《特殊平行四边形》的专题复习

合集下载

《特殊平行四边形》全章复习与巩固(提高)知识讲解

《特殊平行四边形》全章复习与巩固(提高)知识讲解

《特殊平行四边形》全章复习与巩固(提高)知识讲解责编:常春芳【学习目标】1. 掌握平行四边形、矩形、菱形、正方形的概念, 了解它们之间的关系.2. 探索并掌握平行四边形、矩形、菱形、正方形的有关性质和常用判别方法, 并能运用这些知识进行有关的证明和计算.【知识网络】【要点梳理】要点一、平行四边形1.定义:两组对边分别平行的四边形叫做平行四边形.2.性质:(1)对边平行且相等;(2)对角相等;邻角互补;(3)对角线互相平分;(4)中心对称图形.3.面积:高底平行四边形⨯=S4.判定:边:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形.角:(4)两组对角分别相等的四边形是平行四边形;(5)任意两组邻角分别互补的四边形是平行四边形.边与角:(6)一组对边平行,一组对角相等的四边形是平行四边形;对角线:(7)对角线互相平分的四边形是平行四边形.要点诠释:平行线的性质:(1)平行线间的距离都相等;(2)等底等高的平行四边形面积相等.要点二、菱形1. 定义:有一组邻边相等的平行四边形叫做菱形.2.性质:(1)具有平行四边形的一切性质;(2)四条边相等;(3)两条对角线互相平分且垂直,并且每一条对角线平分一组对角;(4)中心对称图形,轴对称图形.3.面积:2对角线对角线高==底菱形⨯⨯S 4.判定:(1)一组邻边相等的平行四边形是菱形;(2)对角线互相垂直的平行四边形是菱形;(3)四边相等的四边形是菱形.要点三、矩形1.定义:有一个角是直角的平行四边形叫做矩形.2.性质:(1)具有平行四边形的所有性质;(2)四个角都是直角;(3)对角线互相平分且相等;(4)中心对称图形,轴对称图形.3.面积:宽=长矩形⨯S 4.判定:(1) 有一个角是直角的平行四边形是矩形.(2)对角线相等的平行四边形是矩形.(3)有三个角是直角的四边形是矩形.要点诠释:由矩形得直角三角形的性质:(1)直角三角形斜边上的中线等于斜边的一半;(2)直角三角形中,30度角所对应的直角边等于斜边的一半.要点四、正方形1. 定义:四条边都相等,四个角都是直角的四边形叫做正方形.2.性质:(1)对边平行;(2)四个角都是直角;(3)四条边都相等;(4)对角线互相垂直平分且相等,对角线平分对角;(5) 两条对角线把正方形分成四个全等的等腰直角三角形;(6)中心对称图形,轴对称图形.3.面积:边长×边长=×对角线×对角线=S 形形形124.判定:(1)有一个角是直角的菱形是正方形;(2)一组邻边相等的矩形是正方形;(3)对角线相等的菱形是正方形;(4)对角线互相垂直的矩形是正方形;(5)对角线互相垂直平分且相等的四边形是正方形;(6)四条边都相等,四个角都是直角的四边形是正方形.【典型例题】类型一、平行四边形1、已知,△ABC 中,∠BAC=45°,以AB 为腰以点B 为直角顶点在△ABC 外部作等腰直角三角形ABD ,以AC 为斜边在△ABC 外部作等腰直角三角形ACE ,连结BE 、DC ,两条线段相交于点F ,试猜想∠EFC的度数并说明理由.【答案与解析】解法一:作DH//BE 交EA 延长线于H ,连接CH易证四边形BEHD 为平行四边形CEH EABCE=AE CEH=EAB=90HE=BD=AB CEH EAB SASCH=BE=DH CHE=ABECHD=90EFC=CDH=45⎧⎪∠∠⎨⎪⎩∴≅∴∠∠∴∠∴∠∠在△与△中△△(),解法二:作CG//BE 交AB 的延长线于G ,连接DG ,∵△ABC 与△ACE 都是等腰直角三角形,∴∠EAB=∠CAE+∠CAB=90°.又∠AEC=90°,∴AB∥CE.∴四边形BECG 为平行四边形,∴CE=GB,又AE=EC ,∴GB=AE.在△BGD 与△AEB 中,DB=AB ,∠DBG=∠BAE=90°,GB=AE ,∴△B GD ≌△AE B (S A S ), ∴∠GDB=∠ABE,BE=DG.∵平行四边形BGCE,∴∠ABE=∠AGC,BE=GC,∴∠GDB =∠AGC, GC= DG.∴∠DGC=∠DGA+∠AGC=∠DGA+∠GDB=90°.于是CDG △是等腰直角三角形,所以45EFC DCG ∠=∠= .【总结升华】通过做平行线,构造平行四边形,再证明全等,使问题得解.类型二、菱形2、如图,平行四边形ABCD 中,AB⊥AC,AB =1,BC AC ,BD 相交于点O ,将直线AC 绕点O 顺时针旋转,分别交BC ,AD 于点E ,F.(1)证明:当旋转角为90°时,四边形ABEF 是平行四边形;(2)试说明在旋转过程中,线段AF 与EC 总保持相等;(3)在旋转过程中,四边形BEDF 可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC 绕点O 顺时针旋转的度数.【思路点拨】(1)当旋转角为90°时,∠AOF=90°,由AB⊥AC,可得AB∥EF,即可证明四边形ABEF 为平行四边形;(2)证明△AOF≌△COE 即可;(3)当EF⊥BD 时,四边形BEDF 为菱形,又由AB⊥AC,AB=1,OA=AB ,即可得∠AOB=45°,求得∠AOF=45°,则可得此时AC 绕点O 顺时针旋转的最小度数为45°.