九年级第二次月考数学试卷

合集下载

江苏省南通市2023-2024学年九年级上学期第二次月考数学试卷(含答案)

江苏省南通市2023-2024学年九年级上学期第二次月考数学试卷(含答案)

江苏省南通市2023-2024学年九年级上学期第二次月考数学试卷一、选择题(本大题共10小题,每小题3分,共计30分,在每小题给出的四个选项中恰有一项是符合题目要求的)1.下列各点中,在反比例函数的图象上的是( )4y x =A. B. C. D.(14)--,(14)-,(2)-,2(2),-22.将抛物线向右平移2 个单位长度,再向下平移5 个单位长度,平移后的抛物线的2y x =解析式为( )A. B. C. D.2(2)5y x =+-2(2)5y x =++2(2)5y x =--2(2)5y x =-+3.如图,O 的半径为10,弦AB=16,点 M 是弦 AB 上的动点且点 M 不与点A 、B 重⊙合,则OM 的长不可能是( )A.5B.6C.8D.94.如图,等腰直角三角板ABC 的斜边AB 与量角器的直径重合,点D 是量角器上 120° 刻度线的外端点,连接CD 交AB 于点E ,则∠CEB 的度数是( )A.100°B.105°C.110°D.120°5.正方形网格中,如图放置,则=( )AOB ∠sin AOB ∠C. D.1226.如图,直线,直线m 、n 分别与直线a ,b ,c 相交于点A ,B ,C 和点D ,E ,F ,a ∥b ∥c 若AB =2,AC =5,DE =3,则EF =( )A.2.5B.4C.4.5D.7.57.已知点,,都在反比例函数的图象上,则,A (−4,y 1)B (−2,y 2)C (3,y 3)(0)ky k x =>y 1,的大小关系为( )y 2y 3 A. B. C. D.y 3<y 2<y 1y 2<y 3<y 1y 3<y 1<y 2y 2<y 1<y 38.如图,点D 在△ABC 的边AC 上,添加一个条件,不能判断△ABC 与△BDC 相似的是( )A.∠CBD =∠AB.C.∠CBA =∠C DBD.BC CD AC AB =BC CD AC BC=9.如图,∠B 的平分线 BE 与 BC 边上的中线 AD 互相垂直,并且 BE =AD =4,则BC 值为()A.7B.C. 6D.10.如图,菱形OABC 的一边OA 在x 轴的负半轴上,O 是坐标原点,A 点坐标为,50-(,)对角线 AC 和 OB 相交于点D ,且AC OB =40.若反比例函数的图象经过 ∙(0)k y x x =<点D ,并与BC 的延长线交于点E ,则值等于()CDE S ∆A. 2 B.1.5 C.1 D.0.5二、(本大题共8小题,第11~12每小题3分,13~18每小题4分,共30分)11.抛物线y =2(x +1)2 +3的顶点坐标是.12.在Rt △ABC 中,∠C =90°,AC =5,BC =4,则tanA=.13.正八边形的中心角是 度.14.圆锥的底面半径是3,母线长为4,则圆锥的侧面积为.15.如图,△ABC 和△DEF 是以点O 为位似中心的位似图形,若 OA ∶AD =2∶3,则△ABC 与DEF 的面积比是 .16.如图,有一个测量小玻璃管口径的量具ABC ,AB 的长为18 mm ,AC 被分为60 等份.如果小玻璃管口径DE正好对应量具上20 等份处(DE ∥AB ),那么小玻璃管口径DE = mm.17. 已知,,若 m ≤n ,则实数 a 的23236m n a +=++22324m n a +=++值为.18. 线段AB =,M 为AB 的中点,动点 P 到点 M 的距离是1,连接 PB ,线段 PB绕点P 逆 时针旋转 90° 得到线段 PC ,连接 AC ,则线段 AC 长度的最小值是.三、解答题(本大题共8小题,共90分.请在答题卡指定区域内作答,解答题应写出文字说明、证明过程或演算步骤)(1)计算:tan45°﹣sin30°cos60°﹣cos 245°;(2)如图,在Rt △ABC 中,∠C =90°,AC ,BC ,解这个直角三角形.20.(本小题满分10分)如图,是三角形的外接圆,是的直径,AD ⊥BC 于点E .O ABC AD O (1)求证:;BAD CAD ∠=∠(2)若长为8,,求的半径长.BC 2DE =O 21.(本小题满分10分)如图,在平面直角坐标系 xOy 中,直线 y =2x +b 经过点 A (-2,0)与 y 轴交于点 B ,与反比例函数的图象交于点 C (m ,6),过 B 作 BD ⊥y 轴,交反比例函数(0)k y x x =>的图象于点D .连接AD 、CD .(0)k y x x=>(1)b =,k =,不等式 >2x +b (x >0)的解集是;k x(2)求△ACD 的面积.如图,在△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,DE⊥BD,交AB于点E,(1) 求证:△ADE∽△ABD;(2)若AB=10,BE=3AE,求线段AD长.23.(本小题满分12分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,(1)求证:AC平分∠BAD;(2)若∠BAD=60°,AB=4,求图中阴影部分的面积.24.(本小题满分12分)某商品进货价为每件40 元,将该商品每件的售价定为50 元时,每星期可销售250 件.现在计划提高该商品的售价增加利润,但不超过58 元.市场调查反映:若该商品每件的售价在50元基础上每上涨1元,其每星期的销售量减少10 件.设该商品每件的售价上涨x元(x为整数且x≥0)时,每星期的销售量为y 件.(1)求y与x之间的函数解析式;(2)当该商品每件的售价定为多少元时,销售该商品每星期获得的利润最大?最大利润是多少?(3)若该商品每星期的销售利润不低于3000 元,求商品售价上涨x元的取值范围.在矩形ABCD 中,AB <BC ,AB =6,E 是射线CD 上一点,点C 关于BE 的对称点F 恰好落在射线DA 上.如图,当点 E 在CD 边上时,①若BC =10,DF 的长为;②若AF ·FD =9时,求 DF 的长;(2)作∠ABF 的平分线交射线 DA 于点M ,当 时,求 DF 的长.12MF BC =26.(本小题满分13分)在平面直角坐标系中,如果一个点的纵坐标比横坐标大k ,则称该点为“k 级差值点”.例如,(1,4)为“3级差值点” ,(﹣3,2)为“5级差值点”.(1) 点(x ,y )是“4级差值点”,则y 与x 的函数关系式是;(2) 若反比例函数的图象上只有一个“k 级差值点”(﹣3≤ k ≤2),t =4m +2k +4,求t 的取m y x=值范围;(3) 已知直线l : y =nx +3与抛物线y =a (x ﹣h )²+h +3交于A ,B 两点,且AB ≥3.若 k ≠3时,2直线 l 上无“k 级差值点”,求a 的取值范围.答案一、选择题1. A2. C3.A4.B4.B5.B6.C7.D8.B9.D 10.C二填空题、11. (-1,3)12.4 513. 4514. 12π15. 4∶2516.1218.三、解答题(本大题共8小题,共90分.请在答题卡指定区域内作答,解答题应写出文字说明、证明过程或演算步骤)19.(本小题满分10分)(1)计算:tan45°﹣sin30°cos60°﹣cos 245°;解:原式= (2)分211122-⨯-…………………………………………………………………… 4分11142=--…………………………………………………………………… 5分14=(2)解:在在Rt △ABC 中,∠C =90°………………………………………………………… 7分∴∠A =60°…………………………………………………………………… 8分∠B =90°-∠A =90°-60°=30°………………………………………………… 9分 (10)分2AB AC ==20.(本小题满分10分)解:(1)∵AD 是的 ⊙O 直径∵AD ⊥BC∴弧BD =弧CD ,…………………………………… 2分∴∠BAD =∠CAD …………………………………… 4分C BAtan BC A AC ==(2) 连接OC∵AD 是的 ⊙O 直径∵AD ⊥BC∴CE =BE =BC…………………………………… 5分12∵BC =8∴CE =4…………………………… 6分在Rt △OEC 中,由勾股定理得,222OE EC OC +=设圆的半径长为r ,∵DE =2∴…………………8分222(2)4r r -+=∴5r =∴⊙O 的半径长为5…………………10分21.(本小题满分10分)(1) b =4,k =6,0<x<1…………………6分 (2)在y =2x +4中,令x =0,则y =4,∴B (0,4) ,在中,令y =4则x =1.56(0)y x x=>∴ D (1.5,4),∴BD =1.5…………………8分∴S △ACD =S △ABD +S △BCD ==…………………10分111.54 1.56422⨯⨯+⨯⨯-()9222.(本小题满分10分)(1)证明:∵BD 是∠ABC 的平分线∴∠ABD =∠DBC……………………………1分∵DE ⊥BD∴∠BDE =90°∵∠C =90°∴∠ADE + ∠BDC =90°,∠CBD +∠BDC =90°∴∠CBD = ∠ADE ……………………………………3分∴∠ADE = ∠ABD ……………………………………4分又∵∠A =∠A∴△ADE ∽△ABD ………………………………5分(2)解:∵AB =10,BE =3AE∴AE =2.5,BE =7.5………………………………6分由(1)得△ADE ∽△ABD ,∴………………………………8分AD AE AB AD∴AD 2=AB ·AE =10×2.5=25∴AD =5∴线段AD 长为5.………………………………10分23. (本小题满分12分)(1)证明:如图1,连接OC ,∵CD 为⊙O 切线,∴OC ⊥CD………………………………1分∵AD ⊥CD∴OC // AD ………………………………2分∴∠OCA =∠CAD , ………………………………3分又∵OA =OC∴∠OCA =∠OAC ………………………………4分∴∠CAD =∠OAC ,………………………………5分∴AC 平分∠DAB . ………………………………6分(2)解:如图所示,过点O 作OE ⊥AC 于点E ,则AE =EC =AC ,12∵∠BAD =60°,AC 平分∠DAB∴∠CAB =30°,∠COB =2∠CAB =60°,………………………………8分在Rt △AOE 中,AO =AB =2,12∴OE =OA =1,AE 12=∴AC =2AE =………………………………10分∴AOC BOCS S S ∆=+阴影扇形=2160212360π⨯⨯⨯+……………………………12分23π24.(本小题满分12分)解:(1)由题意可得, y =250-10x=﹣10x+250,y 与x 之间的函数解析式是y =﹣10x +250;……………………………2分(2)设当该商品每件的售价上涨x 元时,销售该商品每星期获得的利润为w 元.由题意可得:w=……………………………4分(5040)(10250)x x +--+=2101502500x x -++=210(7.5)3062.5x --+∵,0≤x ≤25且x 为整数100-<∴当x =7或8时,w 取得最大值3060,此时50+x =57或58.……………………6分答:当该商品每件的售价为57或58元时,每星期获得的利润最大,最大利润为3060元.……………………………7分(3)由题意得:……………………………8分21015025003000x x -++=解得……………………………10分12510x x ==,当x =5或10时,此时50+x =55或60又∵售价不超过58元∴5≤x ≤8且x 为整数…………………………12分25.(本小题满分13分)(1) ①DF 的长为 2 …………………………2分②解:∵四边形ABCD 是矩形∴∠BCD =∠A =∠ABC =∠D = 90°,CD =AB =6由对称可知∠BFE =∠BCD =90°, BF =BC∴∠AFB +∠DFE =90°,∠DEF +∠DFE =90°,∴∠AFB =∠DEF又:∠D =∠A =90°∴△FAB ∽△EDF . ………………………4分∴………………………5分AFBADE FD =∴AB ·DE =AF .DF =9.又∵AB =6,∴DE =……………………………………………6分32∴CE =CD -DE =6 -=………………………7分3292(2)分两种情况讨论.①当点F 在线段 AD 上时,如图(1),过点M 作 MN ⊥BF 于点N ,则∠MNF =∠A =90°.又∵∠AFB =∠NFM∴△FMN ∽△FBA∴MN MF FNAB BF AF==又∵,BF =BC12MF BC =∴12MNMFFNAB BF AF ===∴MN =3,AF =2FN …………………………………………8分∵BM 平分∠ABF ,∠BNM =∠A =90°,∴AM = MN =3.∴AM +MF =2FN∴13()22BN FN FN++=∴13(6)22FN FN++=∴FN =4…………………………………………9分∴AD =BF =BC =6+4=10∴AF =8∴DF =AD - AF =10-8=2…………………………………10分②当点F 在线段 DA 的延长线上时如图(2),过点M 作 MN ⊥BF 于点 P .同①可得AM =MN =AB =3,BN =AB =6,BC = AD =10,12MF =BC =5,12∴AF =8,∴DF =18.综上可知,DF 的长为2或18.…………………………………13分26.(本小题满分13分)26.(1)…………………………………3分4y x =+(2)解:由题意得:mx kx =+∴20x kx m +-=∵图象上只有一个“k 级差值点”∴方程 有两个相等的实数根20x kx m +-=∴△=0∴240k m +=∴…………………………………4分24m k =-∵424t m k =++∴…………………………………5分224t k k =-++=2(1)5k --+当k =1时,t 有最大值5,当t =-3时,t 有最小值-11-11≤t ≤5…………………………………7分(3)由题意得若 k =3时,直线 l 上有“k 级差值点”∴y =x +3∴n =1…………………………………8分∴x +3= a (x -h )²+h +3∴x 1=h ,x 2=…………………………………9分1h a+∵AB ≥利用两点间距离公式或根据够勾股定理得出≥3即≥3………………………………11分12x x -1a ∴或,即………………………………13分103a <≤103a >≥-11,033a a ≥≥-≠。

甘肃武威市凉州区武威第二十七中学2024-2025学年九年级上学期12月第二次月考数学试题(无答案)

甘肃武威市凉州区武威第二十七中学2024-2025学年九年级上学期12月第二次月考数学试题(无答案)

2024—2025学年第一学期第二次月考试卷九年级数学一、选择题(每小题3分,共30分)1.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )A. B. C. D.2.关于的方程是一元二次方程,则值是( )A. B. C.或 D.为任意实数3.已知二次函数的图象与轴一个交点的坐标为,则与轴的另一个交点的坐标是( )A. B. C. D.4.已知正六边形的半径为4,则这个正六边形的边心距为( )A.2B.D.45.凉州区某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月率为,则由题意列方程应为( )A. B.C. D.6.如图,四边形内接于,是直径,,则的度数为( )A.90°B.100°C.110°D.120°7.在同一平面直角坐标系内,二次函数与一次函数的图象可能是( )A. B. C. D.x 22(1)20a x x ---=a 1a ≠1a ≠-1a ≠1-26y x x c =++x (1,0)-(3,0)-(3,0)(5,0)-(5,0)x 3200(1)1000x +=20020021000x +=⨯20020031000x +=⨯2200200(1)200(1)1000x x ++++=ABCD O e AB O e 20ABD ∠=︒C ∠2(0)y ax bx b a +≠=+y ax b =+8.已知点,,在抛物线上,则、、的大小关系是( )A. B. C. D.9.如图,是等边的内切圆,分别切,,于点,,,是弧上一点(不与点重合),则的度数是( )A.65°B.60°C.58°D.50°10.如图1,中,,为的中点,点沿从点运动到点,设,两点间的距离为,,图2是点运动时随变化的关系图象,则的长为( )图1图2A.3 B.4 C.5 D.6二、填空题(每小题3分,共18分)11.已知圆锥的底面的半径为,高为,则它的侧面积是________.12.在实数范围内定义运算“★”,其法则为:,则方程的解为________.13.如图,过点且平行于轴的直线与二次函数图象的交点坐标为,,则不等式的解集为________.14.我国古代数学经典著作《九章算术》中记载了一个“圆材埋壁”的问题:“今有圆材埋在壁中,不知大1(3,)A y -2(2,)B y 3(3,)C y 224y x x c =-+1y 2y 3y 123y y y >>132y y y >>321y y y >>231y y y >>O e ABC △AB BC AC E F D P DF F EPF ∠Rt ABC △90B ∠=︒E BC P BC B C B P x PA PE y -=P y x BC 3cm 4cm 22a b b a =-★(43)24x =★★(0,1)x 2(0)y ax bx c a =++>(1,1)(3,1)210ax bx c ++->小,以锯锯之,深一寸,锯道长一尺.问径几何?”意思是:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深寸,锯道长尺(1尺寸).问这根圆形木材的直径是________寸.15.如图,已知抛物线与轴交于、两点,顶点的纵坐标为,现将抛物线向右平移2个单位,得到抛物线,则下列结论正确的是________(写出所有正确结论的序号)①;②;③阴影部分的面积为4;④若,则.16.如图,在平面直角坐标系中,点的坐标为,将线段绕点按顺时针方向旋转45°,再将其长度伸长为的2倍,得到线段;又将线段绕点按顺时针方向旋转45°,长度伸长为的2倍,得到线段;如此下去,得到线段、…,(为正整数),则点的坐标是________.三、解答题(一)(本大题共6小题,共33分,解答应写出必要的文字说明,证明过程或演算步骤)17.解方程(6分)(1);(2).18.(4分)通过配方变形,将二次函数化为的形式,并指出顶点坐标1ED =1AB =10=2y ax bx c =++x A B C 2-2111y a x b x c =++240b ac ->0a b c -+<1c =-24b a =1P 1OPO 1OP 2OP 2OP O 2OP 3OP 4OP 5OP n OP n 2024P 2610x x --=2(21)4(21)30x x ++++=241y x x =-+-2()y a x h k =-+及取何值时,随的增大而减小.19.(5分)关于的一元二次方程.(1)求证:对于任意实数,方程总有两个不相等的实数根;(2)若方程的一个根是2,求的值及方程的另一个根.20.(6分)在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,的三个顶点都在格点上.(1)以为原点建立直角坐标系,点的坐标为,则点的坐标为________;(2)画出绕点顺时针旋转90°后的,并求点旋转到所经过的路线的长.21.(6分)如图:要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成三个大小相同的矩形羊圈.(1)若设米,矩形的面积为平方米,写出与的函数关系式及自变量的取值范围;(2)若矩形的面积为400平方米,求羊圈的边长的长.22.(6分)小慧爷爷家的的房前有一块矩形的空地,空地上有三棵树、、.为了响应“建设美丽乡村,共建美好家园”的号召,小慧爷爷想要修建一个圆形花坛,使三棵树都在花坛的边上.(1)请你帮小慧爷爷把花坛的位置画出来;(尺规作图,不写作法,保留作图痕迹)(2)若中米,米,,试求这个圆形花坛的面积.四、解答题(一)(本大题共5小题,共39分,解答应写出必要的文字说明,证明过程或演算步骤)x y x x 2(1)60x k x -+-=k k ABO △O B (3,1)-A ABO △O 11OA B △B 1B AB x =ABCD y y x ABCD BC A B C ABC △16AB =12AC =90BAC ∠=︒23.(6分)某商品进价每个为10元,当售价为每个12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,请解答以下问题:(1)为了让利给顾客,并同时获得840元利润,应涨价多少元?(2)当售价定为多少时,获得利润最大,最大利润是多少?24.(7分)某游乐场的圆形喷水池中心有一雕塑,从点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为轴,点为原点建立直角坐标系,点在轴上,轴上的点,为水柱的落水点,水柱所在抛物线第一象限部分的函数表达式为.(1)求雕塑高;(2分)(2)求落水点,之间的距离;(2分)(3)若需要在上的点处竖立雕塑,,,.问:顶部是否会碰到水柱?请通过计算说明.(3分)25.(共8分)如图,是的外接圆,是直径,过点作直线,过点作直线,两直线交于点,如果,的半径是.(1)求证:是的切线.(2)求图中阴影部分的面积(结果用表示).26.(8分)【问题情境】数学活动课上,老师和同学们一起玩旋转,如图1,四边形是正方形,绕点顺时针旋转后与重合.图1图2【解决问题】O OA A x O A y x C D 21(5)66y x =--+OA C D OD E EF 10m OE = 1.8m EF =EF OD ⊥F O e ACD △AB D //DE AB B //BE AD E 45ACD ∠=︒O e 2cm DE O e πABCD ADE △A ABF △(1)连接,若,求的长;【类比迁移】(2)用上述思想或其他方法证明:如图2,在正方形中,点、分别在、上,且.求证:.27.(10分)如图,抛物线交轴于点和点,交轴于点.图1 图2(1)求抛物线的函数解析式;(3分)(2)如图1,若点是抛物线上一动点(不与点重合),且,求点的坐标;(3分)(3)如图2,设点是线段上的一动点,作轴,交抛物线于点,求线段长度的最大值及此时点的坐标.(4分)EF BC =2BF =EF ABCD E F DC BC 45EAF ∠=︒EF BE DF =+2y x bx c =-++x (3,0)A -B y (0,3)C P C ABP ABC S S =△△P Q AC DQ x ⊥D DQ D。

