热释电红外传感器PIR原理教程
pir传感器工作原理
pir传感器工作原理
PIR(Passive Infrared)传感器是一种常用的人体感应器,用
于检测人体的热辐射。
其工作原理基于红外线辐射,具体工作过程如下:
1. PIR传感器由两个热敏电阻组成,它们被安装在一个微小的
探测单元内。
这两个电阻一般被称为探测元件,它们分别相对应地覆盖了两个透镜。
2. 当有人或动物经过时,他们会产生热辐射,例如人体释放的红外线辐射。
这些热辐射会被PIR传感器的探测元件所感知到。
3. 探测元件接收到热辐射后,会产生温度变化。
其中一个电阻的温度会比另一个电阻快速上升,而且上升的幅度也会不一样。
这两个电阻会输出不同的电压信号。
4. PIR传感器会比较这两个电压信号的差异。
如果差异超过了
传感器的阈值,那么传感器会触发一个电信号,用来指示有人或动物经过。
需要注意的是,PIR传感器只能检测到温度变化,而不能区分
不同的热源。
因此,当有其他的热源也会产生温度变化时,例如空调或加热器,传感器可能会误判。
为了减少误判,PIR传
感器通常会根据目标在视野中的运动模式进行调整,或者根据特定的时间间隔来检测温度变化。
人体热释电红外传感器PIR原理
人体热释电红外传感器PIR原理人体热释电红外传感器(Passive Infrared Sensor,简称PIR)是一种常用于安防系统和自动控制系统的传感器。
它通过感知人体所释放的红外辐射来检测人的存在。
接下来,我将详细介绍PIR传感器的工作原理。
PIR传感器基于人体的热辐射原理。
人体在运动或者处于不同温度的环境下,会释放出红外辐射,传感器通过检测这种红外辐射来确定人体的存在。
PIR传感器通常由一个镜片、一个红外感应单元和一个信号处理单元组成。
首先,镜片用于收集环境中的红外辐射。
通常,这个镜片是一个分段的圆形或矩形,它可以将环境中的红外辐射聚焦到红外感应单元的元件上。
其次,红外感应单元是PIR传感器的核心部件。
它通常由两个红外感应器构成,每个感应器都包含了一个红外感测元件和一个输电线圈。
一个感应器探测到一个感应元件,而与其相对的感应器探测到另一个感应元件。
当没有人体经过时,两个感应器接收到的红外辐射强度是相等的。
然而,当有人体经过时,红外辐射的分布会发生变化,一个感应器接收到的辐射比另一个感应器接收到的辐射要强。
这是因为人体是一个温度较高的物体,当一个感应器探测到红外辐射时,另一个感应器探测到的辐射会更弱,从而产生一个差异信号。
这个差异信号将被传送到信号处理单元进行分析。
最后,信号处理单元负责接收并处理差异信号。
当差异信号超过一定的阈值时,信号处理单元会触发相应的动作,比如开启报警、开启照明等。
同时,为了提高传感器的灵敏度和减少误报率,信号处理单元也可以采用一些技术,比如时间窗口的技术,只有在特定的时间段内出现差异信号才被触发。
需要注意的是,PIR传感器只能检测到红外辐射的变化,而不能检测到绝对温度或静止物体的存在。
因此,在设置PIR传感器时,应该考虑到人体的运动情况以及环境的温度变化。
总结一下,人体热释电红外传感器PIR是一种通过感知人体所释放的红外辐射来检测人的存在的传感器。
它通过镜片收集环境中的红外辐射,通过红外感应单元检测红外辐射的差异,最后通过信号处理单元进行差异信号的分析和处理。
人体热释电红外传感器PIR原理资料
1. 人体热释电红外传感器PIR原理详解在电子防盗、人体探测器领域中,被动式热释电红外探测器的应用非常广泛,因其价格低廉、技术性能稳定而受到广大用户和专业人士的欢迎。
被动式热释电红外探头的工作原理及特性:人体都有恒定的体温,一般在37度,所以会发出特定波长10μm左右的红外线,被动式红外探头就是靠探测人体发射的10μm左右的红外线而进行工作的。
人体发射的10μm左右的红外线通过菲涅尔滤光片增强后聚集到红外感应源上。
红外感应源通常采用热释电元件,这种元件在接收到人体红外辐射温度发生变化时就会失去电荷平衡,向外释放电荷,后续电路经检测处理后就能产生报警信号。
(1)这种探头是以探测人体辐射为目标的。
所以热释电元件对波长为10μm左右的红外辐射必须非常敏感。
(2)为了仅仅对红外辐射敏感,在它的辐射照面通常覆盖有特殊的菲涅尔滤光片,使环境的干扰受到明显的控制作用。
(3)被动红外探头,其传感器包含两个互相串联或并联的热释电元。
而且制成的两个电极化方向正好相反,环境背景辐射对两个热释元件几乎具有相同的作用,使其产生释电效应相互抵消,于是探测器无信号输出。
(4)一旦人侵入探测区域内,人体红外辐射通过部分镜面聚焦,并被热释电元接收,但是两片热释电元接收到的热量不同,热释电也不同,不能抵消,经信号处理而报警。
(5)菲涅尔滤光片根据性能要求不同,具有不同的焦距(感应距离),从而产生不同的监控视场,视场越多,控制越严密。
被动式热释电红外探头的优缺点:优点:本身不发任何类型的辐射,器件功耗很小,隐蔽性好。