【答案与解析】(1)证明:当∠AOF=90°时,AB∥EF,又AF∥BE,∴四边形ABEF为平行四边形.(2)证明: 四边形ABCD为平行四边形,∴AO=CO,∠FAO=∠ECO,∠AOF=∠COE.∴△AOF≌△COE∴AF=CE(3)四边形BEDF可以是菱形.理由:如图,连接BF,DE,由(2)知△AOF≌△COE,得OE=OF,∴EF与BD互相平分.∴当EF⊥BD时,四边形BEDF为菱形.在Rt△ABC中,2 AC==,∴OA=1=AB,又AB⊥AC,∴∠AOB=45°,∴∠AOF=45°,∴AC绕点O顺时针旋转45°时,四边形BEDF为菱形.【总结升华】要证明四边形是菱形,先证明这个四边形是平行四边形,再利用对角线互相垂直的特征证明该平行四边形是菱形.举一反三:【变式】已知:如图所示,BD是△ABC的角平分线,EF是BD的垂直平分线,且交AB于E,交BC于点F.求证:四边形BFDE是菱形.【答案】证明:∵EF是BD的垂直平分线,∴EB=ED,∠EBD=∠EDB. 又∵∠EBD=∠FBD,∴∠FBD=∠EDB,ED∥BF.同理,DF∥BE, ∴四边形BFDE是平行四边形. 又∵EB=ED,∴四边形BFDE是菱形.3、在口ABCD中,对角线AC、BD相交于点O,BD=2AB,点E、F分别是OA、BC的中点.连接BE、EF.(1)求证:EF=BF ;(2)在上述条件下,若AC=BD ,G 是BD 上一点,且BG :GD=3:1,连接EG 、FG ,试判断四边形EBFG 的形状,并证明你的结论.【思路点拨】(1)根据平行四边形性质推出BD=2BO ,推出AB=BO ,根据三线合一定理得出BE⊥AC,在△BEC 中,根据直角三角形斜边上中线性质求出EF=BF=CF 即可;(2)根据矩形性质和已知求出G 为OD 中点,根据三角形中位线求出EG∥AD,EG=BC ,12求出EG∥BC,EG=BC ,求出BF=EG ,BF∥EG,EG=GF ,得出平行四边形,根据菱形的判定12推出即可.【答案与解析】(1)证明:∵四边形ABCD 是平行四边形,∴BD=2BO,∵BD=2AB,∴AB=BO,∵E 为OA 中点,∴BE⊥AC,∴∠BEC=90°,∵F 为BC 中点,∴EF=BF=CF,即EF=BF ;(2)四边形EBFG 是菱形,证明:连接CG ,∵四边形ABCD 是平行四边形,AC=BD ,∴四边形ABCD 是矩形,∴AD=BC,AB=CD ,AD∥BC,BD=2BO=2OD ,∴BD=2AB=2CD,∴OC=CD,∵BG:GD=3:1,OB=OD ,∴G 为OD 中点,∴CG⊥OD(三线合一定理),即∠CGB=90°,∵F 为BC 中点,∴GF=BC=AD ,1212∵E 为OA 中点,G 为OD 中点,∴EG∥AD,EG=AD ,12∴EG∥BC,EG=BC ,12∵F 为BC 中点,∴BF=BC ,EG=GF ,12即EG∥BF,EG=BF ,∴四边形EBFG 是平行四边形,∵EG=GF,∴平行四边形EBFG 是菱形(有一组邻边相等的平行四边形是菱形).【总结升华】本题考查了平行四边形的性质和判定,矩形性质,菱形性质,三角形的中位线,直角三角形斜边上中线性质,等腰三角形的性质等知识点,主要考查学生综合运用定理进行推理的能力,注意:直角三角形斜边上中线等于斜边的一半.类型三、矩形4、(2015春•青山区期中)如图1,已知AB ∥CD ,AB=CD ,∠A=∠D .(1)求证:四边形ABCD 为矩形;(2)E 是AB 边的中点,F 为AD 边上一点,∠DFC=2∠BCE .①如图2,若F 为AD 中点,DF=1.6,求CF 的长度:②如图2,若CE=4,CF=5,则AF+BC= ,AF= .【答案与解析】(1)证明:∵AB ∥CD ,AB=CD ,∴四边形ABCD 为平行四边形,∵∠A=∠D ,∠A+∠D=180°,∴∠A=90°,∴四边形ABCD 为矩形,(2)解:①延长DA ,CE 交于点G ,∵四边形ABCD 是矩形,∴∠DAB=∠B=90°,AD ∥BC ,∴∠GAE=90°,∠G=∠ECB ,∵E 是AB 边的中点,∴AE=BE ,在△AGE和△BCE中,,∴△AGE≌△BCE(AAS),∴AG=BC,∵DF=1.6,F为AD中点,∴BC=3.2,∴AG=BC=3.2,∴FG=3.2+1.6=4.8,∵AD∥BC,∴∠DFC=∠BCF,∵∠DFC=2∠BCE,∴∠BCE=∠FCE,∵AD∥BC,∴∠BCE=∠G,∴CF=FG=4.8;②若CE=4,CF=5,由①得:AG=BC,CF=FG,GE=CE=4,AG=AD,∴CG=8,AF+BC=AF+AG=FG=CF=5;故答案为:5;设DF=x,根据勾股定理得:CD2=CF2﹣DF2=CG2﹣DG2,即52﹣x2=82﹣(5+x)2,解得:x=,∴DG=5+=,∴AD=DG=,∴AF=AD﹣DF=;故答案为:..【总结升华】本题考查了矩形的判定与性质、全等三角形的判定与性质、等腰三角形的判定、勾股定理的运用;本题有一定难度.举一反三:【变式】如图,O为△ABC内一点,把AB、OB、OC、AC的中点D、E、F、G依次连接形成四边形DEFG.