辽宁省铁岭市2024—2025学年上学期第二次月考九年级数学试卷

辽宁省铁岭市2024—2025学年上学期第二次月考九年级数学试卷

辽宁省铁岭市2024—2025学年上学期第二次月考九年级数学试卷一、单选题1.下列关于x 的方程有实数根的是()A .x 2-x +1=0B .x 2+x +1=0C .(x -1)(x +2)=0D .(x -1)2+1=02.下列运动属于旋转的是()A .滚动过程中的篮球的滚动B .钟摆的摆动C .一个图形沿某直线对折过程D .气球升空的运动3.如图,在平面直角坐标系中,(4,2)D -,将Rt OCD △绕点O 逆时针旋转90︒到OAB △位置,则点B 坐标为()A .(2,4)B .(4,2)C .(4,2)--D .(2,4)-4.围棋起源于中国,古代称之为“弈”,至今已有4000多年的历史.一棋谱中四部分的截图由黑白棋子摆成的图案是中心对称的是()A .B .C .D .5.如图,将△ABC 绕点C 顺时针方向旋转40°得△A’CB’,若AC ⊥A’B’,则∠BAC 等于()A .50°B .60°C .70°D .80°6.如图,已知抛物线2y ax c =+与直线y kx m =+交于()()123,,1,A y B y -,则关于x 的不等式2ax c kx m +≥+的解集是()A .3x ≤-或1x ≥B .1x ≤-或3x ≥C .31x -≤≤D .13x -≤≤7.若a ,b 是方程x 2+2x-2016=0的两根,则a 2+3a+b=()A .2016B .2015C .2014D .20128.如图是一个在建隧道的横截面,它的形状是以点O 为圆心的圆的一部分,O M 是O 中弦CD 的中点,EM 经过圆心O 交O 于点E ,且8=CD m ,8m EM =,则O 的半径为()m .A .5B .6.5C .7.5D .89.如图,AD 是半圆O 的直径,点B 、C 在半圆上,且 AB BC CD==,点P 在 CD 上,若130PCB ∠=︒,则PBC ∠等于()A .25︒B .20︒C .30︒D .35︒10.如图,AB 是O 的直径,点C 为圆上一点,AC =D 是弧AC 的中点,AC 与BD 交于点E .若E 是BD 的中点,则BC 的长为()A .5B .4C .3D .2二、填空题11.已知点(,2)A m 与点(3,)B n -关于原点对称,则m n -的值为.12.已知1x =是方程²30x mx -+=的一个解,则另一个解为.x =13.如图,四边形ACBD 内接于O ,连接AB ,CD ,AB 是O 的直径,若28ADC ∠=︒,则BAC ∠的度数为.14.定义:关于x 的函数2y ax bx =+与2y bx ax =+(其中a b ≠)叫做互为交换函数,如225y x x =-与252y x x =-+是互为交换函数,如果函数22y mx x =+与它的交换函数图象顶点关于x 轴对称,那么m =.15.如图,在矩形ABCD 中,8AB =,5BC =,点M 是AB 边的中点,点N 是AD 边上任意一点,将线段MN 绕点M 顺时针旋转90︒,点N 旋转到点N ',则MBN '△周长的最小值为.三、解答题16.解方程:(1)用配方法解方程:2650x x ++=(2)用因式分解法解方程:()3224x x x -=-17.利用你所学的平移与旋转知识作答.(1)如图1,是某产品的标志图案,要在所给的图形图2中,把A ,B ,C 三个菱形通过一种或几种变换,均可以变为与图1一样的图案.你所用的变换方法是______.①将菱形B 绕点O 旋转60︒;②将菱形B 绕点O 旋转120︒;③将菱形B 绕点O 旋转180︒.(在以上的变换方法中,选择一种正确的填到横线上.).(2)如图,在平面直角坐标系中,已知点()0,2A 、()2,2B 、()1,1C .①若将ABC V 先向左平移3个单位长度,再向下平移1个单位长度,得到111A B C △,请画出111A B C △,并写出点1C 的坐标为______;②若将ABC V 绕点O 按顺时针方向旋转180︒后得到222A B C △,直接写出点2C 的坐标为______;③若将ABC V 绕点P 按顺时针方向旋转90︒后得到333A B C △,则点P 的坐标是______.18.如图,在O 中,4OA =, CDBD =,直径AB CD ⊥于点E ,连接OC ,OD .(1)求COD ∠的度数;(2)求CD 的长度.19.某公司电商平台,在2022年十一长假期间,举行了商品打折促销活动,经市场调查发现,某种商品的周销售量y (件)是关于售价x (元/件)的一次函数,下表仅列出了该商品的售价x ,周销售量y ,周销售利润W (元)的三组对应值数据.x407090y1809030W 360045002100(1)求y 关于x 的函数解析式(不要求写出自变量的取值范围);(2)若该商品进价为a (元/件),售价x 为多少时,周销售利润W 最大?并求出此时的最大利润.20.如图,AB 是O 的直径,点C 、M 在O 上,且OM BC ∥,连接AC 分别与OM ,BM 相交于点E ,F .(1)求证:点M 为弧AC 的中点;(2)若2ME =,4AE =,求BC 的长.21.等边ABC V 的边长为4,D 为BC 的中点,ABD △绕点B 顺时针旋转得到FBE ,点A 的对应点为F ,点D 的对应点为E ,连接EC ,EC BF ∥.(1)求BEC ∠的度数;(2)求EC 的长度.22.综合与实践已知:90MBN ∠=︒,在BM 和BN 上截取BA BC =,将线段AB 边绕点A 逆时针旋转α()0180α︒<<︒得到线段AD ,点E 在射线BD 上,连接CE ,45BEC ∠=︒.【特例感知】(1)如图1,若旋转角90α=︒,则BD 与CE 的数量关系是______;【类比迁移】(2)如图2,试探究在旋转的过程中BD 与CE 的数量关系是否发生改变?若不变,请求BD 与CE 的数量关系;若改变,请说明理由;【拓展应用】(3)如图3,在四边形ABCD 中,5AD AB BC ===,90ABC ∠=︒,点E 在直线BD 上,45BEC ∠=︒,CE =,请直接写出CDE 的面积.23.定义:在平面直角坐标系中,抛物线()20y ax bx c a =++≠与y 轴的交点坐标为()0,c ,那么我们把经过点()0,c 且平行于x 轴的直线(即直线y c =)称为这条抛物线的横向分割线.(1)抛物线243y x x =++的横向分割线与这条抛物线的交点坐标为______.(2)抛物线21142y x mx n =-++与x 轴交于点−2,0和()(),02B x x >-,与y 轴交于点C .它的横向分割线与该抛物线另一个交点为D ,请用含m 的式子表示点C 和点D 的坐标.(3)在(2)的条件下,设抛物线21142y x mx n =-++的顶点为P ,直线EF 垂直平分线段OC ,垂足为E ,交该抛物线的对称轴于点F .①当45CDF ∠=︒时,求点P 的坐标.②是否存在点P ,使2PF OE =?若存在,直接写出m 的值;若不存在,请说明理由.。

九年级上册第二次月考数学试卷

九年级上册第二次月考数学试卷

20 -20 学年九年级第一学期第二次月考数学学科试卷学校: 班级: 姓名: 考号:一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的。

1.抛物线2(2020)2021y x =-+的顶点坐标是( )A .(2020,2021)-B .(2020,2021)C .(2020,2021)-D .(2020,2021)-- 2.已知是方程x 2﹣3x +c =0的一个根,则c 的值是( )A .﹣6B .6C .D .23.为了解学生假期每天帮忙家长做家务活动情况,学校团委随机抽取了部分学生进行线上调查,并将调查结果绘制成频数直方图(不完整,每组含最小值,不含最大值),并且知道80~100分钟占所抽查学生的17.5%,根据提供信息,以下说法不正确的是( )A.本次共随机抽取了40名学生;B.抽取学生中每天做家务时间的中位数落在40~60分钟这一组;C.如果全校有800名学生,那么每天做家务时间超过1小时的大约有300人;D.扇形统计图中0~20分钟这一组的扇形圆心角的度数是30°; 4.抛物线y =2x 2与y =﹣2x 2相同的性质是( ) A .开口向下 B .对称轴是y 轴C .有最低点D .对称轴是x 轴5.某校高一年级今年计划招四个班的新生,并采取随机摇号的方法分班,小明和小红既是该校的高一新生,又是好朋友,那么小明和小红分在同一个班的机会是( ) A .B .C .D .6.如图,在⊙O 中,弦AC ∥半径OB ,∠BOC =48°,则∠OAB 的度数为( ) A .24°B .30°C .50°D .60°7.如图,△COD 是△AOB 绕点O 顺时针方向旋转30°后所得的图形,点C 恰好在AB 上,则∠A 的度数为( ) A .30°B .60°C .70°D .75° 8.若二次函数y =x 2+mx 的对称轴是x =4,则关于x 的方程x 2+mx =9的根为( ) A .x 1=0,x 2=8B .x 1=1,x 2=9C .x 1=1,x 2=﹣9D .x 1=﹣1,x 2=99.已知等腰三角形的两边长分别是一元二次方程x 2﹣6x +8=0的两根,则该等腰三角形的底边长为( ) A .2B .4C .8D .2或410.如图,二次函数y =ax 2+bx +c 的图象与y 轴正半轴相交,其顶点坐标为(,1),下列结论:①abc <0;②b 2﹣4ac >0;③a +b <0;④2a +c <0,其中正确的个数是( ) A .1个B .2个C .3个D .4个二、填空题(本大题共4小题,每小题5分,满分20分) 11.点M (1,2)关于原点的对称点的坐标为 .12.如图,AB 为⊙O 的直径,弦CD ⊥AB 于点H ,若AB =10,CD =8,则BH 的长度为 . 13.若一个圆锥的母线长为4,底面半径是1,则它的侧面展开图的面积是______. 14.我国魏晋时期的数学家刘徽首创“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的周长,进而确定圆周率.某圆的半径为R ,其内接正十二边形的周长为C .若R =,则C = ,≈ (结果精确到0.01,参考数据:≈2.449,≈1.414).三、(本大题共2小题,每小题8分,满分16分)15.解方程: 3x (x +1)=3x +316.某汽车专卖店经销某种型号的汽车.已知该型号汽车的进价为15万元/辆,经销一段时间后发现:当该型号汽车售价定为25万元/辆时,平均每周售出8辆;售价每降低0.5万元,平均每周多售出1辆. (1)当售价为22万元/辆时,求平均每周的销售利润.(2)若该店计划平均每周的销售利润是90万元,为了尽快减少库存,求每辆汽车的售价. 四、(本大题共2小题,每小题8分,满分16分)17.如图,在平面直角坐标系中,ΔABC 三个顶点的坐标分别为A (1,1)、B (4,2)、C (3,5)。

2024年冀教版九年级数学下册月考试卷652

2024年冀教版九年级数学下册月考试卷652

2024年冀教版九年级数学下册月考试卷652考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五总分得分评卷人得分一、选择题(共6题,共12分)1、如图;四边形ABCD中,边AD;CD都和对角线BD相等,若∠BAC=50°,那么∠BDC的度数等于()A. 90°B. 100°C. 110°D. 120°2、(2005•烟台)如图;梯形ABCD中,AB∥CD,E是AD中点,EF∥CB交AB于F,BC=4cm,则EF的长等于()A. 1.5cmB. 2cmC. 2.5cmD. 3cm3、二次函数y=x2+2x+3的图象与x轴()A. 无交点B. 有一个交点C. 有两个交点D. 有无数个交点4、已知,AB是⊙O的直径,且C是圆上一点,小聪透过平举的放大镜从正上方看到水平桌面上的三角形图案的∠B(如图所示),那么下列关于∠A与放大镜中的∠B关系描述正确的是()A. ∠A+∠B=90°B. ∠A=∠BC. ∠A+∠B>90°D. ∠A+∠B的值无法确定5、已知一次函数y=x+b的图像经过一、二、三象限,则b的值可以是A. -2B. -1C. 0D. 26、如图,一个5×5的网格ABCD,在其形内有16个网格交点,分别以A、C为圆心,AB 长(5个单位)为半径在形内画弧,两弧相交于点B、D,那么上述16个网格交点中位于两弧之间(不含弧上)的有()A. 8个B. 9个C. 10个D. 12个评卷人得分二、填空题(共7题,共14分)7、(2012•邯郸一模)如图是某运算程序,小柯开始的时候输入了a=1,b=10,程序运行中,他观察坐标的变化过程,发现纵坐标y与横坐标x之间存在一种函数关系,请写出这个函数的解析式____.8、已知a=2b,则=____.9、阅读下面材料:在数学课上;老师提出如下问题:尺规作图:作一条线段的垂直平分线.已知:线段AB.(如图1)小芸的作法如下:如图2(1)分别以点A和点B为圆心,大于AB的长为半径作弧;两弧相交于C,D两点.(2)作直线CD老师说:“小芸的作法正确.”请回答:小芸的作图依据是____.10、二次函数y=x2﹣2x的图象的对称轴是直线____11、计算:(3a)2-2a•3a=____.12、距离为20cm的两点A和B关于直线MN成轴对称,则点A到直线MN的距离为____cm.13、在等腰三角形中;(1)一腰上的高与底边的夹角为30°,则顶角为____.(2)一腰上的高与另一腰的夹角为30°,则顶角为____.评卷人得分三、判断题(共6题,共12分)14、如果一个三角形的周长为35cm,且其中两边都等于第三边的2倍,那么这个三角形的最短边为7____.15、因为直角三角形是特殊三角形,所以一般三角形全等的条件都可以用来说明2个直角三角形全等.____(判断对错)16、5+(-6)=-11____(判断对错)17、两个三角形若两角相等,则两角所对的边也相等.____.(判断对错)18、相交两圆的公共弦垂直平分连结这两圆圆心的线段____.(判断对错)19、如果y是x的反比例函数,那么当x增大时,y就减小评卷人得分四、作图题(共1题,共8分)20、已知等边△ABC;请做出旋转后的三角形.(1)以点B为旋转中心.把△ABC顺时针旋转30°;(2)在△ABC外任取一点为旋转中心,把△ABC顺时针旋转90°.评卷人得分五、计算题(共3题,共15分)21、(2015秋•扬州校级月考)如图,在矩形ABCD中,AB=2,BC=4,⊙D的半径为1.现将一个直角三角板的直角顶点与矩形的对称中心O重合,绕着O点转动三角板,使它的一条直角边与⊙D切于点H,此时两直角边与AD交于E,F两点,则EH的值为____.22、解方程.(1)x2-6x=0(2)x2+8x+13=0(用配方法,否则不得分)23、在等腰梯形ABCD中,腰BC为2,梯形对角线AC垂直BC于点C,梯形的高为,则∠CAB为____度.参考答案一、选择题(共6题,共12分)1、B【分析】∵AD=CD=BD;∴点A;B,C在以点D为圆心的圆上;∴∠BDC=2∠BAC=2×50°=100°.故选B.【解析】【答案】由AD=CD=BD;可得点A,B,C在以点D为圆心的圆上,又由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得答案.2、B【分析】过D作DG∥BC.∵AB∥CD;∴四边形BCDG是平行四边形;∴BC=DG=4cm;又∵EF∥CB;∴EF∥DG;在△ADG中;EF∥DG,E为AD的中点;∴EF=DG=×4=2cm.故选B.【解析】【答案】构造平行四边形;使EF为一三角形的中位线,求得它所在的三角形的第三边的长也就求得了EF长.3、A【分析】【分析】判断方程x2+2x+3=0的解的个数,即可判断与x轴的交点的个数.【解析】【解答】解:方程x2+2x+3=0中;判别式△=4-4×3=-8<0;则函数与x轴没有交点.故选A.4、A【分析】【分析】因为AB是直径,则∠C是直角,所以∠A+∠B=90°,用放大镜观察图形,镜中的图形与原图形相似,只改变图形的大小,不改变图形的形状,所以在镜中看的角大小没有改变,所以∠A与放大镜中的∠B的关系是和仍然为90°.【解析】【解答】解:∵AB是直径;∴∠C是直角;∴∠A+∠B=90°;用放大镜观察图形;镜中的图形与原图形相似;所以在镜中看的角大小没有改变;∴∠A+∠B=90°.故选A.5、D【分析】因为一次函数y=x+b中的k=1>0所以过第一和第三象限;又因为经过了第二象限故说明图像向上平移了,所以b大于零。

人教版2022-2023学年第一学期九年级数学第二次月考测试题(附答案)

人教版2022-2023学年第一学期九年级数学第二次月考测试题(附答案)

