基于matlab的最小二乘法实现

合集下载

matlab基于残差平方最小二乘法拟合曲线代码

matlab基于残差平方最小二乘法拟合曲线代码

标题:深度剖析:用MATLAB基于残差平方最小二乘法拟合曲线的代码一、引言MATLAB作为一种强大的数学建模和仿真工具,常常被用于拟合曲线。

其中,最小二乘法是一种常见的数据拟合方法,而残差平方最小二乘法则是最小二乘法的一种特例。

在本文中,我们将深入探讨MATLAB中基于残差平方最小二乘法拟合曲线的代码实现,以帮助读者更全面地理解这一方法。

二、残差平方最小二乘法的原理残差平方最小二乘法是一种基于最小化残差平方和的拟合方法。

其原理可以简单描述为:对于给定的数据点集合,假设存在一个模型可以描述这些数据,但是这个模型的参数是未知的。

残差平方最小二乘法的目标就是通过调整模型参数,使得模型预测值与实际观测值之间的残差平方和最小化。

通常情况下,这个过程可以通过优化算法来实现。

三、MATLAB代码实现在MATLAB中,可以使用curve fitting toolbox来实现残差平方最小二乘法拟合曲线。

具体的代码实现如下:```matlab% 准备数据x = [1, 2, 3, 4, 5];y = [2.5, 3.5, 4.5, 5.5, 6.5];% 拟合曲线f = fit(x', y', 'poly1', 'Robust', 'Bisquare');% 绘制拟合结果plot(f, x, y);```在上面的代码中,首先我们准备了一组实验数据,然后利用MATLAB中的fit函数进行曲线拟合,参数'poly1'表示拟合一次多项式,'Robust'参数表示使用残差平方最小二乘法,并且采用Bisquare函数作为拟合方法。

最后通过plot函数将拟合结果可视化出来。

四、个人观点残差平方最小二乘法是一种非常有效的拟合方法,它能够较好地描述数据的特征,并且在MATLAB中实现也相对简单。

但是在实际使用中,需要根据具体问题选择合适的拟合方法和模型,以及合理地处理拟合结果和残差。

matlab最小二乘法多目标优化案例

matlab最小二乘法多目标优化案例

一、概述最小二乘法是一种常用的数值优化方法,多目标优化是一种常见的现实问题。

本文将通过一个基于Matlab的案例对最小二乘法在多目标优化中的应用进行分析和讨论。

二、最小二乘法概述最小二乘法是一种数学优化方法,其核心思想是通过最小化残差平方和来估计参数。

在实际应用中,最小二乘法广泛用于拟合曲线、回归分析、信号处理等领域。

最小二乘法的优点在于具有较好的数值稳定性和计算效率。

三、多目标优化概述多目标优化是指在给定多个目标函数的情况下,寻找一组参数使得这些目标函数都能够达到最优值。

多目标优化通常涉及到多个冲突的目标函数,因此需要寻找一种平衡各个目标的方法。

四、Matlab中的最小二乘法多目标优化实现在Matlab中,可以利用优化工具箱中的函数来进行最小二乘法多目标优化。

以下是一个基于Matlab的案例,通过该案例来详细讨论最小二乘法在多目标优化中的应用。

1. 确定目标函数假设我们需要优化的目标函数有两个:f1和f2。

其中f1是关于参数x 和y的函数,f2是关于参数x和z的函数。

我们的目标是找到一组x、y、z使得f1和f2都能够达到最小值。

2. 构建优化问题在Matlab中,可以使用优化工具箱中的函数来构建多目标优化问题。

我们需要定义目标函数f1和f2,并设置优化的参数范围。

3. 解决优化问题利用Matlab中的优化函数,可以求解出使得f1和f2都能够达到最小值的参数组合。

通过调用优化工具箱中的函数,可以得到最优解以及对应的目标函数值。

4. 结果分析我们可以对优化结果进行分析,对比不同参数组合下的目标函数值,并对最优解进行进一步的验证和优化。

五、结论与展望通过上述案例的分析与讨论,可以得出最小二乘法在多目标优化中的应用是有效的。

通过Matlab的优化工具箱,可以方便地实现最小二乘法多目标优化,并得到较好的优化结果。

然而,对于更复杂的多目标优化问题,仍需要进一步研究和探索更高效的优化算法。

本文通过一个基于Matlab的案例详细介绍了最小二乘法在多目标优化中的应用。

最小二乘法matlab程序

最小二乘法matlab程序

最小二乘法(Least Squares Method,LSM)是一种数值计算方法,用于拟合曲线,求解未知参数的值。

它的基本思想是,通过求解最小二乘误差的最优解,来拟合曲线,从而求得未知参数的值。

本文将介绍最小二乘法在Matlab中的实现原理及程序编写。

一、最小二乘法的原理最小二乘法是一种数值计算方法,它的基本思想是,通过求解最小二乘误差的最优解,来拟合曲线,从而求得未知参数的值。

最小二乘法的基本原理是:给定一组数据点,用直线拟合这组数据点,使得拟合直线与这组数据点的误差的平方和最小。

具体地说,假设有一组数据点,其中每个数据点都可表示为(x_i, y_i),i=1,2,3,...,n,其中x_i和y_i分别表示第i个数据点的横纵坐标。

拟合这组数据点的直线通常用一元线性函数表示,即y=ax+b,其中a和b是未知参数。

最小二乘法的思想是:求出使误差的平方和最小的a和b,即求出最优解。

二、Matlab程序编写1. 准备工作首先,我们需要准备一组数据点,每个数据点都可表示为(x_i, y_i),i=1,2,3,...,n,其中x_i和y_i分别表示第i个数据点的横纵坐标。

例如,我们可以准备一组数据点:x=[1,2,3,4,5];y=[2,4,6,8,10];2. 程序编写接下来,我们就可以开始编写Matlab程序了。

首先,我们需要定义一个一元线性函数,用于拟合这组数据点。

函数的形式为:y=ax+b,其中a和b是未知参数。

%定义函数f=@(a,b,x)a*x+b;然后,我们需要定义一个误差函数,用于计算拟合直线与这组数据点的误差的平方和。

%定义误差函数error=@(a,b)sum((y-f(a,b,x)).^2);最后,我们就可以使用Matlab提供的fminsearch函数,求解最小二乘误差的最优解,即求出最优a和b的值。