(1)四边形DEFG 是什么四边形,请说明理由;(2)若四边形DEFG 是矩形,点0所在位置应满足什么条件?说明理由.【答案】解:(1)四边形DEFG 是平行四边形.理由如下:∵D、G 分别是AB 、AC 的中点,∴DG 是△ABC 的中位线;∴DG∥BC,且DG =BC ;12同理可证:EF∥BC,且EF =BC ;12∴DG∥EF,且DG =EF ;故四边形DEFG 是平行四边形;(2)O 在BC 边的高上且A 和垂足除外.理由如下:连接OA ;同(1)可证:DE∥OA∥FG;∵四边形DEFG 是矩形,∴DG⊥DE;∴OA⊥BC;即O 点在BC 边的高上且A 和垂足除外.5、在Rt△ABC 中,∠ACB=90°,BC=4.过点A 作AE⊥AB 且AB=AE ,过点E 分别作EF⊥AC,ED⊥BC,分别交AC 和BC 的延长线与点F ,D .若FC=5,求四边形ABDE 的周长.【思路点拨】首先证明△ABC≌△EAF,即可得出BC=AF ,AC=EF ,再利用勾股定理得出AB 的长,进而得出四边形EFCD 是矩形,求出四边形ABDE 的周长即可.【答案与解析】解:∵∠ACB=90°,AE⊥AB,∴∠1+∠B=∠1+∠2=90°.∴∠B=∠2. ∵EF⊥AC,∴∠4=∠5=90°.∴∠3=∠4.在△ABC 和△EAF 中,∵,,342B AB AE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC≌△EAF(AAS ).∴BC=AF,AC=EF .∵BC=4,∴AF=4.∵FC=5,∴AC=EF=9.在Rt△ABC 中,.==.∵ED⊥BC,∴∠7=∠6=∠5=90°.∴四边形EFCD 是矩形.∴CD=EF=9,ED=FC=5.∴四边形ABDE 的周长.【总结升华】此题主要考查了全等三角形的判定以及矩形的判定与性质和勾股定理等知识,根据已知得出AC=EF=9是解题关键.举一反三:【变式】(2015•杭州模拟)如图,平行四边形ABCD 中,AC=6,BD=8,点P 从点A 出发以每秒1cm 的速度沿射线AC 移动,点Q 从点C 出发以每秒1cm 的速度沿射线CA 移动.(1)经过几秒,以P ,Q ,B ,D 为顶点的四边形为矩形?(2)若BC ⊥AC 垂足为C ,求(1)中矩形边BQ 的长.【答案】解:(1)当时间t=7秒时,四边形BPDQ 为矩形.理由如下:当t=7秒时,PA=QC=7,∵AC=6,∴CP=AQ=1∴PQ=BD=8∵四边形ABCD 为平行四边形,BD=8∴AO=CO=3∴BO=DO=4∴OQ=OP=4∴四边形BPDQ 为平形四边形,∵PQ=BD=8∴四边形BPDQ 为矩形,(2)由(1)得BO=4,CQ=7,∵BC ⊥AC∴∠BCA=90°BC 2+CQ 2=BQ 2∴BQ=.类型四、正方形6、正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF=45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM.(1)求证:EF =FM ;(2)当AE =1时,求EF的长.【答案与解析】解:(1)证明:∵△DAE 逆时针旋转90°得到△DCM,∴DE=DM ,∠EDM=90°,∴∠EDF+∠FDM=90°,∵∠EDF=45°,∴∠FDM=∠EDF=45°,在△DEF 和△DMF 中,DE DM EDF MDF DF DF =⎧⎪∠=∠⎨⎪=⎩,∴△DEF≌△DMF(SAS ),∴EF=MF ;(2)设EF =MF =,x ∵AE=CM =1,且BC =3,∴BM=BC +CM =3+1=4,∴BF=BM -MF =BM -EF =4-,x ∵EB=AB -AE =3-1=2,在Rt△EBF 中,由勾股定理得EB 2+BF 2=EF 2,即,()22224x x +-=解得:,则EF =.52x =52【总结升华】此题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,以及勾股定理,利用了转化及方程的思想,熟练掌握性质及定理是解本题的关键.举一反三:【变式】如图(1),正方形ABCD 和正方形CEFG 有一公共顶点C ,且B 、C 、E 在一直线上,连接BG 、DE .(1)请你猜测BG 、DE 的位置关系和数量关系?并说明理由.(2)若正方形CEFG 绕C 点向顺时针方向旋转一个角度后,如图(2),BG 和DE 是否还存在上述关系?若存在,试说明理由;若不存在,也请你给出理由.【答案】解:(1)BG =DE ,BG⊥DE; 理由是:延长BG 交DE 于点H , 因为BC =DC ,CG =CE ,∠BCG=∠DCE所以△BCG≌△DCE,所以BG =DE ,∠GBC=∠CDE.由于∠CDE+∠CED=90°,所以∠GBC+∠DEC=90°, 得∠BHE=90°.所以BG⊥DE.(2)上述结论也存在.理由:设BG 交DE 于H ,BG 交DC 于K ,同理可证△BCG≌△DCE,得BG =ED ,∠KBC=∠KDH.又因为∠KBC+∠BKC=90°,可得∠DKH+∠KDH=90°,从而得∠KHD=90°.所以BG⊥DE.。