价格低廉。
缺点:◆容易受各种热源、光源干扰◆被动红外穿透力差,人体的红外辐射容易被遮挡,不易被探头接收。
◆易受射频辐射的干扰。
◆环境温度和人体温度接近时,探测和灵敏度明显下降,有时造成短时失灵。
抗干扰性能:1.防小动物干扰探测器安装在推荐地使用高度,对探测范围内地面上地小动物,一般不产生报警。
2.抗电磁干扰探测器的抗电磁波干扰性能符合GB10408中4.6.1要求,一般手机电磁干扰不会引起误报。
pir人体红外传感器原理
pir人体红外传感器原理人体红外传感器(PIR)是一种利用人体红外辐射原理进行感应的电子设备。
它广泛应用于安防系统、自动照明等领域。
本文将详细介绍PIR人体红外传感器的原理和工作方式。
一、PIR人体红外传感器的原理PIR人体红外传感器的工作原理基于人体红外辐射。
人体发出的红外辐射主要是热能,其波长范围为8-14微米。
PIR传感器通过感知这种红外辐射来检测人体的存在。
PIR传感器内部包含两个重要的组件:红外辐射传感器和信号处理器。
红外辐射传感器由一对相互对射的红外探测器组成,通常是一对焦平面阵列(FPA)。
当有人体进入传感器的监测范围时,人体发出的红外辐射将被红外探测器所感知。
二、PIR人体红外传感器的工作方式PIR传感器工作时,首先要对环境进行校准。
校准过程中,传感器会记录周围环境的红外辐射水平,并将其作为基准。
校准完成后,传感器将根据基准值来判断是否有人体进入。
在校准完成后,传感器会进入检测状态。
当有人体进入传感器的监测范围时,人体发出的红外辐射将引起传感器的变化。
传感器会将这种变化转化为电信号,并送入信号处理器进行分析。
信号处理器会对传感器输出的电信号进行处理,并根据一定的算法来判断人体是否存在。
如果信号处理器判断有人体存在,则会触发相应的应用,如开启安防系统、自动照明等。
三、PIR人体红外传感器的特点1. 高灵敏度:PIR传感器能够感知到人体发出的微弱红外辐射,具有较高的灵敏度。
2. 快速响应:PIR传感器能够在人体进入监测范围后迅速响应,减少延迟时间。
3. 抗干扰能力强:PIR传感器能够通过校准环境的红外辐射水平,减少外界干扰对传感器的影响。
4. 低功耗:PIR传感器工作时功耗较低,适合长时间运行。
5. 可靠性高:PIR传感器采用固态器件,无机械部件,具有较高的可靠性和稳定性。
四、PIR人体红外传感器的应用领域1. 安防系统:PIR传感器广泛应用于安防系统,如入侵报警、监控等。
当有人体进入监测区域时,传感器会触发报警或启动监控摄像头。
pir传感器工作原理讲解
pir传感器工作原理讲解一、引言PIR传感器(Passive Infrared Sensor),即被动式红外传感器,是一种广泛应用于安防领域的传感器。
它利用人体发出的红外线辐射来检测人体的存在,从而实现自动感应和控制。
本文将详细介绍PIR传感器的工作原理。
二、红外辐射与热能人体作为一个温暖的物体,会发出红外线辐射。
红外线是一种电磁波,波长在0.75至1000微米之间,是可见光的一种延伸。
人眼无法直接感知红外线,但PIR传感器可以接收并处理这种辐射。
三、传感器结构PIR传感器通常由两个探测区域组成,每个探测区域都覆盖一个锥形视野。
传感器的外壳上还有一个镜片,用来聚焦红外辐射。
镜片的材质和形状能够影响传感器的探测距离和角度。
四、红外辐射的感知当有人或其他物体进入传感器的监测范围内时,人体发出的红外辐射会通过镜片聚焦到传感器的探测区域上。
传感器内部的红外感测元件会接收到这些红外辐射。
五、红外感测元件传感器内部的红外感测元件通常采用双热电偶,也叫做焦耳效应传感器。
双热电偶由两个热电偶电极组成,它们被放置在一个特殊的材料中。
当热电偶感受到红外辐射时,两个电极之间会产生微小的电压差。
六、信号放大与处理传感器会将双热电偶产生的微小电压差信号放大,并进行处理。
通过对信号的放大和滤波处理,可以有效地区分人体的红外辐射信号和其他干扰信号。
七、感知区域划分传感器内部的电路会将探测区域划分成多个像素。
每个像素都可以独立感知红外辐射的变化。
通过对不同像素的信号进行比较和分析,可以确定人体的位置和移动方向。
八、灵敏度与延迟设置PIR传感器通常具有灵敏度和延迟时间的设置。
灵敏度调节可以控制传感器对红外辐射的感知范围,高灵敏度可感知较小的红外辐射变化。
延迟时间设置则可以调整传感器在感知到红外辐射后的响应时间。
九、应用领域PIR传感器广泛应用于安防领域,如室内外监控系统、入侵报警系统等。
它还可以用于节能控制领域,如智能照明系统、自动门控制系统等。
热释电红外传感器的原理
关键词:被动式红外报警器;热释电红外(PIR)传感器;双精度单稳多频振荡器
