第43讲 利用空间向量求空间角和距离(讲)(解析版)
用向量法求空间角及距离
用向量法求空间角与距离1.1. 向量的数量积和坐标运算 b a,是两个非零向量,它们的夹角为θ,则数θcos ||||⋅⋅b 叫做a 与b 的数量积(或内积),记作⋅,即.cos ||||θ⋅⋅=⋅b a b a 其几何意义是的长度与b 在a 的方向上的投影的乘积. 其坐标运算是:若),,(),,,(222111z y x z y x ==,则①212121z z y y x x b a ++=⋅;②222222212121||,||z y x b z y x a ++=++=;③212121z z y y x x b a ++=⋅④222222212121212121,cos z y x z y x z z y y x x ++⋅++++>=<1.2. 异面直线n m ,所成的角分别在直线n m ,上取定向量,,b a则异面直线n m ,所成的角θ等于向量b a,所成的角或其补角(如图1所示),则.||||||cos b a b a⋅⋅=θ (例如2004年高考数学广东卷第18题第(2)问)1.3. 异面直线n m 、的距离分别在直线n m 、上取定向量,,b a 求与向量b a 、都垂直的向量n ,分别在n m 、上各取一个定点B A 、,则异面直线n m 、的距离d 等于在图1上的射影长,即d =.证明:设CD 为公垂线段,取b a==,(如图1所示),则||||)(⋅=⋅∴⋅++=⋅∴++= ||||n d ==∴设直线n m ,所成的角为θ,显然.||||||cos b a b a⋅⋅=θ 1.4. 直线L 与平面α所成的角在L 上取定,求平面α的法向量2所示),再求||||cos n AB ⋅=θθπβ-=2为所求的角.1.5. 二面角方法一:构造二面角βα--l 的两个半平面βα、的法向量21n n 、(都取向上的方向,如图3所示),则 ①若二面角βα--l 是“钝角型”的如图3甲所示,那么其大小等于两法向量21n n 、的夹角的补角,即||||cos 2121n n ⋅=θ(例如2004年高考数学广东卷第18题第(1)问). ② 若二面角βα--l 是“锐角型”的如图3乙所示,那么其大小等于两法向量21n n 、的夹角,即||||c o s 2121n n ⋅=θ(例如2004年高考数学广东卷第18题第(1)问).方法二:在二面角的棱l 上确定两个点B A 、,过图3甲图2B A 、分别在平面βα、内求出与l 垂直的向量21n n 、(如图4所示),则二面角βα--l 的大小等于向量21n n 、的夹角,即 ||||cos 2121n n ⋅=θ1.6. 平面外一点p 到平面α的距离先求出平面α的法向量,在平面内任取一定点A ,则点p 到平面α的距离d 等于在上的射影长,即||n d =.(例如2004年广州一模第18题第(Ⅱ)问).1.7. 法向量2.1. 基向量法由于空间中任何向量均可由不共面的三个基向量来线性表示,因此在解题时往往根据问题条件首先选择适当的基向量,把有关线段根据向量的加法、数乘运算法则与基向量联系起来. 再通过向量的代数运算,达到计算或证明的目的. 一般情况下,选择共点且不共面的三个已知向量作为基向量.[例 1] 如图6,已知正三棱柱111C B A ABC -的棱长为2,底面边长为1,M 是BC 的中点.(1)在直线1CC 上求一点N ,使1AB MN ⊥; (2)当1AB MN ⊥时,求点1A 到平面AMN 的距离. (3)求出1AB 与侧面11A ACC 所成的角.分析1 (1)的 问题显然是求使异面直线MN 与1AB 所成的角为直角的点N .依据向量数量积的概念,必须由条件011=⋅⇒⊥AB AB MN ,求出的长度,而与1AB 都不是已知向量,且和没有直接联系,因此必须选择一组基向量来表示与1AB . (1)解法一:取共点于B 的三个不共面的已知向量1BB 、为基向量,A BCM N1A 1B1C 图6图5021210)21()(21,,01111111111=⋅+⋅+⋅+⋅⇒=+⋅+⇒+=+=+==⋅⇒⊥-CN BB BC BB CN AB BC AB BB BB AB AB AB C B A ABC 及正三棱柱由00cos ||290cos 122190cos ||1120cos 1121=︒⋅⋅+︒⋅⋅⋅+︒⋅⋅+︒⋅⋅⋅⇒81||0||20041=⇒=+++-⇒CN CN分析 2 本小题还可以取共点于A 的三个不共面的已知向量1,,AA AC AB 为基向量,从而得 (1)解法二:,111AA AB BB AB AB +=+=AA AA AA AA AA AA AB ⋅+⋅+⋅-⋅+-⋅=⋅++-⋅+=+-⋅+=⋅∴+-=+-+=-=11121111)(21)()()(21])(21[)(.)(21)(21)(a a a 20021410cos 290cos 1)90cos 1290cos 12160cos 11(212+-+-=︒⋅⋅+︒⋅⋅+︒⋅⋅-︒⋅⋅+-︒⋅⋅=.81||81,020014101=∴==+-+-∴=⋅a a AB ,比较方法一与方法二,方法一比方法二运算简便. 因为用方法一选择的一组基向量表示MN 时式子较为简单. 这告诉我们可选择的基向量并不唯一,我们应选择使得运算简便的那一组向量作为基向量. 当几何体中能够找到(或构造出)三个共点且两两垂直的基向量时,我们就可以用下面的方法解决问题.2.2. 坐标法所谓坐标法,就是建立适当的空间直角坐标系(本文所建立的都是右手直角坐标系),把向量用坐标来表示,用向量的坐标形式进行向量的运算,以达到解决问题的目的.运用坐标法时,也必须首先找出三个基向量,并且这三个基向量两两垂直,由此建立空间直角坐标系. 因而坐标法是基向量法的特殊情形,但坐标法用于求长度、角度或解决垂直问题时,比较简单.在坐标法下,例1几何体中容易找到共点不共面且互相垂直的三个向量,于是有如下解法: (1)解法三:以1AA AC 、分别为y 轴、z 轴,垂直于1AA AC 、的为x 轴建立空间直角坐标系xyz A -,设a =||,则有 、)0,0,0(A ),1,0()0,43,43()2,21,23(1a N M B 、、. 于是得由AB AB a ⊥=-=11),2,21,23(),,41,43(810281830)2,21,23(),41,43(01=⇒=++-⇒=⋅-⇒=⋅a a a AB 由上面的解法三可知,通过建立空间直角坐标系,找出了相关点的坐标,从而把几何图形的性质代数化,通过向量的计算解决问题,显得快捷简便.在空间直角坐标系下,例1的第(2)、(3)问便迎刃而解了. 下面给出解答.(2)解:当1AB MN ⊥时,由(1)解法三知,、)0,0,0(A )81,1,0()0,43,43()2,21,23(1N M B 、、、 )2,0,0(1A ,则)2,0,0(),0,43,43(),81,41,43(1==-=AA ,设向量),,(z y x =与平面AMN 垂直,则有)0()1,1,3(8),81,83(81830434********>-=-=∴⎪⎪⎩⎪⎪⎨⎧-==⇒=⎪⎪⎭⎪⎪⎬⎫=+=++-⇒⎪⎭⎪⎬⎫⊥⊥z zz z z z y z x y x z y x 取)1,1,3(0-=n向量1AA 在0n 上的射影长即为1A 到平面AMN 的距离,设为d ,于是5521)1()3(|)1,1,3()2,0,0(||||||||,cos |||22201011011=+-+-⋅=⋅=><⋅=n AA AA n AA AA d (3)根据上面“1.4. 直线L 与平面α所成的角”中所提到的方法,须求出平面11A ACC 的一个法向量,进而求1AB 与所在直线的夹角。
利用空间向量求空间角与距离
【反思·感悟】空间距离包括两点间的距离、点到线的距离、 点到面的距离等.其中点到点、点到线的距离可以用空间向量的 模来求解,而点到面的距离则借助平面的法向量求解,也可借 助于几何体的体积求解.
用空间向量解决探索性问题 【方法点睛】
探索性问题的类型及解题策略 探索性问题分为存在判断型和位置判断型两种: (1)存在判断型 存在判断型问题的解题策略是:先假设存在,并在假设的前提 下进行推理,若不出现矛盾则肯定存在,若出现矛盾则否定假 设.
t2 t2 4 t 2 2t2 2
即
4
5
解得t= 或t=4(舍去,因为AD=4-t>0),
所以AB=4 .……………………………………………………8分
5
②假设在线段AD上存在一个点G(如图),使得点G到点P、B、 C、D的距离都相等,
设G(0,m,0)(其中0≤m≤4-t),则
GC 1,3 t m,0,GD 0,4 …t …m,…0…,G9P分 (0, m, t)
【例1】(1)(2012•合肥模拟)已知正方体ABCD-A1B1C1D1,则直线 BC1与平面A1BD夹角的余弦值是( )
(A) 2
4
(C) 3
3
(B) 2
3
(D) 3
2
(2)(2012·天津模拟)如图,在五面 体ABCDEF中,FA⊥平面ABCD,
AD∥BC∥FE,AB⊥AD,M为EC的中点, AF=AB=BC=FE= 1 AD.
点容易造成失分,在备考时要高度关注:
(1)建系前缺少证明垂直关系而使步骤不完整.
备 考 (2)建系不恰当,导致点的坐标不易确定或求解时繁琐.
建 议
(3)不会利用直线的方向向量及平面法向量解决相应问题.