特殊平行四边形知识点归纳

特殊平行四边形知识点归纳

特殊平行四边形知识点归纳1.对角线:特殊平行四边形的对角线分别连接了两对相对顶点,它们相交于一个点,并且该交点将对角线分为两个相等的部分。

2.平行线性质:特殊平行四边形的两对边分别是平行的。

根据平行线的性质,可以推论出特殊平行四边形的一些重要性质,如对边相等和内角和为180度。

3.对角线性质:特殊平行四边形的对角线相等,即对角线BD=AC。

这个性质可以通过两个相似三角形的性质证明得出。

4.垂直线性质:特殊平行四边形的对角线相交于一个垂直点,即∠BOC=90度。

这个性质可以通过垂直线的性质证明得出。

5.邻补角性质:特殊平行四边形的邻补角(共享一条边且内角和为180度的两个角)之和为180度。

这个性质可以通过平行线的性质证明得出。

6.夹角性质:特殊平行四边形的夹角(相邻且共享一条边的两个内角)之和为180度。

这个性质也可以通过夹角的定义和平行线的性质证明得出。

7.对角线中点连线性质:特殊平行四边形的对角线的中点分别连接,即中点E和F相连,则EF平行于对边AB和CD,并且EF=AB=CD。

这个性质可以通过对角线中点连线构造等腰直角三角形的性质证明得出。

特殊平行四边形的这些性质和概念在几何学中有着广泛的应用。

例如,在解决平行四边形的面积、周长、角度和边长等问题时,可以利用这些性质来求解。

特殊平行四边形还与三角形、四边形和多边形等几何图形的关系密切相关,在几何证明和问题求解中起着重要的作用。

总之,特殊平行四边形是一个重要的几何概念,它具有一系列的重要性质和应用。

通过深入理解这些知识点,并善于运用它们来解决问题,可以提高我们的几何学思维能力和分析问题的能力。

特殊的平行四边形专题复习

特殊的平行四边形专题复习
× 平行四边形。( )
× 2、两条对角线相等的四边形是矩形。( )
3、一组邻边相等的矩形是正方形。 ( )
×√ 4、对角线互相垂直的四边形是菱形。( )
5、菱形的对角线相等 。
(×)
6、矩形的对角线垂直。
× ( )
1. 矩形、菱形、正方形的共同的性质是( C )
A. 对角线相等
B.对角线互相垂直
C.对角线互相平分
矩形
菱形
正方形
第二部分
矩形
定义:
有一个角是直角的平行四 边形叫矩形
菱形
定义: 有一组邻边相等的 平行四边形叫菱形
定义: 一组邻边相等的矩形叫 正方形
正方形
1、几种特殊平行四边形的性质:
项目 四边形


对角线
矩形
四个角 平行且相等
都是直角
互相平分且相等
菱形
平行 且四边相等
对角相等 邻角互补
互相垂直平分,且每 一条对角线平分一组 对角
正方形
平行 且四边相等
四个角 都是直角
互相垂直平分且相等, 每一条对角线平分一 组对角
2、几种特殊平行四边形的常用判定方法:
四边形
条件
矩形
1、定义:有一个角是直角的平行四边形 2、三个角是直角的四边形 3、对角线相等的平行四边形
菱形 正方形
1、定义:一组邻边相等的平行四边形 2、四条边都相等的四边形 3、对角线互相垂直的平行四边形
面积是 _1_2 .
C
如图,在正方形ABCD外作一个等边三 D 角形ABE,
A E
则∠AED=_1_5 °.
C
B
1.如图,矩形ABCD的对角线AC、BD交于点O,过

中考数学复习《特殊的平行四边形》专题练习(含答案)

中考数学复习《特殊的平行四边形》专题练习(含答案)
30. (2018·江西)在正方形 中, ,连接 是正方形边上或对角线上一点.若 ,则 的长为.
三、解答题
31. (2018·湘西州)如图,在矩形 中, 是 的中点,连接 .
(1)求证: ;
(2)若 ,求 的周长.
32. (2018连云港)如图,在矩形 中, 是 的中点,延长 交于点 ,连接 .
(1)求证:四边形 是平行四边形;
A. B. C. D.
二、填空题
13. (2018·株洲)如图,矩形 的对角线 与 相交点 , 分别为 的中点,则 的长度为.
14.(2018·成都)如图,在矩形 中,按以下步骤作图:①分别以点 和 为圆心,以大于 的长为半径作弧,两弧相交于点 和 ;②作直线 交 于点 .若 ,则矩形的对角线 的长为.
38. (2018·乌鲁木齐)如图,在四边形 中, , 是 的中点, , , 于点 .
(1)求证:四边形 是菱形;
(2)若 ,求 的长.
39. (2018·广安)如图,四边形 是正方形, 为 上一点,连接 ,延长 至点 ,使得 ,过点 作 ,垂足为 ,求证: .
40. (2018·盐城)如图,在正方形 中,对角线 所在的直线上有两点 满足 ,连接 .
(2)在(1)的条件下,连接 ,求 的度数.
36.(2018·娄底)如图,在四边形 中,对角线 相交于点 ,且
,过点 作 ,分别交 于点 .
(1)求证: ;
(2)判断四边形 的形状,并说明理由.
37. (2018·南京)如图,在四边形 中, , . 是四边形 内一点,且 .求证:
(1) ;
(2)四边形 是菱形.
9. (2018·宿迁)如图,菱形 的对角线 相交于点 , 为边 的中点.若菱

第08讲特殊平行四边形单元整体分类总复习(原卷版)

第08讲特殊平行四边形单元整体分类总复习(原卷版)