当人体辐射的红外线通过菲涅尔透镜被聚焦在热释电红外传感器的探测元上时,电路中的传感器将输出电压信号,然后使该信号先通过一个由C1、C2、R1、R2组成的带通滤波器,该滤波器的上限截止频率为16Hz,下限截止频率为0.16Hz。由于热释电红外传感器输出的探测信号电压十分微弱(通常仅有1mV左右),而且是一个变化的信号,同时菲涅尔透镜的作用又使输出信号电压呈脉冲形式(脉冲电压的频率由被测物体的移动速度决定,通常为0.1~10Hz左右),所以应对热释红外传感器输出的电压信号进行放大。本设计运用集成运算放大器LM324来进行两级放大,以使其获得足够的增益。
3.2 工作原理
在该探测技术中,所谓“被动”是指探测器本身不发出任何形式的能量,只是靠接收自然界能量或能量变化来完成探测目的。被动红外报警器的特点是能够响应入侵者在所防范区域内移动时所引起的红外辐射变化,并能使监控报警器产生报警信号,从而完成报警功能。图4所示是该报警器的工作电路原理图。
热释电人体红外线传感器(以下简称:传感器)由敏感单元、阻抗变换器和滤光窗等三大部分组成。图1为P2288、SD02、SCA02-1的外形图。图1a为它们的顶视图,其中较大的矩形部分为滤光窗,两个虚线框矩形为敏感单元,面积约2x1mm2 ,间距1mm。图1b为侧视图;图1c为底视图;它们的监视、探测角度如图1a、d,其中参数为SCA02-1的数据,其它两种的参数大致相同。
人体热释电红外传感器PIR原理解析
1. 人体热释电红外传感器PIR原理详解在电子防盗、人体探测器领域中,被动式热释电红外探测器的应用非常广泛,因其价格低廉、技术性能稳定而受到广大用户和专业人士的欢迎。
被动式热释电红外探头的工作原理及特性:人体都有恒定的体温,一般在37度,所以会发出特定波长10μm左右的红外线,被动式红外探头就是靠探测人体发射的10μm左右的红外线而进行工作的。
人体发射的10μm左右的红外线通过菲涅尔滤光片增强后聚集到红外感应源上。
红外感应源通常采用热释电元件,这种元件在接收到人体红外辐射温度发生变化时就会失去电荷平衡,向外释放电荷,后续电路经检测处理后就能产生报警信号。
(1)这种探头是以探测人体辐射为目标的。
所以热释电元件对波长为10μm左右的红外辐射必须非常敏感。
(2)为了仅仅对红外辐射敏感,在它的辐射照面通常覆盖有特殊的菲涅尔滤光片,使环境的干扰受到明显的控制作用。
(3)被动红外探头,其传感器包含两个互相串联或并联的热释电元。
而且制成的两个电极化方向正好相反,环境背景辐射对两个热释元件几乎具有相同的作用,使其产生释电效应相互抵消,于是探测器无信号输出。
(4)一旦人侵入探测区域内,人体红外辐射通过部分镜面聚焦,并被热释电元接收,但是两片热释电元接收到的热量不同,热释电也不同,不能抵消,经信号处理而报警。
(5)菲涅尔滤光片根据性能要求不同,具有不同的焦距(感应距离),从而产生不同的监控视场,视场越多,控制越严密。
被动式热释电红外探头的优缺点:优点:本身不发任何类型的辐射,器件功耗很小,隐蔽性好。
价格低廉。
缺点:◆容易受各种热源、光源干扰◆被动红外穿透力差,人体的红外辐射容易被遮挡,不易被探头接收。
◆易受射频辐射的干扰。
◆环境温度和人体温度接近时,探测和灵敏度明显下降,有时造成短时失灵。
抗干扰性能:1.防小动物干扰探测器安装在推荐地使用高度,对探测范围内地面上地小动物,一般不产生报警。
2.抗电磁干扰探测器的抗电磁波干扰性能符合GB10408中4.6.1要求,一般手机电磁干扰不会引起误报。
人体热释电红外线传感器的原理和应用
人体热释电红外线传感器的原理和应用热释电人体红外线传感器是上世纪80年代末期出现的一种新型传感器件。
热释电红外传感器不受白天黑夜的影响,可昼夜不停地用于监测,广泛地用于防盗报警。
本文就热释电人体红外线传感器的基本原理及应用作以大致介绍:一、热释电人体红外线传感器的基本结构和原理热释电红外(PIR)传感器,亦称为热红外传感器,是一种能检测人体发射的红外线的新型高灵敏度红外探测元件。
它能以非接触形式检测出人体辐射的红外线能量的变化,并将其转换成电压信号输出。
将输出的电压信号加以放大,便可驱动各种控制电路,如作电源开关控制、防盗防火报警等。
目前市场上常见的热释电人体红外线传感器主要有上海赛拉公司的SD02、PH5324,德国Perkinelmer 公司的LHi954、LHi958,美国Hamastsu公司的P2288,日本NipponCeramic公司的SCA02-1、RS02D等。
虽然它们的型号不一样,但其结构、外型和特性参数大致相同,大图1 热释电传感器实物图部分可以彼此互换使用。
热释电红外线传感器由探测元、滤光窗和场效应管阻抗变换器等三大部分组成,如图1所示。
对不同的传感器来说,探测元的制造材料有所不同。
如SD02的敏感单元由锆钛酸铅制成;P2288由LiTaO3 制成。
将这些材料做成很薄的薄片,每一片薄片相对的两面各引出一根电极,在电极两端则形成一个等效的小电容。