用空间向量求空间角课件(共22张PPT)
向量的加法与数乘
向量的加法满足平行四边形法则或三 角形法则,即$vec{a} + vec{b} = vec{b} + vec{a}$。
数乘是指实数与向量的乘积,满足分 配律,即$k(vec{a} + vec{b}) = kvec{a} + kvec{b}$。
向量的数量积
向量的数量积定义为$vec{a} cdot vec{b} = left| vec{a} right| times left| vec{b} right| times cos theta$,其中$theta$为两 向量的夹角。
数量积满足交换律和分配律,即$vec{a} cdot vec{b} = vec{b} cdot vec{a}$和$(lambdavec{a}) cdot vec{b} = lambda(vec{a} cdot vec{b})$。
03 向量的向量积与混合积
向量的向量积
定义
两个向量a和b的向量积是一个向量,记作a×b,其模长为 |a×b|=|a||b|sinθ,其中θ为a与b之间的夹角。
适用范围
适用于直线与平面不垂直的情况。
利用向量的混合积求二面角
1 2 3
定义
二面角是指两个平面之间的夹角。
计算公式
cosθ=∣∣a×b×c∣∣∣∣a∣∣∣∣b∣∣∣∣c∣∣,其中a、 b和c分别是三个平面的法向量,θ是两个平面之 间的夹角。
适用范围
适用于两个平面不平行的情况。
06 案例分析
案例一:利用空间向量求线线角
定义
线线角是指两条直线之间的夹角。
计算公式
cosθ=∣∣a⋅b∣∣∣∣a∣∣∣∣b∣∣∣, 其中a和b是两条直线的方向向量,
空间向量的应用----求空间角与距离
且 G是EF的中点,
(Ⅰ)求证平面AGC⊥平面BGC;
(Ⅱ)求GB与平面AGC所成角的正弦值.
(Ⅲ)求二面角B—AC—G的大小.
解析:如图,以A为原点建立直角坐标系,
则 , , ,
,
(I)证明:略.
(II)由题意可得 , ,
, ,
空间向量的应用----求空间角与距离
一、考点梳理
1.自新教材实施以来,近几年高考的立体几何大题,在考查常规解题方法的同时,更多地关注向量法(基向量法、坐标法)在解题中的应用。坐标法(法向量的应用),以其问题(数量关系:空间角、空间距离)处理的简单化,而成为高考热点问题。可以预测到,今后的高考中,还会继续体现法向量的应用价值。
(3)求二面角 的大小.
解析:(1)以 为原点, 、 、 分别为 、 、 轴建立空间直角坐标系.
则有 、 、 、
设平面 的法向量为
则由
由
,则点 到面 的距离为
< > 所以异面直线 与 所成的角 .
(3)设平面 的法向量为 则由 知:
由 知: 取
由(1)知平面 的法向量为
则 < > .
结合图形可知,二面角 的大小为: .
取 ,得 。
设二面角 的大小为 ,由 、 的方向可知 ,
所以 ,即二面角 的大小是 。
感悟:(1)用法向量的方法处理二面角的问题时,将传统求二面角问题时的三步曲:“找——证——求”直接简化成了一步曲:“计算”,这表面似乎淡化了学生的空间想象能力,但实质不然,向量法对学生的空间想象能力要求更高,也更加注重对学生创新能力的培养,体现了教育改革的精神。
用空间向量研究距离、夹角问题全文
P• β
d
n Q
αA
例6 如图示,在棱长为1的正方体ABCD-A1B1C1D1中,E为线段AB的中点,F为线段
AB的中点.
z
(1) 求点B到直线AC1的距离;
D
C
(2) 求直线FC到平面AEC1的距离.
解 : (1) 如图示,以D1为原点建立空间直角坐标系, 则有
A
F
B
B(1,1,1), A(1, 0,1), C1(0,1, 0).
EF=l,求公垂线AA′的长.
A′ m E
a
解:∵ EF =EA+ AA+ AF, ∴EF 2 =(EA+ AA+ AF )2
A
n
Fb
2
2
2
=EA + AA + AF +2(EA AA+AA AF +AF AA)
m2 d 2 n2 2mncos .
∴d l2 m2 n2 2mncos .
(1, 0,
1 ), 2
A1 A
(0, 0, 1).
设平面AB1E的一个法向量为n ( x, y, z) ,则
y z 0
∴
x
1 2
z
0
,
取z
2, 则x
1,
y
2.
D
A x
F
C
y
B
∴平面AB1E的一个法向量为n (1, 2, 2).
点A1到平面AB1E 的距离为 |
A1 A n |n|
|
2 3
.
D1
∴AB (0,1,0), AC1 (1,1, 1).
A1
直线AC1 的单位方向向量为u
向量法求空间的距离和角
所以异面直线BD与D1A间的距离为
3 。 3
(2) A1 B1 = (0,1, 0), 设n = ( x, y, z )是平面A1DB的一 个法向量,因为DA1 = (1, 0,1), DB = (1,1, 0), ì ì x +z = 0 nDA1 = 0 镲 由眄 即 取x = - 1, 镲 î x+y =0 î nDB = 0 | nA1 B1 | 1 2 于是n = (-1,1,1, ),且 = = 。 2 |n| 2 2 所以点B1到平面A1 BD的距离为 。 2
例1:如图1所示: 三棱柱ABC - A1 B1C1中,CA=CB, AB = AA1, ? BAA1 60o, ( 1)求证:AB^ A1C (2)若平面ABC ^ 平面AA1 B1 B, AB =CB,求直线A1C与平面BB1C1C 所成角的正弦值。
C C1
B A A1
B1
图1
C
C1
O
B A1
Z
解:由(1)知OC ^ AB,OA1 ^ AB, 又平面ABC ^ 平面AA1 B1 B,交线 为AB,所以OC ^ 平面AA1 B1 B, 故OA、OA1、OC两两相互垂直。 建立如图所示的空间直角坐标系 A
O
C
C1
B A1
B1 图1-2
X o - xyz 设AB = 2,由题设知A(1, 0, 0)、B(- 1, 0, 0)、C (0, 0, 3)、A1 (0, 3, 0), 则BC = (1, 0, 3)、 BB1 = AA1 = (- 1, 3, 0)、 A1C = (0, - 3, 3). 设n = ( x, y, z )是平面BBCC的法向量,则 ì x + 3z = 0 ì nBC = 0 镲 即 可取n = ( 3,1, -1), 眄 镲 î nBB1 = 0 î - x + 3y = 0 nA1C 10 故 cos < n, A1C >= =. 5 | n | ×| A1C |
空间向量的夹角和距离公式(讲课)
| AM| 5 30 6.故 点 A到 直 线 EF的 距 离 为6.
2 10 4
4
课堂练习:
1 . 若 正 方 体 A B C D A 1 B 1 C 1 D 1 的 边 长 为 1 , E , F 分 别 是
C C 1 , D 1 A 1 的 中 点 . 求 ( 1 ) < F E , F A , ( 2 ) 点 A 到 直 线 E F 的 距 离 .
四、课堂小结:
1.基本知识: (1)向量的长度公式与两点间的距离公式; (2)两个向量的夹角公式。 2.思想方法:用向量计算或证明几何问题 时,可以先建立直角坐标系,然后把向量、点坐 标化,借助向量的直角坐标运算法则进行计算或 证明。
作业与练习
P74:1、2、4
A B (x 2 x 1,y 2 y 1,z2 z 1 )
|A B |A BA B(x 2 x 1 )2 (y 2y 1 )2 (z2 z1 )2
d A ,B(x 2 x 1 )2 (y 2y 1 )2 (z2 z1 )2
(2).两个向量夹角公式
cosa,b ab
a1b1a2b2a3b3
;
|a||b| a12a22a32 b12b22b32
cosFE,FA 30.
4
10
课堂练习:
1 . 若 正 方 体 A B C D A 1 B 1 C 1 D 1 的 边 长 为 1 , E , F 分 别 是
C C 1 , D 1 A 1 的 中 点 . 求 ( 1 ) < F E , F A , ( 2 ) 点 A 到 直 线 E F 的 距 离 .
D
O
A
x
C
y
|BE1|
1 47,|DF1|
第43讲 │ 立体几何中的向量方法(二)——空间角与距离求解
第43讲 │ 要点探究
[思路]
建立恰当的空间直角坐标系,求出直线的方向向量
和平面的法向量,使用公式进行计算,
[答案] A
第43讲 │ 要点探究
[解析] 设正三棱柱所有棱长均为a,以C为顶点,CA为x
轴,CC1为z轴建立空间直角坐标系如图,
第43讲 │ 要点探究
1 则A(a,0,0),B1 a, 2 1 3 3 → a,a ,所以AB1 = - a, a,a , 2 2 2
第43讲 │ 问题思考 问题思考
► 问题1 (1)两直线的方向向量所成的角就是两条直 ) )
线所成的角;( 与平面所成的角;( 角.( )
(2 (3)两个平面的法向量所成的角是这两个平面所成的
[答案] (1)错
(2)错
(3)错
第43讲 │ 问题思考
第43讲 │ 要点探究
第43讲 │ 要点探究
→ → → → 同方法1,作AM⊥A1N于M,AM=AC+CD+λDA1 =(-1+λ,1+λ,- 3+ 3λ), → · 1=0得λ=3, → 由AM DA 5
2 8 2 3 → 所以AM=- , ,- . 5 5 5
→ → → → BN=BC+CD+μDA1=(-2+μ,1+μ, 3μ), → · 1=0得μ=1, → 由BN DA 5
第43讲 │ 要点探究
→ → → [解答] 方法1:设不共面的向量CB=a、CD=b、CA=c为 → → → 基向量,则DA1=CA1-CD=b+c, 过点A作AM⊥DA1于点M, → → → → 则AM=AC+CD+DM → → → =AC+CD+λDA1 =-c+b+λ(b+c) =(λ+1)b+(λ-1)c, → → → DA → 因为AM⊥DA1,所以AM· 1=0,
空间向量的应用-求空间角与距离
∴R→D=(0,53a,-23a).
