金属切削液的各种检测优秀课件

合集下载

切削液的选择和使用维护 ppt课件

切削液的选择和使用维护 ppt课件

切削液的选择和使用维护
18
4.客户加工方法(如车削、铣削、钻削、 攻螺纹等)
不同的加工方式对切削液的要求不一样。 即使是同一种加工方法,但是加工的精度 可能会是不一样,所以在反馈加工方式时 要反馈具体的加工方式。如车削就分为粗 车,半精车,精车。
切削液的选择和使用维护
19
下面为加工方式的一些简单分类
2
总体上切削液的选择依据有以下几点:
• 加工机床所要求选用 • 加工方式所决定 • 成本(维护,使用等) • 加工材料及刀具 • 加工精度要求 • 润滑性 • 冷却性 • 防锈,清洗 • 水基切削液需求具备废液处理设施
切削液的选择和使用维护
3
2. 选择步奏:
第一步选择:
由安全卫生(起火、冒烟对人体健康的危害 性)、机床、加工工序、前后加工工序为 水基还是油基加工液,废液处理设施来大 概确定选用油基还是水基加工液
切削液的选择和使用维护
11
下面例举了在不同的切削加工中切 削油的水基切削液应用选择情况:
切削液种类 车削、镗削 多轴车削 多工位切削钻削 深孔钻削
水基切削液 切削油
最常用
很少用
很少用
最常用
很少用
最常用
常用
常用
切削液的选择和使用维护
12
滚齿、插齿、刨齿、剃齿 内外圆磨削,平面磨削 高速磨削、强力磨削 槽沟磨削、螺纹磨削 研磨、珩磨 冼削 拉削、绞削 攻丝
切削液的选择和使用维护
312Biblioteka 切削液的一般维护程序1)定期检测切削液使用浓度和pH值等常规项目 2)检查菌落数抑制细菌的生长 3)确保切削液循环管路的畅通并及时排屑,并及时
净化切削液 应及时清除循环管路中的金属屑、金属粉末、霉