%求解最优解[a,b]=fminsearch(error,[1,1]);经过上面的程序编写,我们就可以求得未知参数a和b的最优值。

matlab 最小二乘法散点拟合圆

matlab 最小二乘法散点拟合圆

matlab 最小二乘法散点拟合圆在MATLAB中,可以使用最小二乘法来拟合一组散点数据的圆形轮廓。

最小二乘法是一种常见的拟合方法,旨在使数据点到拟合曲线或函数的残差平方和最小化。

对于圆形轮廓拟合问题,我们需要找到圆心和半径的参数。

以下是在MATLAB中使用最小二乘法实现散点拟合圆的步骤:1. 首先,将散点数据表示为一个含有x和y坐标的矩阵。

例如,我们可以采用以下代码创建一个包含50个随机数据点的矩阵:```x = 10*randn(50,1);y = 10*randn(50,1);data = [x,y];```2. 接下来,我们需要定义一个误差函数,它将计算每个数据点与拟合圆之间的距离。

对于圆形轮廓,可以使用欧几里得距离公式:```function F = circlefitfunc(params, data)x0 = params(1);y0 = params(2);r = params(3);F = sqrt((data(:,1)-x0).^2 + (data(:,2)-y0).^2) - r;end```3. 然后,在MATLAB中使用lsqnonlin函数来最小化误差函数,找到最佳的圆心和半径参数。

lsqnonlin函数使用非线性最小二乘法求解非线性方程组或最小化非线性函数的问题。

```params0 = [0, 0, 1]; % 初始参数猜测options = optimset('Algorithm','trust-region-reflective'); params =lsqnonlin(@(x)circlefitfunc(x,data),params0,[],[],options); ```4. 最后,我们可以使用拟合参数绘制拟合圆。

```x0 = params(1);y0 = params(2);r = params(3);t = linspace(0,2*pi,100)';x = r*cos(t) + x0;y = r*sin(t) + y0;plot(data(:,1),data(:,2),'o',x,y,'-');```最小二乘法散点拟合圆在图像处理和计算机视觉领域得到了广泛应用。

matlab最小二乘法拟合直线

matlab最小二乘法拟合直线

matlab最小二乘法拟合直线【导言】直线拟合是数据分析和数学建模中常用的方法之一,而最小二乘法则是在直线拟合中最常用的方法之一。

在本文中,将介绍使用Matlab进行最小二乘法拟合直线的步骤和原理,并就此主题进行深入的探讨。

【正文】一、最小二乘法简介最小二乘法是一种数学优化方法,它通过最小化误差的平方和来寻找函数与观测数据之间的最佳拟合。

在直线拟合中,最小二乘法的目标是找到一条直线,使得所有观测数据点到直线的距离之和最小。

1. 确定拟合的模型在直线拟合中,我们的模型可以表示为:Y = a*X + b,其中a和b为待求参数,X为自变量,Y为因变量。

2. 计算误差对于每一个观测数据点(x_i, y_i),计算其到直线的垂直距离d_i,即误差。

误差可以表示为:d_i = y_i - (a*x_i + b)。

3. 求解最小二乘法问题最小二乘法的目标是最小化所有观测数据点到直线的距离之和,即最小化误差的平方和:min Σ(d_i^2) = min Σ(y_i - (a*x_i + b))^2。

通过求解该最小化问题,可以得到最佳拟合的直线斜率a和截距b的值。

二、Matlab实现最小二乘法拟合直线的步骤下面将介绍使用Matlab进行最小二乘法拟合直线的基本步骤。

1. 导入数据需要将实验数据导入Matlab。

可以使用matlab自带的readtable函数从文件中读取数据,也可以使用xlsread函数直接从Excel文件中读取数据。

2. 数据预处理在进行最小二乘法拟合直线之前,先对数据进行预处理。

一般情况下,可以对数据进行去除异常值、归一化等操作,以确保数据的准确性和可靠性。

3. 拟合直线使用Matlab的polyfit函数可以实现直线拟合。

polyfit函数可以拟合输入数据的曲线或平面,并返回拟合参数。

在拟合直线时,需要指定拟合的阶数,对于直线拟合,阶数为1。

4. 绘制拟合直线使用Matlab的plot函数可以将拟合的直线绘制出来,以便于观察拟合效果。

matlab 最小二乘拟合直线并输出直线方程

matlab 最小二乘拟合直线并输出直线方程

在Matlab中,最小二乘法是一种常见的数学拟合技术,可以用来拟合直线,曲线甚至更复杂的函数。

通过最小二乘法,可以找到最适合数据点的直线方程,从而能够更好地分析和预测数据之间的关系。

在本文中,我将详细介绍如何在Matlab中使用最小二乘法来拟合直线,并输出直线方程。

我们需要准备一组数据点。

假设我们有一组横坐标和纵坐标的数据点,分别用变量x和y表示。

接下来,我们可以使用Matlab中的polyfit函数来进行最小二乘拟合。

该函数的语法如下:```matlabp = polyfit(x, y, 1);```其中,x和y分别代表数据点的横坐标和纵坐标,而1代表要拟合的直线的次数,即一次函数。

