放大电路的微变等效电路分析法
微变等效电路法分析放大电路
微变等效电路法分析放⼤电路微变等效电路法分析放⼤电路本⽂介绍的定义⼀、简化的h参数微变等效电路⼆、微变等效电路法应⽤本⽂介绍的定义微变等效电路法、h参数微变等效电路、单管共射放⼤电路的微变等效电路、Rbe近似估算、微变等效电路法应⽤。
⼀、简化的h参数微变等效电路微变等效电路法:在信号变化范围很⼩的情况下,三极管电压、电流之间的关系基本是线性的。
此时,可以将⼆极管的输⼊、输出特性曲线近似地视为直线。
⽤⼀个线性电路来等效⾮线性的三极管。
这样的电路称为三极管的微变等效电路。
微变等效电路法⽤于电路的动态分析。
如上图所⽰,对于输⼊特性曲线(a),可⽤等效电阻表⽰Ube变化量和Ib变化量之间的关系。
对于上图输出特性曲线(b),Q点附近特性曲线基本上是⽔平的,可以⽤⼀个⼤⼩为βIb的恒流源来代替三极管。
这个电流源是⼀个受控电流源,体现了基极电流ib对集电极电流ic的控制作⽤。
最终得到下图(b)的微变等效电路,称为简化的h参数(混合参数)微变等效电路,因为忽略了Uce对Ic的影响,忽略了Uce对输⼊特性的影响。
但是由于忽略这些影响带来的误差⼩,所以简化的h参数微变等效电路⾜以应对⼯程计算。
单管共射放⼤电路的微变等效电路:⾸先⽤上图b的等效电路代替三极管,然后画其他部分的交流通路。
Ui、Uo、Ib、Ic上⾯有个点,表⽰输⼊电压、输出电压、基极电流、集电极电流的正弦相量。
⼀些公式如下,Au是单管共射放⼤电路的电压放⼤倍数。
Rbe近似估算:Rbe由三部分组成,基区体电阻、基射之间的结电阻、发射区体电阻。
流过PN结的电流Ie与PN两端电压Ube之间的关系:Is是反向饱和电流;Ut温度电压当量,常温等于26mv;⼯作在放⼤区发射结正向偏置,Ube⼤于0.1 。
由于上式括号⾥⾯左边的数远⼤于1,可以简化:对Ube求导,得到Rbe的倒数,那么就可以得到Rbe的值,⽽且在静态⼯作点附近⼀个⽐较⼩的变化范围内,Ie约等于Ieq,那么Reb表⽰如下。
微变等效电路
Vi
Vo
Ii
Vi Rb
Vi rbe
Ri
Vi Ii
Rb // rbe
3、计算放大电路的输出电阻
V
R o
Vs 0
I RL
Ro
V I
Rc
ii
0
ib
放大电路 I
Ro V
Vo
RL
ic
io
Ro
+
Rb
r be
β ib Rc RL vo
-
Ro
4、计算放大电路的源电压放大倍数
AvS
Vo Vs
AvS
Vo Vs
Vo Vi
建立小信号模型的思路
当放大电路的输入信号电压很小时,就可以把三 极管小范围内的特性曲线近似地用直线来代替,从而 可以把三极管这个非线性器件所组成的电路当作线性 电路来处理。
放大电路是一个双口网络。从端口特性来研究放大 电路,可将其等效成具有某种端口特性的等效电路。
思路:将非线性的BJT等效成一个线性电路
几何意义:
iC
vCE
vCE
(2) h参数小信号模型
根据
vbe= hieib+ hrevce ic= hfeib+ hoevce
可得小信号模型
iB b
vBE e
c iC vCE
BJT双口网络
ib hie vbe hrevce
ic hfeib hoe vce
(3) 模型的简化
记 rbe= hie
T = hre
例题1:试用微变等效电路法计算图示电路的电压增
益、输入电阻及输出电阻。
RC RB
+VCC
RE1
vo
放大电路微变等效电路法
放大电路微变等效电路法微变等效电路法仅用于对放大电路开展动态分析,不能计算直流静态工作点。
微变等效电路的实质是将由非线性元件三极管组成的交流放大电路等效成一个线性元件开展分析。
1.输入回路的微变等效电路从晶体管的输入特性曲线可见,共射极接法的晶体管的输入回路可用管子的输入电阻来等效代替。
其输入回路的等效电路如图(b)左半部所示。
工作中rbe用下式估算:IE是发射极静态电流,单位为mA。
从晶体管的输出特性曲线可见。