金属切削液NIOSH检测方法

金属切削液NIOSH检测方法

METALWORKING FLUIDS (MWF) ALL CATEGORIES 5524 DEFINITION: Metal-working fluids CAS: NONE RTECS: NONE METHOD: 5524, Issue 1EVALUATION: P ARTIAL Issue 1: 15 March 2003OSHA :no PELNIOSH:0.4 mg/m3 as thoracic particulate ( 0.5 mg/m3 as total particulate)ACGIH:no TLV PROPERTIES:not defined: Fluids contain varying amountsof mineral oil, emulsifiers, water,alkanolamines, polyethoxyethanols,biocides, surfactants, pressure additives andboron compounds.SYNONYMS:metalworking fluids (MWF), metal removal fluids, machining fluids, mineral oils, straight fluids, soluble fluids, synthetic fluids and semi-synthetic fluidsSAMPLING MEASUREMENTAPPLICABILITY: The working range is 0.050 to 2 mg/sample for a 1000-L air sample. The total weight procedure permits an estimate of the total particulate aerosol, including nuisance dust, airborne metal particulate and metal working fluid. If the extraction procedure is used, the technique permits an estimate of the total metal working fluid to which the worker is exposed. The method is applicable to all metal working fluids- straight, soluble, synthetic, and semi-synthetic as long as they are soluble in the extraction solvent [1,2]. Only one MWF (Glacier, Solutia Inc.) has thus far been found to be insoluble in the ternary extraction solvent. However, that MWF is soluble in the binary blend.Tests have shown that the binary solvent in combination with the ternary solvent is effective in extracting this fluid. [8].INTERFERENCES: None identified. However, any material collected on the filter and soluble in the extraction solvents may interfere with the analysis.OTHER METHODS: This method is similar to Method 0500 for Particulates Not Otherwise Regulated [3]. This method replaces Method 5026 which employs infrared analysis for mineral oil mist [4].REAGENTS:1.Dichloromethane, distilled-in-glass.2.Methanol, distilled-in-glass.3.Toluene, distilled-in-glass.4.W ater, filtered, double deionized5.Calcium sulfate, desiccant.6.Ternary solvent blend*: Mix equal volumes ofdichloromethane, methanol, and toluene in aclean dust-free container. Use a bottle with ascrew cap (e.g. a clean, em pty solvent bottle): Mix the solvents by gentle swirling, not byviolent shaking.7.Binary solvent blend* : Mix equal volumes ofmethanol, and water in a clean dust-freecontainer. Use a bottle with a screw cap (e.g.a clean, empty solvent bottle): Mix thesolvents by gentle swirling, not by violentshaking* See SPECIAL PRECAUTIONS EQUIPMENT:1.Sampler: 37-mm PTFE, 2-:m pore sizemem brane filter and supporting pad in 37-m m cassette filter holder. Use a 2-piece (closed-face) cassette for sampling total particulate;For sampling thoracic particulate, use a 3-piece cassette with thoracic cyclone (BGI, Inc.Cat. No. G K2.69 or equivalent).2.Personal sampling pum p, 1.6 to 2 L/m in, withflexible connecting tubing.3.Microbalance, capable of weighing to 0.001mg.4.Static neutralizer: e.g., 210Po; replace ninemonths after the production date.5.Forceps (preferably nylon or chrome-platedsteel).6.Extraction funnel (SKC.,Inc., Cat. No. 225-605or equivalent).7.Desiccator.8.W ash Bottle, PTFE, for containing washsolvent.9.Vials 20-mL, with leakproof PTFE-lined caps,for transporting bulk fluid samples andsolubility testing.10.Syringe, gas-tight with large bore needle,e.g.16-gauge needle.11. Graduated cylinder 20 mL12.Paper towels.13.Metal screen for drying filters followingextraction, approx. 1.5 ft square or otherconvenient size, (Pre-wash screen withternary blend solvent and allow to dry.)SPECIAL PRECAUTIONS: Dichloromethane is a suspect carcinogen. Handle all solvents in a fume hood. Use extreme caution when blending the solvents together. The heat of mixing can cause pressure to develop as the solvents are blended, e.g., blowing a stopper from a glass-stoppered container. Use a clean container sealed with a PTFE-lined screwcap.PREPARATION OF FILTERS BEFORE SAMPLING:1.Num ber the backup pads with a ballpoint pen and place them, numbered side down, in the filtercassette bottom sections.2.Preweigh the filters by the weighing procedure given in step3. Record the mean tare weight ofsam ple filters, W1 and field blanks, B1(mg).3.W eighing procedure:a.Equilibrate the filters in an environm entally controlled weighing area or cham ber for 1 hour.b.Zero the balance before each weighing.ing forceps, pass each filter over a static neutralizer. Repeat this step if the filter does notrelease easily from the forceps or attracts the balance pan. Static electricity can cause erroneous weight readings.d.W eigh each filter until a constant weight is obtained (two successive weighings within 10 :g).Record the mean of the last two weighings to the nearest microgram.4.Assemble the filter in the 2- or 3- piece filter cassettes and close firmly so that leakage around thefilter will not occur. Place a plug in each opening of the filter cassette. Place a cellulose shrink band around the filter cassette, allow to dry and mark with the same num ber as the backup pad.SAMPLING:5.For collection of a thoracic sample, insert the cyclone at the inlet to the 3-piece cassette.6.Calibrate each personal sampling pump with a representative sampler in line.7. For thoracic m easurem ents, sam ple at 1.6 L/m in for 8-hrs.For total particulate measurem ents, sample at 2 L/min for 8 hrs.Do not exceed a total filter loading of approximately 2 m g.NOTE:In order to test the extraction step of the analytical procedure, obtain a sam ple of the pure uncut bulk m etal-working fluid (MW F) for solubility testing. Place this sample in a small (10-mL) leakproof container that is sealed with a leakproof PTFE-lined screwcap.7.Subm it at least five blank filter sam ples as field blanks for each set of sam ples collected per day.Handle these in the same way as the field samples; i.e., open each in a non-contaminatedenvironment, then close the sampler and ship it to the lab along with the rest of the samples.9.Refrigerate all sam ples that are to be stored overnight (or longer) prior to shipm ent to the laboratory.Ship all sam ples to the laboratory via overnight express delivery service.10. Refrigerate the samples immediately upon receipt at the lab until ready for analysis.11. Analyze the samples within two weeks of receipt at the laboratory.SAMPLE PREPARATION AND MEASUREMENT:10.Solubility test of bulk MW F:a.Shake the container of bulk MW F to assure that a homogeneous sam ple is obtained.b.Place 10-m L of the ternary solvent blend in a 20-m L scintillation vial.ing a large-bore gas-tight syringe; inject 50 :L of the bulk MW F into the ternary solvent blend.Cap the vial and shake as necessary to dissolve the MW F. The fluid is soluble if the resultingsolution is clear and free of precipitates and phase separation.d.If the M W F is soluble in the ternary blend, the sam ples can be extracted with the ternary blend . Alist of MW F evaluated for solubility thus far is given as an APPENDIX to this method and also at the NIOSH Manual of Analytical Methods website: (/niosh/nm am/nm am pub.htm l) 11.W ipe dust from the external surface of each filter cassette (containing either samples or blanks) with amoist paper towel to m inim ize contam ination. Discard the paper towel.12.Rem ove the top and bottom plugs from the filter cassette. Equilibrate the filters (in the cassettes) forno more than 2hrs in a desiccator that em ploys calcium sulfate.13.Rem ove from the desiccator. Equilibrate for 1 hr in the balance room.14.Rem ove the cassette band, pry open the cassette, and remove the filter gently to avoid loss ofsample.NOTE:If the filter adheres to the underside of the cassette top, very gently lift it away by using the dull side of a scalpel blade. This m ust be done carefully or the filter will tear.15.W eigh and record (steps 3 b-d)the post-sam pling weight of each filter, W2 (mg) and blanks B2(mg).Record anything remarkable about the filter (e.g., overload, leak age, wet, torn, etc.)CALIBRATION AND QUALITY CONTRO L:16.Zero the m icrobalance before all weighings. Use the sam e microbalance for weighing filters beforeand after sample collection. Maintain and calibrate the balance with National Institute of Standards