执行该语句后,变量p将会存储拟合出的直线的系数,即直线方程y = ax + b中的a和b。

在接下来的内容中,我将详细讨论如何通过最小二乘法拟合直线,并输出直线方程。

具体而言,我们将从如何准备数据、使用polyfit函数进行拟合、得到直线方程以及如何应用和解释直线拟合结果等方面进行全面分析。

一、数据准备在使用最小二乘法拟合直线之前,首先要准备一组数据点。

这些数据点应该是具有一定规律性的,从而能够通过直线拟合来揭示数据之间的关系。

在这一部分,我将详细介绍如何准备数据,并重点关注数据的合理性和可靠性。

1.1 数据收集要拟合直线,首先需要收集一组数据点。

这些数据点可以来源于实验观测、实际测量或者模拟计算等方式。

在收集数据时,需要保证数据的准确性和完整性。

还需要考虑数据的分布范围和密度,以便更好地反映数据之间的关系。

1.2 数据预处理在拟合直线之前,通常需要对数据进行一定的预处理。

这可能包括去除异常值、处理缺失数据,甚至进行数据变换等操作。

在这一步中,我将介绍如何进行数据预处理,并强调预处理对最终拟合结果的影响。

二、最小二乘拟合当数据准备工作完成后,就可以使用polyfit函数进行最小二乘拟合了。

在这一部分,我将详细介绍polyfit函数的使用方法,并解释其背后的数学原理。

基于Matlab实现最小二乘曲线拟合

基于Matlab实现最小二乘曲线拟合

基于Matlab实现最小二乘曲线拟合一、本文概述在数据分析和科学计算中,曲线拟合是一种常见且重要的技术。

通过拟合,我们可以根据已知数据建立数学模型,预测未知数据,以及深入理解数据背后的规律。

最小二乘法是曲线拟合中最常用的一种方法,其原理是通过最小化预测值与实际值之间的平方误差来寻找最佳拟合曲线。

本文旨在介绍如何使用Matlab这一强大的数学计算软件,实现最小二乘曲线拟合,包括其理论基础、实现步骤以及实际应用案例。

通过本文的学习,读者将能够掌握在Matlab环境中进行最小二乘曲线拟合的基本方法,提高数据处理和分析能力。

二、最小二乘曲线拟合原理最小二乘法(Least Squares Method)是一种数学优化技术,它通过最小化误差的平方和来寻找数据的最佳函数匹配。

在曲线拟合中,最小二乘法被广泛应用于通过一组离散的数据点来估计一个连续函数的形状。

这种方法的基本思想是通过选择一个模型函数(通常是多项式、指数函数、对数函数等),使得该模型函数与实际数据点之间的差距(即残差)的平方和最小。

假设我们有一组数据点 ((x_1, y_1), (x_2, y_2), \ldots,(x_n, y_n)),我们希望通过一个模型函数 (y = f(x, \mathbf{p})) 来拟合这些数据点,其中 (\mathbf{p}) 是模型的参数向量。

最小二乘法的目标就是找到最优的参数向量 (\mathbf{p}^*),使得残差平方和 (S(\mathbf{p})) 最小:S(\mathbf{p}) = \sum_{i=1}^{n} [y_i - f(x_i,\mathbf{p})]^2]为了使 (S(\mathbf{p})) 达到最小,我们需要对(S(\mathbf{p})) 求偏导数,并令其等于零。

这样,我们就得到了一个关于 (\mathbf{p}) 的方程组。

解这个方程组,就可以得到最优的参数向量 (\mathbf{p}^*)。

最小二乘法matlab

最小二乘法matlab

(1)matlab中的lsqcurvefit使用2013-04-04 12:28manaijin|分类:工程技术科学|浏览9318次求讲解[a,Jm]=lsqcurvefit(fun,a0,x,y)(最好举例)各个符号的意思我有更好的答案分享到:按默认排序|按时间排序1条回答2013-04-04 20:39 白肚河蟹不让说|十级非线性曲线拟合是已知输入向量xdata和输出向量ydata,并且知道输入与输出的函数关系为ydata=F(x, xdata),但不知道系数向量x。

今进行曲线拟合,求x使得输出的如下最小二乘表达式成立:min Σ(F(x,xdatai)-ydatai)^2函数lsqcurvefit格式x = lsqcurvefit(fun,x0,xdata,ydata)x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub)x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub,options)[x,resnorm] = lsqcurvefit(…)[x,resnorm,residual] = lsqcurvefit(…)[x,resnorm,residual,exitflag] = lsqcurvefit(…)[x,resnorm,residual,exitflag,output] = lsqcurvefit(…)[x,resnorm,residual,exitflag,output,lambda] = lsqcurvefit(…)[x,resnorm,residual,exitflag,output,lambda,jacobian] =lsqcurvefit(…) 参数说明:x0为初始解向量;xdata,ydata为满足关系ydata=F(x, xdata)的数据;lb、ub为解向量的下界和上界lb≤x≤ub,若没有指定界,则lb=[ ],ub=[ ];options为指定的优化参数;fun为待拟合函数,计算x处拟合函数值,其定义为function F = myfun(x,xdata)resnorm=sum ((fun(x,xdata)-ydata).^2),即在x处残差的平方和;residual=fun(x,xdata)-ydata,即在x处的残差;exitflag为终止迭代的条件;output为输出的优化信息;lambda为解x处的Lagrange乘子;jacobian为解x处拟合函数fun的jacobian矩阵。

最小二乘法MATLAB程序及结果

最小二乘法MATLAB程序及结果

最小二乘递推算法的MATLAB仿真针对辨识模型,有z(k)-+a1*z(k-1)+a2*z(k-2)=b1*u(k-1)+b2*u(k-2)+v(k)模型结构,对其进行最小二乘递推算法的MATLAB仿真,对比真值与估计值。

更改a1、a2、b1、b2参数,观察结果。

仿真对象:z(k)-1.5*z(k-1)+0.7*z(k-2)=u(k-1)+0.5*u(k-2)+v(k)程序如下:L=15;y1=1;y2=1;y3=1;y4=0; %四个移位寄存器的初始值for i=1:L; %移位循环x1=xor(y3,y4);x2=y1;x3=y2;x4=y3;y(i)=y4; %取出作为输出信号,即M序列if y(i)>0.5,u(i)=-0.03; %输入信号else u(i)=0.03;endy1=x1;y2=x2;y3=x3;y4=x4;endfigure(1);stem(u),grid onz(2)=0;z(1)=0;for k=3:15;z(k)=1.5*z(k-1)-0.7*z(k-2)+u(k-1)+0.5*u(k-2); %输出采样信号endc0=[0.001 0.001 0.001 0.001]'; %直接给出被识别参数的初始值p0=10^6*eye(4,4); %直接给出初始状态P0E=0.000000005;c=[c0,zeros(4,14)];e=zeros(4,15);for k=3:15; %开始求kh1=[-z(k-1),-z(k-2),u(k-1),u(k-2)]';x=h1'*p0*h1+1;x1=inv(x);k1=p0*h1*x1; %开始求k的值d1=z(k)-h1'*c0;c1=c0+k1*d1;e1=c1-c0;e2=e1./c0; %求参数的相对变化e(:,k)=e2;c0=c1;c(:,k)=c1;p1=p0-k1*k1'*[h1'*p0*h1+1]; %求出P(k)的值p0=p1;if e2<=E break;endendc,e %显示被辨识参数及其误差情况a1=c(1,:);a2=c(2,:);b1=c(3,:);b2=c(4,:);ea1=e(1,:);ea2=e(2,:);eb1=e(3,:);eb2=e(4,:);figure(2);i=1:15;plot(i,a1,'r',i,a2,':',i,b1,'g',i,b2,':')title('Parameter Identification with Recursive Least Squares Method')figure(3);i=1:15;plot(i,ea1,'r',i,ea2,'g',i,eb1,'b',i,eb2,'r:')title('Identification Precision')程序运行结果:p0 =1000000 0 0 00 1000000 0 00 0 1000000 00 0 0 1000000c =Columns 1 through 90.0010 0 0.0010 -0.4984 -1.2325 -1.4951 -1.4962 -1.4991 -1.49980.0001 0 0.0001 0.0001 -0.2358 0.6912 0.6941 0.6990 0.69980.0010 0 0.2509 1.2497 1.0665 1.0017 1.0020 1.0002 0.99990.0010 0 -0.2489 0.7500 0.5668 0.5020 0.5016 0.5008 0.5002Columns 10 through 15-1.4999 -1.5000 -1.5000 -1.5000 -1.4999 -1.49990.6999 0.7000 0.7000 0.7000 0.7000 0.70000.9998 0.9999 0.9999 0.9999 0.9999 0.99990.5002 0.5000 0.5000 0.5000 0.5000 0.5000e =1.0e+003 *Columns 1 through 90 0 0 -0.4994 0.0015 0.0002 0.0000 0.0000 0.00000 0 0 0 -2.3592 -0.0039 0.0000 0.0000 0.00000 0 0.2499 0.0040 -0.0001 -0.0001 0.0000 -0.0000 -0.00000 0 -0.2499 -0.0040 -0.0002 -0.0001 -0.0000 -0.0000 -0.0000Columns 10 through 150.0000 0.0000 0.0000 -0.0000 -0.0000 0.00000.0000 0.0000 -0.0000 0.0000 0.0000 0.0000-0.0000 0.0000 0.0000 0.0000 0.0000 -0.0000-0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000程序运行曲线:图1.输入信号图2.a1,a2,b1,b2辨识仿真结果图3. a1,a2,b1,b2各次辨识结果收敛情况分析:由运行结果可看出,输出观测值没有任何噪声成分时,辨识结果最大相对误差达到3位数。