因为这两个小电容是做在同一硅晶片上的,因此形成的等效小电容能自身产生极化,在电容的两端产生极性相反的正、负电荷。
传感器中两个电容是极性相反串联的。
当传感器没有检测到人体辐射出的红外线信号时,在电容两端产生极性相反、电量相等的正、负电荷,所以,正负电荷相互抵消,回路中无电流,传感器无输出。
当人体静止在传感器的检测区域内时,照射到两个电容上的红外线光能能量相等,且达到平衡,极性相反、能图2 双探测元热释电红外传感器量相等的光电流在回路中相互抵消,传感器仍然没有信号输出。
热释电红外传感器的原理
热释电红外传感器的原理热释电红外线(PIR)传感器是80年代发展起来的一种新型高灵敏度探测元件。
是一种能检测人体发射的红外线而输出电信号的传感器,它能组成防入侵报警器或各种自动化节能装置。
它能以非接触形式检测出人体辐射的红外线能量的变化,并将其转换成电压信号输出。
将这个电压信号加以放大,便可驱动各种控制电路。
如下图所示为热释电红外传感器的内部电路框图。
热释电红外传感器的内部电路框图本设计所用的热释感器就采用这种双探测元的结构。
其工作电路原理及设计电路如下图所示, 在VCC电源端利用C1和R2来稳定工作电压,同样输出端也多加了稳压元件稳定信号。
当检测到人体移动信号时,电荷信号经过FET放大后,经过C2,R1的稳压后使输出变为高电位,再经过NPN的转化,输出OUT为低电平。
热释电红外传感器原理图热释电红外传感器和热电偶都是基于热电效应原理的热电型红外传感器。
不同的是热释电红外传感器的热电系数远远高于热电偶,其内部的热电元由高热电系数的铁钛酸铅汞陶瓷以及钽酸锂、硫酸三甘铁等配合滤光镜片窗口组成,其极化随温度的变化而变化。
为了抑制因自身温度变化而产生的干扰,该传感器在工艺上将两个特征一致的热电元反向串联或接成差动平衡电路方式,因而能以非接触式检测出物体放出的红外线能量变化,并将其转换为电信号输出。
热释电红外传感器在结构上引入场效应管的目的在于完成阻抗变换。
由于热电元输出的是电荷信号,并不能直接使用,因而需要用电阻将其转换为电压形式,该电阻阻抗高达104M Ω,故引入的N沟道结型场效应管应接成共漏形式,即源极跟随器来完成阻抗变换。
热释电红外传感器由传感探测元、干涉滤光片和场效应管匹配器三部分组成。
设计时应将高热电材料制成一定厚度的薄片,并在它的两面镀上金属电极,然后加电对其进行极化,这样便制成了热释电探测元。
由于加电极化的电压是有极性的,因此极化后的探测元也是有正、负极性的。
热释电红外传感器原理教程通用课件
包括探测器的结构、材料的热电性能、制造工艺等。
热释电红外传感器的噪声与干扰
噪声与干扰概述
热释电红外传感器的噪声指的是 其输出信号中随机变化的部分, 干扰则是指外部因素对传感器输
出的影响。
噪声的来源
热释电红外传感器的噪声主要来源 于探测器材料的热涨落、电路噪声 、环境辐射等。
干扰的来源
热释电红外传感器的干扰主要来源 于电磁干扰、电源噪声、机械振动 等。
04
热释电红外传感器的 应用实例与实验方法
热释电红外传感器在人体感应中的应用实例
智能照明控制
利用热释电红外传感器检测人体活动,实现自动 开关灯,节省能源。
智能家居系统
通过热释电红外传感器监测家庭成员活动,实现 自动化家务管理。
医疗护理
在病房、卫生间等场所安装热释电红外传感器, 实现自动呼叫系统,方便病人使用。
刘洋, 王丽, 李明等. 基于热释电效应的红外传感器研究进展. 物理 学报, 2022; 61(3): 1-10.
致谢
01
对参与本教程编写的所有作者表示衷心的感谢。他们在百 忙之中对教程进行了仔细的编写和校对,为读者提供了宝 贵的知识和经验。
02
感谢北京电子工业出版社的编辑们,他们在整个教程的编 写过程中给予了极大的支持和帮助,提供了宝贵的意见和 建议。
早期火灾预警
利用热释电红外传感器检测火灾初期的 热辐射,及时发出预警信号,降低火灾 发生的风险。
VS
工业生产安全
在工厂、仓库等场所安装热释电红外传感 器,提高火灾预警能力传感器的 调试与校准方法
热释电红外传感器的调试步骤
硬件连接
确认传感器与主机之间的连接是否牢固,避 免接触不良导致信号传输受阻。
热释电红外感测器PIR的原理
图3、电源电路BISS0001的可重复触发/不可重复触发模式通过R22、R36来设置,使晶片A引脚为高电平或低电平来决定模式。
A为高电平的时候,晶片处在可重复触发模式;A为低电平的时候,晶片处在不可重复触发模式。
输出延迟时间Tx由R16、R17、R12和C14来设定。
R15和C12决定输出控制信号的触发封锁时间。
Tx=24567*R*C14,其中R=R16,R17,R12。
Ti=R15*C12*24。
Vo为输出控制信号,根据不同的运用可以将Vo接光电偶合器的输入端进行大功率的开关控制;也可以将Vo接RF发射电路的触发信号,通过Vo控制RF电路发射输出“开”信号和“关”信号。