晶体管输出回路可以等效为一个受控的恒流源,如图(b)右半部分所示。
一、放大电路的微变等效电路画放大电路的微变等效电路的步骤是:(1)画出晶体管的微变等效电路,标定基极B、集电极C、发射极E和公共地的位置。
(2)将直流电源UCC及所有的电容短路(将放大电路转换成交流通路),再将其它元件对号入座。
二、放大器的性能分析画出微变等效电路以后,就可以用求解线性电路的方法计算放大器的主要性能指标,包括电压放大倍数、输入电阻ri和输出电阻ro 。
1.电压放大倍数当放大电路的输出端开路时,2.输入电阻ri放大电路对信号源来说是一个负载,可以用一个电阻等效代替,这个电阻既是信号源的负载,又是放大电路的输入电阻。
输入电阻定义为放大电路的输入电压与输入电流之比值,即通常要求放大器的输入电阻高一些,ri愈大,放大电路从信号源吸取的电流愈小,减轻信号源的负担。
3.放大电路的输出电阻ro对负载(或后一级放大电路)来说,放大电路相当于一个具有内阻ro 和Uo'恒压源的信号源,这个等效电源的内阻ro 就是放大电路的输出电阻。
ro越小,负载变化时,输出电压的变化也越小,说明放大电路带负载能力越强。
放大电路的输出电阻ro ,定义为[例1] 在图(a)所示电路中,若晶体管为3DG100,已知在工作点处β=40 ,设UBE =0.7V。
(1)计算静态工作点;(2)求rbe ;(3)计算电压放大倍数;(4)若CE 开路,再计算电压放大倍数;(5)CE未断开时,求放大电路的输入电阻ri、输出电阻rO。
共发射极放大电路的微变等效电路
共发射极放大电路的微变等效电路一、概述1.1 研究背景共发射极放大电路是一种常见的电子放大电路,通过控制输入信号的变化来实现电压放大的功能。
而对于共发射极放大电路的微变等效电路的研究,则是为了更好地理解和应用这一电路,提高其性能和稳定性。
1.2 研究意义研究共发射极放大电路的微变等效电路,有助于深入了解其内部工作原理,便于电路设计和优化,提高电路的性能和稳定性,同时也有利于电子工程师的理论学习和实际工程应用。
二、共发射极放大电路的基本原理2.1 共发射极放大电路的结构共发射极放大电路由晶体管、电阻、电容等元件组成,其输入信号通过电容耦合到晶体管的基极,控制晶体管的导通和截止,从而实现对输入信号的放大。
2.2 共发射极放大电路的工作特性共发射极放大电路在放大电压的也具有一定的电流放大功能,其工作特性受到外部电路参数的影响,如负载电阻、电容等。
三、共发射极放大电路的微变等效电路模型3.1 微变等效电路的概念微变等效电路是指在电路分析和设计中,将原始电路按照一定规则抽象成简化的等效电路模型,用于分析电路的小信号响应和频率特性。
3.2 共发射极放大电路的微变等效电路模型对于共发射极放大电路,可以将其抽象成微变等效电路模型,包括输入等效电阻、输出等效电阻、电压增益等参数,便于分析和设计。
四、共发射极放大电路的微变等效电路分析4.1 输入等效电阻共发射极放大电路的输入等效电阻是指在电路的输入端等效看到的电阻,它受到晶体管的导通和截止状态的影响,可以通过微变等效电路模型进行分析和计算。
4.2 输出等效电阻共发射极放大电路的输出等效电阻是指在电路的输出端等效看到的电阻,它受到负载电阻的影响,同样可以通过微变等效电路模型进行分析和计算。
4.3 电压增益电压增益是指共发射极放大电路输出电压与输入电压之间的增益关系,也可以通过微变等效电路模型进行分析和计算。
五、共发射极放大电路的微变等效电路应用5.1 电路设计优化通过微变等效电路模型的分析,可以对共发射极放大电路进行设计优化,使其在特定的工作条件下达到最佳的性能指标。
用简化微变等效电路法分析放大电路
电压放大倍数:
Au=
uo ui
=
-
β
ib
ib
Rc//
rbe
RL
=
-
β
Rc// RL
rbe
6
输入电阻:
Ri=
ui ii
= Rb// rbe
输出电阻:
Ro ui = 0 RL=
=∞
uo
io
b ib +