设平面RQD的法向量为n1=(x,y,z), 则n1·R→D=0,n1·R→Q=0,∴n1=(0,2,5). ∵平面BED的法向量为n2=(0,0,1),
∴cos〈n1,n2〉=5
29 29 .
∴sin〈n1,n2〉=2
29 29 .
∴平面BED与平面RQD所成二面角的正弦值为2 2929.
3a
解法二:(2)如图,以B为原点,
→
BE
为x轴正方向,
→
BD
为y轴正方向,过B作平面BEC的垂线,建立空间直角坐标
系,由此得
B(0,0,0),C(0,a,0),D(0,2a,0),E(a,0,0).
∵FD=FB,BC=CD,∴FC⊥BD.∴FC=20,13a,23a),R→Q=23B→E=(23a,0,0).
么异面直线 OE 和 FD1 所成角的余弦值等于( )
10 A. 5
15 B. 5
4
2
C.5
D.3
[解析] 如图所示,建立空间直角坐标系,则 D1(0,0,2), F(1,0,0),O(1,1,0),E(0,2,1),设 OE 和 FD1 所成的角为 θ, 则
cosθ=|cos〈O→E,F→D1〉|
(1)求证:PA⊥平面ABCD; (2)求异面直线EF与BD所成角的余弦值.
(1)[证明] 由于平面PAD⊥平面ABCD,且平面PAD∩平面 ABCD=AD,
而∠PAD=90°即PA⊥AD, PA⊂平面PAD 由面面垂直的性质定理得:PA⊥平面ABCD. (2)[解] 解法一:建立如图所示的空间直角坐标系A-xyz,
α所成角θ与〈n,
→
OP
〉的关系,它们互为余角,注意最后
用向量方法求空间角和距离(教师版)
用向量方法求空间角和距离在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题.1 求空间角问题空间的角主要有:异面直线所成的角;直线和平面所成的角;二面角.(1)求异面直线所成的角设a 、b 分别为异面直线a 、b 的方向向量,则两异面直线所成的角α=arccos ||||||a b a b (2)求线面角设l 是斜线l 的方向向量,n 是平面α的法向量,则斜线l 与平面α所成的角α=arcsin ||||||l n l n(3)求二面角法一、在α内a l ⊥,在β内b l ⊥,其方向如图,则二面角l αβ--的平面角α=arccos ||||a b a b法二、设12,,n n 是二面角l αβ--的两个半平面的法向量,其方向一个指向内侧,另一个指向外侧,则二面角l αβ--的平面角α=1212arccos ||||n n n n 2 求空间距离问题构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,像异面直线间的距离、线面距离;面面距离都可化为点面距离来求.(1)求点面距离法一、设n 是平面α的法向量,在α内取一点B,则 A 到α的距离|||||cos |||AB n d AB n θ==法二、设AO α⊥于O,利用AO α⊥和点O 在α内的向量表示,可确定点O 的位置,从而求出||AO .(2)求异面直线的距离法一、找平面β使b β⊂且a β,则异面直线a 、b 的距离就转化为直线a 到平面β的距离,又转化为点A 到平面β的距离.法二、在a 上取一点A, 在b 上取一点B, 设a 、b 分别为异面直线a 、b 的方向向量,求n (n a ⊥,n b ⊥),则异面直线a 、b 的距离|||||cos |||AB n d AB n θ==(此方法移植于点面距离的求法).例1.如图,在棱长为2的正方体1111ABCD A BC D -中,E 、F 分别是棱1111,A D A B 的中点. (Ⅰ)求异面直线1DE FC 与所成的角;(II )求1BC 和面EFBD 所成的角;(III )求1B 到面EFBD 的距离解:(Ⅰ)记异面直线1DE FC 与所成的角为α,则α等于向量1DE FC 与的夹角或其补角,(II )如图建立空间坐标系Dxyz -, 11||||111111cos ||()()||||||22||,arccos 55DE FC DE FC DD D E FB B C DE FC αα∴=++===∴=则(1,0,2)DE =,(2,2,0)DB =设面EFBD 的法向量为(,,1)n x y = 由00DE n DB n ⎧⋅=⎪⎨⋅=⎪⎩得(2,2,1)n =- 又1(2,0,2)BC =-记1BC 和面EFBD 所成的角为θ则 1112sin |cos ,|||2||||BC n BC n BC n θ⋅=〈〉== ∴ 1BC 和面EFBD 所成的角为4π. (III )点1B 到面EFBD 的距离d等于向量1BB 在面EFBD 的法向量上的投影的绝对值,1||||BB n d n ∴==23 设计说明:1.作为本专题的例1,首先选择以一个容易建立空间直角坐标系的多面体―――正方体为载体,来说明空间角和距离的向量求法易于学生理解.2.解决(1)后,可让学生进一步求这两条异面直线的距离,并让学生体会一下:如果用传统方法恐怕很难(不必多讲,高考对公垂线的作法不作要求).3.完成这3道小题后,总结:对于易建立空间直角坐标系的立几题,无论求角、距离还是证明平行、垂直(是前者的特殊情况),都可用向量方法来解决,向量方法可以人人学会,它程序化,不需技巧.例2.如图,三棱柱中,已知A BCD 是边长为1的正方形,四边形B B A A '' 是矩形,。
§11.2 利用空间向量求空间角与距离
标分别为 A1(2,0,1),C1(0,2,1),E(2,1,0),F(1,2,0),C(0,2,0),D1(0,0,1).
因为������1������1=(-2,2,0),������������=(-1,1,0),
所以������1������1∥������������,因此直线 A1C1 与 EF 共面,即 A1,C1,F,E 共面.
设平面 A1C1FE 的法向量为 n=(u,v,w),则 n⊥������������,n⊥������������1.
又������������=(-1,1,0),������������1=(-1,0,1),故
-������ + ������ = 0, 解得 u=v=w. -������ + ������ = 0,
【解析】(1)取 AB 的中点 D,连接 CD,DF,DE,
3.线面距离、面面距离都可以转化为 点到面的距离 .
答案
基础训练
1.两个不重合平面的法向量分别为 v1=(1,0,-1),v2=(-2,0,2),则这两个平面的位置
关系是( A ).
A.平行 B.相交但不垂直 C.垂直
D.以上都不对
【解析】因为 v1 与 v2 共线,所以两个平面平行.
答案 解析
2.平面 α 的一个法向量为 n=(1,- 3,0),则 y 轴与平面 α 所成的角的大小为( B ).
取 u=1,得平面 A1C1FE 的一个法向量 n=(1,1,1).又������������1=(0,-2,1),故|������������������������11|·|������������|=- 1155. 因此直线 CD1 与平面 A1C1FE 所成的角的正弦值为 1155.
高中数学优质课件【立体几何中的向量方法——求空间角与距离】
面直线 AB 和 CD 所成角的余弦值为________.
1 4
解析:设等边三角形的边长为 2.取 BC 的
中点 O,连接 OA,OD.因为等边三角形 ABC 和
BCD 所在平面互相垂直,所以 OA,OC,OD 两
两垂直,以 O 为坐标原点,OD,OC,OA 所在
直线分别为 x 轴、y 轴、z 轴建立如图所示的空间
直角坐标系.
则 A(0,0, 3),B(0,-1,0),C(0,1,0),D( 3,0,0), 所以A→B=(0,-1,- 3),C→D=( 3,-1,0), 所以 cos〈A→B,C→D〉=|AA→→BB|·|CC→→DD|=2×1 2=14, 所以异面直线 AB 和 CD 所成角的余弦值为14.
1 2 3 45
4.在空间直角坐标系 Oxyz 中,平面 OAB 的一个法向量为 n=(2,
-2,1),已知点 P(-1,3,2),则点 P 到平面 OAB 的距离 d 等于( )
A.4
B.2
C.3
D.1
B 解析:P 点到平面 OAB 的距离为 d=|O→|Pn·|n|=|-2-96+2|=2.
12345
B1(1,1, 3),所以A→D1=(-1,0, 3),D→B1=(1,1, 3).设异面直线
AD1 与 DB1 所成的角为 θ,
所以 cos θ=|AA→→DD11|·|DD→→BB11|=2×2
5=5 5.Fra bibliotek所以异面直线
AD1
与
DB1
所成角的余弦值为
5 5.
2.有公共边的等边三角形 ABC 和 BCD 所在平面互相垂直,则异
l1与l2所成的角θ
a与b的夹角β
范围
高中数学《用空间向量研究距离、夹角问题-求空间距离》课件
讲 课 人
点P到直线l的距离为PQ =
| AP |2 | AQ |2
a2 (a b )2
: 邢
|b |
启 强
4
巩固练习 点到直线的距离、两条平行直线之间的距离
已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是C1C,
D1A1的中点,则点A到直线EF的距离为
.
2.两条平行直线之间的距离
A
| n BE| 2 11
E
B
y
d
.
讲 课
n
11
人 : 邢 启
答:点 B 到平面 EFG 的距离为 2
11 .
强
11
11
典型例题
如图, ABCD 是矩 形, PD 平面 ABCD , PD DC a , AD 2a , M 、N 分别是 AD 、PB 的中点,求点 A 到平面 MNC 的距离.
求BD1与AF1所成的角的余弦值.