matlab 多点利用最小二乘法拟合二次函数方程

matlab 多点利用最小二乘法拟合二次函数方程

Matlab是一种用于数学计算和工程䇹算的高级语言和交互式环境。

在Matlab中,利用最小二乘法来拟合二次函数方程是一种常见的数据分析方法,可以通过拟合得到二次函数的系数,从而更好地理解和分析实际问题中的数据。

1. 理论基础最小二乘法是一种数学优化方法,用于寻找真实数据与拟合函数之间的最小误差。

在拟合二次函数方程时,我们可以将拟合方程写成如下形式:y = a*x^2 + b*x + c其中,a、b、c分别为二次函数的系数,x和y分别为自变量和因变量。

2. Matlab中的多点利用最小二乘法在Matlab中,可以使用polyfit函数来实现对多点数据进行二次函数拟合。

其基本语法为:p = polyfit(x, y, n)其中,x和y分别为输入的数据点,n为二次函数的次数。

3. 示例代码下面给出一个简单的示例代码来演示如何在Matlab中进行多点利用最小二乘法拟合二次函数方程:```Matlabx = [1, 2, 3, 4, 5];y = [3.1, 4.9, 7.2, 9.8, 12.5];p = polyfit(x, y, 2);```在这个例子中,我们输入了5个数据点,然后利用polyfit函数对这些数据点进行二次函数拟合,得到了二次函数的系数p。

4. 结果分析经过拟合得到的二次函数系数p为:p = [0.1, 0.2, 3]这意味着拟合得到的二次函数方程为:y = 0.1*x^2 + 0.2*x + 3通过这个拟合方程,我们可以更好地理解和分析实际数据的趋势和规律。

5. 需要注意的问题在利用最小二乘法拟合二次函数方程时,需要注意以下几个问题:- 数据的选择:数据点的选择对拟合结果会有很大的影响,需要根据实际问题合理选择数据点。

- 拟合精度:拟合得到的二次函数方程的精度取决于数据的质量和数量,需要谨慎选择拟合的次数。

利用最小二乘法在Matlab中拟合二次函数方程是一种常见且有效的数据分析方法,通过对实际数据进行拟合,可以更好地理解和分析数据规律。

基于matlab的最小二乘法应用

基于matlab的最小二乘法应用
title('数据点(xi,yi)和拟合曲线y=f(x)的图形')
fy=abs(f-y); fy2=fy.^2; Ew=max(fy), E1=sum(fy), E2=sqrt(sum(fy2))
X=0:1:55;
Y=a*exp(b./X);
f=a*exp(b./x);
plot(x,y,'r*',X,Y,'b-'), xlabel('x'),ylabel('y')
legend('数据点(xi,yi)','拟合曲线y=f(x)')
title('数据点(xi,yi)和拟合曲线y=f(x)的图形')
方案一:设想 具有指数形式
(4-1)
在求解参数a和b时,为了避免求解一个非线性方程组,对上式两边取对数方程变为:
(4-2)
引入新的变量 ,并记 上式变为 ,此时的问题就转化为求形如 的最小二乘解。运用matlab语言编写计算和画图程序,程序一见附录部分[2]。运算的结果:a=5.2151,b=-7.4962。最大偏差 ,均方误差 。故拟合的曲线为:
(2-7)
其中
(2-8)
它的均方误差为: (2-9)
最大偏差为: (2-10)
3
在化学反应中,由实验测得分解物浓度与时间的关系如下表2所示
表2 浓度(y)与时间( x )的关系实验数据表
x
0
5
10
15
20
25
y
0
1.27
2.16
2.86
3.44
3.87
x
30
35
40
45
50

用Matlab进行最小二乘法线性拟合(求传感器非线性误差、灵敏度)

用Matlab进行最小二乘法线性拟合(求传感器非线性误差、灵敏度)

%后面的为注释,红色部分代码需要根据实际情况更改%最小二乘法线性拟合y=ax+bx=[0.5,1,1.5,2,2.5,3,3.5,4,4.5,5];%自变量y=[191,321,442,565,686,819,930,1032,1153,1252];%因变量xmean=mean(x);ymean=mean(y);sumx2=(x-xmean)*(x-xmean)';sumxy=(y-ymean)*(x-xmean)';a=sumxy/sumx2;%解出直线斜率a(即传感器灵敏度)b=ymean-a*xmean;%解出直线截距bz=((a*(x(1,10))+b-(y(1,10)))/(y(1,10)));%“10”是自变量的个数,z为非线性误差(即线性度)abz%作图,先把原始数据点用蓝色"十"字描出来figureplot(x,y,'+');hold on% 用红色绘制拟合出的直线px=linspace(0,6,50);%(linspace语法(从横坐标负轴起点0画到横坐标正轴终点6,50等分精度))py=a*px+b;plot(px,py,'r');运行结果:a =236.9818b =87.4000另一种简单一点的方法:%最小二乘法线性拟合y=ax+bx=[0.5,1,1.5,2,2.5,3,3.5,4,4.5,5];%自变量y=[191,321,442,565,686,819,930,1032,1153,1252];%因变量p=polyfit(x,y,1);p运行结果:p =236.9818 87.4000。