ic c
io
+
ui Rb rbe βib
Rc uo
-
-
e
Ro = Rc
上页
下页 首页 第六页,共17页。
15
Ro ≈ Rc = 3kΩ
上页
下页 首页 第十五页,共17页。
小结:
图解法
优点: 1. 既能分析静态, 也能分析动态的工作情况;
2. 直观 形象; 3. 适合分析具有特殊输入/输出特性的管子;
4. 适合分析工作在大信号状态下的放大电路。 缺点: 1. 特性曲线存在误差;
2. 作图麻烦,易带来误差;
动画
先画出三极管的等效电路,再依 次画出放大电路的交流通路
Rb
C1
+ ui -
Rc C2
VT RL
+VCC
+ uo -
b ib
ic c
+
ui
Rb rbe
βib
Rc
+
RL uo
-
-
e
单管共射放大电路的等效电路
5
上页
下页 首页 第五页,共17页。
b ib
ic c
+
ui
Rb rbe
放大电路的分析方法_OK
ICQ
iC 2
1
Q
Q’’
IB = 4 0 µA
直流负载线 20
0
0
2 t
电压放大倍数: 0
Au
ΔvO Δv
ΔvCE Δv
2
I
BE t
4. 5
VCvE6CQE
7. 5
9
0
12 vCE/V vCE/V
11
《模拟电子技术》
【例】用图解法求图示电路电压放大倍数。
RL = 3 k 。
解: 求 RL 确定交流负载线
1/RL 直线,该直线即为
O
VCEQ
交流负载线。 vCE /V
ICQRL
8
3) 动态工作情况图解分析
《模拟电子技术》
(1) 据vi的波形在输入特性曲线图上画vBE、iB的波形
iB
iB / µA
60
3条负载线
Q’
的方程?
Q
IBQ
40
iB
20
Q’’
0
2 t 0
0
0.68 0.7 0.72 vBE
VCC vBE/V
IC IB
2)求rbe
rbe
200
(1
)
26(mV ) IEQ (mA )
《模拟电子技术》
VCC
Rc
Rb
+
vs _
RL
VBB
VCC Rc IL
Rb IB
+IC
+
V_CE
VBE _
RL
VBB
34
3)画交流通路
Rb + vs _ VBB
4)放大电路的小信号模型
放大电路的基本分析方法
学校工作总结本学期,我校工作在全体师生的大力支持下,按照学校工作计划及行事历工作安排,紧紧围绕提高教育教学质量的工作思路,不断强化学校内部管理,着力推进教师队伍建设,进一步提高学校办学水平,提升学校办学品位,取得了显著的成绩。
现将我校一学期来的工作总结如下:一、德育工作本学期我校德育工作围绕学校工作中心,精心安排了“文明守纪”、“良好习惯养成”、“光辉的旗帜”、“争先创优”等主题教育月活动,从培养学生的行为规范,狠抓养成教育入手,注重务实,探索途径,加强针对性、实效性和全面性,真正把德育工作落到实处。
1.强化学生养成教育,培养学生良好习惯。
本学期,我校德育工作十分注重学生的常规管理,尤其重视对学生的养成教育。
一是利用班队会、红领巾广播站、国旗下演讲对学生进行品德熏陶。
二是以文明监督岗为阵地,继续强化了“文明班集体”的创建评比活动,通过卫生、纪律、两操等各项常规的评比,增强了学生的竞争意识,同时也规范了学生的行为。
三是继续加大值周检查的力度,要求值周领导、教师、学生按时到岗,在校门口检查、督促学生有秩序出入校园,从而使学生的行为规范时时有人抓,处处有人管,形成了良好的局面。
2.抓好班主任队伍建设,营造全员育人氛围。
班主任是学校德育工作最重要的力量,为了抓好班主任队伍建设,提高班主任素质水平,学校在第十二周组织开展了班主任工作讲座,在学期末举行了班主任工作交流,在活动中探索行之有效的工作方法,总结经验,交流心得,使班级管理工作更上新台阶。
3.充分发挥主题班队会的教育功能。
主题班队会,是对学生进行德育教育的一种特殊而卓见成效的方式之一。
为了充分发挥主题班队会的教育意义,第十三周,四(3)中队举行了“祖国美,家乡好”主题队会观摩活动,有效规范了我校主题中队会程序,强化了主题队会对学生的思想教育作用。