C1 z
F1
B1
A1
D1 C
By
A
讲
课 人 :
x
邢
启 强
25
解:以点C为坐标原点建立空间直角坐标系C x如yz图
所示,设
则CC:1 1
A(1, 0, 0), B(0,1, 0),
F1
(
1 2
,
0,1),
D1
(
1 2
,
1 2
,1)
所以:
1 AF1 ( 2 , 0,1),
∴ MC (
2
a,a,
0)
,
MN
(0,
1
a,
1
2 a)
,
2
22
高二数学空间角与距离的向量解法名师课件 人教版
间直角坐标系C-xyz。设底面三角形的
边长为a ,侧棱长为b
则 C(0,0,0) A( 3 a, 1 a,0) B(0, a,0)
22
C1(0,0,b) B1 (0, a, b)
D( 3 a, 1 a,0) 44
故
AB1 (
3 a, 1 a,b) 22
BC1 (0,a,b)
z C1
B1 A1
2. 线面角
设n为平面 的法向量,直线AB与平面
所成的角为
,向量
1
AB与n所成的角为 2 ,
则
1
2
2
1
2
2
(0
1
2
,0
2
)
n
B
而利用
cos2
AB n AB n
可求 2
,
2 1
A
从而再求出 1
n
3. 二面角
①方向向量法 将二面பைடு நூலகம்转化为二面角的两个面的
C1D m
4
x y 4
2
z0
DB m 3 x 3 y 0 44
解得 x 3y 6 z 所以,可取 m (3, 3, 6)
2
∴ 二面角 D BC1 C
的大小等于〈m ,
n
〉
∴ cos〈 m ,面 的nn〉内 情方, 况向=属 ,朝mm于 二面“ 面外nn一 角,m进 等方一 于3向出 法32朝” 向
的大小
方向向量(在二面角的面内且垂直于二面角的棱)
的夹角。如图(2),设二面角 l 的大小为
其中AB l, AB ,CD l,CD ,则
2021届高考数学专题突破利用空间向量求空间距离(解析版)
2021届高考数学立体几何突破性讲练09利用空间向量求空间距离一、考点传真:能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的应用. 二、知识点梳理:空间距离的几个结论(1)点到直线的距离:设过点P 的直线l 的方向向量为单位向量n ,A 为直线l 外一点,点A 到直线l 的距离d =|P A →|2-|P A →·n |2. (2)点到平面的距离:设P 为平面α内的一点,n 为平面α的法向量,A 为平面α外一点,点A 到平面α的距离d =|P A →·n ||n |.(3)线面距离、面面距离都可以转化为点到面的距离. 三、例题:例 1.(2018天津)如图,AD BC ∥且2AD BC =,AD CD ⊥,EG AD ∥且EG AD =,CD FG ∥且2CD FG =,DG ⊥平面ABCD ,2DA DC DG ===.(1)若M 为CF 的中点,N 为EG 的中点,求证:MN ∥平面CDE ; (2)求二面角E BC F --的正弦值;(3)若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60,求线段DP 的长.【解析】依题意,可以建立以D 为原点,分别以DA ,DC ,DG 的方向为x 轴,y 轴,z轴的正方向的空间直角坐标系(如图),可得(0,0,0)D ,(2,0,0)A ,(1,2,0)B ,(0,2,0)C ,(2,0,2)E ,(0,1,2)F ,(0,0,2)G ,3(0,,1)2M ,(1,0,2)N .N ABC D EF G M(1)证明:依题意(0,2,0)DC =,(2,0,2)DE =.设0(,,)x y z =n 为平面CDE 的法向量,则0000DC DE ⎧⋅=⎪⎨⋅=⎪⎩,,n n 即20220y x z =⎧⎨+=⎩,,不妨令1z =-,可得0(1,0,1)=-n . 又3(1,,1)2MN =-,可得00MN ⋅=n ,又因为直线MN ⊄平面CDE ,所以MN ∥平面CDE .(2)依题意,可得(1,0,0)BC =-,(122)BE =-,,,(0,1,2)CF =-.设(,,)x y z =n 为平面BCE 的法向量,则00BC BE ⎧⋅=⎪⎨⋅=⎪⎩,,n n 即0220x x y z -=⎧⎨-+=⎩,,不妨令1z =,可得(0,1,1)=n .设(,,)x y z =m 为平面BCF 的法向量,则00BC BF ⎧⋅=⎪⎨⋅=⎪⎩,,m m 即020x y z -=⎧⎨-+=⎩,, 不妨令1z =,可得(0,2,1)=m .因此有cos ,||||10⋅<>==m n m n m n,于是sin ,<>=m n 所以,二面角E BC F --. (3)设线段DP 的长为h ([0.2]h ∈),则点P 的坐标为(0,0,)h ,可得(12)BP h =--,,. 易知,(0,2,0)DC =为平面ADGE 的一个法向量,故cos BP DC BP DC BP DCh ⋅<⋅>==3sin602==,解得[0,2]3h=.所以线段DP例2. (2014新课标2)如图,四棱锥P ABCD-中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D AE C--为60°,AP=1,AD求三棱锥E ACD-的体积.【解析】(Ⅰ)连接BD交AC于点O,连结EO.因为ABCD为矩形,所以O为BD的中点.又E为PD的中点,所以EO∥PB.EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC.(Ⅱ)因为PA⊥平面ABCD,ABCD为矩形,所以AB,AD,AP两两垂直.如图,以A为坐标原点,AB的方向为x轴的正方向,AP为单位长,建立空间直角坐标系Axyz-,则D1(0,),22E1(0,)2AE=.设(,0,0)(0)B m m>,则(C m(AC m=.设1(,,)x y z=n为平面AEC的法向量,则110,0,AC AE ⎧⋅=⎪⎨⋅=⎪⎩n n即0,10,22mx y z ⎧+=+=⎪⎩,可取1=-n . 又2(1,0,0)=n 为平面DAE 的法向量, 由题设121cos ,2=n n12=,解得32m =. 因为E 为PD 的中点,所以三棱锥E ACD -的高为12. 三棱锥E ACD -的体积113132228V =⨯⨯=. 例3.(2013天津) 如图, 四棱柱1111ABCD A B C D -中,侧棱1A A ⊥底面ABCD ,AB DC ∥,AB AD ⊥,1AD CD ==,12AA AB ==,E 为棱1AA 的中点.(Ⅰ)证明11B C CE ⊥;(Ⅱ)求二面角11B CE C --的正弦值;(Ⅲ)设点M 在线段1C E 上;且直线AM 与平面11ADD A, 求线段AM 的长.【解析】解法一 如图,以点A 为原点建立空间直角坐标系,1A 1依题意得A(0,0,0),B(0,0,2),C(1,0,1),B 1(0,2,2),C 1(1,2,1),E(0,1,0)(Ⅰ)易得=(1,0,-1),=(-1,1,-1),于是,所以. (Ⅱ) =(1,-2,-1).设平面1B CE 的法向量,则,即消去,得y+2z =0,不妨令z=1,可得一个法向量为=(-3,-2,1).由(Ⅰ)知,,又,可得平面,故=(1,0,-1)为平面的一个法向量. 于是从而 所以二面角B 1-CE -C 1的正弦值为. (Ⅲ)=(0,1,0),=(1,l ,1),设,,有.可取=(0,0,2)为平面的一个法向量,设为直线AM 与平面所成的角, 则,解得,所以11B C CE 110BC CE ⋅=11B C CE ⊥1B C (),,x y z =m 100B C CE ⎧⋅=⎪⎨⋅=⎪⎩m m 200x y z x y z --=⎧⎨-+-=⎩x m 11B C CE ⊥111CC B C ⊥11B C ⊥1CEC 11B C 1CEC 111111cos ,||||14B C B C B C ⋅<>===m m m 1121sin ,7B C <>=m 7AE 1EC ()1,,EM EC λλλλ==01λ≤≤(),1,AM AE EM λλλ=+=+AB 11ADD A θ11ADD A sin cos ,3AM AB AM AB AM ABθ⋅=<>==⋅6=13λ=AM =例4.(2012福建)如图,在长方体1111ABCD A B C D -中11AA AD ==,E 为CD 中点.(Ⅰ)求证:11B E AD ⊥;(Ⅱ)在棱1AA 上是否存在一点P ,使得DP ∥平面1B AE ?若存在,求AP 的行;若存在,求AP 的长;若不存在,说明理由.(Ⅲ)若二面角11A B E A --的大小为30°,求AB 的长. 【解析】(Ⅰ)以A 为原点1,,AB AD AA 的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图).设AB a =,则(0,0,0)A ,(0,1,0)D ,1(0,1,1)D ,,1,02a E ⎛⎫⎪⎝⎭, 1(,0,1)B a 故1(0,1,1)AD =,1,1,12a B E ⎛⎫=-- ⎪⎝⎭,1(,0,1)AB a =,,1,02a AE ⎛⎫= ⎪⎝⎭.∵11011(1)102aAD B E ⋅=-⨯+⨯+-⨯=, ∴11B E AD ⊥ (Ⅱ)假设在棱AA 1上存在一点0(0,0,)P z , 使得DP ∥平面1B AE .此时0(0,1,)DP z =-.又设平面1B AE 的法向量n =(x ,y ,z ).∵n ⊥平面1B AE ,∴1AB ⊥n ,AE ⊥n ,得002ax z ax y +=⎧⎪⎨+=⎪⎩取1x =,得平面1B AE 的一个法向量1,,2a a ⎛⎫=-- ⎪⎝⎭n . 