斜率为3-,则在直线l 上的点是( ) A )3,1( B )1,3( C )1,3(- D )3,1(- ★例2:直线02)32()1(:03)1(:21=-++-=--+y k x k l y k kx l 和 互相垂直,则k 的值是( )
A .-3
B .0
C . 0或-3
D . 0或1 第四章 圆与方程
知识点:
1、圆的方程:
⑴标准方程:()()22
2
r b y a x =-+-,其中圆心为(,)a b ,半径为r .
⑵一般方程:022=++++F Ey Dx y x .其中圆心为(,)2
2
D E -
-
,半径为
r =
.
2、直线与圆的位置关系
直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:
0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d .
3、两圆位置关系:21O O d =
⑴外离:r R d +>; ⑵外切:r R d +=;
⑶相交:r R d r R +<<-; ⑷内切:r R d -=; ⑸内含:r R d -<.
4、空间中两点间距离公式:()()()21221221221z z y y x x P P -+-+-=
典型例题:
★例1:圆心在直线y=2x 上,且与x 轴相切与点(-1,0)的圆的标准方程是
_________________________. ★★ 例2:已知4:2
2
=+y x C 圆,
(1)过点)3,1(-的圆的切线方程为________________. (2)过点)0,3(的圆的切线方程为________________. (3)过点)1,2(-的圆的切线方程为________________.
(4)斜率为-1的圆的切线方程为__________________.
★★例3:已知圆C 经过A(3,2)、B(1,6)两点,且圆心在直线y=2x 上。
(1)求圆C的方程;
(2)若直线L经过点P (-1,3)且与圆C相切, 求直线L的方程。