第08讲特殊平行四边形章节分类总复习考点一矩形的判定与性质【知识点睛】❖矩形的判定方法:①有一个角是直角的平行四边形是矩形; ②有三个角是直角的四边形是矩形;③四个角都相等的四边形是矩形; ④对角线相等的平行四边形是矩形;⑤对角线相等且互相平分的四边形是矩形.❖矩形的性质①矩形的对边平行且相等; ②矩形的四个角都是直角;③矩形的对角线相等且互相平分; ④矩形既是轴对称图形,又是中心对称图形。

【类题训练】1.如图,在矩形ABCD中,AC、BD交于点O,DE⊥AC于点E,∠AOD=124°,则∠CDE 的度数为()A.62°B.56°C.28°D.30°2.如图,在矩形ABCD中,对角线AC,BD相交于点O,点E是边AD的中点,点F在对角线AC上,且,连接EF.若AC=10,则EF的长为()A.B.3C.4D.53.如图,在矩形ABCD中,点E在AD上,且EC平分∠BED,AB=2,∠ABE=45°,则DE的长为()A.2﹣2B.﹣1C.﹣1D.24.如图,矩形ABCD和矩形BDEF,点A在EF边上,设矩形ABCD和矩形BDEF的面积分别为S1、S2,则S1与S2的大小关系为()A.S1=S2B.S1>S2 C.S1<S2D.3S1=2S25.如图,在平行四边形ABCD中,M、N是BD上两点,BM=DN,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是()A.MB=MO B.OM=AC C.BD⊥AC D.∠AMB=∠CND6.如图,在矩形COED中,点D的坐标是(1,3),则CE的长是()A.3B.C.D.47.如图,在矩形ABCD中,AB=12,AD=10,点P在AD上,点Q在BC上,且AP=CQ,连结CP、QD,则PC+QD的最小值为()A.22B.24C.25D.268.如图,在▱ABCD中,下列条件①AC=BD;②∠1+∠3=90°;③OB=AC;④∠1=∠2,能判断▱ABCD是矩形的有()A.1个B.2个C.3个D.4个9.如图,在矩形ABCD中,AB=4,BC=6,E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.B.C.D.10.定义:如果一个三角形有一边上的中线等于这条边的一半,那么称三角形为“智慧三角形”.如图,在平面直角坐标系xOy中,矩形OABC的边OA=3,OC=4,点M(2,0),在边AB存在点P,使得△CMP为“智慧三角形”,则点P的坐标为()A.(3,1)或(3,3)B.(3,)或(3,3)C.(3,)或(3,1)D.(3,)或(3,1)或(3,3)11.如图所示,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为.12.矩形ABCD中,AB=8,AD=4,点A是y轴正半轴上任意一点,点B在x轴正半轴上.连接OD.则OD的最大值是.13.如图,矩形ABCD中,AC的垂直平分线MN与AB交于点E,连接CE.若∠CAD=70°,则∠DCE=°.14.如图,P是矩形ABCD的边AD上一个动点,矩形的两条边AB、BC的长分别为6和8,那么点P到矩形的两条对角线AC和BD的距离之和是.15.如图,在矩形ABCD中,AB=6,BC=8,过对角线交点O作EF⊥AC交AD于点E,交BC于点F,则DE的长是.17.矩形ABCD与矩形CEFG如图放置,点B、C、E共线,点C、D、G共线,连接AF,取AF的中点H,连接GH.若BC=EF=3,CD=CE=1,则GH=.18.如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是.19.如图,在三角形ABC中,点O是AC边上的一个动点,过点O作直线MN平行于BC,设MN交∠ACB的角平分线于点E,交∠ACB的外角平分线于F.问:(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.20.如图,在平行四边形ABCD中,连接BD,E为线段AD的中点,延长BE与CD的延长线交于点F,连接AF,∠BDF=90°.(1)求证:四边形ABDF是矩形;(2)若AD=10,BD=8,求△BCF的面积.考点二菱形的判定与性质【知识点睛】❖菱形的判定方法:①有一组邻边相等的平行四边形是菱形;②四条边相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形;④对角线互相垂直平分的四边形是菱形。

中考数学专题复习《特殊平行四边形综合题》测试卷(附带答案)

中考数学专题复习《特殊平行四边形综合题》测试卷(附带答案)