and Technology Class S-1.1 or ASTM Class 1 weights.17.Process three tared media blanks through the measurement process for total particulate and theextractables.EXTRACTION:18.General guidelines (see NOTE below):If the weights of samples exceed the amount expected to be collected at the REL, e.g. 0.4 mg(thoracic) or 0.5 mg (total particulate) for a 1 m3 air sample, extract the samples and blank s as follows:NOTE:Samples weighing < 0.4 to 0.5 mg (for a 1 m3 sample) may be extracted as desired. The reason that the cutoffs of 0.4 and 0.5 m g (per 1000 L sam ple) have been specified is toassure simple compliance with the standard. If the gross sample weight indicates that thestandard has not been exceeded, there may be no reason to extract the sample. Otherwise,the usefulness of any extraction data obtained at levels < 0.4 to 0.5 mg per sample is guidedby the quantitation limit (LOQ) of the extraction procedure. Extraction data obtained at levelsbetween the LOD and the LOQ of the extraction procedure should be used with appropriatecaution.a.Place each filter (membrane side up) in the filter funnel assembly connected to the vacuum source.b.Pour one 10-mL aliquot of the ternary solvent down the inside of the funnel over the filter. Allowsolvent to drain by gravity.c.Pour one 10-mL aliquot of the binary solvent down the inside of the funnel over the filter. Allowsolvent to drain by gravity.d.Pour a second 10-mL aliquot of the ternary solvent down the inside of the funnel over the filter.Allow at least 30 seconds of contact time. Remove the solvent under slight vacuum.W ash the inner wall of the filter funnel with 1-2 mL of the ternary blend contained in a PTFE wash bottle. Rem ove the solvent under slight vacuum.e.Turn off the vacuum to the filter funnel.f.Carefully, rem ove the filter from the filter funnel, place it on the clean m etal screen, and allow to dryon the metal screen for 2 hours in a fum e hood. Do not rem ove the filter from the funnel whilevacuum is applied or the filter may delaminate.NOTE:One fluid, Glacier (Solutia Chemical, St Louis), was insoluble in the ternary blend but was soluble in the binary blend. Tests have shown that this fluid is efficiently extracted from thefilters using steps 18 a - e.19.W eigh each filter, including field blanks (using steps 3 a-d). Record the post-extraction weight,W3 (mg) of the extracted sample filters and B3(mg) for the extracted blank filters. Record anythingrem arkable about the extracted filter (e.g, torn, wet, delam ination etc.)CALCULATIONS:20.Calculate the concentration of total- or thoracic particulate, C (mg/m3), in the air volume sam pled,V (L):where:W1 = mean tare weight of filter before sampling (mg)(step 3)W2 = mean post-sampling weight of sample-containing filter (mg)(step 15)B1= mean tare weight of blank filters (mg) (step 3)B2= mean post-sampling weight of blank filters (mg) (step 15)21.Calculate the concentration of extracted MW F aerosol CMWF(mg/m3), in the air volume sampled, V (L):where: W2 =mean post-sampling weight (pre-extraction weight) of sample-containing filter(mg)(Step 15)W3 =mean post-extraction weight of sample-containing filter (mg) (step 19)B2 =mean post-sampling weight of blank filters (mg) (step 15)B3=mean post-extraction weight of blank filters (mg) (step 19)22.Report the concentration C as total- or thoracic particulate weight; report the concentrationC MWF as the weight of the M W F aerosol.EVALUATION OF METHOD:The development of the ternary solvent used in this method is described in reference [1]. This method was initially tested with representative sam ples of straight, soluble, semi-synthetic, and synthetic metalworking fluids (MW F). Sam ples were spiked onto tared polytetrafluoroethylene (PTFE) m embrane filters, stored overnight, and analyzed the following day. The samples were weighed, then the MW F was extracted from the filter with a 1:1:1 blend of dichloromethane:methanol: toluene. The extraction of all fluids from the filters was quantitative over the range 200 :g to 815 :g for the straight fluid, from 223 :g to 878 :g for the soluble fluid, from 51 :g to 189 :g for the semi-synthetic fluid, and from 102 :g to 420 :g for the synthetic fluid. For those weights of all four fluids spiked at levels $ 200 :g, the relative standard deviation was estimated to be 4% for the total weight procedure and 5% for the extraction procedure. If the sampling imprecision of 5% is included, these estimates become 6% and 7% respectively for the total weight and extraction procedures. Limits of quantitation, estimated from blanks carried through the entire analytical procedure, were 30 :g for the weighing technique and 60 :g for the extraction technique. No estimate of the bias was available. [2] The filters are dessicated to remove excess water, especially from water-based MW F samples.In a more rigorous test of the method for a 79-plant survey [7], the average limits of quantitation were estimated to be 0.1 mg for both the total- and extracted- weight procedures. However, there was high variability in these estimates for the sites sampled. The upper 95% confidence limit for the LOQs for both the total weight- and extractable weight- measurements was 0.3 mg. In order to assess the effectiveness of the extraction step, a secondary extraction of the most heavily-loaded filters obtained in this survey was conducted; On average, < 5% of the sample weight was removed during the 2nd extraction, indicating that the majority of extractable material had been removed during the first extraction. Samples were refrigerated upon receipt at the laboratory [6, 7].The fractions extracted (FE or weight extracted/weight of sample) were studied as a function of the four metalworking fluid types and three main work operations—grinding, milling, and turning. This evaluation indicated that FE generally decreased in the order: straight > semisynthetic or soluble > synthetic; the differences in the fractions extracted for the straight and the synthetic fluids were statistically significant only for the grinding operation at two sample levels tested.During the 79-plant survey, the stability of quality assurance (Q A) sam ples, spiked separately with a straight, a soluble, a sem isynthetic, and a synthetic fluid indicated that the QA sam ples all lost weight according to simple linear decay equations. These decay equations were used to estimate the amounts expected to be reported for QA filters by the performing laboratory. For storage periods ranging from 17 to 26 days, the total weight of samples recovered for all QA samples were >80% of those expected from the decay equations. For these QA sam ples, the fractions extracted of all four fluid types were > 0.90.The binary solvent extraction step has been added to assure com plete extraction of MW F com ponents that may be incom pletely rem oved by the ternary blend. In addition, the binary solvent extends the procedure to samples that contain ternary blend-soluble fluids co-m ingled with ternary blend-insoluble fluids, e.g. Glacier. Tests of the extraction of five MW F (including Glacier) showed that extraction efficiencies using the ternary blend in combination with the binary blend were com parable to those reported in reference 1 using the ternary blend alone (FE > 90 % ;CV < 0.10) . The binary solvent extractant liquor obtained from the Glacier samples generally contained potassium and phosphorous at levels approximately expected for the m ass spiked onto the filters. The binary solvent extracts of the four other test fluids were analyzed for sodium, potassium or boron marker elements. Sodium was present in the extract of the soluble fluid at > background levels. The boron marker was not detected in the extract from the semisynthetic fluid. The potassium m arker was not detected in the extract from the synthetic fluid [8].REFERENCES:[1]Glaser RA, Shulman S, Klinger P [1999]. Data Supporting a Provisional American Society for Testingand Materials (ASTM) Method for M etalworking Fluids, Part 2: Preliminary Report of Evaluation of a Ternary Extraction Solvent in a Provisional ASTM Test Method for Metalworking Fluids (PS-42-97).Journal of Testing and Evaluation March 1999:131-136.