最小二乘法原理及其MATLAB实现

最小二乘法原理及其MATLAB实现

最小二乘法原理及其MATLAB实现一、本文概述最小二乘法是一种广泛应用于数学、统计学、工程学、物理学等众多领域的数学优化技术。

其核心原理在于通过最小化误差的平方和来寻找最佳函数匹配,从而实现对数据的最佳逼近。

本文将对最小二乘法的原理进行详细阐述,并通过MATLAB编程实现,帮助读者深入理解并掌握这一强大的数据分析工具。

文章将首先介绍最小二乘法的基本原理,包括其历史背景、基本概念以及数学模型的构建。

然后,通过实例分析,展示如何应用最小二乘法进行线性回归模型的拟合,以及如何处理过拟合和欠拟合等问题。

接着,文章将详细介绍如何在MATLAB中实现最小二乘法,包括数据准备、模型构建、参数估计以及结果可视化等步骤。

文章还将对最小二乘法的优缺点进行讨论,并探讨其在不同领域的应用前景。

通过本文的学习,读者将能够全面理解最小二乘法的原理和应用,掌握其在MATLAB中的实现方法,为实际工作中的数据处理和分析提供有力支持。

二、最小二乘法原理最小二乘法(Least Squares Method)是一种数学优化技术,它通过最小化误差的平方和寻找数据的最佳函数匹配。

这种方法起源于19世纪的统计学,由数学家阿德里安-马里·勒让德(Adrien-Marie Legendre)和卡尔·弗里德里希·高斯(Carl Friedrich Gauss)分别独立发展。

建立模型:我们需要建立一个描述数据关系的数学模型。

这通常是一个线性方程,如 y = ax + b,其中 a和b是待求解的参数。

误差计算:对于给定的数据集,我们可以将每个数据点代入模型中进行计算,得到预测值。

预测值与真实值之间的差异就是误差。

平方误差和:为了衡量模型的拟合程度,我们需要计算所有误差的平方和。

这是因为平方误差和能够更好地反映误差的大小,尤其是在误差较大时。

最小化平方误差和:最小二乘法的核心思想是找到一组参数,使得平方误差和达到最小。

这通常通过求导和令导数等于零来实现,从而找到使平方误差和最小的参数值。

用MatLab画图(最小二乘法做曲线拟合)

用MatLab画图(最小二乘法做曲线拟合)

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 用MatLab画图(最小二乘法做曲线拟合) 用 MatLab 画图(最小二乘法做曲线拟合) 帮朋友利用实验数据画图时,发现 MatLab 的确是画图的好工具,用它画的图比Excel光滑、精确。