要使DP ∥平面1B AE ,只要DP ⊥n ,有002a az -=,解得012z =. 又DP ⊄平面1B AE ,∴存在点P ,满足DP ∥平面1B AE ,此时AP =12.(Ⅲ)连接A 1D ,B 1C ,由长方体ABCD -A 1B 1C 1D 1及AA 1=AD =1,得AD 1⊥A 1D .∵B 1C ∥A 1D ,∴AD 1⊥B 1C .又由(Ⅰ)知B 1E ⊥AD 1,且B 1C ∩B 1E =B 1,∴AD 1⊥平面DCB 1A 1.∴1AD 是平面A 1B 1E 的一个法向量,此时1AD =(0,1,1). 设1AD 与n 所成的角为θ,则11cos a an AD n AD θ--⋅==⋅.∵二面角A -B 1E -A 1的大小为30°,∴cos cos30θ=3a=解得2a =,即AB 的长为2. 四、巩固练习:1.如图,已知圆柱OO 1底面半径为1,高为π,平面ABCD 是圆柱的一个轴截面,动点M 从点B 出发沿着圆柱的侧面到达点D ,其运动路程最短时在侧面留下曲线Γ.将轴截面ABCD 绕着轴OO 1逆时针旋转θ(0<θ<π)后得到平面A 1B 1C 1D 1,边B 1C 1与曲线Γ相交于点P .(1)求曲线Γ的长度;(2)当θ=π2时,求点C 1到平面APB 的距离.【解析】 (1)将圆柱一半展开后底面的半个圆周变成长方形的边BA ,曲线Γ就是对角线BD .由于AB =πr =π,AD =π,∴BD =2π. 故曲线Γ的长度为2π.(2)当θ=π2时,建立如图所示的空间直角坐标系,则O (0,0,0),A (0,-1,0),B (0,1,0),P ⎝⎛⎭⎫-1,0,π2,C 1(-1,0,π),则AB →=(0,2,0),AP →=⎝⎛⎭⎫-1,1,π2,OC 1→=(-1,0,π), 设平面ABP 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧2y =0,-x +y +π2z =0, 取z =2得n =(π,0,2),∴点C 1到平面P AB 的距离d =|OC 1→·n ||n |=ππ2+4.2.如图,在多面体ABCDE 中,平面ABD ⊥平面ABC ,AB ⊥AC ,AE ⊥BD ,DE ∥12AC ,AD =BD =1.(1)求AB 的长;(2)已知2≤AC ≤4,求点E 到平面BCD 的距离的最大值.【解析】 (1)∵平面ABD ⊥平面ABC ,且交线为AB ,而AC ⊥AB ,∴AC ⊥平面ABD . 又∵DE ∥AC ,∴DE ⊥平面ABD ,从而DE ⊥BD . 注意到BD ⊥AE ,且DE ∩AE =E ,∴BD ⊥平面ADE , 于是,BD ⊥AD .而AD =BD =1,∴AB = 2. (2)∵AD =BD ,取AB 的中点为O ,∴DO ⊥AB . 又∵平面ABD ⊥平面ABC ,∴DO ⊥平面ABC .过O 作直线OY ∥AC ,以点O 为坐标原点,直线OB ,OY ,OD 分别为x ,y ,z 轴,建立空间直角坐标系Oxyz ,如图所示.记AC =2a ,则1≤a ≤2, A ⎝⎛⎭⎫-22,0,0,B ⎝⎛⎭⎫22,0,0, C ⎝⎛⎭⎫-22,2a ,0,D ⎝⎛⎭⎫0,0,22,E ⎝⎛⎭⎫0,-a ,22,BC →=(-2,2a,0),BD →=⎝⎛⎭⎫-22,0,22.设平面BCD 的法向量为n =(x ,y ,z ). 由⎩⎪⎨⎪⎧BC →·n =0,BD →·n =0得⎩⎪⎨⎪⎧-2x +2ay =0,-22x +22z =0. 令x =2,得n =⎝⎛⎭⎫2,1a ,2. 又∵DE →=(0,-a,0),∴点E 到平面BCD 的距离d =|DE →·n ||n |=14+1a2.∵1≤a ≤2,∴当a =2时,d 取得最大值, d max =14+14=21717.3.如图,三棱柱ABC -A 1B 1C 1中,CC 1⊥平面ABC ,AC =BC =12AA 1,D 是棱AA 1的中点,DC 1⊥BD .(1)证明:DC 1⊥BC ;(2)设AA 1=2,A 1B 1的中点为P ,求点P 到平面BDC 1的距离. 【解析】 (1)证明:由题设知,三棱柱的侧面为矩形. 由于D 为AA 1的中点,故DC =DC 1.又AC =12AA 1,可得DC 21+DC 2=CC 21,所以DC 1⊥DC .DC 1⊥BD ,DC ∩BD =D ,所以DC 1⊥平面BCD .又因为BC ⊂平面BCD ,所以DC 1⊥BC .(2)由(1)知BC ⊥DC 1,且BC ⊥CC 1,则BC ⊥平面ACC 1A 1,所以CA ,CB ,CC 1两两垂直.以C 为坐标原点,CA →的方向为x 轴的正方向,建立如图所示的空间直角坐标系Cxyz .由题意知B (0,1,0),D (1,0,1),C 1(0,0,2),B 1(0,1,2),P ⎝⎛⎭⎫12,12,2,则BD →=(1,-1,1),DC 1→=(-1,0,1),PC 1→=⎝⎛⎭⎫-12,-12,0. 设m =(x ,y ,z )是平面BDC 1的法向量,则⎩⎪⎨⎪⎧ m ·BD →=0,m ·DC 1→=0,即⎩⎪⎨⎪⎧x -y +z =0,-x +z =0,可取m =(1,2,1). 设点P 到平面BDC 1的距离为d ,则d =⎪⎪⎪⎪⎪⎪PC 1→·m |m |=64. 4.如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,底面ABCD 为直角梯形,90CDA BAD ∠=∠=︒,2AB AD DC ===E ,F 分别为PD ,PB 的中点.(1)求证://CF 平面PAD ;(2)若截面CEF 与底面ABCD 所成锐二面角为4π,求PA 的长度. 【解析】(1)证明:取PA 的中点Q ,连接QF ,QD ,F 是PB 的中点,//QF AB ∴且12QF AB =, 底面ABCD 为直角梯形,90CDA BAD ∠=∠=︒,2AB AD DC ===//CD AB ∴,12CD AB =, //QF CD ∴且QF CD =,∴四边形QFCD 是平行四边形,//FC QD ∴,又FC ⊄平面PAD ,QD ⊂平面PAD ,//FC ∴平面PAD .(2)如图,分别以AD ,AB ,AP 为x ,y ,z 轴建立空间直角坐标系,设PA a =。
空间向量的应用 求空间角与距离 公开课一等奖课件
[点评与警示]
1.在难以建空间直角坐标系的情况下,
可用平移的方法求异面直线所成的角. 2.利用空间向量求两异面直线所成角,是通过两条直 线的方向向量的夹角来求解,而两异面直线所成角范围为 θ π =[0,2],两向量夹角 α 的范围是[0,π],要注意两者的区 别.cosθ=|cosα|.
如图所示,在棱长为 2 的正方体 ABCD-A1B1C1D1 中, O 是底面 ABCD 的中心,E、F 分别是 CC1、AD 的中点,那 么异面直线 OE 和 FD1 所成角的余弦值等于( 10 A. 5 4 C.5 15 B. 5 2 D.3 )
[解析] 所成的角,
连接 A1C1,则∠AC1A1 为 AC1 与平面 A1B1C1D1
AB=BC=2⇒A1C1=AC=2 2,又 AA1=1 ∴AC1=3⇒sin∠AC1A1 AA1 1 =AC =3,故选 D. 1
[答案] D
2 .(2009· 江西,9) 如图,正四面体 ABCD 的顶点 A, B , C
[解析]
如图所示,建立空间直角坐标系,则 D1(0,0,2),
F(1,0,0),O(1,1,0),E(0,2,1),设 OE 和 FD1 所成的角为 θ, 则 cosθ=|cos〈OE,FD1〉| OE· FD1 15 = → = . → 5 |FD1| |OE|·
→ → → →
→ →
(2)设n1、n2是二面角α-l-β的两个角α、β的法向量,则向 量n1与n2的夹角(或其补角)就是二面角的平面角的大小(如图 (b)(c)所示).
4.利用空间向量求空间距离 (1)点面距离的求法 已知 AB 为平面 α 的一条斜线段,n 为平面 a 的法向量, |AB· n| 则 B 到平面 α 的距离为|BO|= |AB|· |cos〈AB,n〉|= |n| .
人教A版数学利用空间向量求角和距离课件
(2)由(1)知平面 PAB 的一个法向量 n1=(0,1,0), 设平面 PCD 的法向量 n2=(x,y,z), 又P→C=(2,2,-2),P→D=(0,1,-2)且nn22··PP→→CD==00,,
所以2y-x+22z=y-0,2z=0,
取 z=1, 所以平面 PCD 的一个法向量为 n2=(-1,2,1) 所以 cos〈n1,n2〉=|nn11|·|nn22|= 36, 所以平面 PAB 与平面 PCD 所成锐二面角的余弦值为 36.
(1)求证:PB⊥DM; (2)求 BD 与平面 ADMN 所成的角.
【解析】 如图,以点 A 为坐标原点建立空间直角坐标系,
设 BC=1,则 A(0,0,0),P(0,0,2),B(2,0,0),D(0,2,0),C(2,1,0), M1,12,1.
(1)证明:P→B·D→M=(2,0,-2)·1,-32,1=0, ∴P→B⊥D→M,即 PB⊥DM.
③利用公式 cos〈a,b〉=|aa|·|bb|,求出两直线的方向向量的 夹角;
④结合异面直线所成角的范围得到异面直线所成的角.
(2)用坐标法求异面直线的夹角的方法 ①建立恰当的空间直角坐标系; ②找到两条异面直线的方向向量的坐标形式; ③利用向量的夹角公式计算两直线的方向向量的夹角; ④结合异面直线所成角的范围得到异面直线所成的角.
∴cosθ=13.