三、硫化镉光敏电阻(以下简称CDS)CDS是一种光导器件,当光照射到CDS上时,其电阻值会发生变化。
光照越强,CDS的阻值越小。
在没有光照的情况下测得的CDS阻值为“暗电阻”,通常为几MΩ到几十MΩ;在有光照的情况下测得电阻为“亮电阻”,在光强度为10Lux的时候,亮电阻通常为几KΩ到几百KΩ。
通常对於一个CDS元件,它的暗电阻越大并且亮电阻越小,则说明它的灵敏度越好。
图4、CDS实物和结构图CDS的光谱回应范围为350-800nm,峰值在520-620nm之间。
CDS在可见光环境里灵敏度高,结构简单,成本低。
CDS光敏电阻的实物和结构如图4所示。
CDS的工作状态的稳定性可以通过γ值来说明。
一般均按10Lux和100Lux照度条件下,CDS的对应阻值R10和R100来计算其γ值。
γ=lg(R10/R100)CDS的γ值在0.55~0.98之间。
在这里,Lux为发光强度的衡量单位,指的是1流明(lumen)的光通量(Luminous flux)均匀地分布在1平方米面积上的照度。
具体的,每平方米的面积上,受距离一米、发光强度为1烛光的光源,垂直照射的光通量。
适宜於阅读的光照强度约为60Lux。
CDS在较宽的测光范围内,γ值不能保持一致,特别是在高、低照度时,γ值差异较大;在低照度时回应缓慢,存在光滞效应;受环境温度的影响较大。
人体热释电红外传感器PIR原理
人体热释电红外传感器 PIR 原理人体热释电红外传感器(Passive Infrared Sensor,简称 PIR)是一种用于检测人体运动的电子传感器,它可以检测周围环境中的红外辐射,并根据运动物体的热辐射来判断是否有人的存在。
PIR 传感器广泛应用于室内安防、自动照明、智能家居等领域,是家庭及商业场所安全防护中的重要设备之一。
PIR 原理PIR 传感器基于热释电原理,其工作原理可以简单概括如下:1.人体是一种热辐射源,通常会以温度差的形式向周围环境发射红外辐射。
2.PIR 传感器通过感应窗口(通常为镜面反射面)检测周围环境中的红外辐射。
3.PIR 传感器内置的光敏二极管(Photodiode)会将感应窗口中反射的红外辐射转化为光电信号。
4.信号经过放大处理后,通过比较电路(Comparator)进行处理,当信号超过特定阈值后,PIR 传感器输出高电平信号(即检测到人体运动),否则输出低电平信号(未检测到人体运动)。
PIR 传感器的核心部件是感应器(Sensor),一般是由氟化铷(LiF)或者氟化铟(InInF)制成的一些小晶体,可以将周围环境中的红外辐射转变为电信号,通过处理电路进行信号分析,从而判断是否检测到人体运动。
此外,PIR 传感器还有一些特别设计,以避免误检和漏检。
如:1.边际过渡区(Margin Area):对于某些传感器,会将其分为中央检测区域和边际过渡区域,这样可以保证传感器只检测来自检测区域内的人体运动信号,不受非目标物体的影响。
2.多级信号处理:为了去除杂波干扰,可以采用多级信号处理的结构实现信号的抗干扰能力,从而增强检测结果的准确性。
3.超宽角度检测:这种传感器可检测到宽范围内的人体运动信号,可用于低端安防产品,检测面积较大。
PIR 传感器的应用PIR 传感器具有快速、稳定、准确等优势,被广泛应用于各种领域,其中最常见的应用场景是在安防、智能家居、自动照明、宠物监控等领域。
热释电红外传感器PIR原理教程ppt课件
(三)
1.热释电应用电路原理图 2.典型电路设计分析(一) 3.典型电路设计分析(二) 4.聚光系统---菲涅尔镜片
的原理和应用
16
热释电红外传感器工作电路原理图
常用放大电路有 哪些?
17
典型电路设计分析(一)
reture
18
具体电路应用设计分析(一) [电路工作原理]
探头接收到人体释放的热释红外信号,经VT1、IC2两级放大,输入电压比较器 IC3。其中RP为参考电压调节电位器,用来调节电路灵敏度,也就是探测范围。 平时,参考电压(IC3的(2)脚电压)高于IC2的输入电压(IC3的(3)脚电 压),IC3输出低电平。
二.定性处理 解决有无的问题
7
红外传感器的工作原理 人体辐射 ♣任何发热体都会产生红外线 辐射的红外线波长跟物体温度有关。表面温度越高 ,辐射能量越强。 ♣最强波长和温度的关系满足λm*T=2989(um.k) ♣人体的正常体温为36~37.5。C , 其辐射的最强的红外线的波长为
9.67~9.64um,中心波长为 9.65um。
传感器只对移动或运动的人体、体温近似人体的物体起作用。
12
红外传感器的工作原理
(1)人体经过探头先后被A源或被B源感应,Sa<Sb或Sa>Sb产生差值,双源失去 互补平衡作用而很敏感地产生信号输出,见图(3C)。 (2)人对着探头呈垂直状态运动,Sa=Sb不产生差值,双源很难产生信号输出。
13
径向移动反应最不敏感, 而对于横切方向 (即与半径垂直的方向)移动则最为敏感.