2022-2023学年第一学期九年级数学第二次月考测试题(附答案)一、单选题(共18分)1.在下列图形中,既是轴对称图形,又是中心对称图形的是()A.等边三角形B.直角三角形C.正五边形D.正六边形2.在平面直角坐标系中,将二次函数y=x2的图象向左平移2个单位长度,再向上平移1个单位长度所得抛物线对应的函数表达式为()A.y=(x﹣2)2+1B.y=(x+2)2+1C.y=(x+2)2﹣1D.y=(x﹣2)2﹣1 3.若点P(2,n﹣1)与点Q(m+1,3)关于原点对称,则m+n的值为()A.﹣5B.﹣1C.1D.54.电影《长津湖》一上映,第一天票房2.05亿元,若每天票房的平均增长率相同,三天后累计票房收入达10.53亿元,平均增长率记作x,方程可以列为()A.2.05(1+2x)=10.53B.2.05(1+x)2=10.53C.2.05+2.05(1+x)2=10.53D.2.05+2.05(1+x)+2.05(1+x)2=10.535.如图,在⊙O中,CD是直径,AB是弦,AB⊥CD于E,AB=8,OD=5,则CE的长为()A.4B.2C.D.16.如图,矩形ABCD中,AB=8,BC=14,M,N分别是直线BC,AB上的两个动点,AE =2,△AEM沿EM翻折形成△FEM,连接NF,ND,则DN+NF的最小值为()A.14B.16C.18D.20二、填空题(本大题共6小题,每小题3分,共18分)7.一元二次方程(x﹣2)(x+1)=0的根是.8.如图,AB是⊙O的直径,∠D=32°,则∠BOC等于.9.已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=mx+n(m≠0)的图象相交于点A(﹣1,6)和B(5,3),如图所示,则使不等式ax2+bx+c<mx+n成立的x的取值范围是.10.一个圆锥的底面半径r=6,高h=8,则这个圆锥的侧面积是.11.如图,将正方形ABCD绕点A逆时针旋转60度得到正方形AEGF,连接EF,BF,点M,N分别为EF,BF的中点,连接MN,若MN的长度为1,则EF的长度为.12.如图所示,已知二次函数y=ax2+bx+c(a≠0)的部分图象,下列结论中:①abc>0;②4a+c>0;③若t为任意实数,则有a﹣bt≥at2+b;④若函数图象经过点(2,1),则a+b+c=;⑤当函数图象经过(2,1)时,方程ax2+bx+c﹣1=0的两根为x1,x2(x1<x2),则x1﹣2x2=﹣8.其中正确的结论有.三、解答题(共84分)13.解方程:x2+2x=0.14.如图,已知:A、B、C、D是⊙O上的四个点,且=,求证:AC=BD.15.如图,在平面直角坐标系中,二次函数y=x2﹣2x+c的图象经过点C(0,﹣3),与x 轴交于点A、B(点A在点B左侧).(1)求二次函数的解析式及顶点坐标;(2)根据图象直接写出当y>0时,自变量x的取值范围.16.如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE.(1)求证:△AEB≌△ADC;(2)连接DE,若∠ADC=110°,求∠BED的度数.17.已知关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实数根x1,x2.(1)求k的取值范围;(2)若x1x2=5,求k的值.18.在△ABC中,AB=AC,点A在以BC为直径的半圆外.请仅用无刻度的直尺分别按下列要求画图(保留画图痕迹).(1)在图①中作弦EF,使EF∥BC;(2)在图②中以BC为边作一个45°的圆周角.19.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出将△ABC绕点A顺时针旋转90°后得到的图形△AB1C1;(2)请画出将△ABC关于原点O成中心对称的图形△A2B2C2;(3)当△ABC绕点A顺时针旋转90°后得到△AB1C1时,点B对应旋转到点B1,请直接写出B1点的坐标.20.如图,△ABC内接于⊙O,AB是⊙O的直径.直线l与⊙O相切于点A,在l上取一点D使得DA=DC,线段DC,AB的延长线交于点E.(1)求证:直线DC是⊙O的切线;(2)若BC=2,∠CAB=30°,求图中阴影部分的面积(结果保留π).21.恰逢新余桔子成熟的时节,为增加农民收入,助力乡村振兴.某驻村干部指导某农户进行桔子种植和销售,已知桔子的种植成本为1元千克,经市场调查发现,今年销售期间桔子的销售量y(千克)与销售单价x(元/千克)(1≤x≤12)满足的函数图象如图所示.(1)根据图象信息,求y与x的函数关系式;(2)请同学们求一下这位农户销售桔子获得的最大利润.22.如图所示,抛物线y=ax2+bx+c的对称轴为直线x=3,抛物线与x轴交于A(﹣2,0)、B两点,与y轴交于点C(0,4).(1)求抛物线的解析式;(2)连接BC,在第一象限内的抛物线上,是否存在一点P,使△PBC的面积最大?最大面积是多少?23.我们知道,与三角形各边都相切的圆叫做三角形的内切圆,则三角形可以称为圆的外切三角形.如图1,⊙O与△BC的三边AB,BC,AC分别相切于点D,E,F则△ABC叫做⊙O的外切三角形,以此类推,各边都和圆相切的四边形称为圆外切四边形.如图2,⊙O与四边形ABCD的边AB,BC,CD,DA分别相切于点E,F,G,H,则四边形ABCD叫做⊙O的外切四边形.(1)如图2,试探究圆外切四边形ABCD的两组对边AB,CD与BC,AD之间的数量关系,猜想:AB+CD AD+BC(横线上填“>”,“<”或“=”);(2)利用图2证明你的猜想;(3)若圆外切四边形的周长为36.相邻的三条边的比为2:6:7.求此四边形各边的长.24.如图,已知二次函数L1:y=ax2﹣4ax+4a+4(a>0)和二次函数L2:y=﹣a(x+2)2+1(a>0)图象的顶点分别为M,N,与y轴分别交于点E,F.(1)函数y=ax2﹣4ax+4a+4(a>0)的最小值为,当二次函数L1,L2的y值同时随着x的增大而减小时,x的取值范围是;(2)当EF=MN﹣1时,直接写出a的值;(3)若二次函数L2的图象与x轴的右交点为A(m,0),当△AMN为等腰三角形时,求方程﹣a(x+2)2+1=0的解.参考答案一、单选题(共18分)1.解:A、是轴对称图形,不是中心对称图形,故本选项不合题意;B、不一定是轴对称图形,不是中心对称图形,故本选项不合题意;C、是轴对称图形,但不是中心对称图形,故本选项不合题意;D、是轴对称图形,也是中心对称图形,故本选项符合题意.故选:D.2.解:将二次函数y=x2的图象向左平移2个单位长度,得到:y=(x+2)2,再向上平移1个单位长度得到:y=(x+2)2+1.故选:B.3.解:∵点P(2,n﹣1)与点Q(m+1,3)关于原点对称称,∴m+1=﹣2,n﹣1=﹣3,∴m=﹣3,n=﹣2.∴m+n=﹣3﹣2=﹣5.故选:A.4.解:∵第一天票房约2.05亿元,且以后每天票房的增长率为x,∴第二天票房约2.05(1+x)亿元,第三天票房约2.05(1+x)2亿元.依题意得:2.05+2.05(1+x)+2.05(1+x)2=10.53.故选:D.5.解:连接OA,如图,∵AB⊥CD,∴AE=BE=AB=4,在Rt△OAE中,OE===3,∴CE=OC﹣OE=5﹣3=2.故选:B.6.解:如图作点D关于BC的对称点D′,连接ND′,ED′.在Rt△EDD′中,∵DE=12,DD′=16,∴ED′==20,∵DN=ND′,∴DN+NF=ND′+NF,∵EF=EA=2是定值,∴当E、F、N、D′共线时,NF+ND′定值最小,最小值=20﹣2=18,∴DN+NF的最小值为18,故选:C.二、填空题(共18分)7.解:(x﹣2)(x+1)=0,x﹣2=0或x+1=0,所以x1=2,x2=﹣1.故答案为:x1=2,x2=﹣1.8.解:∵∠D=32°,∴∠BOC=2∠D=64°,故答案为:64°.9.解:观察函数图象知,当﹣1<x<5时,直线在抛物线的上方,即ax2+bx+c<mx+n,故答案为:﹣1<x<5.10.解:圆锥的母线l===10,∴圆锥的侧面积=π•10•6=60π.11.解:如图所示,连接BE,∵点M,N分别为EF,BF的中点,∴MN是△BEF的中位线,∴BE=2MN=2,由旋转可得,AB=AE,∠BAE=60°,∴△ABE是等边三角形,∴AE=BE=2=AF,又∵∠EAF=90°,∴EF===2.故答案为:2.12.解:由抛物线开口向上,因此a>0,对称轴是直线x=﹣=﹣1,因此a、b同号,所以b>0,抛物线与y轴的交点在负半轴,因此c<0,所以abc<0,故①不正确;由对称轴x=﹣=﹣1可得b=2a,由图象可知,当x=1时,y=a+b+c>0,即a+2a+c>0,∴3a+c>0,又∵a>0,∴4a+c>0,因此②正确;当x=﹣1时,y最小值=a﹣b+c,∴当x=t(t≠﹣1)时,a﹣b+c<at2+bt+c,即a﹣bt<at2+b,∴x=t(t为任意实数)时,有a﹣bt≤at2+b,因此③不正确;函数图象经过点(2,1),即4a+2b+c=1,而b=2a,∴2a+3b+c=1,∴a+b+c=,因此④正确;当函数图象经过(2,1)时,方程ax2+bx+c=1的两根为x1,x2(x1<x2),而对称轴为x =﹣1,∴x1=﹣4,x2=2,∴x1﹣2x2=﹣4﹣4=﹣8,因此⑤正确;综上所述,正确的结论有:②④⑤,故答案为:②④⑤.三、解答题(共84分)13.解:由原方程,得x(x+2)=0,则x=0或x+2=0,解得,x1=0,x2=﹣2.14.证明:∵=,∴=,∴AC=BD.15.解:(1)将C(0,﹣3)代入y=x2﹣2x+c得,c=﹣3,∴y=x2﹣2x﹣3,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点坐标为(1,﹣4);(2)令y=0得x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),∴当y>0时,自变量x的取值范围是x<﹣1或x>3.16.(1)证明:∵△ABC是等边三角形,∴∠BAC=60°,AB=AC.∵线段AD绕点A顺时针旋转60°,得到线段AE,∴∠DAE=60°,AE=AD.∴∠BAD+∠EAB=∠BAD+∠DAC.∴∠EAB=∠DAC.在△EAB和△DAC中,,∴△EAB≌△DAC(SAS).(2)解:如图,∵∠DAE=60°,AE=AD,∴△EAD为等边三角形.∴∠AED=60°,∵△EAB≌△DAC,∴∠AEB=∠ADC=110°.∴∠BED=50°.17.解:(1)根据题意得Δ=(2k+1)2﹣4(k2+1)>0,解得k>;(2)根据题意得x1x2=k2+1,∵x1x2=5,∴k2+1=5,解得k1=﹣2,k2=2,∵k>,∴k=2.18.解:(1)如图①,EF为所作;(2)如图②,∠PBC为所作.19.解:(1)如图,△AB1C1即为所求;(2)如图,△A2B2C2即为所求;(3)根据(1)的图可得B1的坐标(2,﹣2).20.(1)证明:连接OC,∵直线l与⊙O相切于点A,∴∠DAB=90°,∵DA=DC,OA=OC,∴∠DAC=∠DCA,∠OAC=∠OCA,∴∠DCA+∠ACO=∠DAC+∠CAO,即∠DCO=∠DAO=90°,∴OC⊥CD,∴直线DC是⊙O的切线;(2)解:∵∠CAB=30°,∴∠BOC=2∠CAB=60°,∵OC=OB,∴△COB是等边三角形,∴OC=OB=BC=2,∴CE=OC=2,∴图中阴影部分的面积=S△OCE﹣S扇形COB=﹣=2﹣.21.解:(1)当1≤x≤9时,设y=kx+b(k≠0),则,解得:,∴当1≤x≤9时,y=﹣300x+3300,当9<x≤12时,y=600,∴y=.(2)设利润为W,则:当1≤x≤9时,W=(x﹣1)y=(x﹣1)(﹣300x+3300)=﹣300x2+3600x﹣3300=﹣300(x﹣6)2+7500,∵开口向下,对称轴为直线x=6,∴当1≤x≤9时,W随x的增大而增大,∴x=5时,W最大=7500元,当9<x≤12时,W=(x﹣1)y=600(x﹣1)=600x﹣600,∵W随x的增大而增大,∴x=12时,W最大=6600元,∵7500>6600,∴最大利润为7500元.22.解:(1)∵抛物线的对称轴为直线x=3,A(﹣2,0),∴B点坐标为(8,0),设抛物线解析式为y=a(x+2)(x﹣8),把C(0,4)代入得4=a×2×(﹣8),解得a=﹣,∴抛物线解析式为y=﹣(x+2)(x﹣8),即y=﹣x2+x+4;(2)存在.设点P的坐标为(x,﹣x2+x+4),设直线BC的解析式为y=kx+m(k≠0).将B(8,0)、C(0,4)代入y=kx+m,得:,解得:,∴直线BC的解析式为y=﹣x+4.过点P作PD∥y轴,交直线BC于点D,则点D的坐标为(x,﹣x+4),如图.∴PD=﹣x2+x+4﹣(﹣x+4)=﹣x2+2x,∵S△PBC=S△PCD+S△PBD,∴△PCD与△PBD可以看作成以PD为底,两高之和为OB的三角形,∴S△PBC=PD•OB=×8×(﹣x2+2x)=﹣x2+8x=﹣(x﹣4)2+16.∵﹣1<0,∴当x=4时,△PBC的面积最大,最大面积是16.此时P点的坐标为(4,6).23.解:(1)∵⊙O与四边形ABCD的边AB,BC,CD,DA分别相切于点E,F,G,H,∴猜想AB+CD=AD+BC,故答案为:=;(2)已知:四边形ABCD的四边AB,BC,CD,DA都于⊙O相切于G,F,E,H,求证:AD+BC=AB+CD,证明:∵AB,AD和⊙O相切,∴AG=AH,同理:BG=BF,CE=CF,DE=DH,∴AD+BC=AH+DH+BF+CF=AG+BG+CE+DE=AB+CD,即:圆外切四边形的对边和相等;(3)∵相邻的三条边的比为2:6:7,∴设此三边为2x,6x,7x,根据圆外切四边形的性质得,第四边为2x+7x﹣6x=3x,∵圆外切四边形的周长为36,∴2x+6x+7x+3x=18x=36,∴x=2,∴此四边形的四边的长为2x=4,6x=12,7x=14,3x=6.即此四边形各边的长为:4,12,14,6.24.解:(1)∵y=ax2﹣4ax+4a+4=a(x﹣2)2+4,a>0,∴y min=4,∵时,二次函数L1,L2的y值同时随着x的增大而减小,∴﹣2<x<2,故答案为:4,﹣2<x<2;(2)∵M(2,4),N(﹣2,1),∴MN==5,∵E(0,4a+4),F(0,﹣4a+1),∴EF=8a+3,∴8a+3=5﹣1,∴a=;(3)当AM=MN时,(m﹣2)2+42=25,∴m1=5,m2=﹣1,当m=5时,﹣a(x+2)2+1=0的解为:x=5,x=﹣9,当m=﹣1时,﹣a(x+2)2+1=0的解为:x=﹣1或x=﹣3,当AN=AM时,(m﹣2)2+42=(﹣2﹣m)2+12,∴m=,∴﹣a(x+2)2+1=0的解为:x=或x=,当AN=MN时,(m+2)2+1=25,∴m=﹣2﹣2(舍去),m=﹣2+2,∴﹣a(x+2)2+1=0的解为:x=﹣2+2,x=﹣2﹣2,综上所述:方程﹣a(x+2)2+1=0的解是:x=﹣1或x=﹣3;x=或x=;x=﹣2+2,或x=﹣2﹣2.。

河北省邯郸市第二十五中学2024届九年级上学期第二次月考数学试卷(含解析)

河北省邯郸市第二十五中学2024届九年级上学期第二次月考数学试卷(含解析)

邯郸市第二十五中学2023—2024学年九年级第一学期阶段测试(二)数学试卷一、选择题(本大题共16小题,共38分.1—6小题各3分,7—16小题各2分.在每小题给出的选项中,只有一项是符合题目要求的)1. 下列我国著名企业商标图案中,是中心对称图形的是( )A. B. C. D.【答案】B解析:A.不是中心对称图形,故此选项错误B.是中心对称图形,故此选项正确;C.不是中心对称图形,故此选项错误D.不是中心对称图形,故此选项错误;故选B2. 函数y=﹣2x2先向右平移1个单位,再向下平移2个单位,所得函数解析式是( )A. y=﹣2(x﹣1)2+2B. y=﹣2(x﹣1)2﹣2C. y=﹣2(x+1)2+2D. y=﹣2(x+1)2﹣2【答案】B解析:解:抛物线y=﹣2x2的顶点坐标为(0,0),把(0,0)先向右平移1个单位,再向下平移2个单位所得对应点的坐标为(1,﹣2),所以平移后的抛物线解析式为y=﹣2(x﹣1)2﹣2.故选:B.3. 已知⊙O的半径为4,点O到直线m的距离为3,则直线m与⊙O公共点的个数为()A. 0个B. 1个C. 2个D. 3个【答案】C解析:解:∵d=3<半径=4,∴直线与圆相交,∴直线m与⊙O公共点个数为2个,故选C.4. 如图,直角坐标系中一条圆弧经过格点,,,其中点坐标为,则该圆弧所在圆的圆心坐标为()A. B. C. D.【答案】A解析:解:根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦和的垂直平分线,交点即为圆心.如图所示,则圆心是.故选:A.5. 如图,在中,,,则的度数是()A. B. C. D.【答案】A详解】解:连接,∵在中,,∴,则,∵,∴,故选:A.6. 如图,在△ABC中,∠B=40°,将△ABC绕点A逆时针旋转,得到△ADE,点D恰好落在直线BC上,则旋转角的度数为( )A. 70°B. 80°C. 90°D. 100°【答案】D解析:∵将△ABC绕点A逆时针旋转,得到△ADE∴△ABC≌△ADE∴AB=AD∴∠ADB=∠B=40°∵∠ADB+∠B+∠BAD=180°∴∠BAD=180°-40°-40°=100°故选D7. 如图,⊙O是∆ABC的外接圆,半径为,若,则的度数为()A. 30°B. 25°C. 15°D. 10°【答案】A解析:解:连接OB和OC,∵圆O半径为2,BC=2,∴△OBC为等边三角形,∴∠BOC=60°,∴∠A=30°,故选A.8. 如图,是的直径,若,∠D=60°,则长等于( )A. 4B. 5C.D. 【答案】D解析:解:∵是的直径,∴,∵,∴,∴,∵,∴,∴,故选:D .9. 已知,,是抛物线上的点.则、、的大小关系是()A. B.C. D.【答案】B 解析:解:∵,∴对称轴是:,则关于直线对称的点为,∵,∴当时,随的增大而增大,∵,∴;即:,故选:B .10. 某同学将如图所示的三条水平直线,,的其中一条记为x 轴(向右为正方向),三条竖直直线,,的其中一条记为y 轴(向上为正方向),并在此坐标平面内画出了二次函数的图象,那么她所选择的x 轴和y 轴分别为直线( )A. B. C. D.【答案】D解析:解:∵,∴顶点坐标为,∵,∴抛物线与的交点为顶点,∴为y轴,∵二次函数与y轴的交点为,且,∴为x轴,故答案为:D.11. 根据圆规作图的痕迹,可用直尺成功找到三角形外心的是( )A. B.C. D.【答案】C【解析】解析:三角形外心为三边的垂直平分线的交点,由基本作图得到C选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心.故选C.12. 如图,一把直尺,的直角三角板和光盘如图摆放,为角与直尺交点,,则光盘的直径是( )A. 3B.C.D.【答案】D解析:如图,设光盘圆心为O,连接OC,OA,OB,∵AC、AB都与圆O相切,∴AO平分∠BAC,OC⊥AC,OB⊥AB,∴∠CAO=∠BAO=60°,∴∠AOB=30°,在Rt△AOB中,AB=3cm,∠AOB=30°,∴OA=6cm,根据勾股定理得:OB=3,则光盘的直径为6,故选:D.13. 如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是( )A. ∠ABD=∠EB. ∠CBE=∠CC. AD∥BCD. AD=BC【答案】C解析:根据旋转的性质得,∠ABD=∠CBE=60°,∠E=∠C,AB=BD,则△ABD为等边三角形,即AD=AB=BD,∠ADB=60°因为∠ABD=∠CBE=60°,则∠CBD=60°,所以∠ADB=∠CBD,∴AD∥BC.故选C.14. 如图,已知的弦,以为一边作正方形,切点为E,则的半径为( )A. 4B. 3C. 6D. 5【答案】D解析:解:连接并延长,交于F,连接,设的半径为r,则,边与相切,,四边形为正方形,,,在中,,即,解得:,的半径为5,故选:D.15. 已知二次函数y=ax2+bx+c的y与x的部分对应值如表:x﹣10234y50﹣4﹣30下列结论正确的是( )A. 抛物线的开口向下B. 抛物线的对称轴为直线x=2C. 当0≤x≤4时,y≥0D. 若A(x 1,2),B(x2,3)是抛物线上两点,则x1x2【答案】B解析:解:由表格可得,该抛物线的对称轴为直线x==2,故选项B正确;当x<2 时,y随x的增大而减小,当x>2时,y随x的增大而增大,所以该抛物线的开口向上,故选项A 错误;当0≤x≤4时,y≤0,故选项C错误;由二次函数图象具有对称性可知,若A(x1,2),B(x2,3)是抛物线上两点,则x1<x2或x2<x1,故选项D 错误;故选:B.16. 有一题目:“已知;点为的外心,,求.”嘉嘉的解答为:画以及它的外接圆,连接,,如图.由,得.而淇淇说:“嘉嘉考虑的不周全,还应有另一个不同的值.”,下列判断正确的是()A. 淇淇说的对,且的另一个值是115°B. 淇淇说的不对,就得65°C. 嘉嘉求的结果不对,应得50°D. 两人都不对,应有3个不同值【答案】A解析:解:如图所示:∵∠BOC=130°,∴∠A=65°,∠A还应有另一个不同的值∠A′与∠A互补.故∠A′=180°−65°=115°.故选:A.二、填空题(本大题共3小题,共10分.17小题2分,18—19小题各4分,每空2分)17. 二次函数的最小值是_________.【答案】3解析:解:∵a=1>0,∴当x=2时,y有最小值3.故答案为:3.18. 如图,在平面直角坐标系中,已知,以点为圆心的圆与轴相切.点、在轴上,且.点为上的动点,,则长度的最大值为__________,此时长度为__________.【答案】①. 8 ②. 16解析:解:连接,,∵已知,∴,又∵以点为圆心的圆与轴相切,∴得半径为3,则,由三角形三边关系可知:,当点在射线上时取最大值,如图,即:长度的最大值为8,又∵,,则点为斜边的中点,∴,∴当长度为最大值时,,故答案为:①8,②16.19. 如图,中,,.为中点,将绕着点逆时针旋转至.(1)当时,__________;(2)当恰为等腰三角形时,的值为__________.【答案】①. ②. 或或解析:解:(1)∵为中点,∴,∵将绕着点逆时针旋转至,∴,∴,∴,∵,即:∴,∵,∴,故答案为:;(2)如图1,连接,∵为中点,,∴,∴,而,∴,∴;当时,∴,∴,∴,∴,又∵,∴,∴,∴,即;当时,如图2,连接并延长交于,∵,∴垂直平分,∴,∵,为中点,∴,∴,∴,∴,∴,即;当时,如图3,连接并延长交于,连接,∵,为斜边中点,∴,∴垂直平分,∴,∵,∴,即;综上所述:当为等腰三角形时,的值为或或,故答案为:或或.三、解答题(本大题共7个小题,共72分.解答应等出文字说明、证明过程或演算步骤)20. 解方程:(1);(2)【答案】(1),(2)【小问1详解】由题意得,,则,∴,即,;【小问2详解】∴,因式分解为,∴,∴21. 如图,在平面直角坐标系中,的三个顶点坐标都在格点上,且与关于原点成中心对称.(1)画出;并写出各点坐标.(2)是的边上一点.将平移后点的对应点,请画出平移后的;(3)若和关于某一点成中心对称,则对称中心的坐标为__________.【答案】(1)作图见解析,,,(2)见解析(3)【小问1详解】解:∵,,,∴,,;∴即为所求;【小问2详解】∵,平移后点的对应点,∴先向右平移2个单位长度,再向下平移6个单位长度,即:如图所示;【小问3详解】连接,相交于点,则为对称中心,即:为的中点,∵,∴,又∵,∴,即,故答案为:.22. 如图,AB是的直径,弦于点M,连结CO,CB.(1)若,,求CD的长度;(2)若平分,求证:.【答案】(1)8;(2)证明见详解解析:解:(1)∵AB是⊙O的直径,弦CD⊥AB,∴CM=DM,∵AM=2,BM=8,∴AB=10,∴OA=OC=5,Rt△OCM中,OM2+CM2=OC2,∴CM4,∴CD=8;(2)过点O作ON⊥BC,垂足N,∵CO平分∠DCB,∴OM=ON,∵CO=CO∴Rt△COM≌Rt△CON∴CM=CN∴CB=CD.23. 如图,,,直线经过点.设,于点,将射线绕点按逆时针方向旋转,与直线交于点.(1)判断:__________;(2)若,求的长;(3)若的外心在三角形内部(不包括边上),直接写出的取值范围.【答案】(1)(2)(3)【小问1详解】解:∵,,∴,在四边形中,,故答案是:;【小问2详解】由旋转可知,,又∵,∴,,∴.由(1)知,而,∴.又∵,∴,∴.又∵,则是等腰直角三角形,∴;【小问3详解】由(2)可知,当时,则为直角三角形,外心在其斜边上,当时,则为钝角三角形,外心在其外部,当时,∵,,,∴,则,∴,,则为锐角三角形,外心在其内部,故:.24. 随着城市的块速发展,人们的环保意识逐渐增强,对花木的需求量也逐年提高.某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润与投资量成正比例关系,如图1所示;种植花卉的利润与投资量成二次函数关系,如图2所示(注:利润与投资量的单位:万元)(1)分别求出利润与关于投资量的函数关系式;(2)如果这位专业户计划以10万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?【答案】(1),(2)他至少获得18万元利润,他能获取的最大利润是50万元【小问1详解】设,由图1所示,函数图象过,∴∴;∵该抛物线的顶点是原点∴设,由图2所示,函数的图象过∴,则,∴;【小问2详解】设这位专业户投入种植花卉万元,则投入种植树木万元,他获得的利润是万元,根据题意得:,∴当时,的最小值是18∵,∴当时,的最大值是50.∴他至少获得18万元利润,他能获取的最大利润是50万元.25. 如图,AB是的直径,点D、E在上,连接AE、ED、DA,连接BD并延长至点C,使得.(1)求证:AC是的切线;(2)若点E是的中点,AE与BC交于点F,①求证:CA=CF;②若的半径为3,BF=2,求AC的长.【答案】(1)见解析;(2)①见解析;②8解析:(1)∵AB是的直径,∴∠ADB=90°,∴∠DBA+∠DAB=90°,∵∠DEA=∠DBA,∠DAC=∠DEA,∴∠DBA=∠DAC,∴∠BAC=∠DAC+∠DAB=90°,∵AB是的直径,∠BAC=90°,∴AC是的切线;(2)①∵点E是的中点,∴∠BAE=∠DAE,∵∠CFA=∠DBA+∠BAE,∠CAF=∠DAC+∠DAE,∠DBA=∠DAC,∴∠CFA=∠CAF,∴CA=CF;②设CA=CF=x,则BC=CF+BF=x+2,∵的半径为3,∴AB=6,在Rt△ABC中,CA2+AB2=BC2,即:x2+62=(x+2)2,解得:x=8,∴AC=8.26. 如图,抛物线y=-x2+bx+c与x轴交于点A(-1,0),与y轴交于点B(0,2),直线y=x-1与y轴交于点C,与x轴交于点D,点P是线段CD上方的抛物线上一动点,过点P作PF垂直x轴于点F,交直线CD于点E,(1)求抛物线的解析式;(2)设点P的横坐标为m,当线段PE的长取最大值时,解答以下问题.①求此时m的值.②设Q是平面直角坐标系内一点,是否存在以P、Q、C、D为顶点的平行四边形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.【答案】(1)y=﹣x2+x+2;(2)①m=;②存在以P、Q、C、D为顶点的四边形是平行四边形,点Q的坐标为解析:解:(1)将A(﹣1,0),B(0,2)代入y=﹣x2+bx+c,得:,解得:b=1,c=2∴抛物线的解析式为y=﹣x2+x+2.(2)①∵直线y=x-1与y轴交于点C,与x轴交于点D,∴点C的坐标为(0,-1),点D的坐标为(2,0),∴0<m<2.∵点P的横坐标为m,∴点P的坐标为(m,﹣m2+m+2),点E的坐标为(m,m+3),∴PE=﹣m2+m+2﹣(m+3)=﹣m2+m+3=﹣(m﹣)2+.∵﹣1<0,0<<2,∴当m=时,PE最长.②由①可知,点P的坐标为(,).以P、Q、C、D为顶点的四边形是平行四边形分三种情况(如图所示):①以PD为对角线,点Q的坐标为;②以PC为对角线,点Q的坐标为;③以CD为对角线,点Q的坐标为.综上所述:在(2)的情况下,存在以P、Q、C、D为顶点的四边形是平行四边形,点Q的坐标为.。