答案:B
3.已知两平面的法向量分别为 m=(0,1,0),n=(0,1,1),则
两平面的夹角为( )
A.45°
B.135°
C.45°或 135° D.90°
解析:本题考查利用平面的法向量求两平面夹角的方法.cos
〈m,n〉=|mm|·|nn|=1×1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第43讲 利用空间向量求空间角和距离思维导图知识梳理1.异面直线所成角设异面直线a ,b 所成的角为θ,则cos θ=|a ·b ||a ||b |, 其中a ,b 分别是直线a ,b 的方向向量.2.直线与平面所成角如图所示,设l 为平面α的斜线,l ∩α=A ,a 为l 的方向向量,n 为平面α的法向量,φ为l 与α所成的角,则sin φ=|cos 〈a ,n 〉|=|a ·n ||a ||n |3.二面角(1)若AB ,CD 分别是二面角αl β的两个平面内与棱l 垂直的异面直线,则二面角(或其补角)的大小就是向量AB ―→与CD ―→的夹角,如图(1).(2)平面α与β相交于直线l ,平面α的法向量为n 1,平面β的法向量为n 2,〈n 1,n 2〉=θ,则二面角α l β为θ或π-θ.设二面角大小为φ,则|cos φ|=|cos θ|=|n 1·n 2||n 1||n 2|,如图(2)(3). 4.利用空间向量求距离 (1)两点间的距离设点A (x 1,y 1,z 1),点B (x 2,y 2,z 2),则|AB |=|AB ―→|=(x 1-x 2)2+(y 1-y 2)2+(z 1-z 2)2. (2)点到平面的距离如图所示,已知AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离为|BO ―→|=|AB ―→·n ||n |.题型归纳题型1 异面直线所成的角【例1-1】(2020•济南模拟)已知直角梯形ABCD 中,//AD BC ,AB BC ⊥,12AB AD BC ==,将直角梯形ABCD (及其内部)以AB 所在直线为轴顺时针旋转90︒,形成如图所示的几何体,其中M 为CE 的中点. (1)求证:BM DF ⊥;(2)求异面直线BM 与EF 所成角的大小.【分析】(1)建立空间坐标系,得出BM ,DF 的坐标,根据向量的数量积为0得出直线垂直; (2)计算BM 和EF 的夹角,从而得出异面直线所成角的大小. 【解答】(1)证明:AB BC ⊥,AB BE ⊥,BCBE B =,AB ∴⊥平面BCE ,以B 为原点,以BE ,BC ,BA 为坐标轴建立空间坐标系B xyz -,如图所示:设1AB AD ==,则(0D ,1,1),(1F ,0,1),(0B ,0,0),M 0),∴(2BM =,0),(1DF =,1-,0),∴200BM DF =-=,BM DF ∴⊥.(2)解:(2E ,0,0),故(1EF =-,0,1),cos BM ∴<,12||||2BM EF EF BM EF >===-⨯,∴设异面直线BM 与EF 所成角为θ,则cos |cos BM θ=<,1|2EF >=, 故3πθ=.【例1-2】(2020•北京模拟)在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面四边形ABCD 为直角梯形,//AD BC ,AD AB ⊥,2PA AD ==,1AB BC ==,Q 为PD 中点.(Ⅰ)求证:PD BQ ⊥;(Ⅰ)求异面直线PC 与BQ 所成角的余弦值.【分析】()I 建立空间直角坐标系,只要证明0PD BQ =,即可证明结论. (Ⅰ)(1CP =-,1-,2),利用向量夹角公式即可得出.【解答】()I 证明:如图所示,(0A ,0,0),(1B ,0,0),(0P ,0,2),(0D ,2,0),(0Q ,1,1),(1C ,1,0),(0PD =,2,2)-,(1BQ =-,1,1),由220PD BQ =-=,∴PD BQ ⊥,PD BQ ∴⊥;(Ⅰ)解:(1CP =-,1-,2),cos CP <,BQ =.∴异面直线PC 与BQ 所成角的余弦值为3.【跟踪训练1-1】(2020•运城三模)如图,四边形ABCD 为平行四边形,且2AB AD BD ===,点E ,F 为平面ABCD 外两点,//EF AC 且2EF AE ==EAD EAB ∠=∠. (1)证明:BD CF ⊥;(2)若60EAC ∠=︒,求异面直线AE 与DF 所成角的余弦值.【分析】(1)设BD 与AC 相交于点G ,连接EG ,从而BD AC ⊥,推导出EAD EAB ∆≅∆,从而BD ⊥平面ACFE ,由此能证明BD CF ⊥.(2)过G 作AC 的垂线,交EF 于M 点,分别以GA ,GB ,GM 为x ,y ,z 轴建立空间直角坐标系G xyz -,利用向量法能求出异面直线AE 与DF 所成角的余弦值. 【解答】解:(1)证明:设BD 与AC 相交于点G ,连接EG , 由题意可得四边形ABCD 为菱形, 所以BD AC ⊥,DG GB =,在EAD ∆和EAB ∆中,AD AB =,AE AE =,EAD EAB ∠=∠, 所以EAD EAB ∆≅∆,所以ED EB =,所以BD EG ⊥, 因为ACEG G =,所以BD ⊥平面ACFE ,因为CF ⊂平面ACFE ,所以BD CF ⊥.(2)解:如图,在平面AEFC 内,过G 作AC 的垂线,交EF 于M 点, 由(1)可知,平面ACFE ⊥平面ABCD ,所以MG ⊥平面ABCD ,故直线GM ,GA ,GB 两两互相垂直, 分别以GA ,GB ,GM 为x ,y ,z 轴建立空间直角坐标系G xyz -, 因为60EAC ∠=︒,则A ,(0D ,1-,0),3)2E,3()2F ,所以3()2AE =-,3()2DF =, 异面直线AE 与DF 所成角的余弦值为:99|0|||44|cos ,|||||310AE DF AE DF AE DF ++<>===【名师指导】用向量法求异面直线所成角的一般步骤(1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量; (3)利用向量的夹角公式求出向量夹角的余弦值;(4)两异面直线所成角的余弦等于两向量夹角余弦值的绝对值.题型2 直线与平面所成的角【例2-1】(2020•海南)如图,四棱锥P ABCD -的底面为正方形,PD ⊥底面ABCD .设平面PAD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知1PD AD ==,Q 为l 上的点,QB =,求PB 与平面QCD 所成角的正弦值.【分析】(1)过P 在平面PAD 内作直线//l AD ,推得l 为平面PAD 和平面PBC 的交线,由线面垂直的判定和性质,即可得证;(2)以D 为坐标原点,直线DA ,DC ,DP 所在的直线为x ,y ,z 轴,建立空间直角坐标系D xyz -,求出(0Q ,1,1),运用向量法,求得平面QCD 的法向量,结合向量的夹角公式求解即可. 【解答】(1)证明:过P 在平面PAD 内作直线//l AD ,由//AD BC ,可得//l BC ,即l 为平面PAD 和平面PBC 的交线,PD ⊥平面ABCD ,BC ⊂平面ABCD ,PD BC ∴⊥,又BC CD ⊥,CDPD D =,BC ∴⊥平面PCD ,//l BC ,l ∴⊥平面PCD ;(2)解:如图,以D 为坐标原点,直线DA ,DC ,DP 所在的直线为x ,y ,z 轴,建立空间直角坐标系D xyz -,1PD AD ==,Q 为l 上的点,QB ,PB ∴1QP =,则(0D ,0,0),(1A ,0,0),(0C ,1,0),(0P ,0,1),(1B ,1,0),作//PQ AD ,则PQ 为平面PAD 与平面PBC 的交线为l ,取(1Q ,0,1),则(1DQ =,0,1),(1PB =,1,1)-,(0DC =,1,0), 设平面QCD 的法向量为(n a =,b ,)c ,则00n DC n DQ ⎧=⎪⎨=⎪⎩,∴00b a c =⎧⎨+=⎩,取1c =,可得(1n =-,0,1),cos n ∴<,6||||32n PB PB n PB >===,PB ∴与平面QCD . 【例2-2】(2020•北京)如图,在正方体1111ABCD A B C D -中,E 为1BB 的中点. (Ⅰ)求证:1//BC 平面1AD E ;(Ⅰ)求直线1AA 与平面1AD E 所成角的正弦值.【分析】(Ⅰ)根据正方体的性质可证得11//BC AD ,再利用线面平行的判定定理即可得证;(Ⅰ)解法一:以A 为原点,AD 、AB 、1AA 分别为x 、y 和z 轴建立空间直角坐标系,设直线1AA 与平面1AD E 所成角为θ,先求出平面1AD E 的法向量m ,再利用sin |cos m θ=<,111|||||||m AA AA m AA >=以及空间向量数量积的坐标运算即可得解. 解法二:设正方体的棱长为2a ,易知122AA DS a =,结合勾股定理和余弦定理可求得1cos EAD ∠=,再求得1111sin 2EAD SAD AE EAD =∠;设点1A 到平面1EAD 的距离为h ,根据等体积法111A EAD E AA D V V --=,可求出h 的值,设直线1AA 与平面1AD E 所成角为θ,则1sin hAA θ=,从而得解. 【解答】解:(Ⅰ)由正方体的性质可知,11//AB C D 中,且11AB C D =,∴四边形11ABC D 是平行四边形,11//BC AD ∴,又1BC ⊂/平面1AD E ,1AD ⊂平面1AD E ,1//BC ∴平面1AD E .(Ⅰ)解法一:以A 为原点,AD 、AB 、1AA 分别为x 、y 和z 轴建立如图所示的空间直角坐标系,设正方体的棱长为a ,则(0A ,0,0),1(0A ,0,)a ,1(D a ,0,)a ,(0E ,a ,1)2a ,∴1(0,0,)AA a =,1(,0,)AD a a =,1(0,,)2AE a a =,设平面1AD E 的法向量为(,,)m x y z =,则100m AD m AE ⎧=⎪⎨=⎪⎩,即()01()02a x z a y z +=⎧⎪⎨+=⎪⎩, 令2z =,则2x =-,1y =-,∴(2m =-,1-,2),设直线1AA 与平面1AD E 所成角为θ,则sin |cos m θ=<,11122|||33||||m AA a AA a m AA >===,故直线1AA 与平面1AD E 所成角的正弦值为23. 