二、学校管理工作1.建立健全规章制度。
学期初,学校制定了出明确的目标计划及管理措施,做到了目标明确、工作具体,有效地增强了全体教师参与学校管理的主人翁意识,充分调动了全体教师的工作积极性,保障了教育教学工作的顺利开展。
三种放大电路的微变等效电路
三种放大电路的微变等效电路1. 基本概念在电子学中,放大电路是一种将输入信号增加到更大幅度的电路。
放大电路广泛应用于各种电子设备中,如音频放大器、射频放大器、功率放大器等。
放大电路可以分为多种类型,其中最常见的三种类型是共射放大电路、共集放大电路和共基放大电路。
放大电路的微变等效电路是为了更好地理解和分析放大电路的动态特性,从而更好地设计和优化电路。
2. 共射放大电路的微变等效电路共射放大电路是一种常用的单极性晶体管放大电路,它使用一个NPN型晶体管来放大输入信号。
下图展示了共射放大电路的基本电路图。
为了进行微变等效电路的分析,我们可以将晶体管替换为其微变等效电路。
共射放大电路的微变等效电路包括输入等效电阻、输出等效电阻以及电压放大系数。
输入等效电阻表示信号源与基极之间的等效电阻。
输出等效电阻是指负载电阻与输出端之间的等效电阻。
电压放大系数表示输出电压与输入电压之间的增益。
3. 共集放大电路的微变等效电路共集放大电路是另一种常见的单极性晶体管放大电路,它使用一个PNP型晶体管来放大输入信号。
下图展示了共集放大电路的基本电路图。
与共射放大电路类似,我们也可以将晶体管替换为其微变等效电路以进行分析。
共集放大电路的微变等效电路同样包括输入等效电阻、输出等效电阻以及电压放大系数。
输入等效电阻表示信号源与基极之间的等效电阻。
输出等效电阻是指负载电阻与输出端之间的等效电阻。
电压放大系数表示输出电压与输入电压之间的增益。
4. 共基放大电路的微变等效电路共基放大电路是第三种常见的单极性晶体管放大电路,它使用一个NPN型晶体管来放大输入信号。
下图展示了共基放大电路的基本电路图。
同样地,我们可以将晶体管替换为其微变等效电路以进行分析。
共基放大电路的微变等效电路也包括输入等效电阻、输出等效电阻以及电压放大系数。
输入等效电阻表示信号源与基极之间的等效电阻。
输出等效电阻是指负载电阻与输出端之间的等效电阻。
电压放大系数表示输出电压与输入电压之间的增益。
放大电路分析方法2微变等效-稳Q-三种电路
(1-10)
(双电源直接耦合)
Ro Rc
无论单电源阻容耦合还是双电源直接耦合, 无论信号源有无内阻,都不会影响输出电阻结果。
4.当信号源有内阻时:
求
Ri为放大电路的 输入电阻 . UO = . Ui . Ui . Us
(1-25)
2.4.3
温度补偿法稳定静态工作点
利用一个元件参数随温度的变化所引起的温漂来抵消另 一个元件参数随温度的变化所引起的温漂,从而达到稳 定工作点的目的,这就是温度补偿法的基本思想。
I / mA
15
Rb2
– 50 – 25
10 5
–0.01 0 0.2 –0.02 0.4
U/V
D
Rb1
静态工作点稳定电路(见P110)
+V CC +V CC
RL Au rbe
Rc // RL RL
Ri rbe // Rb1 // Rb2 Ro Rc
c
Rc RL
+
b
I b
I c
+
U i
Rb1
Rb2
rbe
I b
U o
若输出 无负载呢
(1-24)
e
I r (1 ) I R U i b be b E r (1 ) R 如无Ce,动态参数如何计算? I b be E
微 变 等 效 电 路 空载和负载情况下,输入电阻、输出电阻均相等,它们分别为:
Ri Rb // rbe rbe 1.3k
空载时和负载情况下电压放大倍数 有所不同,根据公式它们分别为: 空载:Au
三种放大电路的微变等效电路
三种放大电路的微变等效电路一、引言放大电路是电子工程中最基本的电路之一,其作用是将输入信号放大到一定程度后输出。