九年级数学第二次月考试题(新人教版)

九年级数学第二次月考试题(新人教版)

九年级数学第二次月考试题一、选择题(每小题2分,共20分)1.有6张写有数字的卡片,它们的背面都相同,现将它们背面朝上(如图1), 从中任意取一张是数字3的概率是( ) A 、61 B 、31 C 、21 D 、322.已知x 、y 是实数,3x +4 +y 2-6y +9=0,则xy 的值是( )A .4B .-4C .94D .-943、如果,3-x 是多项式m x x +-522的一个因式,则m 等于( )A 、6B 、-6C 、3D 、-3 4.y =21 (x-1)2向上平移2个单位,再向左平移2个单位得( ) A y =21 (x+ 1)2 B y =21 (x-3)2+2C y =21 (x+ 1)2 +2D y =21 (x+ 1)2-25.若六边形的边心距为23,则这个正六边形的半径为( ). A 、1 B 、2 C 、4 D 、236.已知圆锥底面圆的半径为6厘米,高为8厘米,则圆锥的侧面积为_______ 2厘米. A .48 B. 48π C. 120π D. 60π 7.抛物线(1)(3)(0)y a x x a =+-≠的对称轴是直线( ) A .1x =B .1x =-C .3x =-D .3x =8.如图所示的二次函数2y ax bx c =++的图象中,甲同学观察得出了下面四条信息:(1)240b ac ->;(2)c >1;(3)2a -b <0;(4)a +b +c <0。

你认为其中错误..的有( ). A .2个B .3个C .4个D .1个9.已知 a <- 1,点(a -1,1y )、(a ,2y )(a +1,3y )都在函数2x y =的图象上,则( ) (A )1y <2y <3y (B )1y <3y <2y (C )3y <2y <1y (D )2y <1y <3y 10. 二次函数2y ax bx c =++的图象如图所示,则反比例函数ay x=与一次函数 y bx c =+在同一坐标系中的大致图象是( ).图1学校 班级 姓名 座号密 封 线 内 不 要 答 题xy -1 1O1第8题图一、选择题答案(每小题2分,共20分) 1 2 3 4 5 6 7 8 9 10二、填空题(每小题3分,共30分) 11.一条弦把圆分为2∶3的两部分,那么这条弦所对的圆周角度数为 。