[2]Glaser RA [1999]. Data Supporting a Provisional American Society for Testing and Materials (ASTM)Method for Metalworking Fluids, Part 1: A Solvent Blend with W ide-Ranging Ability to Dissolve Metal W orking Fluids. Journal of Testing and Evaluation March 1999: 171-174.[3]NIOSH [1994]. Particulates Not Otherwise Regulated: Method 0500. In: Eller, PM, Cassinelli, ME,Eds. NIOSH Manual of Analytical Methods (NMAM), 4th ed. Cincinnati OH: National Institute for Occupational Safety and H ealth, D HH S (NIOSH) Publication No. 94-113.[4]NIOSH [1994]. Oil Mist, Mineral: Method 5026: In Eller, PM, Cassinelli, ME, eds., NIOSH Manual ofAnalytical Methods (NIOSH), 4th ed. Cincinnati OH: National Institute for Occupational Safety and Health, DHHS (NIOSH) Publication No. 94-113.[5]NIOSH [1977] Documentation of the NIOSH Validation Tests, S262, S349. Cincinnati, Ohio: NationalInstitute for Occupational Safety and Health, U.S. Department of Health, Education, and W elfare, Publ. (NIOSH) 77-185.[6]Piacitelli G, Hughes R, Catalano J, Sieber W, Glaser RA, and Kent M [1997]. Exposures toMetalworking Fluids in Small Size Machine Shops. presented at The Industrial MetalworkingEnvironment: Assessment and Control of Metal Rem oval Fluids Symposium, Detroit, Michigan, Septem ber.[7]Glaser RA, Shulman S, Kurimo R, and Piacitelli G [2002] Data Supporting a Provisional AmericanSociety for Testing and Materials (ASTM) Method for Metalworking Fluids, Part 3: Evaluation of a Provisional ASTM Method for Metalworking Fluids (PS-42-97) in a Joint NIOSH/OSHA Survey of Metalworking Facilities, Journal of Testing and Evaluation, in press.[8]Glaser RA [2002]. Data Supporting a Provisional American Society for Testing and Materials (ASTMMethod for Metalworking Fluids, Part 4: Modification of a Provisional ASTM Method for Metalworking Fluids (PS-42-97) to Enhance Extraction of Insoluble Materials, in preparation for submission to the AST M,Journal of Testing and Evaluation (2002/3).METHOD WRITTEN BY:R. Glaser, NIOSH/DART.APPENDIXList of Metalworking Fluids that have been found to be soluble in the ternary blend. The individual fluids have been identified by type and manufacturer [6,7].MANUFACTUR ER T RADEN AM E TYP E SOLUBLE All Pow er KOO LMIST 77Semi-synthetic YesAmerican Lubricants All Purpose Cutting Oil Straight YesAmerichem Corp AM Cutting 2506 Oil Straight YesAngler Industries Draw LT-1R Synthetic YesAngler OIL Cut 121-M straight oil Straight YesAqueous Cleaning Tech Inc ACT 486 C utting C oolant Soluble YesACT 734 Synthetic Coolant Synthetic YesAssociated Chemists ACI Tem plex 5950Semi-synthetic YesAC I 4926 Carbide Grinding Fluid Synthetic YesACI 4920 Grinding Fluid Synthetic YesACI Tem plex 4966Semi-synthetic YesACI Tem plex 4929 Low Foam G rindingSynthetic YesFluidAC I 4931 Mach and Tap Fluid Straight YesBlaser Swisslube BLASOCUT 4000 STRONG Soluble YesBlasocut 2000 Universal Soluble YesCastrol Castrol Meqqem Cob Synthetic YesClearedge 6519 Semi-synthetic YesClearedge 6584 Semi-synthetic YesDrawfree 811 (Previously Iloform)Soluble YesN100 Pale oil (Brass Oil) Straight YesSafety Cool 407 Soluble YesSafety Cool 800 Semi-synthetic YesSyntilo 9951Synthetic YesSyntilo 9954Synthetic Yes Chem trol Inc CT-345-J Semi-synthetic Yes Chevron Chevron Met W orking Fluid #503Straight YesCitgo Petroleum Citgo Cutting Oil 205 Soluble YesCitgo Cutting Oil 425Straight YesCiticool 22Synthetic YesCitcool 33Synthetic Yes CLC Lubricants CLC Cut PX2 NS Straight YesCLC Chem Finish 605 Straight YesCLC Chem Cut MX-CG Straight YesCoolant 2224 Plus Synthetic YesChem Finish 605Straight Yes Commonwealth Oil Comm inac 32 MAX Straight YesCutting & Grinding CG 650 D Soluble Yes Fluids Inc CG 5352 R Straight YesCG 5352 RR Straight YesKool Kut 692 Soluble YesDA Stuart Co Dascool LN 231-78Semi-synthetic YesDascool 2223 Semi-synthetic YesSuperk ool 25 straight Straight YesSurgrind 86 Synthetic Yes Die-C asting ID Co rp ID DUA Chem 202Semi-synthetic YesDiversy Corp LUBRICOOLANT AC Soluble YesLUBRICOO LANT 4D Soluble YesDoALL Co.DoAll 80 Straight YesKool All 940 Semi-synthetic YesKool All 948 Semi-synthetic YesELF Lubricants Elfdraw S 13Synthetic Yes North America IncEnterprise Oil Co Duracut 130 Straight YesETNA Products Master D raw B 942/I Soluble YesFuchs Lubricants Fuchs Velvesol 96 Soluble YesLus-Co-Cut 570ST Straight YesLus-Co-Cut 514 CM P Straight oil Straight YesLus-Co-Cut 400 Straight oil Straight YesRenodraw 419NC Soluble YesRenocut 471 straight oil Straight YesShamrock LF Soluble YesUltracool 430Synthetic Yes Hangsterfer's Lab Co Hangsterfer's Hard Cut # 531Straight YesHou ghton Intl CUTMAX 570Straight YesCut Max TPO-46Straight YesHocut 787 H Soluble Yes Intercon Enterprises Jokisch W2-OP Semi-synthetic Yes ITW Fluid Prod Group Accu-Lube LB-2000Straight YesAccu-Lube LB 3000Straight YesRustlick PB-10 Soluble Soluble YesRustlick W S 5050Soluble YesLillyblad DB BROMUS B water souble Soluble YesDB W ater Soluble oil D Soluble Yes Lyondell Petrochemical Transkut HD 200Straight YesMaster Chem ical Trim E 190 Soluble YesTrim CE/CE Soluble YesTrim O M287Straight YesTRIMSOL Soluble YesTrim Microsol 265Soluble YesTRIMSO L Silicone Free Soluble Yes Metalwo rking Lubricants METKUT 20546-TX-40Straight YesMilacron Cimstarr 60-LF Semi-synthetic YesCimstar 3700Semi-synthetic YesCimtech 100Synthetic YesCimstar Qual Star Semi-synthetic YesCim tap II YesCimperial 1010Soluble YesCimperial 1011Soluble YesCimstar 55Semi-synthetic YesCimstar 540 Semi-synthetic YesCimtech 400 Synthetic YesC10 TX Soluble YesMobil Oil Corp Mobil Mobilmet Om icron Straight YesMobil Mobilmet Nu oil Straight YesMobil Vascul 18F Straight YesMobilmet Alpha Straight Oil Straight YesMobilmet Om ega Straight YesVacmul 281Straight YesMobil Hydraulic AW 68 Straight O il Straight YesMobilmet Upsilon Straight YesVacmul 3A Honing oil/EDM Straight YesMonroe Fluid Tech Co Prime Cut Soluble Oil Soluble YesMotor Oil Inc Thredkut 99 cutting oil Straight YesKleercut CF Straight Yes National Oil Products National Oil Products 3115 cutting oil Straight YesNational Oil Products Supreme Soluble HD Soluble Yes Oakite Products Inc Oakite Controlant 650 NS Synthetic YesOcean State Oil Hycut 4 Straight Oil Straight YesNeil Cut 570 Cutting straight oil Straight YesPerkins Products Perkut 296-H Straight YesPerkool 5005- EP Semi-synthetic Yes Relton Corp Relton A-9 Aluminum Cutting Fluid Soluble YesRex Oil & Chemical Co Titan Cutting Straight O il Straight YesMagic Cutting O il Straight YesRichards Apex Prod.Near-a-Lard # 62Straight Yes formerly G Whitefield Richards CoRock Valley Oil & ChemicalRockpin Straight Oil Straight Yes CoSolar Chem Co Solar Cut Synthetic Yes Solutia Glacier Synthetic No Spartan Chem Co.COOLSPAR Synthetic YesSteco Corp TAP Magic Aluminum Semi-synthetic YesTapmagic Extra Cuttng Fluid Straight YesStirling Industries Division Tufcut 316Straight YesRaecut A-1Straight Yes16228 H ON ING OIL Straight Yes Sunnen Products Sunnen Honnig Oil MB 30-55 Straight Yes Tapmatic Corp LPS Tapm atic Plus 2Synthetic YesTexaco Texaco Sulfur Oil (Sultex)Straight YesTexaco SultexF Straight YesTexaco 2731 Almag Special Straight YesTexaco 01659 rando HD 68 brass st oil Straight YesTrico M fg TriCool Synthetic YesUnion Butterfield Union Butterfield Tapping & Cutting Oil Straight Yes Unocal Refining Unocal Kooper Kut 11HD Straight YesUS Oil Co Inc Blanking Oil 250 Straight YesAlkut 810 Straight YesUS Drawlube 1517Straight YesVanishing Oil 300 Straight YesGem Soluble CP Soluble YesUS Cut 6040 Straight YesSpindle Oil ISO 10 Al st oil Straight Yes321-SS Cutting Straight O il Straight Yes Valenite Inc ValCool Turntech Semi-synthetic YesValcool VNT 800Soluble YesVaroum Chemical Gauge Sterling Brass Cutting O il Straight YesMetacut MS Steel Cutting Oil Straight YesGM 465Straight Yes Viking Chemical Co Cut Rite 305 CFX Straight YesVulcan Oil & Chem Ultrasol Soluble Oil Soluble YesJ-Cut 931 Cutting Oil Straight YesPoseidon R&O HD Straight YesWS Dodge Oil Co Pale oil (all Viscosity grades) Straight YesCom bo base 82 Additive Straight YesDeosol 202Soluble YesPale Straight Oil 55Straight YesSuperkut Cutting Oil 72/200Straight Yes ZEP Products ZEP Lubeze 14Straight Yes。