2
红外传感器在生活中的应用
3
红外传感器在生活中的应用 1.“有电,危险”安全警示电路 用于有电的场合,当有人进入这些场 合时,通过发出语音和声光提醒人们注意安全。 2.自动门 主要用于银行、宾馆。当有人来到时,大门自动打开,人离 开后又自动关闭。 3.红外线防盗报警器 用于银行、 办公楼、家庭等场合的防盗报警。 4.高速公路车辆车流计数器 5.自动开、关的照明灯,人体 接近自动开关等。
pir传感器工作原理
pir传感器工作原理PIR传感器工作原理。
PIR传感器全称为Passive Infrared Sensor,即被动式红外传感器。
它是一种能够检测人体活动的电子传感器,常用于安防系统、自动灯光控制等领域。
本文将介绍PIR传感器的工作原理及其应用。
PIR传感器的工作原理基于红外线的特性。
人体在运动时会发出红外线,而PIR传感器就是通过检测这种红外线来实现对人体活动的监测。
它的工作原理可以分为以下几个步骤:首先,PIR传感器内部包含一对热敏电阻,它们能够感知周围环境的温度变化。
当有人体靠近时,人体会向周围散发热量,导致周围环境的温度发生变化。
其次,当人体靠近时,周围环境的温度变化会导致PIR传感器内部的热敏电阻产生电压信号的变化。
这种变化会被传感器内部的电路所检测到。
最后,一旦PIR传感器检测到了人体的活动,它就会输出一个信号,告诉外部设备有人经过。
这个信号可以被用来触发警报、控制灯光等应用。
PIR传感器的工作原理非常简单,但却非常有效。
它能够在不需要直接接触人体的情况下,通过检测人体发出的红外线来实现对人体活动的监测。
因此,它在安防系统、自动灯光控制等领域有着广泛的应用。
除了上述的应用外,PIR传感器还可以用于节能控制。
例如,在一些需要长时间照明的场所,可以使用PIR传感器来控制灯光的开关,当检测到没有人时自动关闭灯光,当检测到有人时再自动打开灯光,这样可以有效节约能源,延长灯具的使用寿命。
总的来说,PIR传感器是一种非常实用的电子传感器,它通过检测人体发出的红外线来实现对人体活动的监测,具有简单、高效、节能的特点。
它在安防系统、自动灯光控制、节能控制等领域有着广泛的应用前景。
希望本文的介绍能够帮助大家更好地了解PIR传感器的工作原理及其应用。
pir控制原理
pir控制原理PIR传感器,全称为Passive Infrared Sensor,是一种被动式红外传感器。
它利用红外线辐射来检测物体的存在,从而实现对环境变化的感知和控制。
PIR传感器广泛应用于安防系统、自动照明系统、自动门禁系统等场合。
PIR传感器的核心是红外探测器,它可以感知物体发出的红外线辐射。
当有物体进入传感器的监测区域时,物体会发出红外线,传感器会将其转化为电信号。
PIR传感器的工作原理可以简单概括为以下几个步骤:1. 感知:PIR传感器通过感知物体发出的红外线来检测物体的存在。
传感器通常由两个平行排列的感测元件组成,它们分别为感测元件A和感测元件B。
当没有物体进入监测区域时,两个感测元件接收到的红外线辐射是均匀的;而当有物体进入监测区域时,感测元件A 和感测元件B接收到的红外线辐射就会发生不均匀的变化。
2. 比较:PIR传感器会将感测元件A和感测元件B接收到的红外线辐射信号进行比较。
如果两个感测元件接收到的信号相差较大,那么传感器就会判断有物体进入了监测区域。
3. 信号处理:当PIR传感器检测到有物体进入监测区域时,它会产生一个电信号。
这个电信号经过放大、滤波等处理后,可以用来触发控制器的相应操作。
PIR传感器的优点是响应速度快、功耗低、结构简单。
它在安防系统中的应用非常广泛。
例如,当有人进入监控区域时,PIR传感器可以及时感知到,并触发警报系统,起到防盗报警的作用。
此外,PIR传感器还可以应用于自动照明系统中。
当有人进入房间时,PIR 传感器会感知到,并自动开启照明设备,提供足够的光线;当人离开后一段时间,PIR传感器会自动关闭照明设备,实现节能的目的。
除了安防系统和自动照明系统,PIR传感器还可以用于自动门禁系统、人体检测器等领域。
在自动门禁系统中,PIR传感器可以感知到人员的接近,从而自动开启或关闭门禁设备,提供便利的同时也增加了安全性。
在人体检测器中,PIR传感器可以用来检测人体的活动,监测人体的呼吸、心率等生理信号,应用于医疗保健等领域。
热释电红外传感器原理及其应用
热释电红外传感器原理及其应用热释电红外传感器原理及其应用
热释电红外传感器(PIR)是一种新型的依赖于温度变化的红外传
感器,它具有快速、高效的特点。
热释电红外传感器可以通过检测红
外辐射发出的能量而直接感知人体移动。
它的原理是利用热释电效应,当温度变化时,物体表面会发出大量红外辐射,热释电红外传感器会
采集这些信号,然后根据这些信号来测定温度变化情况。
由于热释电红外传感器的特性,如低成本、易于安装以及不受光
照影响等,它已经被广泛地应用在安防监控、楼宇自动化、家庭能源
管理等领域中。
PIR 传感器可以有效地实现人体活动检测,从而实现
室内外安全监控,也可以用于能量管理系统中实现节省能源。
如在家
庭能源管理系统中,PIR 传感器可以根据人体活动情况,自动控制灯具、空调、电视机等电器设备的开关,实现节能减碳。
此外,PIR 传