在实际应用中,我们常常需要对不同类型的信号进行放大,因此需要设计不同类型的放大电路。
本文主要介绍三种常见的放大电路:共射极放大电路、共基极放大电路和共集极放大电路,并对它们进行微变等效电路的分析。
二、共射极放大电路1. 基本原理共射极放大电路(Common Emitter Amplifier)是最常见的一种放大电路,其基本原理如下图所示:![image-1.png](attachment:image-1.png)其中,Vcc为直流供电电压,Rb为输入信号源阻抗,Rc为负载阻抗,Re为发射极稳压器阻抗。
2. 微变等效电路在微变等效电路中,我们将所有直流元件短接或开路,并用小信号模型替换晶体管。
如下图所示:![image-2.png](attachment:image-2.png)其中,rπ为输入阻抗,gm为转移导纳(即传输系数),r0为输出阻抗。
3. 放大倍数计算根据微变等效电路可得到放大倍数的计算公式:Av = -gm(Rc||RL)其中,Rc为晶体管的负载电阻,RL为输出电路的负载电阻。
4. 特点和应用共射极放大电路具有以下特点:(1)输入阻抗较高,输出阻抗较低;(2)放大倍数较大,一般可达几十至上百倍;(3)适用于中频和高频信号放大。
三、共基极放大电路1. 基本原理共基极放大电路(Common Base Amplifier)是一种常见的低噪声、高频率的放大电路。
其基本原理如下图所示:![image-3.png](attachment:image-3.png)其中,Vcc为直流供电电压,Rb为输入信号源阻抗,Rc为负载阻抗。
2. 微变等效电路在微变等效电路中,我们将所有直流元件短接或开路,并用小信号模型替换晶体管。
如下图所示:![image-4.png](attachment:image-4.png)其中,rπ为输入阻抗,gm为转移导纳(即传输系数),r0为输出阻抗。
(完整版)第2章基本放大电路(2--放大电路的微变等效电路分析方法)
(2)输入电阻
第第2章2 章基基本本放放大大电电路
Ri Rb // rbe
对于共发射极低频电压放 大倍数,rbe约为1KΩ左右。
通常Rb》 rbe,所以Ri≈ rbe。 Ri越大,放大电路从信号源取得的信号也越大。
广东水利电力职业技术学院电力系WXH
第4页 4
第第2章2 章基基本本放放大大电电路 输出电阻
第第2章2 章基基本本放放大大电电路 微变等效电路分析法
微变等效电路法就是在小信号条件下,在给定的工作范围内,将晶体管看 成一个线性元件。把晶体管放大电路等效成一个线性电路来进行分析、计算。
1.晶体管的微变等效模型 (1)晶体管输入回路的等效电路
rbe为晶体管的交流输入电阻,
广东水利电力职业技术学院电力系WXH
RL Re // RL
AV
Vo Vi
(1 ) R'L rbe (1 )R&院电力系WXH
输入电压与输 出电压同相
电压跟随器
第 10 页 10
(3)输入电阻
第第2章2 章基基本本放放I•大T大电电路
Ri
VT IT
+
•
Rb // RL
VT
-
(4)输出电阻
Ro
RS
rbe
第 15 页 15
第第2章2 章基基本本放放大大电电路
放大电路的幅频特性和相频特性,称为频 率响应。因放大电路对不同频率成分信号的增 益不同,从而使输出波形产生失真,称为幅度 频率失真,简称幅频失真。放大电路对不同频 率成分信号的相移不同,从而使输出波形产生 失真,称为相位频率失真,简称相频失真。幅 频失真和相频失真是线性失真。
广东水利电力职业技术学院电力系WXH
课件9-共射放大电路的微变等效电路[11页]
rbe rbb 1
VT mV I EQ mA
3. 画出放大电路的微变等效电路
ib
ic
vi
i
vo
4. 列出电路方程并求解
南京A信v息职业技rbb术eR学L' 院, RL' RL || RC
Ri Rb || rbe Ro Rc
输出电阻 根据定义:
Ro
=
Vo Io
RL ,