利用一组数据要计算出这组数据对应的函数表达式从而得到相应图像,MatLab 的程序如下:x=[1 5 10 20 30 40 60 80] y=[15. 4 33. 9 42. 2 50. 556 62. 7 72 81. 1] plot(x, y, ‘ r*’ ) ; legend(‘ 实验数据(xi, yi) ‘ ) xlabel(‘ x’ ) , ylabel(‘ y’ ) , title(‘ 数据点(xi, yi) 的散点图’ ) syms a1 a2 a3 x=[15 10 20 30 40 60 80]; fi=a1. *x. +a2. *x+a3 y=[15. 4 33.9 42. 2 50. 5 56 62. 7 72 81. 1] fi =[a1+a2+a3,25*a1+5*a2+a2+(400*a1+20*a2+a3-101/2) +(900*a1+30*a2+a3-56) +(1600*a1+40*a2+a3-627/10) +(3600*a1+60*a2+a3-72)+(6400*a1+80*a2+a3-811/10) ; Ja1=diff(J, a1) ;Ja2=diff(J, a2) ; Ja3=diff(J, a3) ; Ja11=simple(Ja1) ,Ja21=simple(Ja2) , Ja31=simple(Ja3) A=[114921252, 1656252, 26052; 1656252, 26052, 492; 26052, 492, 16]; B=[9542429/5, 166129/5, 4138/5]; C=B/A, f=poly2sym(C) xi=[1 5 10 20 3040 60 80] ; y=[15. 4 33. 9 42. 2 50. 5 56 62. 7 72 81. 1]; n=length(xi) ; f=-0. 0086. *xi. +1. 3876. *xi+23. 1078;1 / 6x=1: 1/10: 80; F=-0. 0086. *x. +1. 3876. *x+23. 1078; fy=abs(f-y) ; fy2=fy. ; Ew=max(fy) , E1=sum(fy) /n,E2=sqrt((sum(fy2) ) /n) plot(xi, y, ‘ r*’ ) , hold on, plot(x, F, ‘ b-’ ) , hold off legend(‘ 数据点(xi, yi) ‘ , ‘ 拟合曲线f(x) = -0. 0086x +1. 3876x+23. 1078’ ) , xlabel(‘ x’ ) , ylabel(‘ y’ ) , title(‘ 实验数据点(xi, yi) 及拟合曲线f(x) ‘ ) 下图是程序运行后得到的:Su7Tw8VxaW ybXAcZB d#Cf!Eg%FhGj*Ik(Jl-Kn+M o0Np2Or3Ps4R t6Sv7Tw8VxaWzbXAcZBe#Cf! Eg%Fi Gj*Ik)Jl-Kn+Mo1Np2Or3Qs4Rt6Sv7 Uw8Vx aWzbYAc ZBe#Df!Eg%FiHj*Ik) Jm-Kn +Mo1Nq2Or3Qs 5Rt6Sv7Uw9VxaWzbYAdZBe#D f$Eg%F iHj(I k) Jm-Ln+Mo1Nq2Pr3Qs5Ru6S v7Uw9V yaWzbY AdZCe#Df$Eh%FiHj(Il) Jm-Ln0Mo1Nq2Pr4 Qs5Ru6Tv8Uw9VyaXzbYAdZCe !Df$Eh %GiHj (Il) Km-Ln0Mp1Nq2Pr4Qt5Ru 6Tv8U x9VyaXz cYAdZCe! Dg$Eh%Gi*Hj(Il) Km+Ln0M p1Oq2P r4Qt5Su6Tv8Ux9WyaXzcYBdZ Ce!Dg$Fh%Gi* Hk(Il) Km+Lo0Mp1Oq3Pr4Qt5 Su7Tv8Ux9Wyb XzcYBd#Ce!Dg$FhGi*Hk(Jl ) Km+L o0Np1Oq 3Ps4Rt 5Su7Tw8Ux9WybXAcY Bd#Cf!Dg$FhGj*Hk(Jl-Km+Lo0Np2Oq3Ps4 Rt6Su7Tw8Vx9 WybXAcZBd#Cf!Eg$FhGj*Ik (Jl-Kn +Lo0Np2Or3Ps4Rt6Sv7Tw8VxaWybXA cZBe#Cf!Eg%F hGj*Ik) Jl-K n+Mo0Np2Or3Q s4Rt6Sv 7Uw8V xaWzbXAcZBe# D f! Eg%FiGj* Ik) Jm- Kn+Mo1 Nq2Or3Qs5Rt6Sv7Uw9VxaWzb YAcZBe#Df$Eg %FiHj*Ik)---------------------------------------------------------------最新资料推荐------------------------------------------------------ Jm-Ln+Mo1Nq2Pr 3Qs5Ru 6Sv7Uw 9VyaWzbYAdZBe#Df$Eh%FiH j(Ik) J m-Ln0M o1Nq2Pr4Qs5Ru6Tv7Uw9VyaX zbYAdZC e#Df$ Eh%GiHj(Il) Jm-Ln0Mp1Nq2 Pr4Qt5Ru6Tv8 Uw9VyaXzcYAdZCe!Df$Eh%Gi *Hj(Il) Km+Ln 0Mp1Oq2Pr4Qt5Su6Tv8Ux9Vy aXzcYB dZCe!D g$Eh%Gi*Hk(Il) Km+Lo0Mp1O q3Pr4Qt5Su7Tv8Ux9WyaXzc Y Bd#Ce!Dg$Fh %Gi*Hk( Jl) Km +Lo0Np1Oq3Ps 4 Qt5Su7Tw8Ux 9WybXzcYBd#C f!Dg$FhGi*H k (Jl-Km+Lo0N p2Oq3Ps4Rt5S u7Tw8Vx9WybX AcYBd#Cf! Eg$ FhGj*Ik (Jl- Kn+Lo0Np2Or3 P s4Rt6Su7Tw8 VxaWybXA cZBd #Cf!Eg%FhGj * Ik) Jl-Kn+Mo 0Np2Or3Qs4Rt 6Sv7Tw8VxaWz bXAcZBe#Cf!E g%FiGj*Ik) J m-Kn+Mo1Np2O r 3Qs5Rt6Sv7U w8VxaWzbYAcZ Be#Df! Eg%Fi H j*Ik) Jm-Ln+ Mo1Nq2O r3Qs5 Ru6Sv7Uw9Vxa W zbYAdZBe#Df $Eh%Fi Hj(Ik ) Jm-Ln0Mo1Nq 2Pr3Qs5Ru6Tv 7Uw9Vya WzbYA dZCe#Df$Eh%G iHj(Il) Jm-L n0Mp1Nq2Pr4Q s5Ru6Tv8Uw9V ya XzbYAdZCe! Df$Eh%Gi*Hj( Il) Km-Ln0Mp1 Oq 2Pr4 Qt5Ru6Tv8Ux9Vy aXz cYAdZCe!Dg$E h%G i*Hk(Il) K m+Ln0Mp1O q3P r4Qt5Su6Tv8U x9WyaXzcYBd# Ce!Dg$Fh% Gi* Hk(Jl) Km+Lo0 Mp1Oq3Ps4Qt5 Su7Tv8Ux9Wyb XzcYBd#Cf! Dg $F hGi*Hk(Jl -Km+Lo0N p1Oq 3Ps4Rt5Su7Tw 8U x9WybXAcYB d#Cf!Eg$F hG j*Hk(Jl-Kn+Lo0Np2O q3Ps4Rt 6Su7Tw8Vx9WybXAcZBd#Cf!E g%FhGj*Ik(J l-Kn+Mo0Np2O r3Ps4Rt6Sv7T w8Vxa WzbXAcZ Be#Cf! Eg%Fi Gj*Ik) Jl-Kn+ Mo1Np2Or3Qs4 Rt6Sv7Uw8VxaWzbYAcZBe#Df !Eg%FiHj*Ik )3 / 6Jm-Kn+Mo1Nq2Or3Qs5Rt6Sv 7Uw9Vx aWzbYA dZBe#Df$Eg%FiHj(Ik) Jm-L n+Mo1Nq2Pr3Q s5Ru6Sv7Uw9VyaWzbYAdZCe# Df$Eh %FiHj( Il) Jm-Ln0Mo1Nq2Pr4Qs5Ru6 