解法二:设正方体的棱长为2a ,则1AD =,AE =,13ED a =,1212222AA DSa a a ==,由余弦定理知,222222111110 cos22225AD AE EDEADAD AE a a+-∠===1sin EAD∴∠=∴12111sin32EADS AD AE EAD a=∠=,设点1A到平面1EAD的距离为h,111A EAD E AA DV V--=,∴221132233h a a a=,43h a∴=,设直线1AA与平面1AD E所成角为θ,则1423sin23ahAA aθ===.故直线1AA与平面1AD E所成角的正弦值为23.【跟踪训练2-1】(2020•山东)如图,四棱锥P ABCD-的底面为正方形,PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知1PD AD==,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.【分析】(1)过P在平面PAD内作直线//l AD,推得l为平面PAD和平面PBC的交线,由线面垂直的判定和性质,即可得证;(2)以D为坐标原点,直线DA,DC,DP所在的直线为x,y,z轴,建立空间直角坐标系D xyz-,设(0Q,m,1),运用向量法,求得平面QCD的法向量,结合向量的夹角公式,以及基本不等式可得所求最大值.【解答】解:(1)证明:过P在平面PAD内作直线//l AD,由//AD BC ,可得//l BC ,即l 为平面PAD 和平面PBC 的交线,PD ⊥平面ABCD ,BC ⊂平面ABCD ,PD BC ∴⊥,又BC CD ⊥,CDPD D =,BC ∴⊥平面PCD ,//l BC ,l ∴⊥平面PCD ;(2)如图,以D 为坐标原点,直线DA ,DC ,DP 所在的直线为x ,y ,z 轴,建立空间直角坐标系D xyz -,则(0D ,0,0),(1A ,0,0),(0C ,1,0),(0P ,0,1),(1B ,1,0), 设(Q m ,0,1)(0)m >,(DQ m =,0,1),(1PB =,1,1)-,(0DC =,1,0), 设平面QCD 的法向量为(n a =,b ,)c ,则00n DC n DQ ⎧=⎪⎨=⎪⎩,∴00b am c =⎧⎨+=⎩,取1c =,可得1(n m =-,0,1),cos n ∴<,211||||131n PBPB n PB m -->==+,PB ∴与平面QCD211111131m m m +++=++232611132m =++=+,当且仅当1m =取等号, PB ∴与平面QCD . 【名师指导】利用向量求线面角的2种方法(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角). (2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线与平面所成的角.题型3 二面角【例3-1】(2020•江苏)在三棱锥A BCD -中,已知CB CD =,2BD =,O 为BD 的中点,AO ⊥平面BCD ,2AO =,E 为AC 中点.(1)求直线AB 与DE 所成角的余弦值; (2)若点F 在BC 上,满足14BF BC =,设二面角F DE C --的大小为θ,求sin θ的值.【分析】(1)由题意画出图形,连接OC ,由已知可得CO BD ⊥,以O 为坐标原点,分别以OB ,OC ,OA 所在直线为x ,y ,z 轴建立空间直角坐标系,求出所用点的坐标,得到(1,0,2)AB =-,(1,1,1)DE =,设直线AB 与DE 所成角为α,由两向量所成角的余弦值,可得直线AB 与DE 所成角的余弦值; (2)由14BF BC =,得14BF BC =,设(F x ,y ,)z ,由向量等式求得3(4F ,12,0),进一步求出平面DEF 的一个法向量与平面DEC 的一个法向量,由两法向量所成角的余弦值求得cos θ,再由同角三角函数基本关系式求解sin θ.【解答】解:(1)如图,连接OC ,CB CD =,O 为BD 的中点,CO BD ∴⊥.以O 为坐标原点,分别以OB ,OC ,OA 所在直线为x ,y ,z 轴建立空间直角坐标系.2BD =,1OB OD ∴==,则2OC =.(1B ∴,0,0),(0A ,0,2),(0C ,2,0),(1D -,0,0),E 是AC 的中点,(0E ∴,1,1),∴(1,0,2)AB =-,(1,1,1)DE =.设直线AB 与DE 所成角为α,则||cos ||||14111AB DE AB DE α===++,即直线AB 与DE ; (2)14BF BC =,∴14BF BC =, 设(F x ,y ,)z ,则(1x -,y ,1)(4z =-,12,0),3(4F ∴,12,0).∴(1,1,1)DE =,71(,,0)42DF =,(1,2,0)DC =.设平面DEF 的一个法向量为111(,,)m x y z =,由11111071042m DE x y z m DF x y ⎧=++=⎪⎨=+=⎪⎩,取12x =-,得(2,7,5)m =--; 设平面DEC 的一个法向量为222(,,)n x y z =,由22222020n DE x y z n DC x y ⎧=++=⎪⎨=+=⎪⎩,取22x =-,得(2,1,1)n =-. |||cos |||||44925411mn m n θ∴===+++.sinθ∴=. 【例3-2】(2020•新课标Ⅰ)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC ∆是底面的内接正三角形,P 为DO 上一点,PO =. (1)证明:PA ⊥平面PBC ; (2)求二面角B PC E --的余弦值.【分析】(1)设圆O 的半径为1,求出各线段的长度,利用勾股定理即可得到PA PC ⊥,PA PB ⊥,进而得证;(2)建立空间直角坐标系,求出平面PBC 及平面PCE 的法向量,利用向量的夹角公式即可得解. 【解答】解:(1)不妨设圆O 的半径为1,1OA OB OC ===,2AE AD ==,AB BC AC ===,DO PO ==PA PB PC ===, 在PAC ∆中,222PA PC AC +=,故PA PC ⊥, 同理可得PA PB ⊥,又PBPC P =,故PA ⊥平面PBC ;(2)建立如图所示的空间直角坐标系,则有11,0),(,0),222B C P ,(0E ,1,0),故3131(3,0,0),(,,0),(,22BC CE CP =-==-, 设平面PBC 的法向量为(,,)m x y z =,则3031022m BC m CP x y z ⎧=-=⎪⎨=-=⎪⎩,可取(0,2,1)m =, 同理可求得平面PCE 的法向量为(2,n =--,故||25cos||||5m n m n θ==,即二面角B PC E --.【跟踪训练3-1】(2020•新课标Ⅰ)如图,在长方体1111ABCD A B C D -中,点E ,F 分别在棱1DD ,1BB 上,且12DE ED =,12BF FB =. (1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.【分析】(1)在1AA 上取点M ,使得12A M AM =,连接EM ,1B M ,1EC ,1FC ,由已知证明四边形1B FAM 和四边形EDAM 都是平行四边形,可得1//AF MB ,且1AF MB =,//AD ME ,且AD ME =,进一步证明四边形11B C EM 为平行四边形,得到11//EC MB ,且11EC MB =,结合1//AF MB ,且1AF MB =,可得1//AF EC ,且1AF EC =,则四边形1AFC E 为平行四边形,从而得到点1C 在平面AEF 内;(2)在长方体1111ABCD A B C D -中,以1C 为坐标原点,分别以11C D ,11C B ,1C C 所在直线为x ,y ,z 轴建立空间直角坐标系.分别求出平面AEF 的一个法向量与平面1A EF 的一个法向量,由两法向量所成角的余弦值可得二面角1A EF A --的余弦值,再由同角三角函数基本关系式求得二面角1A EF A --的正弦值. 【解答】(1)证明:在1AA 上取点M ,使得12A M AM =,连接EM ,1B M ,1EC ,1FC , 在长方体1111ABCD A B C D -中,有111////DD AA BB ,且111DD AA BB ==. 又12DE ED =,12A M AM =,12BF FB =,1DE AM FB ∴==.∴四边形1B FAM 和四边形EDAM 都是平行四边形.1//AF MB ∴,且1AF MB =,//AD ME ,且AD ME =.又在长方体1111ABCD A B C D -中,有11//AD B C ,且11AD B C =, 11//B C ME ∴且11B C ME =,则四边形11B C EM 为平行四边形, 11//EC MB ∴,且11EC MB =,又1//AF MB ,且1AF MB =,1//AF EC ∴,且1AF EC =,则四边形1AFC E 为平行四边形,∴点1C 在平面AEF 内;(2)解:在长方体1111ABCD A B C D -中,以1C 为坐标原点,分别以11C D ,11C B ,1C C 所在直线为x ,y ,z 轴建立空间直角坐标系.2AB =,1AD =,13AA =,12DE ED =,12BF FB =,(2A ∴,1,3),(2E ,0,2),(0F ,1,1),1(2A ,1,0),则(2,1,1)EF =--,(0,1,1)AE =--,1(0,1,2)A E =-. 设平面AEF 的一个法向量为1111(,,)n x y z =.则1111111200n EF x y z n AE y z ⎧=-+-=⎪⎨=--=⎪⎩,取11x =,得1(1,1,1)n =-; 设平面1A EF 的一个法向量为2222(,,)n x y z =.