中考数学专题复习《特殊平行四边形综合题》测试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一 单选题1.如图 在平行四边形ABCD 中 AB AD ≠ ()0180A αα∠=︒<<︒ 点E F G H 分别是AB BC CD DA 的中点 连接EF FG GH HE 当α从锐角逐渐增大到钝角的过程中 四边形EFGH 的形状的变化依次为( )A .平行四边形→菱形→平行四边形B .平行四边形→菱形→矩形→平行四边形C .平行四边形→矩形→平行四边形D .平行四边形→菱形→正方形→平行四边形 2.如图 平行四边形ABCD 中 16AB = 12AD = 60A ∠=︒E 是边AD 上一点 且8AE =F 是边AB 上的一个动点 将线段EF 绕点E 逆时针旋转60︒ 得到EG 连接BG CG 则BG CG +的最小值是( ).A .4B .415C .421D 373.图1是一张菱形纸片ABCD 点,EF 是边,AB CD 上的点.将该菱形纸片沿EF 折叠得到图2 BC 的对应边B C ''恰好落在直线AD 上.已知60,6B AB ∠=︒= 则四边形AEFC '的周长为( )A .24B .21C .15D .124.如图 在矩形ABCD 中 8AB = 6BC = 点H 是AC 的中点 沿对角线AC 把矩形剪开得到两个三角形 固定ABC 不动 将ACD 沿AC 方向平移 (A '始终在线段AC 上)得到A C D '''△ 连接HD ' 设平移的距离为x 当HD '长度最小时 平移的距离x 的值为( )A .710B .185C .75D .2455.如图 Rt ABC △中 90C ∠=︒ 30A ∠=︒ 9AC = D 为AB 中点 以DB 为对角线长作边长为3的菱形DFBE 现将菱形DFBE 绕点D 顺时针旋转一周 旋转过程中当BF 所在直线经过点A 时 点A 到菱形对角线交点O 之间的距离为( )A B C D 6.中国结寓意团圆 美满 以独特的东方神韵体现中国人民的智慧和深厚的文化底蕴 小陶家有一个菱形中国结装饰.测得8cm,6cm BD AC ==.则该菱形的面积为( )A .224cmB .248cmC .210cmD .212cm7.如图 在矩形ABCD 中 点O M 分别是,AC AD 的中点 3,5OM OB == 则AD 的长为( )A .12B .10C .9D .88.如图 已知正方形ABCD 和正方形BEFG 且A B E 三点在一条直线上 连接CE 以CE 为边构造正方形CPQE PQ ,交AB 于点M 连接CM 设APM BCM αβ∠=∠=,.若点Q B F 三点共线 tan tan n αβ= 则n 的值为( )A .12 B .23 C .35 D .67二 填空题9.如图 矩形ABCD 中 BE BF 将ABC ∠三等分 连接EF .若90BEF ∠=︒ 则:AB BC 的比值为 .10.如图 四边形ABCD 是边长为6的正方形 点E 在直线BC 上 若2BE = 连接AE 过点A 作AF AE ⊥ 交直线CD 于点F 连接EF 点H 是EF 的中点 连接BH 则BH = .11.如图 在平行四边形ABCD 中 对角线AC BD 、相交于点O 在不添加任何辅助线的情况下 请你添加一个条件 使平行四边形ABCD 是菱形.12.如图 在矩形ABCD 中 2AB = 对角线AC 与BD 交于点O 且120AOD ∠=︒ DE OC ∥ CE OD ∥ 则四边形OCED 的周长为 .13.如图 在菱形ABCD 中 2BD BC == 点E 是BC 的中点 点P 是对角线AC 上的动点 连接PB PE 则PB PE +的最小值是 .三 解答题14.如图 在菱形ABCD 中 连接AC 过B 作BE BA ⊥交AC 于点E 过D 作DF DC ⊥交AC 于点F .(1)求证:ADF CBE △≌△(2)若12AD = 60DAB ∠=︒ 求EF 的长.15.已知:在梯形ABCD 中 AD BC ∥ 90ABC ∠=︒ 6AB = :1:3BC AD = O 是AC 的中点 过点O 作OE OB ⊥ 交BC 的延长线于点E .(1)当BC EC =时 求证:AB OE =(2)设BC a = 用含a 的代数式表示线段BE 的长 并写出a 的取值范围(3)连结OD DE 当DOE 是以DE 为直角边的直角三角形时 求BC 的长.16.如图 平行四边形ABCD 中 点E 是对角线AC 上一点 连接BE DE , 且BE DE =.(1)求证:四边形ABCD 是菱形(2)若5AB = tan 2BAC ∠= 求四边形ABCD 的面积.17.已知:矩形ABCD 中 动点M 在BC 边上(不与点B C 、重合) MN AM ⊥交CD 于点N 连接DM .(1)如图1 若DM 平分ADC ∠ 求证:BM CN =(2)如图2 若2,3AB BC == 动点M 在移动过程中 设BM 的长为,x CN 的长为y ①则y 与x 之间的函数关系式为______①线段CN 的最大值为______.18.如图1 正方形ABCD 和正方形QMNP M 是正方形ABCD 的对称中心 MN 交AB 于F QM 交AD 于E .