切削液(1016)PPT教学课件

切削液(1016)PPT教学课件
抗泡性 抗泡性也是润滑油的一项重要使用性能。
油品的抗泡性不好,在润滑油系统中形成了很多泡沫,而且不 能迅速破除,则将影响润滑油的润滑性,增强它的氧化速度, 对液压油则影响其压力传递。
2020/12/11
14
切削液
抗水性 润滑脂在水中不溶解、不乳化、不吸收水分,不 被水洗掉以及与水接触时不改变它的性能的能力
润滑油的机械杂质,主要是润滑油在使用、贮存、和运输中混入外来 物,如灰尘泥沙、金属碎屑、金属氧化物用锈末等。机械杂质的存在, 将加速机械零件的研磨、拉伤和划痕等磨损,而且堵塞油路、油嘴和 滤油器,造成润滑失效。
灰分 在规定的条件下完全燃烧后,剩下的残留物。
灰分的存在,使润滑油在使用当中积炭增加,润滑油的灰分过高时, 将造成机械零件的磨损。
8
切削液
➢ 加工要求方面的考虑 粗加工时,切削用量大,产生的切削热较多,这时使
用切削液的主要目的是降低切削温度,故应选用以冷 却性能为主的切削液。 精加工时,要求减小加工表面粗糙度和提高加工精度, 应选用以润滑性能为主的切削液。
切削加工中,除了采用切削液进行冷却、润滑之 外,有时也采用固体的二硫化钼作润滑剂及采用各种 气体作冷却剂,这样可以减轻飞溅造成的不良影响以 及减少化学腐蚀作用。
2020/12/11
6
切削液
➢ 刀具材料方面的考虑 高速钢刀具耐热性差,一般应采用切削液。 硬质合金刀具耐热性好,一般不用切削液。必要时采用
低浓度乳化液或多效切削液,但是浇注必须充分、连续, 否则刀片会因冷热不均而导致破裂。 成形刀具、螺纹刀具、齿轮刀具等价格较贵,要求刀具 耐用度高,可采用极压切削油。
机械安定性 润滑脂受机械剪切后,产生稠度变化的性能。
要求受剪切的稠度变化值愈小愈好,从而获得较长的使用寿命。

金属切削液浓度检测概述

金属切削液浓度检测概述

国联质检油品检测中心权威第三方检测机构金属切削液浓度检测概述--国联质检实验室近年来,金属切削液的发展和变化主要是在水溶性液体领域。

由于这类液体以水为基质,其传热速递高(水的传热速递为油的2.5倍)。

经金属切削液检测实验后发现,等量的水吸收一定热量后,比油的温升要慢得多,从而提高了冷却效果,且可减少油雾,因此水基切削液的用量增大。

但是水基切削液与油相比存在着润滑性差,其次是锈腐、胶体稳定性、化学稳定性、生物稳定性、泡沫性等问题,这些问题对切削液在机床应用时的“油池寿命”至关重要。

而控制切削液的浓度,能有效的进行切削液检测。

1.在金属加工中,我们需要进行切削液检测浓度测试,其最为常用以及最精准的方法属折光仪法;在使用折光仪对切削液进行测试时,我们只需要滴1-2样品于棱镜表面上,使样品充分延展覆盖棱镜表面并且无任何气泡,关闭样品盖,透过棱镜可目测读出切削液测量值。