感器还可以应用于停车场、工厂生产线等场所,监测人员的安全情况
和行为。
热释电红外传感器的运行机理是利用外界环境温度变化而引起的
热释电效应,由于它具有快速响应,准确性高,对环境易受影响等特点,因此PIR 红外传感器在多种安全监控、能源管理以及智能控制领
域中得到了广泛应用。
人体热释电红外传感器PIR原理
人体热释电红外传感器P I R原理Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】1.人体热释电红外传感器P I R原理详解在电子防盗、人体探测器领域中,被动式探测器的应用非常广泛,因其价格低廉、技术性能稳定而受到广大用户和专业人士的欢迎。
被动式热释电红外探头的工作原理及特性:人体都有恒定的体温,一般在37度,所以会发出特定波长10μm左右的红外线,被动式红外探头就是靠探测人体发射的10μm左右的红外线而进行工作的。
人体发射的10μm 左右的红外线通过菲涅尔滤光片增强后聚集到红外感应源上。
源通常采用热释电元件,这种元件在接收到人体红外辐射温度发生变化时就会失去电荷平衡,向外释放电荷,后续电路经检测处理后就能产生报警信号。
(1)这种探头是以探测人体辐射为目标的。
所以热释电元件对波长为10μm 左右的红外辐射必须非常敏感。
(2)为了仅仅对红外辐射敏感,在它的辐射照面通常覆盖有特殊的菲涅尔滤光片,使环境的干扰受到明显的控制作用。
(3)被动红外探头,其传感器包含两个互相串联或并联的热释电元。
而且制成的两个电极化方向正好相反,环境背景辐射对两个热释元件几乎具有相同的作用,使其产生释电效应相互抵消,于是探测器无信号输出。
(4)一旦人侵入探测区域内,人体红外辐射通过部分镜面聚焦,并被热释电元接收,但是两片热释电元接收到的热量不同,热释电也不同,不能抵消,经信号处理而报警。
(5)滤光片根据性能要求不同,具有不同的焦距(感应距离),从而产生不同的监控视场,视场越多,控制越严密。
被动式热释电红外探头的优缺点:优点:本身不发任何类型的辐射,器件功耗很小,隐蔽性好。
价格低廉。
缺点:◆容易受各种热源、光源干扰◆被动红外穿透力差,人体的红外辐射容易被遮挡,不易被探头接收。
◆易受射频辐射的干扰。
◆环境温度和人体温度接近时,探测和灵敏度明显下降,有时造成短时失灵。
抗干扰性能:1.防小动物干扰探测器安装在推荐地使用高度,对探测范围内地面上地小动物,一般不产生报警。
pir传感器 工作原理
pir传感器工作原理
PIR传感器,即红外人体感应传感器(Passive Infrared Sensor),是一种常见的用于检测人体或动物活动的传感器。
它的工作原理如下:
1. 红外辐射感应:PIR传感器是基于红外线辐射感应的。
所有
的物体都会以不同程度地辐射红外线,而人体也不例外。
当一个人进入PIR传感器的检测范围时,传感器会感知到人体发
出的红外辐射。
2. 双感测器结构:PIR传感器内部通常包含两个独立的感测器,称为热释电元件(Pyroelectric Device)。
这两个感测器被安置在一个倒置的棱镜上,相向而行。
当人体进入检测范围时,两个感测器分别感受到人体所发出的红外辐射,产生相应的电荷。
3. 差异信号检测:感测器会将两个感测器的电荷信号进行差异运算。
当人体在感测器的范围内活动时,这个差异值会发生变化,产生一个差异信号。
这个差异信号就是PIR传感器判断
是否有人体存在的依据。
4. 时间滤波:为了避免误触发,PIR传感器还会进行时间滤波。
当有人体进入范围时,传感器会触发一个关闭时间计数器。
在这个计数器触发之前,即使有新的人体进入范围,传感器也不会再次触发报警,以避免重复触发。
总结:PIR传感器通过感测人体发出的红外辐射,利用双感测
器结构、差异信号检测和时间滤波等原理,判断是否有人体活动的存在,从而实现人体检测和报警功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
径向移动反应最不敏感, 而对于横切方向 (即与半径垂直的方 向)移动则最为敏感.
在现场选择合适的安装位置是避 免红外探头误报、求得最佳检测灵敏 度极为重要的一环。
重要概念
在该探测技术中,所谓“被动”是指探测 器本身不发出任何形式的能量,只是靠接收 自然界能量或能量变化来完成探测目的。
被动红外报警器特点: 能够响应入侵者在所防范区域内移动时所 引起的红外辐射变化,并能使监控报警器产 生报警信号,从而完成报警功能。
[元件选用] IC2、IC3选用高输入阻抗的运算放大
器CA3140,很适合于作微弱信号的放大级。
[电路调试] 电路调试主要是调节电位器RB,选择合
适的参考电压,以达到最佳灵敏度。
具体电路应用设计分析(二)
BISS0001
具体电路应用设计分析(二) 红外热释电处理芯片BISS0001
上图中,运算放大器OP1将热释电
红外传感器的工作原理 热释电核心探头
热释电红外传感器由传感探
热电 元
测元、干涉滤光片和场效
应管匹配器三部分组成。
其内部的热电元由高热电 系数的铁钛酸铅汞陶瓷以 及钽酸锂、硫酸三甘铁等 配合滤光镜片窗口组成, 其极化产生正、负电荷,随 温度的变化而变化。
红外传感器的工作原理 热释电核心探头
热电元
D端接电源 正极,
G端接电源 负极,