Tv8Uw9VyaXzb YAdZCe!Df$Eh%GiHj(Il) Km -Ln0Mp 1Nq2Pr 4Qt5Ru6Tv8Ux9VyaXzcYAdZC e!Dg$E h%Gi*H j(Il) Km+Ln0Mp1Oq2Pr4Qt5S u6Tv8U x9WyaX zcYBdZCe! Dg$Fh%Gi*Hk(Il) Km+Lo0Mp1Oq3 Pr4Qt5Su7Tv8Ux9WybXzcYBd #Ce!D g$FhGi *Hk(Jl ) Km+Lo0Np1Oq3Ps4R t5Su7Tw8Ux9T v7Uw9VyaXzbYAdZCe#Df$Eh% GiHj( Il) Jm- Ln0Mp1Nq2Pr4Qs5Ru6Tv8Uw9 VyaXzcY AdZCe !Df$Eh%Gi*Hj(Il) Km-Ln0Mp 1Oq2Pr 4Qt5Ru 6Tv8Ux9VyaXzcYBdZCe! Dg$E h%Gi*Hk(Il) K m+Ln0Mp1Oq3Pr4Qt5Su6Tv8U x9WyaX zcYBd# Ce!Dg$Fh%Gi*Hk(Jl) Km+Lo0 Mp1Oq3P s4Qt5 Su7Tw8Ux9Wyb X zcYBd#Cf!Dg $FhGi*Hk(Jl -Km+Lo0Np1Oq3Ps4Rt5Su7Tw 8Vx9Wy bXAcYB d#Cf! Eg$FhGj*Hk(Jl-Kn+L o0Np2O q3Ps4R t6Su7Tw8VxaWybXAcZBd#Cf! Eg%Fh Gj*Ik( Jl-Kn+Mo0Np2Or3Ps4Rt6Sv7 Tw8Vxa WzbXAc ZBe#Cf!Eg%FiGj*Ik) Jl-Kn +Mo1Np2Or3Qs 5Rt6Sv7Uw8Vx a WzbYAcZBe#D f! Eg%FiHj*Ik) Jm-Kn+Mo1 Nq 2Or3Qs5Ru6 Sv7Uw9Vx aWzb YAdZBe#Df$Eg %F iHj(Ik) Jm -Ln+Mo1N q2Pr 3Qs5Ru6Tv7Uw 9VyaWzbYAdZC e#Df$Eh%FiH j(Il) Jm-Ln0M o1Nq2Pr4Qs5R u6Tv8Uw9VyaX zbYAdZCe! Df$ E h%GiHj(Il) Km-Ln0Mp 1Oq2 Pr4Qt5Ru6Tv8 U x9VyaXzcYAd ZCe!Dg$E h%Gi *Hj(Il) Km+Ln 0Mp1Oq3Pr4Qt 5Su6Tv8Ux9Wy aXzcYBdZCe!D g $Fh%Gi*Hk(I l)---------------------------------------------------------------最新资料推荐------------------------------------------------------ Km+Lo0Mp1O q3Ps4Qt5Su7T v 8Ux9WybXzcY Bd#Ce! D g$Fh Gi*Hk(Jl) Km+ L o0Np1Oq3Ps4 Rt5Su7T w8Ux9 WybXAcYBd#Cf !Dg$FhGj*Hk (Jl-Km+ Lo0Np 2Oq3Ps4Rt6Su 7Tw8Vx9WybXA cZBd#Cf ! Eg$F hGj*Ik(Jl-K n+Mo0Np2Or3P s4Rt6Sv 7Tw8V xaWybXAcZBe# C f!Eg% FhGj*Ik) Jl-K n+Mo 1Np2Or3Qs4Rt 6Sv 7Uw8VxaWz bXAcZBe#D f!E g%FiGj*Ik) J m- Kn+Mo1Nq2O r3Qs5Rt6Sv7U w9VxaWzbYAcZ Be#Df$Eg%Fi Hj*Ik) Jm-Ln+ Mo1Nq2Pr3Qs5 Ru6Sv7Uw9Vya WzbYAdZBe#Df $Eh%FiHj(Il ) Jm -Ln0Mo1Nq 2Pr4Qs5Ru 6Tv 7Uw9VyaXzbYA dZCe#Df$Bd#C f! Eg%FhGj*I k(Jl-Kn+Mo0Np2O r3Qs4Rt 6Sv7Tw8VxaWzbXAcZBe#Cf!E g%FiGj*Ik) J l-Kn+Mo1Np2O r3Qs5Rt6Sv7U w8Vxa WzbYAcZ Be#Df! Eg%Fi Hj*Ik) Jm-Kn+ Mo1Nq2Or3Qs5 Ru6Sv7Uw9VxaWzbYAdZBe#Df $Eg%FiHj(Ik ) Jm-Ln0Mo1Nq2Pr3Qs5Ru6Tv 7Uw9Vy aWzbYA dZCe#Df$Eh%FiHj(Il) Jm-L n0Mp1Nq2Pr4Q s5Ru6Tv8Uw9VyaXzbYAdZCe! Df$Eh %GiHj( Il) Km-Ln0Mp1Oq2Pr4Qt5Ru6 Tv8Ux9VyaXzc YAdZCe!Dg$Eh%Gi*Hj(Il) Km +Ln0Mp 1Oq3Pr 4Qt5Su6Tv8Ux9WyaXzcYBdZC e!Dg$F h%Gi*H k(Jl) Km+Lo0Mp1Oq3Ps4Qt5S u7Ts5R u6Sv7U w9VyaWzbYAdZBe#Df$Eh%Fi Hj(Ik)Jm-Ln0 Mo1Nq2Pr4Qs5Ru6Tv7Uw9Vya XzbYA dZCe#Df $Eh%Gi Hj(Il) Jm-Ln0Mp1N q2Pr4Qt5Ru6T v8Uw9VyaXzcYAdZCe!Df$Eh% Gi*Hj( Il) Km- Ln0Mp1Oq2Pr4Qt5Su6Tv8Ux9 VyaXzcY BdZCe !Dg$Eh%Gi*Hk(Il) Km+Ln0Mp 1Oq3Pr4Qt5Su5 / 67Tv8Ux9WyaXzcYBd#Ce! Dg$F h%Gi*Hk (Jl) K m+Lo0Np1Oq3Ps4Qt5Su7Tw8U x9WybX zcYBd# Cf!Dg$FhGi*Hk(Jl-Km+Lo0 Np2Oq3Ps4Rt5 Su7Tw8Vx9WybXAcYBd#Cf!Eg $FhGj*Hk(Jl -Kn+Lo0Np2Or3Ps4Rt6Su7Tw 8VxaWy bXAcZB d#Cf! Eg%FhG j*Ik(Jl-Kn+M o0Np2O r3Qs4R t6Sr4Qt5Su6Tv8Ux9WyaXzcY BdZCe!Dg$Fh% Gi*Hk(Il) Km+Lo0Mp1Oq3Pr4 Qt5Su7Tv8Ux9 WybXzcYBd#Ce! Dg$FhGi*Hk (Jl) Km +Lo0Np 1Oq3Ps4Rt5Su7Tw8Ux9WybXA cYBd#Cf!Dg$FhGj*Hk(Jl- K m+Lo0Np2Oq3 Ps4Rt6Su7Tw8 Vx9WybXAcZBd # Cf!Eg$FhGj *Ik(Jl- Kn+Lo 0Np2Or3Ps4Rt 6Sv7Tw8VxaWy bXAcZBe#Cf!E g%FhGj*Ik) J l-Kn+Mo0Np2O r3Qs4Rt6Sv7U w8VxaWzbXAcZ B e#Df!Eg%Fi Gj*Ik) J m-Kn+ Mo1Nq2Or3Qs5 R t6Sv7Uw9Vxa WzbYAcZB e#Df $Eg%Ff! Dg$Fh Gi*Hk(Jl-Km +Lo0Np1Oq3Ps 4Rt5Su7Tw8Vx 9W ybXAcYBd#C f!Eg$Fh Gj*H k(Jl-Kn+Lo0N p2Oq3Ps4Rt6S u7Tw8Vxa WybX AcZBd#Cf!Eg% F hGj*Ik(Jl- Kn+Mo0N p2Or3 Ps4Rt6Sv7Tw8 V xaWzbXAcZBe #Cf!Eg% FiGj *Ik) Jl-Kn+Mo 1Np2Or3Qs5Rt 6Sv7Uw8V xaWz bYAcZBe#Df!E g%FiHj*Ik) J m-Kn+Mo1Nq2O r3Qs5Ru6Sv7U w9VxaW zbYAdZBe#Df$Eg %Fi Hj(Ik) Jm-Ln +M o1Nq2Pr3Qs 5Ru6Tv7U w9Vy aWzbYAdZCe#D f$Eh%FiHj(I l) Jm-Ln0Mo1N q2Pr4Qs5Or3P s4Rt6Su7Tw8V xaWybXAcZ Be# Cf! Eg%FhGj* I。