2.日常使用折光仪法测试外,还有数字手持袖珍折射仪;在日常金属加工中,急需用切削液,我们就可以通过数字手持袖珍折射仪,它简单快捷的可在切削液管理者者中现在对浓度测试。

在操作者对测定切削液浓度时,只需要把被测液体滴1-2滴样品于棱镜的表面上,使样品充分延展覆盖棱镜的表面,再按“开始START”键钮,切削液检测的浓度值则以数字形式显示出来。

3.金属加工中,使用含有油份的切削液,可使用酸解破乳法,该方法也是国内外均有采用的浓度测试方法,适用于组成中含有一定比例油份的切削液产品,如乳化液和微乳液。

其测试方法要比前两种较为复杂;酸解破乳法是在一种有刻度长颈容量瓶中进行的,需要混合液完全破乳后读出油相的耗升数,还需要供应商提供的换算因子,方可求算出切削液的准确浓度。

4.化学滴定法,是通过测定切削液中的碱度、表面活性剂含量或者其它特定组分的含量来测试切削液的弄浓度,该方法操作方便,但容易受到外来因素干扰,直接影响滴定终点的准确判断切削液检测的浓度。

切削液检测项目及作用

切削液检测项目及作用

国联质检油品检测中心权威第三方检测机构切削液检测项目及作用--国联质检实验室切削液(cutting fluid, coolant)是一种用在金属切削、磨加工过程中,用来冷却和润滑刀具和加工件的工业用液体,切削液由多种超强功能助剂经科学复合配合而成,经过切削液检测其具备良好的冷却性能、润滑性能、防锈性能、除油清洗功能、防腐功能、易稀释特点。

切削液检测有哪些项目?切削液检测的主要质量控制指标有粘度、闪点、倾点、脂肪含量、硫含量、氯含量、铜片腐蚀、水分、机械杂质、四球试验等。

脂肪含量脂肪是切削油中的油性添加剂,是划分切削油类别的一个重要指标。

脂肪在切削油中可起到降低摩擦系数、减少刀具磨损的作用(对防止后刀面的磨损尤为有效)。

加有较多脂肪的切削油特别适合于有色金属加工以及切削量不大但产品精度及光洁度要求高的场合(如精车丝杠)。

一般可用皂化值来大致判定其脂肪含量。

切削油中脂肪含量过高或其质量控制不当,容易在机器上形成粘性物质造成机件运动不灵活,严重时会变成漆膜即所谓“穿黄袍”。

氯含量切削液检测中氯主要来自含氯的极压剂。

氯需要在较高含量(大于1%)时,方可显现出有效的极压作用。

如果氯含量不足1%,可以认为它不是为了提高润滑性。

一般含氯极压切削油其氯含量都在4%以上,最高时可达30%~40%。

但出于职业卫生及环保方面的考虑,有些国家已对切削油中氯的最高含量做了规定,如日本的JIS规定氯含量不得超过15%。

氯对不锈钢的加工以及在拉拔成型加工中都非常有效。

其缺点是不够稳定,遇水或温度过高时会分解产生HCl引起腐蚀、生锈。

硫含量切削油中硫来自两个方面。

一个是加入的含硫极压剂,另一个是来自其他没有极压作用的含硫化合物,如基础油中原有的天然硫化物以及防锈剂、抗氧剂等。

有效的硫只需很低含量(0.1%)即可产生明显的极压效果。

含硫极压剂对抑制积屑瘤特别有效,没有简单的方法能分别测出有极压性的硫和没有极压性的硫。

所以很难仅仅依据其硫含量(特别是硫含量不高时)判断其极压性如何。

《切削液基础知识》PPT课件

《切削液基础知识》PPT课件

精选课件
11
其它
除了以上4种作用外,所使用的切削液应具备良好的稳定性,在贮存 和使用中不产生沉淀或分层、析油、析皂和老化等现象。对细菌和霉 菌有一定抵抗能力,不易长霉及生物降解而导致发臭、变质。不损坏 涂漆零件,对人体无危害,无刺激性气味。在使用过程中无烟、雾或 少烟雾。便于回收,低污染,排放的废液处理简便,经处理后能达到 国家规定的工业污水排放标准等。
精选课件
9
清洗
在金属切削过程中,要求切削液有良好的清洗作用。除去生成切 屑、磨屑以及铁粉、油污和砂粒,防止机床和工件、刀具的沾污, 使刀具或砂轮的切削刃口保持锋利,不致影响切削效果。含有表 面活性剂的水基切削液,清洗效果较好,因为它能在表面上形成 吸附膜,阻止粒子和油泥等粘附在工件、刀具及砂轮上,同时它 能渗入到粒子和油泥粘附的界面上,把它从界面上分离,随切削 液带走,保持界面清洁。
精选课件
8
冷却
冷却作用是通过它和因切削而发热的刀 具(或砂轮)、切屑和工件间的对流和汽 化作用,把切削热从刀具和工件处带走, 从而有效地降低切削温度,减少工件和刀 具的热变形,保持刀具硬度,提高加工精 度和刀具耐用度。切削液的冷却性能和其 导热系数、比热、汽化热以及粘度(或流 动性)有关。水的导热系数和比热均高于 油,因此水的冷却性能要优于油。
高速钢
精选课件
20
硬质合金
在选用切削液时,一般油基切削液 的热传导性差,刀具产生骤冷的危 险性要比水基切削液小,所以一般 选用含有抗磨添加剂的油基切削液 为宜。使用冷却液进行切削时,注 意均匀地冷却刀具,开始切削之前, 预先用切削液冷却刀具。高速切削, 要用大流量切削液喷淋切削区,以 免造成刀具受热不均匀而产生崩刃, 亦可减少由于温度过高产生蒸发而 形成的油烟污染。