Vs 0
模拟电子技术
所以:
ii I i
Ro
Vo Io
Rc
0
Iibb
Rb
r be
南京信息职业技术学院
Iicc
Io
+
β ib Rc Vo
-
Ro
归纳等效电路法的步骤
模拟电子技术
1. 先确定Q点(IBQ、ICQ、VCEQ)
2. 求Q点处的β和rbe
β通常会给出
模拟电子技术基础
共射放大电路的微变等效电路
南京信息职业技术学院
小信号等效电路分析法
模拟电子技术
思路:将非线性的BJT等效成一个线性电路
适用范围:放大电路的输入信号是变化量 且电压很小时适用
南京信息职业技术学院
1.三极管的小信号等效电路
ΔiB与ΔuBE成正比
rbe
uBE iB
uCE 常数
模拟电子技术
负号表示输出电压与 输入电压反相
β ib (Rc // RL ) β (Rc // RL )
ib rbe
rbe
南京信(息可职作业为技术公学式院)
输入电阻
IRb
VS
ui
Ri
Ri
ui ii
ui (Rb // rbe ) ii
702(第3节 微变等效电路,第4节 多级放大电路)
' I b R' R L L AU
C
I b r be
r be
例:电路如图,β=40,计算Q、Au、Ri、Ro 。 (UBE=0) ○ 4K +12V 解:(1)确定Q
U CC 12 0.04m A IB 300 Rb I C I B 40 40 1.6mA
第三节
•
•
•
微变等效电路法
晶体管的微变等效电路
共射放大电路的微变等效电路
放大器的性能分析
一、晶体管的微变等效电路
1. 微变等效电路: 将三极管在小范围内等效为线性元件的电路。 2.三极管微变等效电路 输入回路:Q点附近近似看成直线。
U BE IB (μA) 恒量 r be IB 三极管b,e之间等效为一个电阻rbe。 Q △I B
RB
rbe
ic iO β ib
RC RL
uO
U i I b rbe rO r 3. 输出电阻 r i o ' // U I ( // ) R R RC b 0 - L L R R C L U I O O RO ro 可在输入电压为零,负载开路的 ' I b R L 条件下求得。 R R
26mV r be 300 (1 ) I EQ (mA)
△UBE
UBE (V)
输出回路:
Q点附近可看成平行于X轴
的直线,则
IC (mA)
Ic Ib --受控电流源
三极管c,e之间等效为受控电流源。 ib B C B E E rbe
ic
UCE (V)
β ib
C
放大电路的微变等效电路分析法
放大电路的微变等效电路分析法(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--放大电路的微变等效电路分析法 (简化h 参数等效电路法)一.晶体管微变等效电路 (晶体管微变等效模型)CEI I(b )eI U CE(a )c1.从输入端看,be 间等效为晶体管输入电阻bbebe i u r =)()(26)1(003)1(mA I mV I U r r EQ EQ T bbbe ββ++=++'=bbr ':晶体管基区电阻,一般取Ω200 2.从输出端看,ce 间等效为流控流源b c i i β= ∞=ce r 3.注意:1)电流源b i β方向由b i 决定;2)be r 、i R 和bbr '的区别。
be r :晶体管输入电阻,i R :放大器输入电阻;bb r ':晶体管基区电阻。
'i R :晶体管输入端放大器输入电阻3)等效电路对管外等效,管内不等效,be r 、CCCS b i β并不存在,是等效模型;4)放大器分析时,注意b 、e 、c 与管外电路的对应关系。
(管外电路不变)。
5)等效关系:be 间电阻be r ;ce 间电流源b i β;bc 间开路。
(标注b i 和b i β以及各自方向)_ 4.画放大器微变参数等效电路的步骤: 1)画交流通路;2)将放大器交流通路中的晶体管用微变等效模型代替,管外电路不变。