则222221222020n EF x y z n A E y z ⎧=-+-=⎪⎨=-+=⎪⎩,取21x =,得2(1,4,2)n =. 1212127cos ,||||321n n nn n n ∴<>===. 设二面角1A EF A --为θ,则sin θ==. ∴二面角1A EF A --.【跟踪训练3-2】(2019•天津)如图,AE ⊥平面ABCD ,//CF AE ,//AD BC ,AD AB ⊥,1AB AD ==,2AE BC ==.(Ⅰ)求证://BF 平面ADE ;(Ⅰ)求直线CE 与平面BDE 所成角的正弦值;(Ⅰ)若二面角E BD F --的余弦值为13,求线段CF 的长.【分析】(Ⅰ)以A 为坐标原点,分别以AB ,AD ,AE 所在直线为x ,y ,z 轴建立空间直角坐标系,求得A ,B ,C ,D ,E 的坐标,设(0)CF h h =>,得(1F ,2,)h .可得(1,0,0)AB =是平面ADE 的法向量,再求出(0,2,)BF h =,由0BF AB =,且直线BF ⊂/平面ADE ,得//BF 平面ADE ;(Ⅰ)求出(1,2,2)CE =--,再求出平面BDE 的法向量,利用数量积求夹角公式得直线CE 与平面BDE 所成角的余弦值,进一步得到直线CE 与平面BDE 所成角的正弦值;(Ⅰ)求出平面BDF 的法向量,由两平面法向量所成角的余弦值为13列式求线段CF 的长.【解答】(Ⅰ)证明:以A 为坐标原点,分别以AB ,AD ,AE 所在直线为x ,y ,z 轴建立空间直角坐标系,可得(0A ,0,0),(1B ,0,0),(1C ,2,0),(0D ,1,0),(0E ,0,2). 设(0)CF h h =>,则(1F ,2,)h .则(1,0,0)AB =是平面ADE 的法向量,又(0,2,)BF h =,可得0BF AB =. 又直线BF ⊂/平面ADE ,//BF ∴平面ADE ;(Ⅰ)解:依题意,(1,1,0)BD =-,(1,0,2)BE =-,(1,2,2)CE =--. 设(,,)n x y z =为平面BDE 的法向量,则020n BD x y n BE x z ⎧=-+=⎪⎨=-+=⎪⎩,令1z =,得(2,2,1)n =. 4cos ,9||||CE n CE n CE n ∴<>==-.∴直线CE 与平面BDE 所成角的正弦值为49; (Ⅰ)解:设(,,)m x y z =为平面BDF 的法向量, 则020m BD x y m BF y hz ⎧=-+=⎪⎨=+=⎪⎩,取1y =,可得2(1,1,)m h =-,由题意,2|4|||1|cos ,|||||332m n m n m n -<>===⨯,解得87h =. 经检验,符合题意.∴线段CF 的长为87.【跟踪训练3-3】(2019•新课标Ⅰ)如图,直四棱柱1111ABCD A B C D -的底面是菱形,14AA =,2AB =,60BAD ∠=︒,E,M ,N 分别是BC ,1BB ,1A D 的中点.(1)证明://MN 平面1C DE ; (2)求二面角1A MA N --的正弦值.【分析】(1)过N 作NH AD ⊥,证明//NM BH ,再证明//BH DE ,可得//NM DE ,再由线面平行的判定可得//MN 平面1C DE ;(2)以D 为坐标原点,以垂直于DC 得直线为x 轴,以DC 所在直线为y 轴,以1DD 所在直线为z 轴建立空间直角坐标系,分别求出平面1A MN 与平面1MAA 的一个法向量,由两法向量所成角的余弦值可得二面角1A MA N --的正弦值.【解答】(1)证明:如图,过N 作NH AD ⊥,则1//NH AA ,且112NH AA =, 又1//MB AA ,112MB AA =,∴四边形NMBH 为平行四边形,则//NM BH , 由1//NH AA ,N 为1A D 中点,得H 为AD 中点,而E 为BC 中点, //BE DH ∴,BE DH =,则四边形BEDH 为平行四边形,则//BH DE , //NM DE ∴,NM ⊂/平面1C DE ,DE ⊂平面1C DE ,//MN ∴平面1C DE ;(2)解:以D 为坐标原点,以垂直于DC 得直线为x 轴,以DC 所在直线为y 轴,以1DD 所在直线为z 轴建立空间直角坐标系,则N 12-,2),M ,1,2),1A ,1-,4), 33(,0)2NM =,131(,2)2NA =-, 设平面1A MN 的一个法向量为(,,)m x y z =,由133022312022m NM y m NA y z ⎧=+=⎪⎪⎨⎪=-+=⎪⎩,取x (3,1,1)m =--, 又平面1MAA 的一个法向量为(1,0,0)n =,3cos ,||||5m n m n m n ∴<>===.∴二面角1A MA N --.【名师指导】利用空间向量计算二面角大小的常用方法(1)找法向量:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.(2)找与棱垂直的方向向量:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.题型4 求空间距离【例4-1】(2019•新课标Ⅰ)如图,直四棱柱1111ABCD A B C D -的底面是菱形,14AA =,2AB =,60BAD ∠=︒,E ,M ,N 分别是BC ,1BB ,1A D 的中点.(1)证明://MN 平面1C DE ; (2)求点C 到平面1C DE 的距离.【分析】法一:(1)连结1B C ,ME ,推导出四边形MNDE 是平行四边形,从而//MN ED ,由此能证明//MN 平面1C DE . (2)过C 作1C E 的垂线,垂足为H ,推导出DE BC ⊥,1DE C C ⊥,从而DE ⊥平面1C CE ,DE CH ⊥,进而CH ⊥平面1C DE ,故CH 的长即为C 到平面1C DE 的距离,由此能求出点C 到平面1C DE 的距离. 法二:(1)以D 为原点,DA 为x 轴,DE 为y 轴,1DD 为z 轴,建立空间直角坐标系,利用向量法能证明//MN 平面1C DE .(2)求出(1DC =-0),平面1C DE 的法向量(4n =,0,1),利用向量法能求出点C 到平面1C DE 的距离.【解答】解法一:证明:(1)连结1B C ,ME ,M ,E 分别是1BB ,BC 的中点,1//ME B C ∴,又N 为1A D 的中点,112ND A D ∴=, 由题设知11//A B DC =,11//B C A D =∴,//ME ND =∴,∴四边形MNDE 是平行四边形,//MN ED ,又MN ⊂/平面1C DE ,//MN ∴平面1C DE .解:(2)过C 作1C E 的垂线,垂足为H , 由已知可得DE BC ⊥,1DE C C ⊥,DE ∴⊥平面1C CE ,故DE CH ⊥,CH ∴⊥平面1C DE ,故CH 的长即为C 到平面1C DE 的距离,由已知可得1CE =,14CC =,1C E ∴=,故CH =,∴点C 到平面1C DE 解法二:证明:(1)直四棱柱1111ABCD A B C D -的底面是菱形,14AA =,2AB =,60BAD ∠=︒,E ,M ,N 分别是BC ,1BB ,1A D 的中点. 1DD ∴⊥平面ABCD ,DE AD ⊥,以D 为原点,DA 为x 轴,DE 为y 轴,1DD 为z 轴,建立空间直角坐标系,(1M 2),(1N ,0,2),(0D ,0,0),(0E 0),1(1C -4),(0MN =,0),1(DC =-,(0,DE =,设平面1C DE 的法向量(n x =,y ,)z ,则14030n DC x z n DE y ⎧=-++=⎪⎨==⎪⎩,取1z =,得(4n =,0,1),0MN n =,MN ⊂/平面1C DE ,//MN ∴平面1C DE .解:(2)(1C -0),(1DC =-0),平面1C DE 的法向量(4n =,0,1),∴点C 到平面1C DE 的距离:||||17DC n d n ==.【跟踪训练4-1】(2020•梅州二模)如图,PAD ∆中,90PDA ∠=︒,2DP DA ==,B ,C 分别是PA ,PD 的中点,将PBC ∆沿BC 折起,连结PA ,PD ,得到多面体PABCD .(1)证明:在多面体PABCD 中,BC PD ⊥;(2)在多面体PABCD 中,当PA B 到平面PAD 的距离.【分析】(1)推导出BC CD ⊥,BC PC ⊥,得到BC ⊥平面PCD ,由此能证明BC PD ⊥.(2)推导出PC ⊥平面ABCD ,以C 为原点,CB 为x 轴,CD 为y 轴,CP 为z 轴,建立空间直角坐标系,利用向量法能求出点B 到平面PAD 的距离.【解答】解:(1)证明:PAD ∆中,90PDA ∠=︒,2DP DA ==,B ,C 分别是PA ,PD 的中点, 将PBC ∆沿BC 折起,连结PA ,PD ,得到多面体PABCD .BC CD ∴⊥,BC PC ⊥,CD PC C =,BC ∴⊥平面PCD ,PD ⊂平面PCD ,∴在多面体PABCD 中,BC PD ⊥.(2)由(1)得BC ⊥平面PCD ,又PC ⊂平面PCD ,BC PC ∴⊥,PAD ∆中,90PDA ∠=︒,2DP DA ==,B ,C 分别是PA ,PD 的中点,PA =AC ∴=222PC AC PA ∴+=,PC AC ∴⊥, AC BC C =,PC ∴⊥平面ABCD ,以C 为原点,CB 为x 轴,CD 为y 轴,CP 为z 轴,建立空间直角坐标系, (1B ,0,0),(0P ,0,1),(2A ,1,0),(0D ,1,0),(1PB =,0,1)-,(2PA =,1,1)-,(0PD =,1,1)-,设平面PAD 的法向量(n x =,y ,)z ,则200n PA x y z n PD y z ⎧=+-=⎪⎨=-=⎪⎩,取1y =,得(0n =,1,1),∴点B 到平面PAD 的距离为:||1||22PB n d n ===⨯.【名师指导】求点面距一般有以下三种方法(1)作点到面的垂线,点到垂足的距离即为点到平面的距离.(2)等体积法.(3)向量法.其中向量法在易建立空间直角坐标系的规则图形中较简便.。