(1)猜想:ME 与MF 的数量关系为______(2)如图2 若将原题中的“正方形”改为“菱形” 且NMQ ABC 其它条件不变 探索线段ME 与线段MF 的数量关系 并说明理由(3)如图3 若将原题中的“正方形”改为“矩形” 且:1:2AB BC = 其它条件不变 直接写出:线段ME 与线段MF 的数量关系为______.参考答案:1.A2.C3.C4.C5.D6.A7.D8.B93:10.24211.AC BD ⊥12.8133①点E 是BC 的中点14.(1)解:①菱形ABCD①ADC CBA ∠=∠ AD BC = DAC BCA ∠=∠①BE BA ⊥ DF DC ⊥①90CDF ABE ∠=∠=︒①ADC CDF CBA ABE ∠-∠=∠-∠ 即:ADF CBE ∠=∠①()ASA ADF CBE ≌(2)解:①60DAB ∠=︒ 12AD = ①11603022BAE BAD ∠=∠=⨯︒=︒ 12AB CD AD === 33123AC AB ===①cos30ABAE===︒同理FC=BE CE==AC AE CE∴=+=①EF AE FC AC=+-==故答案为:15.(1)证明:90ABC∠=︒O是AC的中点OB OC∴=OBC OCB∴∠=∠OE BC⊥90BOEBC EC=CO BC∴=BC BO∴=90ABC BOE∠=∠=︒()ASAABC EOB∴≌AB EO∴=(2)解:OBC OCB∠=∠ABC BOE∠=∠ABC EOB∴∽∴BC ACOB BE=BC a=6AB=AC∴∴1a=236(06)2aBE aa+∴=<<(3)解:设BC a=则3AD a=①当90OED∠=︒时延长BO交AD于点G90BOE =︒∠BOE OED ∴∠=∠∴BG ED ∥//BE AD∴四边形BGDE 是平行四边形 BE DG ∴=BC AD ∥ ∴BCCOAG AO =BC AG a ∴== ∴23632a a a a +=-23a ∴= ①当90ODE ∠=︒时 分别过点O E 作OM AD ⊥ EN AD ⊥ 垂足分别为MNOMD DNE ∴∠=∠ MOD EDN ∠=∠OMD DNE ∴∽ ∴OMMDDN EN = 1122AM CB a ==52MD a ∴=2236365322a a DN AN AD a a a +-=-=-=∴253236562aa a=-a ∴=.综上所述BC 的长为 16.(1)证明:如图 连接BD 交AC 于O①平行四边形ABCD①BO DO =①BO DO = OE OE = BE DE = ①()SSS BOE DOE ≌①BEO DEO ∠=∠①AE AE = BEA DEA ∠=∠ BE DE = ①()SAS BEA DEA ≌①AB AD =①四边形ABCD 是菱形(2)解:①tan 2BAC ∠= ①2BO AO= 即2BO AO = ①四边形ABCD 是菱形①AC BD ⊥ 22AC AO BD BO ==,由勾股定理得 AB =解得 2AO =①48AC BD ==, ①1162ABCD S AC BD =⨯=四边形 ①四边形ABCD 的面积为16. 17.(1)解:在矩形ABCD 中 ,90AB CD B C ADC =∠=∠=∠=︒ DM 平分ADC ∠1452CDM ADC ∴∠=∠=︒ 45CDM CMD ∴∠=∠=︒CM CD AB ∴==90,BAM AMB MN AM ∠+∠=︒⊥90AMB CMN ∴∠+∠=︒BAM CMN ∴∠=∠()ABM MCN ASA ∴≌BM CN ∴=(2)解:①设BM 的长为,x CN 的长为y 则3MC x =- 由(1)得 ,,90BAM CMN AB CD B C ∠=∠=∠=∠=︒ ABM MCN ∴∽AB BM MC CN∴= 23x x y∴=- 213(03)22y x x x ∴=-+<< 故答案为:213(03)22y x x x =-+<< ①当32x =时 y 有最大值 最大值为98. 即线段CN 的最大值为98. 故答案为:98. 18.(1)解:①正方形ABCD 和正方形QMNP①90AMD EMF ∠=∠=︒ ,45DM AM ADM FAM =∠=∠=︒ DME AMF ∴∠=∠()ASA MDE MAF ∴≌ME MF ∴=.故答案为:相等.(2)解:过点M 作MH AD ⊥于H MG AB ⊥于G .①M 是菱形ABCD 的对称中心 ①M 是菱形ABCD 对角线的交点 ①AM 平分BAD ∠①MH MG =.①QMN B ∠=∠①180EMF BAD ∠+∠=︒. 又90MHA MGF ∠=∠=︒ ①180HMG BAD ∠+∠=︒ ①EMF HMG ∠=∠①EMH FMG ∠=∠. ①MHE MGF ∠=∠①()ASA MHE MGF ≌ ①ME MF =.(3)解:过点M 作MH AD ⊥于HMG AB ⊥于G .①QMN ABC ∠=∠①90BAD EMF ∠=∠=︒. 又①90MHA MGA ∠=∠=︒ ①90HMG ∠=︒.①EMF HMG ∠=∠①EMH FMG ∠=∠.①MHE MGF ∠=∠①MHE MGF △△∽①ME MH MF MG=.又①M是矩形ABCD的对称中心①M是矩形ABCD对角线的交点.又①MG AB⊥①MG BC∥且12MG BC=.同理可得12 MH AB=①2ME MF=.。