九年级数学第二次月考卷及答案

九年级数学第二次月考卷及答案

九年级数学第二次月考卷一、选择题(每题4分,共40分)1. 下列选项中,( )是实数。

A. √1B. 3+4iC. 0D. 1+i2. 若|a|=5,|b|=3,则|a+b|的取值范围是( )。

A. 2≤|a+b|≤8B. 8≤|a+b|≤10C. 2≤|a+b|≤10D.8≤|a+b|≤183. 已知等差数列{an},a1=1,a3=3,则公差d为( )。

A. 1B. 2C. 3D. 44. 不等式2x3>0的解集是( )。

A. x>1.5B. x<1.5C. x>3D. x<35. 下列函数中,( )是奇函数。

A. y=x^2B. y=|x|C. y=x^3D. y=2x6. 一次函数y=kx+b的图象经过一、二、四象限,则k和b的取值范围是( )。

A. k>0,b>0B. k<0,b>0C. k<0,b<0D. k>0,b<07. 在△ABC中,a=8,b=10,cosA=3/5,则sinB的值为( )。

A. 3/5B. 4/5C. 3/4D. 4/38. 下列图形中,( )的面积可以通过底乘以高的一半来计算。

A. 正方形B. 矩形C. 三角形D. 梯形9. 已知函数f(x)=2x+1,那么f(f(x))的值为( )。

A. 2x+1B. 4x+3C. 2x+3D. 4x+110. 下列方程中,( )是一元二次方程。

A. x^2+y^2=1B. x^2+2x+1=0C. 2x3y=5D. x^33x=0二、填空题(每题4分,共40分)11. 已知数列{an}的通项公式为an=n^2n+1,则a5=______。

12. 若|a|=3,|b|=4,且a与b同向,则a•b=______。

13. 在平面直角坐标系中,点A(2,3)关于原点的对称点坐标为______。

14. 已知等差数列{an},a1=3,a5=11,则公差d=______。

九年级第二次月考 (数学)(含答案)082250

九年级第二次月考 (数学)(含答案)082250

九年级第二次月考 (数学)试卷考试总分:115 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1. 的相反数是( )A.B.C.D.2. 我国是世界上严重缺水的国家之一,目前我国每年可利用的淡水资源总量约为亿立方米,人均占有淡水量居全世界第位,因此我们要节约用水,亿用科学记数法表示为(精确到十亿位)( )A.B.C.D.3. 如图,是一个由多个相同小正方体搭成的几何体的俯视图,图中所标的数字为该位置小正方体的个数,则这个几何体的左视图是()A.B.C.D.−120192019−12019−2019120192750011027500275×1042.750×1042.750×101227.5×10114. 下列运算正确的是( )A.B.C.D.5. 如图,,,则的度数为 ( )A.B.C.D.6. 若数据,,,,的平均数为,方差为,则数据,(其中的平均数,方差′.下列式子正确的是( )A.B.C.D.7. 下列一元二次方程中,有两个相等的实数根的是( )A.B.C.D.8. 某公益组织在国外采购某医疗物资,每名志愿者平均每天只能采购到该物资万个,原计划采购该物资万个.实际采购中,在当地又招募到名志愿者,结果比原计划推迟一天结束采购任务并实际购得万个.设原有采购志愿者名.则据题意可列方程为( )A.B.C.D.9. 心理学家发现:课堂上,学生对概念的接受能力与提出概念的时间(单位:)之间近似满足=−(a −b)2a 2b 2⋅=a 3a 2a 6+a =a 2a 3÷a =a 3a 2AB//CD ∠A+∠E =75∘∠C 60∘65∘75∘80∘12345a b 1+2m ,2+m ,34−m ,5−2m 0<m<1)a ′b <a,=b a ′b ′=a,<b a ′b ′=a,>b a ′b ′>a,=b a ′b ′−8x+16=0x 2−8=0x 2=4(x−2)2−13x−48=0x 2120010300x −=1300x 200x+10−=1300x+10200x −=1200x 300x+10−=1200x+10300xs t min s =a +bt+c(a ≠0)2函数关系,值越大,表示接受能力越强.如图记录了学生学习某概念时与的三组数据,根据上述函数模型和数据,可推断出当学生接受能力最强时,提出概念的时间为A.B.C.D.10. 如图,点是等边的边上一点,以为边作等边,点,在同侧,下列结论:①=;②;③平分;④=,其中错误的有( )A.个B.个C.个D.个二、填空题(本题共计 5 小题,每题 5 分,共计25分)11. 已知一次函数,请你补充一个条件________,使随的增大而减小.12. 若不等式组无解,则实数的取值范围为________.13. 某学校举行“少年心向党”庆祝建党周年主题教育活动,准备从小明、小庆两名男生和小岩、小红、小慧三名女生中各随机选取一名男生和一名女生担当主持人,则小庆和小红被同时选中的概率是________.14. 如图,四边形和都是正方形,点,分别在,上,点在扇形的上,已知正方形的边长为,则图中阴影部分的面积为________.15. 如图,在正方形中,,与直线的夹角为,延长交直线于点,作正方形,延长交直线于点,作正方形;延长交直线于点,,依此规律,则 _________.s=a+bt+c(a≠0)t2s ts()8min13min20min25minD△ABC AC BD△BDE C E BD ∠ABD30∘CE//AB CB∠ACE CE AD123y=kx−b y x{x−a≥0,1−2x>x−2a100ABCD AEFG E G AB AD F ADBABCD1ABCB1AB=1AB l30∘CB1l A1A1B1C1B2C1B2l A2A2B2C2B3C2B3l A3⋯=A2021B2021三、 解答题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )16. 计算:;. 17. 为庆祝中国共产党建党周年,讴歌中华民族实现伟大复兴的奋斗历程,继承革命先烈的优良传统,某中学开展了建党周年知识测试,该校七、八年级各有名学生参加,从中各随机抽取了名学生的成绩(百分制),并对数据(成绩)进行整理,描述和分析,下面给出了部分信息:.八年级的频数分布直方图如下(数据分为组: ,,,,;.八年级学生成绩在的这一组是:.七、八年级学生成绩的平均数、中位数、众数如下:年级平均数中位数众数七年级八年级根据以上信息,回答下列问题:表中的值为________;在随机抽样的学生中,建党知识成绩为分的学生,在________年级排名更靠前,理由是________.若各年级建党知识测试成绩前名将参加线上建党知识竞赛,预估八年级分数至少达到________分的学生才能入选;若成绩分及以上为“优秀”,请估计八年级达到“优秀”的人数.18. 疫情期间,为了保障大家的健康,各地采取了多种方式进行预防,某地利用无人机规劝居民回家.如图,一条笔直的街道,在街道处的正上方处有一架无人机,该无人机在处测得俯角为的街道处有人聚集,然后沿平行于街道的方向再向前飞行米到达处,在处测得俯角为 的街道处也有人聚集,已知两处聚集点,之间的距离为米,求无人机飞行的高度.(参考数据: . ) 19. 如图,在直角坐标系中,直线与反比例函数的图象交于关于原点对称的,两(1)−|−4|−+(3)2–√2(−)13−2(−4−2)0(2)(1−)÷x x+3−9x 2+6x+9x 210010030050a 550≤x <6060≤x <7070≤x <8080≤x <9090≤x ≤100)b 80≤x <90808182838383.583.58484858686.587888989c 87.2859185.3m 90(1)m (2)84(3)90(4)85DC C A A 45∘B DC 60E E 37∘D B D 120AC sin ≈0.60,cos ≈0.80,tan ≈0.75,≈1.4137∘37∘37∘2–√y =−x 12y =k xA B点,已知点的纵坐标是.求反比例函数的表达式;将直线向上平移后与反比例函数在第二象限内交于点,如果的面积为,求平移后的直线的函数表达式. 20. 【阅读理解】在解方程组或求代数式的值时,可以用整体代入或整体求值的方法,化难为易.(1)解方程组(2)已知,求的值解:(1)把②代入①得:=.解得:=.把=代入②得:=.所以方程组的解为(2)①得:=.③②-③得:=.【类比迁移】(3)若,则=________.(4)解方程组【实际应用】打折前,买件商品,件商品用了元.打折后,买件商品,件商品用了元,比不打折少花了多少钱? 21. 已知二次函数(为常数).求证:不论为何值,该函数的图象与轴总有公共点;当取什么值时,该函数的图象与轴的交点在轴的上方?22. 如图,在圆中,弦于,弦于,与相交于点.(1)求证:.(2)如果=,=,求圆的半径.23. 边长为的正方形中,点是上一点,过点作交射线于点,连接.A 3(1)(2)y =−x 12C △ABC 36{x+2(x+y)=3x+y =1{ 4x+3y+2z =10,9x+7y+5z =25x+y+z x+2×13x 1x 1y 0{ x =1y =0×28x+6y+4z 20x+y+z 5{ x+y+z =13x+3y+5z =23x+2y+3z 2x−y−2=0,+2y =9.2x−y+5739A 21B 108052A 28B 1152y =2(x−1)(x−m−3)m (1)m x (2)m y x O AB ⊥CD E AG ⊥BC F CD AG M =BD^BG ^AB 12CM 4O 4ABCD E BD E EF ⊥AE CB F CE若点在边上(如图).①求证:;②若,求的长.若点在延长线上,,请直接写出的长为________.(1)F BC CE =EF BC =2BF DE (2)F CB BC =2BF DE参考答案与试题解析九年级第二次月考 (数学)试卷一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1.【答案】D【考点】相反数【解析】直接利用相反数的定义分析得出答案.【解答】解:的相反数是:.故选.2.【答案】C【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是非负数;当原数的绝对值时,是负数.【解答】解:将亿用科学记数法表示为:.故选.3.【答案】D【考点】由三视图判断几何体简单组合体的三视图【解析】根据几何体的三视图来解答即可.【解答】解:由俯视图的数字可知,该几何体的左视图有三列,−1201912019D a ×10n 1≤|a |<10n n a n ≥1n <1n 27500 2.750×1012C从左到右分别是,,个正方形,∴这个几何体的左视图为:故选.4.【答案】D【考点】同底数幂的乘法完全平方公式合并同类项同底数幂的除法【解析】根据完全平方公式、同底数幂的乘法、同底数幂的除法,合并同类项逐项分析即可.【解答】解:,,故该选项错误;,,故该选项错误;,与不是同类项,不能合并,故该选项错误;,,故该选项正确.故选.5.【答案】C【考点】平行线的性质三角形的外角性质【解析】【解答】解:设与相交于点,如图所示:232D A (a −b =−2ab +)2a 2b 2B ⋅==a 3a 2a 3+2a 5C a 2a D ÷a ==a 3a 3−1a 2D CE AB O∵,∴.∵,∴.故选.6.【答案】B【考点】方差算术平均数【解析】先后利用方差和算术平方根的计算公式分别计算出变化前后的方差和算术平方根,再进行比较,即可解答.【解答】解:,,.,,,,,, 又,,.故选.7.【答案】A【考点】根的判别式【解析】分别求出每个方程判别式的值,根据判别式的值与方程的解的个数间的关系得出答案.【解答】∠A+∠E =75∘∠BOE =∠A+∠E =75∘AB//CD ∠C =∠BOE =75∘C ∵a =(1+2+3+4+5)=315=(1+2m+2+m+3+4−m+5−2m)=3a ′15∴a =a ′∵b =×[++++]15(1−3)2(2−3)2(3−3)2(4−3)2(5−3)2=×[++++]15(−2)2(−1)2021222=2=×[++++]b ′15(1+2m−3)2(2+m−3)2(3−3)2(4−m−3)2(5−2m−3)2=×(10−20m+10)15m 2=2−4m+2m 2=2(m−1)2∵0<m<1∴0<=2(m−1)<2b ′∴<b b ′B Δ=−4×1×16=02解:.∵∴方程有两个相等的实数根,符合题意;.∵∴有两个不相等的实数根,不符合题意;.方程化为∵∴方程有两个不相等的实数根,不符合题意;.∵∴方程有两个不相等的实数根,不符合题意;故选.8.【答案】B【考点】由实际问题抽象为分式方程【解析】设原有采购志愿者名.根据“结果比原计划推迟一天”列出方程.【解答】解:设原有采购志愿者名,根据题意,得.故选.9.【答案】B【考点】二次函数的应用二次函数的最值【解析】此题暂无解析【解答】解:由题意得:函数过点、、,把以上三点坐标代入得:,解得,则函数的表达式为:,,则函数有最大值,当时,有最大值,即学生接受能力最强.故选.10.【答案】B A Δ=−4×1×16=0(−8)2B Δ=−4×1×(−8)=32>002C −4x =0x 2Δ=−4×1×0=16>0(−4)2D Δ=−4×1×(−48)=361>0(−13)2A x x −=1300x+10200xB (0,43)(20,55)(30,31)s =a +bt+c(a ≠0)t 2 43=c,55=a +20b +c,20231=a +30b +c,302 a =−,110b =,135c =43;s =−+t+43110t 2135∵a =−<0110t =−=13b 2a s B【考点】全等三角形的性质与判定等边三角形的性质等腰三角形的性质与判定【解析】由等边三角形的性质和全等三角形的判定与性质,分别对各个结论进行推理判断即可.【解答】∵和是等边三角形,∴====,=,=,∴=,①不正确;在和中,,∴,∴==,=,④正确;∴=,∴,②正确;∵==,∴平分,③正确;∴错误的有个,二、 填空题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )11.【答案】【考点】一次函数的性质【解析】此题暂无解析【解答】解:根据一次函数的基本性质可知,在一次函数中,当时,随的增大而减小.故答案为:.12.【答案】【考点】解一元一次不等式组【解析】分别求出各不等式的解集,再与已知不等式组无解相比较即可得出的取值范围.△ABC △BDE ∠A ∠ACB ∠ABC ∠DBE 60∘AB BC BD BE ∠ABD ∠CBE △ABD △CBE AB =CB∠ABD =∠CBE BD =BE△ABD ≅△CBE(SAS)∠A ∠BCE 60∘AD CE ∠BCE ∠ABC CE//AB ∠CBE ∠ACB 60∘CB ∠ACE 1k <0y =kx−b k <0y x k <0a ≤−1a【解答】解:,由①得,,由②得,.∵不等式组无解,∴,解得:.故答案为:.13.【答案】【考点】列表法与树状图法概率公式【解析】用列表法表示所有可能出现的结果,进而求出相应的概率.【解答】解:利用列表法表示所有可能出现的结果如下:男生 女生小岩小红小惠小明小明,小岩小明,小红小明,小惠小庆小庆,小岩小庆,小红小庆,小惠共有种可能出现的结果,其中小庆和小红同时被选中的有种,∴(小庆和小红被同时选中).故答案为:.14.【答案】【考点】正方形的性质扇形面积的计算【解析】此题暂无解析【解答】此题暂无解答15.【答案】【考点】{x+a ≥0①1−2x >x−2②x ≥−a x <1−a ≥1a ≤−1a ≤−11661P =1616()3–√2021正方形的性质含30度角的直角三角形规律型:图形的变化类【解析】根据含度的直角三角形三边的关系得到,,再利用四边形为正方形得到,接着计算出,然后根据的指数变化规律得到的长度.【解答】解:四边形为正方形,.,,,.四边形为正方形,.,,,,.故答案为:.三、 解答题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )16.【答案】解:原式.原式 . 【考点】实数的运算分式的化简求值【解析】【解答】解:原式.原式 . 30=A =A 1B 13–√B 13–√A =2A =2A 1B 1A 1B 1C 1B 2==A 1B 2A 1B 13–√=A 2B 2()3–√23–√A 2018B 2019∵ABCB 1∴A =AB =1B 1∵C//AB A 1∴∠A =B 1A 130∘∴=A =A 1B 13–√B 13–√A =2A =2A 1B 1∵A 1B 1C 1B 2∴==A 1B 2A 1B 13–√∵//A 2C 1A 1B 1∴∠=B 2A 2A 130∘∴==×=A 2B 23–√A 1B 23–√3–√()3–√2⋯∴=A 2021B 2021()3–√2021()3–√2021(1)=18−4−9+1=6(2)=÷3x+3−9x 2+6x+9x 2=⋅3x+3+6x+9x 2−9x 2=⋅3x+3(x+3)2(x+3)(x−3)=3x−3(1)=18−4−9+1=6(2)=÷3x+3−9x 2+6x+9x 2=⋅3x+3+6x+9x 2−9x 2=⋅3x+3(x+3)2(x+3)(x−3)=3x−317.【答案】八,该学生的成绩大于八年级的中位数,但小于七年级的中位数根据题意得:(人),答:八年级达到“优秀”的人数约为人.【考点】频数(率)分布直方图中位数用样本估计总体【解析】(1)根据中位数的定义直接求解即可;(2)从七、八年级的中位数进行分析,即可得出在八年级排名更靠前;(3)先求出从抽取的名学生中参加线上建党知识竞赛得人数,再结合统计图给出的数据,即可得出答案;(4)用总人数乘以达到“优秀”的人数所占的百分比即可.【解答】解:八年级共抽取名学生,第,名学生的成绩为分,分,所以(分).故答案为:.在八年级排名更靠前,理由如下:七年级的中位数是分,八年级的中位数是分,该学生的成绩大于八年级成绩的中位数,小于七年级成绩的中位数,在八年级排名更靠前.故答案为:八,该学生的成绩大于八年级成绩的中位数,小于七年级成绩的中位数;根据题意得:(人),则在抽取的名学生中,必须有人参加线上建党知识竞赛,所以至少达到分才能入选.故答案为:.根据题意得:(人),答:八年级达到“优秀”的人数约为人.18.【答案】解:如图,过点作于.∵,∴,∵,,∴,∴四边形为矩形.∴米.设米.则米,米.在中,∵,8389(4)300×=1207+135012050(1)5025268383m==8383+83283(2)∵8583∴∴(3)×50=159030050158989(4)300×=1207+1350120E EM ⊥DC M AE//CD ∠ABC =∠BAE =45∘BC ⊥AC EM ⊥DC AC//EM AEMC CM =AE =60BM =x AC =BC =EM =(60+x)DM =(120+x)Rt △EDM ∠D =37∘∠D ===0.75EM 60+x∴,解得:,∴(米).∴飞机高度为米.答:无人机飞行的高度为米.【考点】解直角三角形的应用-仰角俯角问题【解析】【解答】解:如图,过点作于.∵,∴,∵,,∴,∴四边形为矩形.∴米.设米.则米,米.在中,∵,∴,解得:,∴(米).∴飞机高度为米.答:无人机飞行的高度为米.19.【答案】解:令一次函数中,,则,解得,即点的坐标为.∵点在反比例函数的图象上,∴,∴反比例函数的表达式为.设平移后直线于轴交于点,连接,如图所示,设平移后的解析式为,∵该直线平行直线,∴,tan ∠D ===0.75EM DM 60+x 120+x x =120AC =60+x =60+120=180180AC 180E EM ⊥DC M AE//CD ∠ABC =∠BAE =45∘BC ⊥AC EM ⊥DC AC//EM AEMC CM =AE =60BM =x AC =BC =EM =(60+x)DM =(120+x)Rt △EDM ∠D =37∘tan ∠D ===0.75EM DM 60+x 120+x x =120AC =60+x =60+120=180180AC 180(1)y =−x 12y =33=−x 12x =−6A (−6,3)A(−6,3)y =k x k =−6×3=−18y =−18x (2)y F AF BF y =−x+b12AB =S △ABC S △ABF∵的面积为,∴,由对称性可知,,∵,∴,∴,∴,∴平移后的直线的函数表达式为.【考点】待定系数法求反比例函数解析式反比例函数与一次函数的综合一次函数图象与几何变换三角形的面积【解析】将代入一次函数解析式中,求出的值,即可得出点的坐标,再利用反比例函数图象上点的坐标特征即可求出反比例函数的表达式;平移后直线于轴交于点,连接,,设平移后的解析式为,由平行线的性质可得出,结合正、反比例函数的对称性以及点的坐标,即可得出关于的一元一次方程,解方程即可得出结论.【解答】解:令一次函数中,,则,解得,即点的坐标为.∵点在反比例函数的图象上,∴,∴反比例函数的表达式为.设平移后直线于轴交于点,连接,如图所示,设平移后的解析式为,∵该直线平行直线,∴,∵的面积为,∴,由对称性可知,,∵,∴,∴,∴,∴平移后的直线的函数表达式为.20.【答案】△ABC 48=OF ⋅(−)=36S △ABF 12x B x A =−x B x A =−6x A =6x B =b ×12=36S △ABF 12b =6y =−x+612(1)y =3x A (2)y F AF BF y =−x+b 12=S △ABC S △ABF A b (1)y =−x 12y =33=−x 12x =−6A (−6,3)A(−6,3)y =k x k =−6×3=−18y =−18x (2)y F AF BF y =−x+b12AB =S △ABC S △ABF △ABC 48=OF ⋅(−)=36S △ABF 12x B x A =−x B x A =−6x A =6x B =b ×12=36S △ABF 12b =6y =−x+612+),得:=.故答案为:.,由,将(1)代入(2)中得:=,解得:=,将=代入(3)中得:=.∴方程组的解为.【实际应用】设打折前商品每件元,商品每件元,根据题意得:=,即=,将两边都乘得:=,=(元).答:比不打折少花了元.【考点】二元一次方程组的应用——行程问题二元一次方程的应用解三元一次方程组【解析】【类比迁移】(1)利用①+②可得出=,此问得解;(2)利用代入法解方程组,即可求出结论;【实际应用】设打折前商品每件元,商品每件元,由买件商品件商品用了元,可得出关于、的二元一次方程,变形后可得出=,用原价-现价即可求出少花钱数.【解答】+),得:=.故答案为:.,由得:=,将(1)代入(2)中得:=,解得:=,将=代入(3)中得:=.∴方程组的解为.【实际应用】设打折前商品每件元,商品每件元,根据题意得:=,即=,将两边都乘得:=,=(元).答:比不打折少花了元.21.【答案】证明:当时,,解得:,.当,即时,方程有两个相等的实数根;当,即时,方程有两个不相等的实数根,∴不论为何值,该函数的图象与轴总有公共点.解:当时,,÷2x+2y+3z 1818(2) 2x−y−2=0+2y =92x−y+57181+2y 9y 4y 4x 3{ x =3y =4A xB y 39x+21y 108013x+7y 360452x+28y 14401440−1152288288()÷2x+2y+3z 18A x B y 39A 21B 1080x y 52x+28y 1440÷2x+2y+3z 1818(2) 2x−y−2=0+2y =92x−y+572x−y 21+2y 9y 4y 4x 3{ x =3y =4A xB y 39x+21y 108013x+7y 360452x+28y 14401440−1152288288(1)y =02(x−1)(x−m−3)=0=1x 1=m+3x 2m+3=1m=−2m+3≠1m≠−2m x (2)x =0y =2m+6∴该函数的图象与轴交点的纵坐标是,∴当,即时,该函数的图象与轴的交点在轴的上方.【考点】抛物线与x 轴的交点二次函数图象上点的坐标特征【解析】此题暂无解析【解答】证明:当时,,解得:,.当,即时,方程有两个相等的实数根;当,即时,方程有两个不相等的实数根,∴不论为何值,该函数的图象与轴总有公共点.解:当时,,∴该函数的图象与轴交点的纵坐标是,∴当,即时,该函数的图象与轴的交点在轴的上方.22.【答案】证明:连结、、,如图所示,∵,,∴==,∴=,=,∴=,即=,∴;连接、、、、,作于,于,如图所示:则=,==,∵=,=,=,∴=,∵=,∴=,∴==,∴=,∵,∴=,∴=,∴的度数的度数=,∴=,∴=,∵=,∴=,在和中,,∴,∴==,∴;即的半径为.y 2m+62m+6>0m>−3y x (1)y =02(x−1)(x−m−3)=0=1x 1=m+3x 2m+3=1m=−2m+3≠1m≠−2m x (2)x =0y =2m+6y 2m+62m+6>0m>−3y x AD BD BG 1AB ⊥CD AG ⊥BC ∠CEB ∠AFB 90∘∠ECB+∠B 90∘∠BAF +∠B 90∘∠ECB ∠BAF ∠DCB ∠BAG =BD^BG ^OA OB OC OG CG OH ⊥CG H OK ⊥AB K 2CH GH =CG 12AK BK =AB 126∠DCB ∠BAG ∠DCB+∠CMF 90∘∠BAG+∠ABF 90∘∠CMF ∠ABF ∠ABF ∠AGC ∠CMF ∠AGC CG CM 4GH 2AG ⊥BC ∠AFB 90∘∠FAB+∠FBA 90∘BG^+AC ^180∘∠COG+∠AOB 180∘∠HOG+∠BOK 90∘∠HGO +∠HOG 90∘∠HGO ∠BOK △HOG △KBO ∠OHG =∠BKO =90∠HGO =∠BOK OG =OB△HOG ≅△KBO(AAS)OK HG 2OB ===2O +B K 2K 2−−−−−−−−−−√+2262−−−−−−√10−−√⊙O 210−−√【考点】勾股定理垂径定理圆心角、弧、弦的关系【解析】(1)连结、、,由,得到==,根据等角的余角相等得到=,即可得出结论;(2)连接、、、、,作于,于,由垂径定理得出=,==,由圆周角定理和角的互余关系证出=,得出==,因此=,由证出的度数的度数=,得出=,因此=,证出=,由证明,得出对应边相等==,再由勾股定理求出即可.【解答】证明:连结、、,如图所示,∵,,∴==,∴=,=,∴=,即=,∴;连接、、、、,作于,于,如图所示:则=,==,∵=,=,=,∴=,∵=,∴=,∴==,∴=,∵,∴=,∴=,∴的度数的度数=,∴=,∴=,∵=,∴=,在和中,,∴,∴==,∴;即的半径为.AD BD BG AB ⊥CD AG ⊥BC ∠CEB ∠AFB 90∘∠ECB ∠BAF OA OB OC OG CG OH ⊥CG H OK ⊥AB K CH GH =CG 12AK BK =AB 126∠CMF ∠AGC CG CM 4GH 2AG ⊥BC BG ^+AC^180∘∠COG+∠AOB 180∘∠HOG+∠BOK 90∘∠HGO ∠BOK AAS △HOG ≅△KBO OK HG 2OB AD BD BG 1AB ⊥CD AG ⊥BC ∠CEB ∠AFB 90∘∠ECB+∠B 90∘∠BAF +∠B 90∘∠ECB ∠BAF ∠DCB ∠BAG =BD^BG ^OA OB OC OG CG OH ⊥CG H OK ⊥AB K 2CH GH =CG 12AK BK =AB 126∠DCB ∠BAG ∠DCB+∠CMF 90∘∠BAG+∠ABF 90∘∠CMF ∠ABF ∠ABF ∠AGC ∠CMF ∠AGC CG CM 4GH 2AG ⊥BC ∠AFB 90∘∠FAB+∠FBA 90∘BG^+AC ^180∘∠COG+∠AOB 180∘∠HOG+∠BOK 90∘∠HGO +∠HOG 90∘∠HGO ∠BOK △HOG △KBO ∠OHG =∠BKO =90∠HGO =∠BOK OG =OB△HOG ≅△KBO(AAS)OK HG 2OB ===2O +B K 2K 2−−−−−−−−−−√+2262−−−−−−√10−−√⊙O 210−−√23.【答案】①证明:∵正方形关于对称,∴,∴.又∵,∴,∴,∴.②解:如图,过作平行于.∵,, ,∴四边形为矩形,∴,,∵∴.∵,,∴,∴.∵,∴,∴.【考点】正方形的性质矩形的判定与性质勾股定理等腰直角三角形全等三角形的性质【解析】(1)ABCD BD △ABE ≅△CBE ∠BAE =∠BCE ∠ABC =∠AEF =90∘∠BAE+∠BFE =∠CFE+∠BFE =180∘∠BAE =∠CFE =∠BCE CE =EF 1E MN CD MN//CD MD//CN ∠ADC =90∘CDMN EN ⊥FC MD =NC CE =EF,NC =FC 12BC =2BF BC =4FC =BC 12MD =NC =BC =114∠ADB =45∘MD =MEDE ==M +M D 2E 2−−−−−−−−−−−√2–√32–√此题暂无解析【解答】①证明:∵正方形关于对称,∴,∴.又∵,∴,∴,∴.②解:如图,过作平行于.∵,, ,∴四边形为矩形,∴,,∵∴.∵, ,∴,∴.∵,∴,∴.如图,过点作,垂直为,交于.∵,∴是的中点.∵,正方形边长为,∴,,∴.又∵四边形是矩形,为等腰直角三角形,∴,∴.故答案为:.(1)ABCD BD △ABE ≅△CBE ∠BAE =∠BCE ∠ABC =∠AEF =90∘∠BAE+∠BFE =∠CFE+∠BFE =180∘∠BAE =∠CFE =∠BCE CE =EF 1E MN CD MN//CD MD//CN ∠ADC =90∘CDMN EN ⊥FC MD =NC CE =EF ,NC =FC 12BC =2BF BC =4FC =BC 12MD =NC =BC =114∠ADB =45∘MD =ME DE ==M +M D 2E 2−−−−−−−−−−−√2–√(2)E MN ⊥BC N AD M CE =EF N CF BC =2BF ABCD 4BF =2FC =2+4=6CN =FN =FC =312CDMN △DME DM =CN =ME =3ED ==3+3232−−−−−−√2–√32–√。

2023-2024学年新疆乌鲁木齐二十九中九年级(上)第二次月考数学试卷+答案解析

2023-2024学年新疆乌鲁木齐二十九中九年级(上)第二次月考数学试卷+答案解析

一、选择题:本题共9小题,每小题5分,共45分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列是一元二次方程的是( )A.B.C.D.2.下列图形中,既是轴对称图形又是中心对称图形的是2023-2024学年新疆乌鲁木齐二十九中九年级(上)第二次月考数学试卷( )A. B. C. D.3.当时,关于x 的一元二次方程的根的情况为( )A. 有两个实数根B. 有两个不相等的实数根C. 有两个相等的实数根D. 没有实数根4.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,设每个支干长出x 个小分支,则下列方程中正确的是( )A. B. C.D.5.如图,一个圆柱形的玻璃水杯,将其横放,截面是个圆,杯内水面宽,,则半径的长是( )A. 6cmB. 5cmC. 4cmD. 6.二次函数为常数的图象,则关于x 的方程有实数根的条件是( )A.B.C.D.7.如图,A点坐标,B为x轴上一动点,将线段AB绕点B顺时针旋转,得到BC,连接OC,则B在运动过程中,线段OC的最小值是( )A. 4B.C.D.8.表中所列x,y的6对值是二次函数图象上的点所对应的坐标,其中,x…1…y…m0c0n m…根据表中信息,下列4个结论:①;②;③;④如果,,那么当时,直线与该二次函数图象有一个公共点,则;其中正确的有个.( ) A. 1 B. 2 C. 3 D. 49.如图,点A,C,N的坐标分别为,,,以点C为圆心、2为半径画,点P在上运动,连接AP,交于点Q,点M为线段QP的中点,连接MN,则线段MN的最小值为( )A.B. 3C.D.二、填空题:本题共6小题,每小题5分,共30分。

10.已知点和点关于原点对称,则______.11.设m,n分别为一元二次方程的两个实数根,则______.12.小刚家装有一种可调节淋浴喷头高度的淋浴器,完全开启后,水流近似呈抛物线状,升降器AB和淋浴喷头BC所成,其中,刚开始时,,水流所在的抛物线恰好经过点A,抛物线落地点D和点O相距为了方便淋浴,淋浴器仍需完全处于开启的状态,且要求落地点和点O的距离增加10cm,则小刚应把升降器AB向上平移______13.一人患了流感,经过两轮传染后共有36人患了流感,则每轮传染中平均一个人传染了______个人.14.如图,在扇形OAB中,,,以点A为圆心,AO长为半径画弧,交于点D,则图中阴影部分图形的面积是______.15.如图所示,二次函数的图象的对称轴是直线,且经过点,有下列结论:①;②;③为常数;④;⑤和时函数值相等;⑥若,在该函数图象上,则;⑦,其中错误的结论是______填序号三、解答题:本题共8小题,共75分。