切削液基础知识培训优秀课件

切削液基础知识培训优秀课件

特点
良好的润滑性能、不同的粘度 选择,适用于切削余量大、不
能遇水的场合
传统产品,价格经济,稳定性 差,寿命短,维护困难
10-30
0.1 ~1.0 0.05~0.1 <0.05
乳状浅 多用途,应用广,综合性能好,
蓝色
稳定性较好,寿命长
半透明 灰茶色
透明
合成 0 液

透明 主要用于冷却要求高的场合,
如磨削
切削液基础知识培训优秀课件
一、认识金属切削液
1、金属切削液的定义:金属切削
加工液(简称切削液)是在金 属切削或磨削过程中的,用于 润滑、冷却加工工件和刀具的 液体,兼有清洗和防锈的功能。
属于广义的金属加工液范 畴。
2、金属切削液的作用:润滑、冷
却、清洗、防锈(见金属加工和切削 液与切削液的作用)
(4)防锈作用
在金属切削过程中,工件要与环 境介质及切削液组分分解或氧化变质 而产生的油泥等腐蚀性介质接触而腐 蚀,与切削液接触的机床部件表面也 会因此而腐蚀。此外,在工件加工后 或工序之间流转过程中暂时存放时, 也要求切削液有一定的防锈能力,防 止环境介质及残存切削液中的油泥等 腐蚀性物质对金属产生侵蚀。特别是 在我国南方地区潮湿多雨季节,更应 注意工序间防锈措施。
二、金属切削过程与切削液的作用
金属切削层在已加工表面受刀具刀刃 钝圆部分的挤压与摩擦而产生塑性变 形部分的区域叫第三变形区。切屑经 过刀刃钝圆B点后,受到后刀面BC段 的挤压和摩擦,经过BC段后,这部分 金属开始弹性恢复,恢复高度为△h, 在恢复过程中又与后刀面CD部分产生 摩擦,这部分切削层在OB,BC,CD 段的挤压和摩擦后,形成了已加工表 面的加工质量。所以说第三变形区对 工件加工表面质量产生很大影响

切削液基础知识

切削液基础知识

PPT文档演模板 •诺泰生物科技(合肥)有限公司
• 切削液基础知识
(二)、油性剂
1、高级脂肪酸类:棕榈酸、油酸、二聚酸、蓖麻油酸、妥 尔油脂肪酸等
2、高级醇类:油醇、C16-18支链醇等 3、脂肪酸酯:油酸甲酯,油酸异丙酯,三羟甲基丙烷油酸
酯,聚戊四醇油酸酯,偏苯三酸酯,二聚/四聚/六聚蓖 麻油酸酯、聚醚酯、多元醇酯、氧化酯及一些特种酯等 4、烷基胺:油酸烷醇酰胺,蓖麻油马来酰胺,含氮杂环硼 酰胺等
微乳化切削液一
8.0% 15.0% 20.0% 2.0% 0.1-0.2% 余量 黄色透明 半透明 9.32 1级 0级 轻微异味 ,少许浮皂产生
微乳化切削液二 8.0%
15.0% 20.0% 2.0% 0.1-0.2% 余量 黄色透明 半透明 9.41 1级 0级 无异味
PPT文档演模板 •诺泰生物科技(合肥)有限公司
•添加前
PPT文档演模板 •诺泰生物科技(合肥)有限公司
•添加后
• 切削液基础知识
(2)硅氧烷酮NEUF815在磨具铝加工液中的应用
•添加前
PPT文档演模板 •诺泰生物科技(合肥)有限公司
•添加后
• 切削液基础知识
• 切削液基础知识
(2)硅氧烷酮NEUF815缓蚀机理
•H
• •O
•H
•H •O
O •C •R
•O •O
•Si •O •H •O
•R •C •O •Si •SO •H •O
•O
•Al
•O
•H
•SO3H
•铝氧化物层
•铝合金
•- H2O
•H
•H
•O
同时要求具有:
v 抗硬水好 v 不变质发臭 v 和切削的迅速分离性 v 不沉积在加工工具上,不腐蚀工具等

切削液优秀PPT文档

切削液优秀PPT文档
润滑性能取决于切削液的渗透性、吸附薄膜形成能力与强 度等。
二、冷却
切削液通过它从它所能达到最靠近热源的刀具、切屑和工 件表面上带走大量的切削热,从而降低切削温度,提高刀具耐 用度, 并减小工件与刀具的热膨胀, 提高加工精度。
切削液要有较高的热导率和比热容,较高的汽化热。一定的 流量和流速。
水的冷却性能最好,油类最差,乳化液介于两者之间。
表面活性剂还能吸附在金属表面上,形成润滑膜,起油性 添加剂的润滑作用。
常用的表面活性剂有石油磺酸钠、油酸钠皂等,它们的乳 化性能好,且具有一定的清洗、润滑、防锈性能。
4、
防锈添加剂是一种极性很强的化合物,与金属表面有很 强的附着力,吸附在金属表面形成保护膜,或与金属表面化 合成钝化膜,起防锈作用。
三、清洗作用
冲走切削中产生的细屑、砂轮脱落下来的微粒等,起到 清洗作用, 防止加工表面、机床导轨面受损; 有利于精加 工、深孔加工、自动线加工中的排屑;
四、防锈作用
加入防锈添加剂的切削液,还能在金属表面上形成保护 膜,使机床、工件、刀具免受周围介质的腐蚀。
切削液的使用效果决定于切削液的类型、形态、用量、 使用方法等。
用硫可直接配制成硫化切削油,它与金属化合形成硫 化铁, 熔点高达1193℃,硫化膜在高温下不易被破坏, 切钢料时在1000℃仍保持其润滑性能。惟摩擦系数较氯化 铁大。
含氯添加剂的有氯化石蜡、氯化脂肪酸等,它与金属表 面起化学作用,形成氯化亚铁、氯化铁等,形成像石墨那样 的层状结构,剪切强度和摩擦系数小,但在300~400℃时易 被破坏,遇水易分解成氢氧化铁和盐酸,而失去润滑作用, 对金属易腐蚀,应与防锈添加剂一起使用。
薄膜,在较低速度下起到较好的润滑作用,主要用于低速精加 排列并吸附在油、水两极界面上,前者向水,后者向油,降低油水的界面张力,油以微小的颗粒稳定地分散在水中,形成稳定的水包