matlab和C语言实现最小二乘法

matlab和C语言实现最小二乘法

matlab和C语⾔实现最⼩⼆乘法Matlab代码:N = 8;x = [12345678 ];y = [6784102120137155172190];subplot(2,1,1);plot(x,y,'*');% 图形的⼀些设置xlabel('时间(秒)');ylabel('位移(⽶)');title('原始数据离散点')grid onsubplot(2,1,2);p = polyfit(x,y,1); %得出P就是线性拟合的系数% 0:0.01:9x1 = 0:1:N; %起始为0,终点为N,步长1y1 = polyval(p,x1);plot(x,y,'*',x1,y1,'r')xlabel('时间(秒)');ylabel('位移(⽶)');title('红线为最⼩⼆乘法拟合')grid onsumxyji =sum(x.*y); %向量内积sumx = sum(x);sumy = sum(y);sumxx = sum(x.*x);k = (N*sumxyji - sumx*sumy)/(N*sumxx-sumx*sumx)b = (sumy-k*sumx)/N效果:⾃⼰C语⾔实现:公式:#include <stdio.h>#include <stdlib.h>//函数功能:进⾏最⼩⼆乘曲线拟合(拟合y=a0+a1*x),计算出对应的系数a//参数说明:// n: 给定数据点的个数// x[]: 存放给定n个数据点的X坐标// y[]: 存放给定n个数据点的Y坐标// k,b: 拟合多项式的系数,表⽰多项式的k,bvoid polyfit(int n,double x[],double y[],double &k,double &b){int i,j;double sumxymultiply = 0.0;double sumx = 0.0;double sumy = 0.0;double sumxx = 0.0;for (i=0;i<n;i++){sumx += x[i];sumy += y[i];sumxymultiply += (x[i]*y[i]);sumxx += (x[i]*x[i]);}k = (n*sumxymultiply - sumx*sumy)/(n*sumxx - sumx*sumx);b = (sumy-k*sumx)/n;}void printArr(double *arr,int n){for(int i=0;i<n;++i)printf("%lf ",arr[i]);printf("\n");}int main(){const int N = 8;double x[N] = {1,2,3, 4,5,6,7,8};double y[N] = {67,84,102,120,137,155,172,190}; double k,b;polyfit(N,x,y,k,b);printf("%lf %lf\n",k,b);return0;}。

matlab最小二乘法拟合曲线代码

matlab最小二乘法拟合曲线代码

在Matlab中使用最小二乘法进行曲线拟合是一项非常常见的任务。

最小二乘法是一种数学优化技术,用于对一组数据进行曲线拟合,以便找到最能代表数据趋势的曲线。

在本文中,我将深入探讨Matlab中最小二乘法拟合曲线的代码实现,并共享我对这一主题的个人理解。

让我们来了解一下什么是最小二乘法。

最小二乘法是一种数学优化技术,用于寻找一组数据的最佳拟合曲线。

在Matlab中,可以使用内置的polyfit函数来实现最小二乘法曲线拟合。

这个函数的基本语法是:```matlabp = polyfit(x, y, n)```其中,x和y分别是数据点的横纵坐标,n是要拟合的多项式次数。

这个函数将返回多项式系数向量p,使得拟合多项式最小化了实际数据点与拟合曲线之间的误差平方和。

举个例子,假设我们有一组数据点(x, y),我们可以使用polyfit函数来进行二次多项式拟合:```matlabx = [1, 2, 3, 4, 5];y = [2, 3, 4, 3, 5];p = polyfit(x, y, 2);```在这个例子中,p将会是一个包含三个元素的向量,分别代表二次多项式的系数a、b和c。

通过这些系数,我们就可以得到拟合的二次多项式方程。

除了使用polyfit函数,我们还可以使用polyval函数来计算拟合曲线上的点。

其基本语法形式是:```matlaby_fit = polyval(p, x)```在这个例子中,p是通过polyfit得到的多项式系数向量,x是我们要计算拟合曲线上的点的横坐标,y_fit将是这些点的纵坐标。

另外,Matlab还提供了许多其他的拟合函数和工具箱,用于不同类型的数据和曲线拟合需求。

通过调用这些函数和工具箱,我们可以实现更复杂的曲线拟合任务,满足不同数据类型和拟合目标的需求。

总结来说,Matlab提供了丰富的工具和函数,用于实现最小二乘法曲线拟合。

通过调用polyfit函数和其他拟合工具箱,我们可以轻松地对一组数据进行曲线拟合,从而得到最能代表数据趋势的曲线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于matlab 的最小二乘法实现 程序流程图

matlab 的程序源代码:
A=[2,4,6,8;2,11,28,40];
pa=input('请输入你要的拟合多项式的次数:');
W=size(A);
H=W(2);
X=zeros(pa+1,1);
Y=zeros(pa+1,pa+1); for i=1:pa+1
输入Xi,yi 及要拟合的最高次数n 生成法方程矩阵的左端系数矩阵 生成法方程矩阵的右端矩阵 解法方程矩阵 输出各个项的系数,即求得拟合函数 求取所求结果的均方误差 求取所求结果的最大偏差 结束程序
for j=1:pa+1
x=0;
for k=1:H
s=1;
for b=1:i+j-2
s=s*A(1,k);
end
x=x+s;
end
Y(i,j)=x;
end
end
a=zeros(pa+1,1);
for i=1:pa+1
x=0;
for k=1:H
s=A(2,k);
for b=1:i-1
s=s*A(1,k);
end
x=x+s;
end
a(i,1)=x;
end
X=inv(Y)*a;
disp('从0次到你要的阶数的系数依次为:') X
Z1=zeros(H,1);
for i=1:H
w=0;
for k=1:pa+1
s=X(k,1);
for j=1:k-1
s=s*A(1,i);
end
w=w+s;
end
Z1(i,1)=w;
end
Z1;
Z2=A(2,:)';
d=Z1-Z2;
s=0;
for i=1:H
s=s+d(i,1)*d(i,1); end
disp('均方误差为:') a=sqrtm(s)
b=d(1,1);
for i=1:H
if d(i,1)>b
b=d(i,1);
else
;
end
end
disp('最大偏差为:') b。

相关文档
最新文档