2024-2025学年福建省泉州五中九年级(上)第二次月考数学试卷+答案解析

2024-2025学年福建省泉州五中九年级(上)第二次月考数学试卷+答案解析

2024-2025学年福建省泉州五中九年级(上)第二次月考数学试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列事件中,属于必然事件的是()A.旭日东升B.守株待兔C.大海捞针D.水中捞月2.如图,小张想估测被池塘隔开的A,B两处景观之间的距离,他先在AB外取一点C,然后步测出AC,BC的中点D,E,并步测出DE的长约为18m,由此估测A,B之间的距离约为()A.18mB.24mC.36mD.54m3.在中,,现把这个三角形的三边都扩大为原来的3倍,则的正弦值()A.扩大为原来的3倍B.缩小为原来的3倍C.不变D.不能确定4.已知两个三角形相似,它们的对应高之比为4:9,则它们的周长比为()A.2:3B.4:9C.16:81D.9:45.如图,在中,,,,则()A.B.C.D.6.放在正方形网格纸的位置如图,则的值为()A. B. C. D.7.如图,一个小球由地面沿着坡度:2的坡面向上前进了10m,此时小球距离地面的高度为()A. B.5m C. D.8.一次函数与二次函数在同一平面直角坐标系中的图象可能是()A. B.C. D.9.如图,中,,,点B的坐标为,将绕点A逆时针旋转得到,当点O的对应点C落在OB上时,点D的坐标为()A. B. C. D.10.如图,二次函数的图象过点和,有以下结论:①;②;③;④;⑤其中正确的是()A.①③⑤B.①②③④⑤C.①③④D.①②③⑤二、填空题:本题共6小题,每小题3分,共18分。

11.若线段a、b、c、d是成比例线段,且,,,则______.12.围棋起源于中国,棋子分黑白两色.一个不透明的盒子中装有3个黑色棋子和2个白色棋子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑色棋子的概率是______.13.已知,,三点都在二次函数的图象上,则,,的大小关系为______.14.如图,的顶点在抛物线上,将绕点O顺时针旋转,得到,边CD与该抛物线交于点P,则点P的坐标为______.15.如图,是等边三角形,D是BC延长线上一点,于点E,于点若,,则AC的长为______.16.如图,正方形ABCD的边长为,E,F分别是AB,BC的中点,AF与DE,DB分别交于点M,N,则的面积是______.三、解答题:本题共9小题,共72分。

人教版数学九年级上册第二次月考期中考试卷含答案解析

人教版数学九年级上册第二次月考期中考试卷含答案解析

人教版数学九年级上册第二次月考期中考试题一、选择题:(本大题共10小题,每小题4分,共40分)1.下列根式中属最简二次根式的是()A.B.C.D.2.若|x+2|+,则xy的值为()A.﹣8B.﹣6C.5D.63.下列计算正确的是()A.B.C.D.4.关于x的方程(m+1)x2+2mx﹣3=0是一元二次方程,则m的取值是()A.任意实数B.m≠1C.m≠﹣1D.m>15.用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A.(x﹣2)2=2B.(x+2)2=2C.(x﹣2)2=﹣2D.(x﹣2)2=66.若关于x的方程有实数根,则k的取值范围为()A.k≥0B.k>0C.k≥D.k>7.某商品经过两次降价,由每件100元调至81元,则平均每次降价的百分率是()A.8.5%B.9%C.9.5%D.10%8.如图,将正方形图案绕中心O旋转180°后,得到的图案是()A.B.C.D.9.正方形ABCD在坐标系中的位置如图所示,将正方形ABCD绕D点顺时针方向旋转90°后,B点到达的位置坐标为()A.(﹣2,2)B.(4,1)C.(3,1)D.(4,0)10.4张扑克牌如图(1)所示放在桌子上,小敏把其中两张旋转180°后得到如图(2)所示,那么她所旋转的牌从左起是()A.第一张、第二张B.第二张、第三张C.第三张、第四张D.第四张、第一张二、填空题:(本大题共5小题,每小题4分,共20分)11.当x时,二次根式在实数范围内有意义.12.若(x2+y2)2﹣3(x2+y2)﹣70=0,则x2+y2=.13.方程x2=x的解是.14.如图是“靠右侧通道行驶”的交通标志,若将图案绕其中心顺时针旋转90°,则得到的图案是“”交通标志(不画图案,只填含义)15.如图,边长为3的正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG,EF 交AD于点H,那么DH的长是.三、解答题:(本大题共8小题,共90分)16.计算下列各题(1)2﹣6+3(2)(+1)2(2﹣3).17.解下列方程:(1)2x2+3x﹣1=0(2)3(x﹣1)2=x(x﹣1)18.先化简,再求值:,其中a=.19.先阅读,后解答:=像上述解题过程中,与相乘,积不含有二次根式,我们可将这两个式子称为互为有理化因式,上述解题过程也称为分母有理化,(1)的有理化因式是;的有理化因式是.(2)将下列式子进行分母有理化:①=;②=.③已知,,比较a与b的大小关系.20.如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A开始沿AB边向点B以1cm/s 的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.如果P、Q分别从A、B同时出发,问出发多少秒钟时△DPQ的面积等于31cm221.在平面直角坐标系中,已知△ABC的三个顶点的坐标分别是A(﹣3,0),B(0,0),C(﹣3,4),将△ABC绕B点逆时针旋转90°,得到△A′B′C′.请画出△A′B′C′并写出△A′B′C′的三个顶点的坐标.22.已知关于x的一元二次方程(a+c)x2+bx+=0有两个相等的实数根,试判断以a、b、c为三边长的三角形的形状,并说明理由.23.如图,B,C,E是同一直线上的三个点,四边形ABCD与四边形CEFG都是正方形.连接BG,DE.(1)观察猜想BG与DE之间的关系,并证明你的猜想;(2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,请指出,并说出旋转过程;若不存在,请说明理由.参考答案与试题解析一、选择题:(本大题共10小题,每小题4分,共40分)1.下列根式中属最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查定义中的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、是最简二次根式,故此选项正确;B、=,故不是最简二次根式,故此选项错误;C、=2,故不是最简二次根式,故此选项错误;D、=a(a>0),故不是最简二次根式,故此选项错误.故选:A.2.若|x+2|+,则xy的值为()A.﹣8B.﹣6C.5D.6【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】已知任何数的绝对值一定是非负数,二次根式的值一定是一个非负数,由于已知的两个非负数的和是0,根据非负数的性质得到这两个非负数一定都是0,从而得到一个关于x、y的方程组,解方程组就可以得到x、y的值,进而求出xy的值.【解答】解:∵|x+2|≥0,≥0,而|x+2|+=0,∴x+2=0且y﹣3=0,∴x=﹣2,y=3,∴xy=(﹣2)×3=﹣6.故选:B.3.下列计算正确的是()A.B.C.D.【考点】二次根式的混合运算.【分析】根据二次根式的加法、乘法、除法法则即可判断.【解答】解:A、2和4不是同类二次根式,不能合并,选项错误;B、和不是同类二次根式,不能合并,选项错误;C、÷==3,选项正确;D、==3,选项错误.故选C.4.关于x的方程(m+1)x2+2mx﹣3=0是一元二次方程,则m的取值是()A.任意实数B.m≠1C.m≠﹣1D.m>1【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义求解.一元二次方程必须满足二次项系数不为0,所以m+1≠0,即可求得m的值.【解答】解:根据一元二次方程的定义得:m+1≠0,即m≠﹣1,故选C.5.用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A.(x﹣2)2=2B.(x+2)2=2C.(x﹣2)2=﹣2D.(x﹣2)2=6【考点】解一元二次方程-配方法.【分析】在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数﹣4的一半的平方.【解答】解:把方程x2﹣4x+2=0的常数项移到等号的右边,得到x2﹣4x=﹣2,方程两边同时加上一次项系数一半的平方,得到x2﹣4x+4=﹣2+4,配方得(x﹣2)2=2.故选:A.6.若关于x的方程有实数根,则k的取值范围为()A.k≥0B.k>0C.k≥D.k>【考点】根的判别式;二次根式有意义的条件.【分析】若一元二次方程有两不等实数根,则根的判别式△=b2﹣4ac>0,建立关于k的不等式,求出k的取值范围.还要根据二次根式的意义可知k≥0,然后确定最后k的取值范围.【解答】解:∵关于x的方程有实数根,∴△=b2﹣4ac=(﹣3)2+4=9k+4≥0,解得:k≥,又∵方程中含有∴k≥0,故本题选A.7.某商品经过两次降价,由每件100元调至81元,则平均每次降价的百分率是()A.8.5%B.9%C.9.5%D.10%【考点】一元二次方程的应用.【分析】降低后的价格=降低前的价格×(1﹣降低率),如果设平均每次降价的百分率是x,则第一次降低后的价格是(1﹣x),那么第二次后的价格是(1﹣x)2,即可列出方程求解.【解答】解:设平均每次降价的百分率是x,则100×(1﹣x)2=81,解之得x=0.1或1.9(不合题意,舍去).则x=0.1=10%答:平均每次降价的百分率是10%.故选:D.8.如图,将正方形图案绕中心O旋转180°后,得到的图案是()A.B.C.D.【考点】利用旋转设计图案.【分析】根据旋转的性质,旋转前后,各点的相对位置不变,得到的图形全等,找到关键点,分析选项可得答案.【解答】解:根据旋转的性质,旋转前后,各点的相对位置不变,得到的图形全等,分析选项,可得正方形图案绕中心O旋转180°后,得到的图案是D.故选D.9.正方形ABCD在坐标系中的位置如图所示,将正方形ABCD绕D点顺时针方向旋转90°后,B点到达的位置坐标为()A.(﹣2,2)B.(4,1)C.(3,1)D.(4,0)【考点】坐标与图形变化-旋转.【分析】利用网格结构找出点B绕点D顺时针旋转90°后的位置,然后根据平面直角坐标系写出点的坐标即可.【解答】解:如图,点B绕点D顺时针旋转90°到达点B′,点B′的坐标为(4,0).故选:D.10.4张扑克牌如图(1)所示放在桌子上,小敏把其中两张旋转180°后得到如图(2)所示,那么她所旋转的牌从左起是()A.第一张、第二张B.第二张、第三张C.第三张、第四张D.第四张、第一张【考点】中心对称图形.【分析】本题主要考查了中心对称图形的定义,根据定义即可求解.【解答】解:观察两个图中可以发现,所有图形都没有变化,所以旋转的扑克是成中心对称的第一张和第二张.故选A.二、填空题:(本大题共5小题,每小题4分,共20分)11.当x≥3时,二次根式在实数范围内有意义.【考点】二次根式有意义的条件.【分析】因为式为二次根式,所以被开方数大于或等于0,列不等式求解.【解答】解:根据二次根式的性质,被开方数大于或等于0,可知:x﹣3≥0,解得:x≥3.12.若(x2+y2)2﹣3(x2+y2)﹣70=0,则x2+y2=10.【考点】换元法解一元二次方程.【分析】设x2+y2=t,原方程可化为t2﹣3t﹣70=0,求得t的值,再得出答案即可.【解答】解:设x2+y2=t,原方程可化为t2﹣3t﹣70=0,解得t1=10,t2=﹣7,∵x2+y2≥0,∴x2+y2=10,故答案为10.13.方程x2=x的解是x1=0,x2=1.【考点】解一元二次方程-因式分解法.【分析】将方程化为一般形式,提取公因式分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解即可得到原方程的解.【解答】解:x2=x,移项得:x2﹣x=0,分解因式得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为:x1=0,x2=114.如图是“靠右侧通道行驶”的交通标志,若将图案绕其中心顺时针旋转90°,则得到的图案是“靠左侧通道行驶”交通标志(不画图案,只填含义)【考点】生活中的旋转现象.【分析】根据旋转的定义,可得旋转后的图形,根据题意中所给的含义,易得答案.【解答】解:根据旋转的意义,可得旋转后的图形是,结合题意中所给图形的含义,可得答案为靠左侧通道行驶.15.如图,边长为3的正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG,EF交AD于点H,那么DH的长是.【考点】正方形的性质;旋转的性质;解直角三角形.【分析】连接CH,可知△CFH≌△CDH(HL),故可求∠DCH的度数;根据三角函数定义求解.【解答】解:连接CH.∵四边形ABCD,四边形EFCG都是正方形,且正方形ABCD绕点C旋转后得到正方形EFCG,∴∠F=∠D=90°,∴△CFH与△CDH都是直角三角形,在Rt△CFH与Rt△CDH中,∵,∴△CFH≌△CDH(HL).∴∠DCH=∠DCF=(90°﹣30°)=30°.在Rt△CDH中,CD=3,∴DH=tan∠DCH×CD=.故答案为:.三、解答题:(本大题共8小题,共90分)16.计算下列各题(1)2﹣6+3(2)(+1)2(2﹣3).【考点】二次根式的混合运算.【分析】(1)首先化简二次根式,然后合并同类二次根式即可;(2)首先利用完全平方公式计算第一个式子,然后利用平方差公式即可求解.【解答】解:(1)原式=4﹣2+12=14;(2)原式=(3+2)(2﹣3)=(2)2﹣9=8﹣9=﹣1.17.解下列方程:(1)2x2+3x﹣1=0(2)3(x﹣1)2=x(x﹣1)【考点】解一元二次方程-因式分解法.【分析】(1)利用公式法求出x的值即可;(2)把方程左边化为两个因式积的形式,再求出x的值即可.【解答】解:(1)∵△=9+8=17,∴x=,∴x1=,x2=;(2)方程左边可化为3(x﹣1)2﹣x(x﹣1)=0,因式分解得,(x﹣1)(2x﹣3)=0,故x﹣1=0或2x﹣3=0,解得x1=1,x2=.18.先化简,再求值:,其中a=.【考点】分式的化简求值.【分析】本题需先根据分式的运算顺序和法则分别进行计算,再把a=的值代入即可求出答案.【解答】解:,=×,=,把a=代入上式得:=,=4﹣7.19.先阅读,后解答:=像上述解题过程中,与相乘,积不含有二次根式,我们可将这两个式子称为互为有理化因式,上述解题过程也称为分母有理化,(1)的有理化因式是;的有理化因式是﹣2.(2)将下列式子进行分母有理化:①=;②=3﹣.③已知,,比较a与b的大小关系.【考点】分母有理化.【分析】(1)的有理化因式是它本身,+2的有理化因式符合平方差公式的特点的式子.据此作答;(2)①分子、分母同乘以最简公分母即可;②分子、分母同乘以最简公分母3﹣,再化简即可;③把a的值通过分母有理化化简,再比较.【解答】解:(1)根据与相乘,积不含有二次根式,我们可将这两个式子称为互为有理化因式,的有理化因式是:,的有理化因式是:﹣2,故答案为:,﹣2;(2)①==,②==3﹣;③∵a===2﹣,b=2﹣,∴a=b.20.如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A开始沿AB边向点B以1cm/s 的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.如果P、Q分别从A、B同时出发,问出发多少秒钟时△DPQ的面积等于31cm2【考点】矩形的性质;一元二次方程的应用;三角形的面积.【分析】设出发秒x时△DPQ的面积等于31平方厘米,根据三角形的面积公式列出方程可求出解.【解答】解:设出发秒x时△DPQ的面积等于31cm2.∵S矩形ABCD ﹣S△APD﹣S△BPQ﹣S△CDQ=S△DPQ…∴…化简整理得x2﹣6x+5=0…解这得x1=1,x2=5…均符合题意.答:出发1秒或5秒钟时△DPQ的面积等于31cm2.…21.在平面直角坐标系中,已知△ABC的三个顶点的坐标分别是A(﹣3,0),B(0,0),C(﹣3,4),将△ABC绕B点逆时针旋转90°,得到△A′B′C′.请画出△A′B′C′并写出△A′B′C′的三个顶点的坐标.【考点】作图-旋转变换.【分析】将△ABC的A,C点绕B点逆时针旋转90°,找到对应点,顺次连接得到△A′B′C′.【解答】解:A′(0,﹣3)、B′(0,0)、C′(﹣4,﹣3).22.已知关于x的一元二次方程(a+c)x2+bx+=0有两个相等的实数根,试判断以a、b、c为三边长的三角形的形状,并说明理由.【考点】根的判别式.【分析】根据方程有两个相等的实数根得出△=0,即可得出a2=b2+c2,根据勾股定理的逆定理判断即可.【解答】解:△ABC是直角三角形,理由是:∵关于x的方程(a+c)x2+bx+=0有两个相等的实数根,∴△=0,即b2﹣4(a+c)()=0,∴a2=b2+c2,∴△ABC是直角三角形.23.如图,B,C,E是同一直线上的三个点,四边形ABCD与四边形CEFG都是正方形.连接BG,DE.(1)观察猜想BG与DE之间的关系,并证明你的猜想;(2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,请指出,并说出旋转过程;若不存在,请说明理由.【考点】正方形的性质;全等三角形的判定与性质;旋转的性质.【分析】(1)猜想BG⊥BD,且BG=DE,证明:延长BG与DE交于H点,则根据∠DGH+∠GDH=90°可以证明∠DHG=90°,即BG⊥DE;(2)存在,△BCG和△DCE可以通过旋转重合.求证△BCG≌△DCE即可.【解答】证明:(1)猜想:BG⊥BD,且BG=DE.延长BG与DE交于H点,在直角△BCG中,BG=,在直角△DCE中,DE=,∵BC=DC,CG=CE,∴BG=DE.在△BCG和△DCE中,,∴△BCG≌△DCE,∴∠BGC=∠DEC,BG=DE,又∵∠BGC=∠DGH,∠DEC+∠CDE=90°,∴∠DGH+∠GDH=90°,∴∠DHG=90°,故BG⊥DE,且BG=DE.(2)存在,△BCG≌△DCE,(1)中已证明,且△BCG和△DCE有共同顶点C,则△DCE沿C点旋转向左90°与△BCG重合.。

福建省莆田第九中学2024届九年级上学期第二次月考数学试卷(含答案)

福建省莆田第九中学2024届九年级上学期第二次月考数学试卷(含答案)