注意:(1)b i 、b c i i β=及方向的标注; (2)放大器i u 、o u 物理量及方向的标注。
(3) be 间电阻be r ;ce 间电流源b i β;bc 间开路。
(4)计算be r ()()(26)1(003mA I mV r EQ be β++=)2.放大器的动态分析(性能指标求法)1)画放大器的交流通路;2)画放大器的微变等效电路并求出be r (晶体管用简化h 参数等效模型代替,管外电路不变)。
三极管及放大电路—放大电路的微变等效电路分析法(电子技术课件)
二、放大电路动态指标的估算
1.性能指标估算
共射放大电路微变等效电路
(1)电压放大倍数的估算
•
•
AU
UO
.•
Ui
•
•
Ui Ib rbe
•
•
Uo Ib R'(L R'L RC // RL )
•
•
故共射放大电路的电压放大倍数为:
•
AU
UO
.•
Ui
I b R'L
•
Ibr be
R'L
rbe
•
•
如果不考虑 U i 和 U o各自的相位关系,则上式也可以写成:
AU
UO
.
Ui
I b R'L
Ibr be
R'L
rbe
式中“-”表示输入信号与输出信号相位相反。
空载时电压倍数:
Au
RC rbe
Au Au 说明:放大电路带上负载后放大倍数将降低。
(2)输入电阻ri
(3)输出电阻ro
ro Rc
2.输入电阻ri
放大电路的输入端可以用一个等效交流电阻ri来表示,它定义为:
ri
ui ii
+
rs
us -
+ ii
ui -
放大电路
ro
ri
+
uo′ -
+ io
RL
uo
-
ri
ro
放大器接到信号源上以后,就相当于信号源的负载电阻,ri 越大表示放
大器从信号源索取的电流越小,信号利用率越高。
3.输出电阻ro
一是放大倍尽可能大; 二是输出信号尽可能不失真。 主要技术指标有:放大倍数、输入电阻、输出电阻。
微变等效电路分析方法
电源电路是电子设备中的重要组成部分,通过微变等效电路分析方法,可以简化电路模型,提高分析效率。
详细描述
在电子设备中,电源电路负责提供稳定的直流电压或电流。由于电源电路通常包含电阻、电容、电感等元件,其 分析较为复杂。通过微变等效电路分析方法,可以将电源电路简化为一个等效模型,从而快速准确地计算出电路 的性能参数。
局限性
复杂度高
对于复杂电路,微变等效电路可能变得非常复杂,需要花费大量时 间和精力进行建模和计算。
近似性限制
该方法假设电路元件的特性在小信号下变化,对于大信号或非线性 电路,其预测精度可能会受到影响。
实际应用限制
由于该方法主要关注元件的动态特性,对于实际应用中需要考虑的其 他因素(如温度、噪声等)考虑不足。
利用微变等效电路分析方 法,可以对电子设备的性 能进行评估,如频率响应、 噪声系数等。
故障诊断
通过分析电子设备在不同 工作状态下的微变等效电 路,可以诊断设备是否存 在故障。
在电力网络中的应用
电力传输
微变等效电路分析方法可用于分析电力网络中的电压和电流分布, 优化电力传输。
故障定位
通过分析电力网络中的微变等效电路,可以快速定位故障点,提 高故障排除效率。
02
通过合理的构建微变等效电路,可以有效地简化电 路分析过程,提高分析效率。
03
构建微变等效电路是微变等效电路分析方法的关键 步骤。
03
微变等效电路分析方法的应 用
在电子设备中的应用
01
02
03
电路元件识别
通过微变等效电路分析方 法,可以识别电子设备中 的电路元件,如电阻、电 容、电感等。
性能评估
特点
适用于分析电路中的微小变化,能够 快速准确地得出电路的性能参数,适 用于各种类型的电路分析。
放大电路分析方法
uCE
输入端交流开路时的输出电导,单位为西
门子(S)完;整编辑ppt
35
hie,hre,hfe,hoe称为BJT在共射极接法下的H参数, 由于四个h参数的单位量纲各不相同,故称该参数为
混合参数。。
等效模型图如下:
以上所得电路就是把 BJT线性化后的线性模 型。在分析计算时, 可以利用这个模型来 代替BJT,从而,可以 把BJT当作线性电路来 处理,使非线性复杂 电路的计算得以解决。
信号的不同分量可以分别在不同的通路中分析。
在分析放大电路时,应遵循“先静态,后动态”的
原则,求解静态工作点Q时应用直流通路,求解动
态参数时应用交流通路,两种通路必须分清,不可
混淆。
完整编辑ppt
3
利用上述原则,直接耦合和阻容耦合共射放大电路 的直、交流通路分别为:
完整编辑ppt
4
RC耦合共射放大电路
答: 截止状态
共射极放大电路
故障原因可能有:
• Rb支路可能开路, IB=0, IC=0, VCE= VCC - IC Rc= VCC 。 • C1可能对地短路, VBE=0, IB=0, IC=0, VCE= VCC - IC Rc= VCC 。
完整编辑ppt
27
作业:看懂“图解分析法” 预习“等效电路分析法”
a)、直流负载线
直流通路下负载的VAR关系曲线。
RB RC
+VCC IC
UCE
直流通路
1. 三极管的输出特性。
2. UCE=VCC–ICRC 。
V CC
IC
与输出 特性的
R C
交点就
是Q点
Q IB
直流 负载线
完整编辑ppt
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
U CE =常数
u be = ib
U CE =常数
一、晶体管微变等效电路分析
IB UCE=常数 B Q IB △IB B ib ube ube ib rbe
△UBE 0 a UBE
E b
E
图2-9 晶体管输入回路微变等效电路 a 从输入特性曲线求rbe b 晶体管B—E间等效电路
二、用微变等效电路分析放大器
CC
RB C1 RS 1kΩ + - +
300kΩ 3kΩ RC +
12V C2 + B RS + - - - b + RB E 3kΩ C RC RL
3DG6 20µF β=50 RL
a
+ RS + -- RB rbe β RC RL
+
-
Ri
c 图2-12 例2的放大电路
Ro
1.画微变等效电路
首先画出图2-12a的交流通路图b,然后把图b 中的晶体管用微变等效电路代替,最后画出放 大电路的微变等效电路,如图c所示,也可以 由图a直接画出图c。
& RΒ rbe Ui Ri= &= R + r Ii Β be
(2)输出电阻
放大器对负载来说,是一个信号源,其内阻即 为放大电路的输出电阻RO。
2.电压放大倍数的计算
& & ′ & = U o = − I c RL Au & & Ui I b rbe
& ′ ′ & = − β I b RL = − β RL Au & rbe I b rbe
当负载开路时RL=RC则
R & Au = − β C rbe
3.放大器的输入电阻和输出电阻计算
(1)输入电阻。图2-12a所示的放大器对信号 源来说是一个负载,可用一个电阻等效代替, 这个电阻是信号源的负载,也是从放大器输入 端看进去的输入电阻Ri。输入电阻定义为放大 器输入端的输入电压与输入电流之比 。即
IC ic C ib uce βib rce uce △IC IC Q △IB △UCE △IC ic C
E a
E
0
UCE UCE b
图2-10 晶体管输出回路及微变等效电路
B
ib
ic
C
ube
rbe
βib
rce
uce
E 图2-11 晶体微变等效电路
二、用微变等效电路分析放大器
用微变等效电路来分析计算如图2-12a所示共发射极 放大电路的电压放大倍数。 +V
第三节
放大电路的微变等效电路分析法
一、晶体管微变等效电路分析
二、用微变等效电路分析放大器
一、晶体管微变等效电路分析
1.三极管输入回路等效电路分析 如图2-9a是输入特性曲线,它是非线性的。 但是输入小信号时,在静态工作点Q附近工作 的工作段可认为是直线,晶体管的输入电阻。
∆U BE rbe = ∆I B