S端为信号 输出
红外传感器的工作原理 热释电红外探头
热释电红外传感器在结构上引入场效应 管的目的在于完成阻抗变换。
由于热电元输出的是电荷信号,并不能 直接使用,因而需要用电阻将其转换为电压 形式,该电阻阻抗高达104MΩ,故引入的 N沟道结型场效应管应接成共漏形式即源 极跟随器来完成阻抗变换。
红外传感器的输出信号作第一级放大, 然后由C3耦合给运算放大器OP2进行第 二级放大,再经由电压比较器COP1和 COP2构成的双向鉴幅器处理后,检出 有效触发信号Vs去启动延迟时间定时器, 输出信号Vo经晶体管T1放大驱动继电器 去接通负载。
聚光系统菲涅尔镜片
菲涅尔镜片的原理和应用
各式各样的菲涅尔镜片
热释电红外传感器
红外传感器
(一)热释电红外传感器在生活中的应用 (二)热释电红外传感器的工作原理 (三)热释电红外传感器应用设计
红外传感器在生活中的应用
红外传感器在生活中的应用 1.“有电,危险”安全警示电路 用于有 电的场合,当有人进入这些场合时,通 过发出语音和声光提醒人们注意安全。
2.自动门 主要用于银行、宾馆。当有 人来到时,大门自动打开,人离开后又 自动关闭。
VT1、IC2两级放大,输入电压比较器IC3。其 中RP为参考电压调节电位器,用来调节电路 灵敏度,也就是探测范围。平时,参考电压 (IC3的(2)脚电压)高于IC2的输入电压 (IC❖3的(3)脚电压),IC3输出低电平。
❖ 当有人进入探测范围时,探头输出探测电 压,经VT1和IC2放大后使信号输出电压高 于参考电压,这时 IC3的(6)脚输出高电 平,三极管VT2导通,继电器J1能通电吸 合,接通开关。
3.红外线防盗报警器 用于银行、 办公楼、家庭等场合的防盗报警。
4.高速公路车辆车流计数器 5.自动开、关的照明灯,人体 接近自动开关等。
(二)
1.光谱基础 2.人体辐射 3.热释电核心探头
红外传感器的工作原理
光谱基础
红外线属于一种电磁射线,其特性等 同于无线电或X射线。人眼可见的光 波是 380nm-780nm,发射波长为780nm1mm的长射线称为红外线
菲涅尔镜片是红外线探头的 “眼镜”,它就象人的眼镜一样, 配用得当与否直接影响到使用的功 效,配用不当产生误动作和漏动作, 致使用户或者开发者对其失去信心。 配用得当充分发挥人体感应的作用, 使其应用领域不断扩大。
菲涅尔镜片的原理和应用
聚集能量
菲涅尔透镜的作用有两个: 一是聚焦作用,即将探测空间的红外
(三)
1.热释电应用电路原理图 2.典型电路设计分析(一) 3.典型电路设计分析(二) 4.聚光系统---菲涅尔镜片
的原理和应用
热释电红外传感器工作电路原理图
常用放大电 路有哪些?
典型电路设计分析(一)
reture
具体电路应用设计分析(一)
[电路工作原理] 探头线的处理方式:
一.定量处理 如利用气体的特征吸收波长及积
分特性进入某一波长的定量测量
二.定性处理
解决有无的问题
红外传感器的工作原理
人体辐射
♣任何发热体都会产生红外线
辐射的红外线波长跟物体温度有关。表面温度越 高 ,辐射能量越强。
♣最强波长和温度的关系满足λm*T=2989(um.k)
♣人体的正常体温为36~37.5。C , 其辐射的最强 的红外线的波长为9.67~9.64um,中心波长为 9.65um。
线有效地集中到传感器上。 不使用菲涅尔透镜时传感器的探测半
径不足2米,只有配合菲涅尔透镜使用才 能发挥最大作用。配上菲涅尔透镜时传感 器的探测半径可达到10米。
第二个作用是将探测区域内分为若 干个明区和暗区,使进入探测区 域的移动物体能以温度变化的形 式在PIR上产生变化的热释红外信
号。
菲涅尔镜片的原理和应用
具体电路应用设计分析(一)
电路中VT3、C7、R8、~R10组成开机延 时电路。当开机时,开机人的感应会使IC3 输出高电平,造成误触发。
开机延时电路在开机的瞬间,由电容C7 的充电作用而使VT3导通,这样就使IC3输出 的高电平经VT3通地,VT2可以保持截状态, 防止了开机误触发。开机延时时间由C7与 R8的时间常数决定,约20秒。
红外传感器的工作原理
热释电红外探头
滤光窗 ----由一块薄玻璃片镀上多层滤光层薄膜而成 的,能有效地滤除7.0~14um波长以外的红外线。
人体正常体温时,辐射的最强的红外线的中心波长为 9.65um,正好落在滤光窗的响应波长(7~14um)中 心。
故滤光窗能有效地让人体辐射的红外线
通过,而最大限度地阻止阳光、灯光等可见
光中的红外线的通过,以免引起干扰。
传感器只对移动或运动的人体、体温近似人 体的物体起作用。
红外传感器的工作原理
(1)人体经过探头先后被A源或被B源感应,Sa<Sb 或Sa>Sb产生差值,双源失去互补平衡作用而很敏感 地产生信号输出,见图(3C)。 (2)人对着探头呈垂直状态运动,Sa=Sb不产生差值, 双源很难产生信号输出。
下图是常用三区多段镜片区段划分、垂直和平 面感应图。
当人进入感应范围,人体释放的红 外光透过镜片被聚集在远距离A区或中距 离B区或近距离C区的某个段的同心环上, 同心环与红外线探头有一个适当的焦距, 红外光正好被探头接收,探头将光信号变 成电信号送入电子电路驱动负载工作。整 个接收人体红外光的方式也被称为被动式 红外活动目标探测器。