2023−2024学年九中九年级数学第二次月考卷一.选择题(每小题4分,共40分)1.的值等于 A.1B.C.D.22.如图,在中,,则等于 A.B.C.tan A D.3.如图,在中,,点在上,则的度数为 A.B.C.D.4.如图,与相切于点,连接、.若,,则的长为 (第4题图)(第6题图)(第7题图)A.B.C.2D.5.在中,若角,满足,则的大小是 A.B.C.D.6.如图,是的直径,,是上的两点,连接,,,若,则的度数是 A.B.C.D.7.如图,切于点,与相交于点,,点为上任意一点(不与点、重合),则等于 A.B.C.D.8.如图,正六边形的边长为6,以顶点为圆心,的长为半径画圆,则图中阴影部分的面积为 A.B.C.D.9.命题:直角三角形的一条直角边与以另一条直角边为直径的圆相切.符合该命题的图形是 A.B.C.D.10.已知二次函数,当时,,则的取值范围为 A.B.C.D.二.填空题(每小题4分,共24分)11.已知的半径为5,点在上,则的长为 .12.已知二次函数y=x2+6最小值为 .13.如图,的顶点都是正方形网格中的格点,则 .14.如图,是的直径,弦于点.如果,弦,那么的长是 .15.沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的母线长为8cm,扇形的圆心角,则该圆锥的底面圆的半径r长为 cm.16.已知在平面直角坐标系中,点的坐标为,点的坐标为,点为第一象限上一点,,且,则点的坐标为 .三.解答题(共88分)17.计算:6sin60°-|-4|-(3―1)0.18.如图,在中,∠C=90°,,,求的长和的值.19.如图,是的弦,、为直线上两点,,求证:.20.如图,是的直径,弦与相交于点,.若,求直径的长.21.如图,在中,.(1)若以点为圆心的圆与边相切于点,请在图中作出点;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,若该圆与边相交于点,连接,当时,求的度数.22.如图,是的直径,、为上两点,于点,交的延长线于点,且.(1)求证:点是的中点;(2)若,,求图中阴影部分的面积.23.越来越多太阳能路灯的使用,既点亮了城市的风景,也是我市积极落实节能环保的举措.某校学生开展综合实践活动,测量太阳能路灯电池板离地面的高度.如图,已知测倾器的高度为1.6米,在测点处安置测倾器,测得点的仰角,在与点相距3.5米的测点处安置测倾器,测得点的仰角(点,与在一条直线上),求电池板离地面的高度的长.(结果精确到1米;参考数据,,24.如图,在中,,为的平分线,交于点,的外接圆与边相交于点,过点作的垂线交于点,交于点,交于点,连接.(1)求证:是的切线;(2)若,,求的半径长.25.已知抛物线与轴交于点和点,对称轴是直线,与轴交于点,点在抛物线上(不与,重合).(1)当时.①求抛物线的解析式;②点在直线的下方,且的面积最大,求此时点的坐标;(2)若直线,分别与轴交于点,,判断是否为定值?若是,求出定值;若不是,说明理由.2023−2024学年九中九年级数学第二次月考卷参考答案与试题解析1-5:BABBD 6-10:ADDCC11.5 12.613.14. 2 15. 8316.,解:根据题意画出图形如下:过点作延长线于点,交轴于点,作轴于点,点的坐标为,点的坐标为,,,,,,,是等腰直角三角形,,,,,,,设,,,,,,,,,,设,,,,,,,点的坐标为,.故答案为:,.三.解答题(共9小题)17.解:原式=6×3―4―12=33―518.解:中,,,,,,19.证明:作于,如图,则,,,,,即.20.解:是的直径,,,.21.解:(1)如图,点即为所求.(2)如图,是的切线,,,,,.22.(1)证明:,,,,,点是的中点;(2)解:连接,,,是等边三角形,,扇形的面积,的面积,阴影部分的面积扇形的面积的面积.23.解:延长交于点,,设米,,米,在中,,解得,则(米,电池板离地面的高度的长约为8米.24.(1)证明:连接,,,为的平分线,,,,,,是的切线;(2),,,,在中,,,即,设的半径为,则,解得:,的半径长为6.25.解:(1)①抛物线与轴交于点和点,对称轴是直线,,当时,,抛物线的解析式为;②,令,则,,设直线的解析式为,,代入得:,解得,直线的解析式为,过作轴,交于,设,则,,,当时,最大,此时点的坐标为,;(2)为定值,抛物线与轴交于点和点,对称轴是直线,,,,设,直线的解析式为,直线的解析式为,,,.。

辽宁省本溪市第十二中学2023-2024学年九年级下学期第二次月考数学试题

辽宁省本溪市第十二中学2023-2024学年九年级下学期第二次月考数学试题

辽宁省本溪市第十二中学2023-2024学年九年级下学期第二次月考数学试题一、单选题1.中国是最早使用正负数表示具有相反意义的量的国家.若向东走60米记作60+米,则向西走100米可记作( )A .40-米B .40米C .100-米D .100米 2.如图所示的几何体是由5个完全相同的小正方体搭成的,它的主视图是( )A .B .C .D . 3.古典园林中的花窗通常利用对称构图,体现对称美.下面四个花窗图案,既是轴对称图形又是中心对称图形的是( )A .B .C .D .4.下列运算正确的是( )A .326a a a ⋅=B .44ab ab -=C .()2211a a +=+D .()236a a -= 5.一元二次方程2560x x +-=根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .不能判定6.关于一次函数24y x =+,下列说法正确的是( )A .图象经过第一、三、四象限B .图象与y 轴交于点()0,2-C .函数值y 随自变量x 的增大而增大D .当1x >-时,2y <7.如图为商场某品牌椅子的侧面图,120DEF ∠=︒,DE 与地面平行,50ABD ∠=︒,则E C B ∠的度数为( )A .120︒B .110︒C .100︒D .90︒8.我国古代数学名著《九章算术》中记载:“粟米之法:粟率五十;粝米三十.今有米在十斗桶中,不知其数.满中添粟而舂之,得米七斗.问故米几何?”意思为:50斗谷子能出30斗米,即出米率为35,今有米在容量为10斗的桶中,但不知道数量是多少.再向桶中加满谷子,再舂成米,共得米7斗.问原来有米多少斗?如果设原来有米x 斗,那么可列方程为( )A .()31075x x +-= B .()31075x x +-= C .()51073x x +-= D .()51073x x +-= 9.某款“不倒翁”(图1)的主视图是图2,PA ,PB 分别与优弧AMB 所在圆相切于点A ,B .若该圆半径是9cm ,45P ∠=︒,则优弧AMB 的长是( )A .11cm πB .45cm 4πC .27cm 8πD .27cm 4π 10.如图1,ABC V 中,9043B AB BC ∠=︒==,,.点D 从点A 出发沿折线A B C --运动到点C 停止,过点D 作DE AC ⊥,垂足为E .设点D 运动的路径长为x ,CDE V 的面积为y ,若y 与x 的对应关系如图2所示,则b a -的值为( ).A .436B .163C .103D .196二、填空题11.已知点A 的坐标为()21,,将点A 向上平移4个单位长度,得到的点A '的坐标为. 12.某学校从“立定跳远,抛掷实心球,100米短跑,跳绳”四个项目中抽取两项进行测试,恰好抽到“立定跳远”和“100米短跑”的概率为.13.验光师通过检测发现近视眼镜的度数y (度)与镜片焦距x (米)成反比例,y 关于x 的函数图象如图所示.经过一段时间的矫正治疗后,小雪的镜片焦距由0.125米调整到0.4米,则近视眼镜的度数减少了度.14.如图,在ABC V 中,分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 和点N ,作直线MN ,交AC 于点D ,连接BD ,若BD 平分ABC ∠,35AD BD ==,,则AB 的长为.15.如图,在Rt ABC △中,90BAC ∠=︒,D 是BC 上一点,AB AD =,将ACD V 沿AC 折叠得到ACE △,连接BE ,BE 与AD 相交于点F ,若5BD =,2CD =,则BF 的长为.三、解答题16.计算: (1)()32024125162-+--÷-; (2)213124x x x +⎛⎫+÷ ⎪+-⎝⎭. 17.今年,某市举办了一届主题为“强国复兴有我”的中小学课本剧比赛.某队伍为参赛需租用一批服装,经了解,在甲商店租用服装比在乙商店租用服装每套多10元,用500元在甲商店租用服装的数量与用400元在乙商店租用服装的数量相等.(1)求在甲,乙两个商店租用的服装每套各多少元?(2)若租用10套以上服装,甲商店给以每套九折优惠.该参赛队伍准备租用20套服装,请问在哪家商店租用服装的费用较少,并说明理由.18.为落实“双减”要求,丰富学生校园生活,提升学生综合素养,某学校开展了学科月活动.学校随机抽取了部分学生对学科月最喜欢的活动进行调查:A .法律知识讲座;B .国际象棋讲座;C .花样剪纸讲座;D .创意书签设计讲座.并将调查结果绘制成了两幅统计图,请根据图中提供的信息回答以下问题:(1)求共调查了多少名学生?并直接补全条形统计图;(2)求扇形统计图中“花样剪纸讲座”部分所对应的圆心角度数是多少度?(3)学校有500名学生参加本次活动,地点安排在两个多功能厅,每场讲座时间为60分钟.由下面的活动日程表可知,B和D两场报告时间与场地已经确定.在确保听取报告的每名同学都有座位的情况下,请你合理安排A,C二场报告,补全此次活动日程表,并说明理由.19.小亮和妈妈去超市买凳子,善于观察的小亮发现售货员把凳子整齐叠放在一起,如图所示,每增加一个凳子,叠在一起的凳子增加的高度是一样的.凳子的数量n(单位:个)与叠放在一起的凳子的总高度h(单位:cm)的关系如表:根据以上信息,回答下列问题:(1)判断叠放的凳子总高度h 与凳子的数量n 之间符合什么函数关系?请用待定系数法求h 与n 的函数关系式;(2)若将该种凳子竖直叠放在层高不超过96cm 超市货架上,最多能叠放多少个?20.如图1是某公交车的站台,主要由顶棚,站牌,底座构成.图2是其截面示意图,站牌截面是矩形ABCD ,边AD 平行于地面MN ,边CD 竖直于地面MN ,顶棚AE 与站牌上端AD 的夹角22DAE ∠=︒,底座CF 与地面的夹角60CFM ∠=︒.经测量195cm AE =,49cm,166.7cm,76cm AD CD CF ===.(1)求站牌边缘点D 与棚顶边缘点E 的水平距离;(2)求棚顶边缘点E 到地面的距离.(结果精确到1cm )(参考数据:sin 220.374,cos220.926,tan 220.404︒≈︒≈︒≈ 1.73≈)21.如图,AB 为O e 的直径,D 为O e 上一点,连接AD ,BD ,过D 点作DC AB ⊥交O e 于点C ,过点A 作AE BD P 交BC 延长线于点E .(1)求证:AE BE =;(2)若tan 2ADC ∠=,6CE =,求AB 长.22.【发现问题】如图1,是沈阳“伯官桥”,它是中国首座“六跨中承式飘带形提篮拱桥”,也是全国施工难度最大的一座桥梁工程,造型别致,每段都是抛物线形状,宛如河上的一条飘带.【提出问题】如果将该拱桥的一段抽象成二次函数的图形,该图象对应的函数关系式是什么?【分析问题】如图2,是拱桥其中一段的横截面,虚线部分表示水面,桥墩跨度AB 为40米,在距离A 点水平距离为d 米的地方,拱桥距离水面的高度为h 米.小亮对d 与h 之间的关系进行了探究,经过多次测量,取平均值得到了d 和h 的几组对应值,如下表【解决问题】(1)请在下面的平面直角坐标系中画出表格中数据对应的函数图象,并直接写出h 与d 之间的函数关系式.(2)当拱桥距离水面的高度为18.6米时,此时据距离A 点水平距离是多少?(3)今年是伯官桥建成十周年整,为了庆祝,决定在伯官桥上挂设彩灯,如图3,共挂三串彩灯,第一串彩灯EF 平行于水面挂设,彩灯两端E ,F 皆在抛物线上;另外两串彩灯CE DF,都垂直于水面挂设,且距离水面2.0米,求挂设的三串彩灯CE EF DF ,,长度和的最大值.23.【问题初探】(1)在数学活动课上,姜老师给出如下问题:如图1,AD 平分BAC ∠,M 为AB 上一点,N 为AC 上一点,连接线段DM DN ,,若180BAC NDM ∠+∠=︒.求证:DM DN =.①如图2,小文同学从已知一边一角构造全等进行转化的视角给出如下思路:在AC 上截取AE AM =,连接DE ,易证ADM ADE ≌V V ,将线段DM 与DN 的数量关系转化为DE 与DN 的数量关系.②如图3,小雅同学也是从已知一边一角构造全等的视角进行解题给出了另一种思路,过D点向BAC ∠的两边分别作垂线,垂足分别为点E ,F ,易证ADE ADF ≌△△,得到DE DF =,接下来只需证FDM EDN ≌V V ,可得DM DN =.请你选择一名同学的解题思路,写出证明过程【类比分析】(2)姜老师发现之前两名同学都采用了一边一角构造全等的视角,为了更好的感悟这种视角,姜老师将共顶点的两个相等的角,变成了不共顶点的两个相等的角提出了如下问题,请你解答.如图4,在ABC V 中,AB AC =,BD 平分ABC ∠交AC 与点D ,在线段BC 上有一点E ,连接AE 交BD 与点F ,若CAE ABD ∠=∠.求证:AD CE =.【学以致用】(3)如图5,在ABC V 中,AB AC AD BC =⊥,,垂足为点D ,在CB 的延长线上取一点E ,使E A B B A C ∠=∠,在线段EB 上截取EF AB =,点G 在线段AE 上,连接FG ,使EFG EAB ∠=∠,若95AD =,65EG =,BF GFBA 的面积.。

人教版2022-2023学年第一学期九年级数学第二次月考测试题(附答案)

人教版2022-2023学年第一学期九年级数学第二次月考测试题(附答案)