切削液ppt

切削液ppt
冷却系统或粘附在机床上难以清除,一般不采用切削液。 但在精车时,为提高工件表面加工质量,可选用润滑性 好、黏度小的煤油或7%-10%的乳化液。 3、车削有色金属或铜合金时,不宜采用含硫的切削液, 以免腐蚀工件。 4、车削镁合金时,不能采用切削液,以免燃烧起火。 必要时,可用压缩空气冷却。 5、车削难加工材料,如不锈钢,耐热钢等,应选用极 压切削油或极压乳化液。
低浓度时以冷却为主,用于粗加工和普通 磨削加工
高浓度时以润滑为主,用于精加工和复杂 刀具加工
细分为:防锈、清洗、极压和透明乳化液4 种
切削液的种类
-水溶性切削液
特点:黏度小、流动性好、比热大、能吸收大 量的切削热,主要起冷却作用。
优点:散热快,成本低 缺点:水分多,润滑、防锈性能差,易受细菌
影响,排放后处理复杂
切削液的种类
-水溶性切削液
新一代水溶切削液:
高速剪切中与水形成稳定混合物; 抗油污影响;乳化性能稳定;抗细菌、霉菌; 不产生有害气体;符合毒性和环保要求
切削液的种类
-油溶性切削液
1、切削油(主要包括矿物油,少数采用动植物
油) 矿物油包括: 轻柴油:润滑性差,用于切速低的精加工、有
切削液的选用
-根据刀具材料
高速工具钢刀具粗车碳素钢—3%~5%乳化 液或合成切削液
高速工具钢刀具粗车合金和铜-5%~7%乳 化液
高速钢刀具精车碳钢-浓度较高的极压切削 油或浓度较高(10%~20%)极压乳化液
切削液的选用
-根据刀具材料
硬质合金刀具切削加工时为避免刀片骤冷或 骤热而崩裂一般不使用冷却液。
切削液ppt
切削液ppt
切削液
为什么使用切削液?
降低切削温度 减少刀具磨损 提高刀具耐用度 改善加工表面质量 保证加工精度 提高生产率

第8章 切削液zp.ppt

第8章 切削液zp.ppt

2019年11月5日10时7分
翟鹏
4
一、切削液的冷却作用
切削液冷却性能的好坏,取决于它的导热系数、比热 容、汽化热、汽化速度、流量、流速。一般地说, 水溶液的冷却性能最好,油类最差(表8—1),乳化 浓介于两者之间而接近于水。
2019年11月5日10时7分
翟鹏
5
二、切削液的润滑作用
1、切削过程中,刀具前刀面与切屑接触,压 力1GPa以上,温度500℃以上。
2019年11月5日10时7分
翟鹏
8
(二)切削液的润滑性能
2、切削液的润滑性能,直接与形成吸附膜的强 度有关。
2.1 润滑膜(吸附膜),可分为物理吸附膜、化 学吸附膜;
2.2 物理吸附膜:主要靠切削液中的油性添加剂 (动植物油、油酸、胺类、醇类、脂类)在 金属表面形成。
特点:只能在低温(200℃)以下起作用。
离子型切削液 :是一种水溶性切削液。P137源自2019年11月5日10时7分
翟鹏
3
第二节 切削液的作用机理
切削液的作用 切削液的冷却作用:与导热系数、比热容、汽化热、汽化速度、
流量、流速等因素有关。 切削液的润滑作用 :毛细管现象、泵吸效应→渗透
切削液的润滑性能,取决于其渗透性(表面张力、粘度)。 切削液的清洗作用: 切削液的防锈作用 :
翟鹏
11
第三节 切削液的添加剂
切削液的添加剂 油性添加剂 极压添加剂 表面活性剂:乳化作用、润滑作用 其它添加剂:防锈添加剂 、防霉添加剂、
抗泡沫添加剂 、乳 化 剂
2019年11月5日10时7分
翟鹏
12
第三节 切削液的添加剂
2019年11月5日10时7分
翟鹏
13

切削液腐蚀试验方法

切削液腐蚀试验方法

切削液腐蚀试验方法
1. 准备试样:选择适当大小和形状的金属试样,通常是圆盘形状。

确保试样表面光洁,没有明显的缺陷。

2. 准备切削液:选择要测试的切削液,并按照厂商提供的说明书准备切削液。

保持切削液的浓度和温度恒定。

3. 浸泡试样:将试样浸泡在切削液中,一般浸泡时间为24小时。

在浸泡期间,可以对试样进行定期观察,记录可能出现的腐蚀现象。

4. 观察和评估:取出试样后,观察试样的表面是否出现腐蚀迹象,如变色、腐蚀斑点等。

根据试样的腐蚀情况,可以进行定量的评估,例如通过测量腐蚀深度或利用腐蚀率来评估切削液对金属的腐蚀性能。

5. 数据分析:对腐蚀试验结果进行统计和分析,比较不同试样或切削液的腐蚀性能差异,并根据分析结果优化切削液的配方或使用条件。

需要注意的是,在进行切削液腐蚀试验时,应遵循相应的安全操作规程,避免切削液对人体造成伤害。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验条件:打磨后的铜或者铝片,5%溶液,60℃水浴,浸
泡8小时以上,观察试片的变色情况。
PE 1198LA Tap-Water
高低温稳定性
泡沫的检测
实验条件:5%溶液,常温,振荡30次
润滑性能——四球摩擦机
腐蚀性检测
Blank
Blank
Like Product
Like Product
PE 533
PE 533
PE 1198LA
DI-Water
Tap-Water
பைடு நூலகம்
DI-Water
Tap-Water
DI-Water
Tap-Water
DI-Water
金属切削液的各种检测优秀课 件
切削液的各种检测和比较
1、折光值——糖量仪(折光仪)
pH值的测定
防锈性能的检测
实验过程:把打磨好的试片浸泡5%的稀释液,1分钟后取出悬挂于恒温 恒湿
箱中(35℃,90±2%rh ),2小时取出观察结果。
细菌含量的检测
亚硝酸盐的检测
水质检测
切削液在硬水中析皂
相关文档
最新文档