2022-2023学年第一学期九年级数学第二次月考测试题(附答案)一、选择题:(共30分)1.下列图形是中心对称图形,但不是轴对称图形的是()A.平行四边形B.等边三角形C.圆D.正方形2.下列函数解析式中,一定为二次函数的是()A.y=3x﹣1B.y=ax2+bx+cC.s=2t2﹣2t+1D.y=(x﹣1)(2+x)﹣x23.在平面直角坐标系中,点P(﹣2,a)与点Q(b,3)关于原点对称,则a+b的值为()A.5B.﹣5C.1D.﹣14.下列命题中假命题的个数是()①三点确定一个圆;②三角形的内心到三边的距离相等;③相等的圆周角所对的弧相等;④平分弦的直径垂直于弦;⑤垂直于半径的直线是圆的切线.A.4B.3C.2D.15.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是()A.88°B.92°C.106°D.136°6.抛物线y=x2﹣2x+m2+2(m是常数)的顶点在()A.第一象限B.第二象限C.x轴的正半轴上D.x轴的负半轴上7.设⊙O的直径为m,直线l与⊙O相离,点O到直线l的距离为d,则d与m的关系是()A.m=d B.m<d C.2d>m D.2d<m8.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°9.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则S△BDE与S△CDE的比是()A.1:3B.1:4C.1:5D.1:2510.如图,点E和点F是正方形ABCD的边BC和边CD上的两动点,且∠EAF=45°,有下列结论:①EF=BE+DF;②∠AEB=∠AEF;③BG2+DG2=2AG2;④如果BE=CE,那么DF:CF=1:3;⑤△AFE∽△AGM且相似比是;其中正确的结论有()个.A.1B.2C.3D.4二、填空题:(共18分)11.一元二次方程2x2=x的解是.12.在△ABC中,DE∥BC,∠ADE=∠EFC,AD:BD=5:3,CF=6,则DE的长为.13.抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,则当y<0时,x的取值范围是.14.如图,P A,PB切⊙O于A,B两点,CD切⊙O于点E,分别交P A,PB于点C,D.若⊙O的半径为2,∠P=60°,则△PCD的周长等于.15.实数a,n,m,b满足a<n<m<b,这四个数在数轴上对应的点分别为A,N,M,B (如图),若AM2=BM•AB,BN2=AN•AB,则称m为a,b的“大黄金数”,n为a,b 的“小黄金数”,当b﹣a=2时,a,b的大黄金数与小黄金数之差m﹣n=.16.如图所示,在平面直角坐标系中,A(0,0),B(2,0),△AP1B是等腰直角三角形且∠P1=90°,把△AP1B绕点B顺时针旋转180°,得到△BP2C,把△BP2C绕点C顺时针旋转180°,得到△CP3D,依此类推,得到的等腰直角三角形的直角顶点P2021的坐标为.三、解答题:(共72分)17.解下列方程:(1)3x2﹣5x+1=0(公式法);(2)3(2x﹣5)2﹣27=0.18.⊙O为△ABC的外接圆,请仅用无刻度的直尺,根据下列条件分别在图1,图2中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法).(1)如图1,AC=BC;(2)如图2,直线l与⊙O相切于点P,且l∥BC.19.已知关于x的一元二次方程x2﹣4x+m=0.(1)若方程有两个不相等的实数根,求实数m的取值范围;(2)若方程两实数根分别为x1,x2,且满足5x1+x2=8,求实数m的值.20.如图,在△ABC中,AB=AC,点P,D分别是BC,AC边上的点,且∠APD=∠B.(1)求证:△ABP∽△PCD;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.21.绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?22.如图1,四边形ABCD内接于⊙O,AD为直径,点C作CE⊥AB于点E,连接AC.(1)求证:∠CAD=∠ECB;(2)若CE是⊙O的切线,∠CAD=30°,连接OC,如图2.①请判断四边形ABCO的形状,并说明理由;②当AB=2时,求AD,AC与围成阴影部分的面积.23.如图①,△ABC与△DEF是将△ACF沿过A点的某条直线剪开得到的(AB,DE是同一条剪切线).平移△DEF使顶点E与AC的中点重合,再绕点E旋转△DEF,使ED,EF分别与AB,BC交于M,N两点.(1)如图②,△ABC中,若AB=BC,且∠ABC=90°,则线段EM与EN有何数量关系?请直接写出结论;(2)如图③,△ABC中,若AB=BC,那么(1)中的结论是否还成立?若成立,请给出证明:若不成立,请说明理由;(3)如图④,△ABC中,若AB:BC=m:n,探索线段EM与EN的数量关系,并证明你的结论.24.如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣8与x轴交于A,B两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(﹣2,0),(6,﹣8).(1)求抛物线的函数表达式,并分别求出点B和点E的坐标;(2)试探究抛物线上是否存在点F(不与点C重合),使|FC﹣FE|的值最大,若存在,请求出点F的坐标;若不存在,请说明理由;(3)若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q.试探究:当m为何值时,△OPQ是等腰三角形.参考答案一、选择题:(共30分)1.解:A、平行四边形不是轴对称图形,是中心对称图形.故本选项正确;B、等边三角形是轴对称图形,不是中心对称图形.故本选项错误;C、圆是轴对称图形,也是中心对称图形.故本选项错误;D、正方形是轴对称图形,也是中心对称图形.故本选项错误.故选:A.2.解:A、y=3x﹣1,是一次函数,故A不符合题意;B、当a=0时,函数y=ax2+bx+c不是二次函数,故B不符合题意;C、s=2t2﹣2t+1,是二次函数,故C符合题意;D、y=(x﹣1)(2+x)﹣x2=2x+x2﹣2﹣x﹣x2=x﹣2,是一次函数,故D不符合题意;故选:C.3.解:∵点P(﹣2,a)与Q(b,3)关于原点对称,∴b=2,a=﹣3,则a+b的值为:2﹣3=﹣1.故选:D.4.解:①错误,不在同一条直线上的三点确定一个圆;②正确,三角形的内心到三边的距离相等;③错误,在同圆或等圆中,相等的圆周角所对的弧相等;④错误,如果平分的弦是直径,那么平分弦的直径不垂直于弦;⑤错误,过半径的外端且垂直于半径的直线是圆的切线.故选:A.5.解:∵∠BOD=88°,∴∠BAD=88°÷2=44°,∵∠BAD+∠BCD=180°,∴∠BCD=180°﹣44°=136°,即∠BCD的度数是136°.故选:D.6.解:∵y=x2﹣2x+m2+2=(x﹣1)2+(m2+1),∴顶点坐标为:(1,m2+1),∵1>0,m2+1>0,∴顶点在第一象限.故选:A.7.解:∵⊙O的直径为m,点O到直线L的距离为d,直线L与⊙O相离,∴d>,即2d>m,故选:C.8.解:∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠CAD=45°,∠ACD=90°﹣20°=70°,∴∠ADC=180°﹣45°﹣70°=65°,故选:C.9.解:∵DE∥AC,∴△DEO∽△CAO,∴=()2=,∴DE:AC=BE:BC=1:5,∴BE:EC=1:4,∴S△BED:S△DEC=1:4,故选:B.10.解:如图,延长CB至Q,使BQ=DF,连接AQ,∵BQ=DF,∠ADF=∠ABQ,AB=AD,∴△ADF≌△ABQ(SAS),∴AF=AQ,∠DAF=∠BAQ,∵∠EAF=45°,∴∠EAQ=∠BAH+∠BAE=∠DAF+∠BAE=90°﹣∠EAF=45°,∴∠EAQ=∠EAF=45°,在△AEF和△AEQ中,,∴△AEF≌△AEQ(SAS),∴EQ=EF,∠AEB=∠AEF,∴BE+BQ=BE+DF=EF,故①②正确;设AB=BC=CD=2a,当BE=EC=a时,∵EF2=CF2+EC2,∴(a+DF)2=(2a﹣DF)2+a2,∴DF=a,∴CF=a,∴DF:CF=1:2,故④错误;如图,将△ABG绕点A逆时针旋转90°,连接PG,∴AP=AG,∠P AG=90°,∠ADP=∠ABG=45°,∴PG2=AG2+AP2=2AG2,∠BDP=90°,∴DG2+PD2=PG2,∴BG2+DG2=2AG2,故③正确;如图,连接ME,∵∠CBD=∠EAF=45°,∴点A,点B,点E,点M四点共圆,∴∠AEM=∠ABD=45°,∴∠AEM=∠EAM=45°,∴AM=EM,∴AE=AM,∵∠DAG=90°﹣∠BAG,∠AMB=180°﹣∠ABD﹣∠EAF﹣∠BAG=90°﹣∠BAG,∴∠DAG=∠AMB,∵AD∥BC,∴∠DAG=∠AEB,∵∠AEB=∠AEF,∴∠AMB=∠AEF,又∵∠EAF=∠GAM,∴△EAF∽△MAG,∴相似比为=,故⑤正确;故选:D.二、填空题:(共18分)11.解:2x2=x,2x2﹣x=0,x(2x﹣1)=0,x1=0,x2=.12.解:∵DE∥BC,∴∠ADE=∠B.∵∠ADE=∠EFC,∴∠B=∠EFC,∴BD∥EF,∵DE∥BF,∴四边形BDEF为平行四边形,∴DE=BF.∵DE∥BC,∴△ADE∽△ABC,∴===,∴BC=DE,∴CF=BC﹣BF=DE=6,∴DE=10.故答案是:10.13.解:∵抛物线y=ax2+bx+c(a≠0)与x轴的一个交点坐标为(﹣3,0),对称轴为直线x=﹣1,∴抛物线与x轴的另一个交点为(1,0),由图象可知,当y<0时,x的取值范围是﹣3<x<1.故答案为:﹣3<x<1.14.解:如图,连接OA,OB,OP,∵P A,PB切⊙O于A,B两点,OA,OB是半径,∴OA⊥P A,OB⊥PB,且OA=OB,∴OP是∠APB的平分线,∵∠APB=60°,∴∠APO=30°,∴OP=2OA=4,在Rt△APO中,由勾股定理得AP==2,∵P A,PB切⊙O于A,B两点,∴P A=PB=2,∵CD切⊙O于点E,∴AC=CE,BD=DE,∴△PCD的周长=PC+PD+CD=PC+CA+PD+DB=P A+PB=4,故答案为:4.15.解:由题意得:AB=b﹣a=2,设AM=x,则BM=2﹣x,x2=2(2﹣x),x=﹣1±,x1=﹣1+,x2=﹣1﹣(舍),则AM=BN=﹣1,∴MN=m﹣n=AM+BN﹣2=2(﹣1)﹣2=2﹣4,故答案为:2﹣4.16.解:∵A(0,0),B(2,0),∴AB的中点为(1,0),∴P1(1,1),∵△AP1B绕点B顺时针旋转180°,∴P2(3,﹣1),同理分别得到P3(5,1),P4(7,﹣1),P5(9,1),…,∴P n(2n﹣1,(﹣1)n+1),∴P2021的坐标为(4041,1),故答案为:(4041,1).三、解答题:(共72分)17.解:(1)∵a=3,b=﹣5,c=1,∴Δ=(﹣5)2﹣4×3×1=13>0,则x==,∴;(2)∵3(2x﹣5)2﹣27=0,∴3(2x﹣5)2=27,∴(2x﹣5)2=9,则2x﹣5=3或2x﹣5=﹣3,解得x1=1,x2=4.18.解:(1)如图1,直径CD为所求;(2)如图2,弦AD为所求.19.解:(1)∵方程有两个不相等的实数根,∴Δ=b2﹣4ac=(﹣4)2﹣4×1×m>0,m<4,∴实数m的取值范围是m<4.(2)∵x1+x2=4,5x1+x2=8,∴x1=1,∵x1是方程的根,把x1=1代入原方程得1﹣4+m=0,∴m=3,∴实数m的值是3.20.解:(1)∵AB=AC∴∠ABC=∠ACB∵∠APC=∠ABC+∠BAP∴∠APD+∠DPC=∠ABC+∠BAP且∠APD=∠B∴∠DPC=∠BAP且∠ABC=∠ACB∴△BAP∽△CPD(2)∵△ABP∽△PCD∴即∵PD∥AB∴即∴∴∴BP=21.解:(1)设y1与x之间的函数关系式为y1=kx+b,∵经过点(0,168)与(180,60),∴,解得:,∴产品销售价y1(元)与产量x(kg)之间的函数关系式为y1=﹣x+168(0≤x≤180);(2)由题意,可得当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,∵直线y2=mx+n经过点(50,70)与(130,54),∴,解得,∴当50<x<130时,y2=﹣x+80.综上所述,生产成本y2(元)与产量x(kg)之间的函数关系式为y2=;(3)设产量为xkg时,获得的利润为W元,①当0≤x≤50时,W=x(﹣x+168﹣70)=﹣(x﹣)2+,∴当x=50时,W的值最大,最大值为3400;②当50<x<130时,W=x[(﹣x+168)﹣(﹣x+80)]=﹣(x﹣110)2+4840,∴当x=110时,W的值最大,最大值为4840;③当130≤x≤180时,W=x(﹣x+168﹣54)=﹣(x﹣95)2+5415,∴当x=130时,W的值最大,最大值为4680.因此当该产品产量为110kg时,获得的利润最大,最大值为4840元.22.(1)证明:∵四边形ABCD是⊙O的内接四边形,∴∠CBE=∠D,∵AD为⊙O的直径,∴∠ACD=90°,∴∠D+∠CAD=90°,∴∠CBE+∠CAD=90°,∵CE⊥AB,∴∠CBE+∠BCE=90°,∴∠CAD=∠BCE;(2)①四边形ABCO是菱形,理由:∵∠CAD=30°,∴∠COD=2∠CAD=60°,∵CE是⊙O的切线,∴OC⊥CE,∵CE⊥AB,∴OC∥AB,∴∠DAB=∠COD=60°,由(1)知,∠CBE+∠CAD=90°,∴∠CBE=90°﹣∠CAD=60°=∠DAB,∴BC∥OA,∴四边形ABCO是平行四边形,∵OA=OC,∴▱ABCO是菱形;②由①知,四边形ABCO是菱形,∴OA=OC=AB=2,∴AD=2OA=4,由①知,∠COD=60°,在Rt△ACD中,∠CAD=30°,∴CD=2,AC=2,∴AD,AC与围成阴影部分的面积为S△AOC+S扇形COD=S△ACD+S扇形COD=××2×2+=+π.23.解:(1)EM=EN.证明:过点E作EG⊥BC,G为垂足,作EH⊥AB,H为垂足,连接BE,如答图②所示.则∠EHB=∠EGB=90°.∴在四边形BHEG中,∠HBG+∠HEG=180°.∵∠HBG+∠DEF=180°,∴∠HEG=∠DEF.∴∠HEM=∠GEN.∵BA=BC,点E为AC中点,∴BE平分∠ABC.又∵EH⊥AB,EG⊥BC,∴EH=EG.在△HEM和△GEN中,∵∠HEM=∠GEN,EH=EG,∠EHM=∠EGN,∴△HEM≌△GEN.∴EM=EN.(2)EM=EN仍然成立.证明:过点E作EG⊥BC,G为垂足,作EH⊥AB,H为垂足,连接BE,如答图③所示.则∠EHB=∠EGB=90°.∴在四边形BHEG中,∠HBG+∠HEG=180°.∵∠HBG+∠DEF=180°,∴∠HEG=∠DEF.∴∠HEM=∠GEN.∵BA=BC,点E为AC中点,∴BE平分∠ABC.又∵EH⊥AB,EG⊥BC,∴EH=EG.在△HEM和△GEN中,∵∠HEM=∠GEN,EH=EG,∠EHM=∠EGN,∴△HEM≌△GEN.∴EM=EN.(3)线段EM与EN满足关系:EM:EN=n:m.证明:过点E作EG⊥BC,G为垂足,作EH⊥AB,H为垂足,连接BE,如答图④所示.则∠EHB=∠EGB=90°.∴在四边形BHEG中,∠HBG+∠HEG=180°.∵∠HBG+∠DEF=180°,∴∠HEG=∠DEF.∴∠HEM=∠GEN.∵∠HEM=∠GEN,∠EHM=∠EGN,∴△HEM∽△GEN.∴EM:EN=EH:EG.∵点E为AC的中点,∴S△AEB=S△CEB.∴AB•EH=BC•EG.∴EH:EG=BC:AB.∴EM:EN=BC:AB.∵AB:BC=m:n,∴EM:EN=n:m.24.解:(1)∵抛物线y=ax2+bx﹣8经过点A(﹣2,0),D(6,﹣8),∴,解得,∴抛物线解析式为y=x2﹣3x﹣8,∵y=x2﹣3x﹣8=(x﹣3)2﹣,∴抛物线对称轴为直线x=3,又∵抛物线与x轴交于点A、B两点,点A坐标(﹣2,0),∴点B坐标(8,0).设直线l的解析式为y=kx,∵经过点D(6,﹣8),∴6k=﹣8,∴k=﹣,∴直线l的解析式为y=﹣x,∵点E为直线l与抛物线对称轴的交点,∴点E的横坐标为3,纵坐标为﹣×3=﹣4,∴点E坐标(3,﹣4);(2)抛物线上存在点F,连接FC,FE.则有|FC﹣FE|≤CE.当点F为直线CE与抛物线交点时(不与点C重合),FC﹣FE=CE,此时|FC﹣FE|值最大.设直线CE解析式为y=kx﹣8,点E的坐标为(3,﹣4),∴3k﹣8=﹣4,∴k=,∴直线CE解析式为y=x﹣8,∵抛物线的表达式为y=x2﹣3x﹣8,联立解得,(舍去),,∴点F为直线CE与抛物线交点时(不与点C重合),|FC﹣FE|值最大.此时F;(3)①如图1,当OP=OQ时,△OPQ是等腰三角形.∵点E坐标(3,﹣4),∴OE==5,过点E作直线ME∥PB,交y轴于点M,交x轴于点H.∴,∴OM=OE=5,∴点M坐标(0,﹣5).设直线ME的解析式为y=k1x﹣5,∴3k1﹣5=﹣4,∴k1=,∴直线ME解析式为y=x﹣5,令y=0,得x﹣5=0,解得x=15,∴点H坐标(15,0),∵MH∥PB,∴,即,∴m=﹣,②如图2,当QO=QP时,△POQ是等腰三角形.∵当x=0时,y=x2﹣3x﹣8=﹣8,∴点C坐标(0,﹣8),∴CE==5,∴OE=CE,∴∠1=∠2,∵QO=QP,∴∠1=∠3,∴∠2=∠3,∴CE∥PB,设直线CE交x轴于N,解析式为y=k2x﹣8,∴3k2﹣8=﹣4,∴k2=,∴直线CE解析式为y=x﹣8,令y=0,得x﹣8=0,∴x=6,∴点N坐标(6,0),∵CN∥PB,∴,∴,∴m=﹣.③OP=PQ时,显然不可能,理由,∵D(6,﹣8),∴∠1<∠BOD,∵∠OQP=∠BOQ+∠ABP,∴∠PQO>∠1,∴OP≠PQ,综上所述,当m=﹣或﹣时,△OPQ是等腰三角形.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

杭州北苑实验中学九年级第二次月考
数 学 试 卷
考生须知:
1. 本卷共三大题,24小题. 全卷满分为120分,考试时间为100分钟.
2. 答题前,请用蓝、黑墨水的钢笔或圆珠笔将学校、姓名、学号
分别填在密封线内相应的位置上,不要遗漏.
3. 本卷不另设答题卡和答题卷,请在本卷相应的位置上直接答题.
答题必须用蓝、黑墨水的钢笔或圆珠笔(画图请用铅笔),答题 时允许使用计算器.
参考公式:二次函数2
(0)y ax bx c a =++≠图象的顶点坐标是2
4(,)24b ac b a a
--
一.选择题(本题共10小题,每小题3分,共30分)请选出各题中一个符合题意的正确选项
填在相应的答案栏内,不选、多选、错选均不给分.
1. .如图,已知圆心角,则圆周角的度数是( ▲ ) A .
B .
C .
D .
2. 反比例函数2
y x
=
的图象在( ▲ ) A. 第一、三象限 B. 第二、四象限 C. 第一、二象限 D. 第三、四象限 3. 已知二次函数的解析式为()2
21y x =-+,则该二次函数图象的顶点坐标是( ▲ ) A. (-2,1) B. (2,1) C. (2,-1) D. (1,2)
4. 把二次函数2
x y -=的图象先向右平移1个单位,再向上平移2个单位后得到一个新图象,则新图象所表示的二次函数的解析式是( ▲ )
A. ()212
+--=x y B. ()212
++-=x y
C. ()212
---=x y D. ()212
-+-=x y
5. 下列关于反比例函数的叙述,不正确...的是( ▲ ) A. 反比例函数y=
x
k
的图象绕原点旋转180°后,能与原来的图象重合 78BOC ∠=BAC ∠156783912学校_________ 班级____________ 姓名_____________ 学号__________
………………………………装………………………………订………………………………线…………………………………………
用心思考,
细心答题,相信
你是最棒的!
B. 反比例函数y=
x k
的图象既不与x 轴相交,也不与y 轴相交 C. 反比例函数y=x k
的图象关于直线y x =-成轴对称
D. 反比例函数y=x
k
,当k >0时,y 随x 的增大而减少
6.如图,A 、B 、C 、D 为⊙O 的四等分点,动点P 从圆心O 出发,沿O — C — D — O 路线作匀速运动.设运动时间为t (s ),⊙APB=y (°),则下列图象中表示y 与t 之间函数关系最恰当的是( ▲ )
7. 根据下列表格的对应值:
判断方程20ax bx c ++=(0a ≠,a 、b 、c 为常数)一个解的范围是( ▲ ) A. 3<x <3.23 B. 3.23<x <3.24 C. 3.24<x <3.25 D. 3.25<x <3.26
8.如图所示,AB 是⊙O 的直径,AD =DE ,AE 与BD 交于 点C ,则图中与⊙BCE 相等的角有( ▲ ) A .2个 B .3个 C .4个 D .5 个
9.已知5个正数的平均数是,且,则数据
的平均数和中位数是( ▲ )
A .
B .
C .
D .
12345a a a a a ,,,,a 12345a a a a a >>>>123450a a a a a ,,,,,3a a ,34
2
a a a +,23562a a a +,34
562
a a a +,x 3.23 3.24
3.25 3.26 2
(0)y ax bx c a =++≠ -0.06 -0.02
0.03
0.09
第6题图 O
P
D
C
B
A y t
9045y t 0
9045y t 0
904545900
t y A B C D
B
E
D
A
C
O
10. 如图,记抛物线12
+-=x y 的图象与x 正半轴的交点为A ,将线段OA 分成n 等份,设分点分别为P 1,P 2,…,P n -1,过每个分点作x 轴的垂线,分别与抛物线交于点Q 1,Q 2,…,Q n -1,再记直角三角形OP 1Q 1,P 1P 2Q 2,…的面积分别为S 1,S 2,…,
这样就有32121n n S -=,3
2224n
n S -=,…;记W=S 1+S 2+…+S n -1,当n 越来越大时,你猜想W 最接近的常数是
A.
32 B. 21 C. 31 D. 4
1
二.填空题(本题共6小题,每小题4分,共24分) 11.已知函数(0)k
y k x
=
≠的图象经过点(1,2),则k =__▲__. 12.如图,AB 为⊙O 的直径,点C D ,在⊙O 上,50BAC ∠=,则ADC ∠=__▲__. 13. 如图,正方形ABCD 是⊙O 的内接正方形,点P 在劣弧CD 上不同于点C 得到任意一点,则∠BPC 的度数是__▲__.
14.已知抛物线m x x y +-=422
的顶点在x 轴上,则m 的值是__▲__.
15.经市场调查,某种商品的进价为每件6元,专卖商店的每日固定成本为150元.当销售价为每件10元时,日均销售量为100件,单价每降低1元,日均销售量增加40个.设单价为x 元时的日均毛利润为y 元,则y 关于x 的函数解析式为__▲__. 16.两个反比例函数x
y 3=,x y 6
=在第一象限内的图象如图所示,点P 1,P 2,P 3,…,P 2009在
反比例函数x
y 6
=
图象上,它们的横坐标分别是x 1,x 2,x 3,…,x 2009,纵坐标分别是1,3,5,…,
共2009个连续奇数,过点P 1,P 2,P 3,…,P 2009分别作y 轴的平行线,与x
y 3
=
的图象交点依次是Q 1(x 1,y 1),Q 2(x 2,y 2),Q 3(x 3,y 3),…,Q 2007(x 2009,y 2009),则y 2009=__▲__.
三.解答题(本题共8小题,共66分. 请务必写出解答过程)
17.(本题6分)对于任意的正整数,所有形如的数的最大公约数是什么?
18.(本题6分)如图,为的直径,于点,交于点,于
点.
(1)请写出三条与有关的正确结论;
(2)当,时,求圆中阴影部分的面积.
19.(本题6分)已知二次函数的图象经过点(0,-2),且当1x =时函数有最小值-3. (1)求这个二次函数的解析式.
(2)如果点(-2,1y ),(1,2y )和(3,3y )都在该函数图象上,试比较1y ,2y ,3y 的大小. 20.(本题8分)在抗震救灾活动中,某厂接到一份订单,要求生产7200顶帐篷支援四川灾区,后来由于情况紧急,接收到上级指示,要求生产总量比原计划增加20%,且必须提前4天完成生产任务,该厂迅速加派人员组织生产,实际每天比原计划每天多生产720顶,请问该厂实际每天生产多少顶帐篷?
21.(本题8分)小明和小亮用骰子做“掷数描点”游戏. 两人各掷一枚骰子,小明掷出的骰子点数作为点的横坐标,小亮掷出的骰子点数作为点的纵坐标. 当他们各掷一次骰子后. (1)请利用树状图(或列表)的方法,表示出小明和小亮所描出的点坐标的所有可能情况.
n n n n 232
3++AB O CD AB ⊥E O D OF AC ⊥F BC 30D ∠=1BC =C
B
A
O F
D E
不能只写结果, 要说明理由哦!
(2)利用第(1)小题的结论,求出他们所描出的点恰好落在函数6
y x
=的图象上的概率.
22. (本题8分)如图,内接于⊙O ,,点是弧BC 的中点.边上的高相交于点.试证明: (1);(2)四边形是菱形.
23.(本题10分)春、秋季节,由于冷空气的入侵,地面气温急剧下降到0℃以下的天气现象称为“霜冻”.由霜冻导致植物生长受到影响或破坏现象称为霜冻灾害.某种植物在气温是0℃以下持续时间超过3小时,即遭到霜冻灾害,需采取预防措施.下图是气象台某天发布的该地区气象信息,预报了次日0时至8时气温随着时间变化情况,其中0时至5时的图象满足一次函数关系,5时至8时的图象满足函数n mx x y ++-=2
.请根据图中信息,解答下列问题:
(1)求次日5时的气温.
(2)求二次函数n mx x y ++-=2
的解析式.
(3)判断次日是否需要采取防霜措施,并说明理由. (参考数据:449.26≈).
24.(本题12分)如图(1),在平面直角坐标系中,点A 的坐标为(1,-2),点B 的坐标为
(3,-1),二次函数2
y x =-的图象为1l .
(1)平移抛物线1l ,使平移后的抛物线过点A ,但不过点B ,写出平移后的抛物线的一个解析式(任写一个即可).
(2)平移抛物线1l ,使平移后的抛物线过A 、B 两点,记抛物线为2l ,如图(2),求抛物线
2l 的函数解析式及顶点C 的坐标.
(3)设P 为y 轴上一点,且ABC ABP S S ∆∆=,求点P 的坐标.
(4)请在图(2)上用尺规作图的方式探究抛物线2l 上是否存在点Q ,使QAB ∆为等腰三角
形. 若存在,请判断点Q 共有几个可能的位置(保留作图痕迹);若不存在,请说明
ABC △60BAC ∠=D BC AB ,AE CF ,H FAH CAO ∠=∠AHDO O
C
D
B
F A H E
理由.
y
o
x 图(1)
y
o x
图(2)
l1l2。

相关文档
最新文档