专题03特殊平行四边形综合各市好题必刷(期中复习压轴满分)(原卷版)

专题03特殊平行四边形综合各市好题必刷(期中复习压轴满分)(原卷版)

阶段性复习压轴专题满分攻略专题03 特殊平行四边形综合各市好题必刷一.选择题(共18小题)1.(2022春•开福区校级期中)矩形具有而菱形不具有的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.对角线平分一组对角2.(2022•岳麓区校级开学)如图,四边形ABCD为矩形纸片,把纸片ABCD折叠,使点B恰好落在CD边的中点E处,折痕为AF,若CD=6,则AF等于()A.B.C.D.8 3.(2022•薛城区校级模拟)如图,在▱ABCD中,BM是∠ABC的平分线交CD 于点M,且MC=2,▱ABCD的周长是14,则DM等于()A.1B.2C.3D.44.(2022春•姑苏区校级期中)已知四边形ABCD,下列说法正确的是()A.当AD=BC,AB∥DC时,四边形ABCD是平行四边形B.当AD=BC,AB=DC时,四边形ABCD是平行四边形C.当AC=BD,AC平分BD时,四边形ABCD是矩形D.当AC=BD,AC⊥BD时,四边形ABCD是正方形5.(2022春•东莞市校级期中)如图,在△ABC中,点D、E分别是边AB,BC 的中点.若△DBE的周长是6,则△ABC的周长是()A.8B.10C.12D.14 6.(2022•宝应县一模)如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是()A.3B.4C.5D.6 7.(2022春•广丰区校级期中)如图,M是△ABC的边BC的中点,AN平分∠BAC,且BN⊥AN,垂足为N,且AB=6,BC=10,MN=1.5,则△ABC的周长是()A.28B.32C.18D.25 8.(2022秋•吉安县期中)下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形9.(2022秋•胶州市校级月考)如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE相交于点F,则∠BFC为()A.45°B.55°C.60°D.75°10.(2022•睢阳区模拟)如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°11.(2022春•玉林月考)如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是()A.7B.9C.10D.11 12.(2022春•任城区期末)在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是()A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形13.(2021秋•东平县期末)如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为()A.B.2C.D.3 14.(2023•河北模拟)如图,在四边形ABCD中,给出部分数据,若添加一个数据后,四边形ABCD是矩形,则添加的数据是()A.CD=4B.CD=2C.OD=2D.OD=4 15.(2022•费县校级二模)如图,菱形ABCD的对角线AC、BD相交于点O,=48,则OH的长过点D作DH⊥AB于点H,连接OH,若OA=6,S菱形ABCD为()A.4B.8C.D.6 16.(2022•庆云县模拟)如图1,▱ABCD中,AD>AB,∠ABC为锐角.要在对角线BD上找点N,M,使四边形ANCM为平行四边形,现有图2中的甲、乙、丙三种方案,则正确的方案()A.甲、乙、丙都是B.只有甲、乙才是C.只有甲、丙才是D.只有乙、丙才是17.(2022春•铜官区期末)如图,在直角三角形ABC中,∠ACB=90°,AC=3,BC=4,点M是边AB上一点(不与点A,B重合),作ME⊥AC于点E,MF⊥BC于点F,若点P是EF的中点,则CP的最小值是()A.1.2B.1.5C.2.4D.2.5 18.(2022春•梁溪区月考)如图,已知A(3,6)、B(0,n)(0<n≤6),作AC ⊥AB,交x轴于点C,M为BC的中点,若P(,0),则PM的最小值为()A.3B.C.D.二.填空题(共19小题)19.(2022秋•济阳区月考)如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF ∥CD交AD于F,则阴影部分的面积是.20.(2022春•海淀区校级期中)如图所示,菱形ABCD中,对角线AC,BD相交于点O,H为AD边中点,菱形ABCD的周长为24,则OH的长等于.21.(2022春•让胡路区校级期中)如图,在菱形ABCD中,点A在x轴上,点B的坐标为(8,2),点D的坐标为(0,2),则点C的坐标为.22.(2022•南山区校级一模)菱形的两条对角线长分别是6和8,则菱形的边长为.23.(2022春•满洲里市校级期末)如图,在平面直角坐标系中,O为坐标原点,矩形OABC中,A(10,0),C(0,4),D为OA的中点,P为BC边上一点.若△POD为等腰三角形,则所有满足条件的点P的坐标为.24.(2022•城关区一模)如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为.25.(2022春•工业园区校级期中)如图矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E,F,AB=3,BC=4,则图中阴影部分的面积为.26.(2021秋•朝阳区校级期末)以边长为2的正方形的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于A、B两点,则线段AB的最小值.27.(2022春•盐池县期末)如图,在正方形ABCD中,E在AB上,BE=2,AE =1,P是BD上的动点,则PE和P A的长度之和最小值为.28.(2021秋•绥棱县期末)将n个边长都为1cm的正方形按如图所示的方法摆放,点A1、A2…A n分别是各正方形的中心,则n个这样的正方形重叠部分(阴影部分)的面积的和为cm2.29.(2022春•北京期中)如图:已知AB=10,点C、D在线段AB上且AC=DB =2;P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是.30.(2022春•梅江区期末)如图,在Rt△ABC中,∠BAC=90°,且BA=3,AC=4,点D是斜边BC上的一个动点,过点D分别作DM⊥AB于点M,DN ⊥AC于点N,连接MN,则线段MN的最小值为.31.(2022秋•迎泽区校级月考)如图,边长为1的正方形ABCD中,点E是对角线BD上的一点,且BE=BC,点P在EC上,PM⊥BD于M,PN⊥BC于N,则PM+PN=.32.(2021秋•泾阳县期末)如图,在边长为10的菱形ABCD中,对角线BD=16,点O是线段BD上的动点,OE⊥AB于E,OF⊥AD于F.则OE+OF =.33.(2022秋•南海区校级月考)如图所示,四边形ABCD中,AC⊥BD于点O,AO=CO=4,BO=DO=3,点P为线段AC上的一个动点.过点P分别作PM⊥AD于点M,作PN⊥DC于点N.连接PB,在点P运动过程中,PM+PN+PB 的最小值等于.34.(2022春•鼓楼区期末)如图,在▱ABCD中,点D是定点,点A、C是直线l1和l2上两动点,l1∥l2,且点D到直线l1和l2的距离分别是1和4,则对角线BD长度的最小值是.35.(2022•薛城区模拟)如图,在正方形ABCD中,AB=3,点E,F分别在CD,AD上,CE=DF,BE,CF相交于点G.若图中阴影部分的面积与正方形ABCD 的面积之比为2:3,则△BCG的周长为.36.(2022•肇东市校级三模)如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为1,则线段DH长度的最小值是.37.(2022春•工业园区校级期末)如图,矩形ABCD中,AB=6,AD=3,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是.三.解答题(共14小题)38.(2022•滨城区校级一模)如图,点C是BE的中点,四边形ABCD是平行四边形.(1)求证:四边形ACED是平行四边形;(2)如果AB=AE,求证:四边形ACED是矩形.39.(2022•隆昌市校级二模)如图,在正方形ABCD中,点E是BC上的一点,点F是CD延长线上的一点,且BE=DF,连接AE、AF、EF.(1)求证:△ABE≌△ADF;(2)若AE=5,请求出EF的长.40.(2022春•衡山县期末)如图,△ABC中,点O是边AC上一个动点,过O 作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=8,CF=6,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.41.(2023•河北模拟)已知,如图,在△ABC中,∠ABC=90°,BD是△ABC 中线,F是BD的中点,连接CF并延长到E,使FE=CF,连接BE、AE.(1)求证:△CDF≌△EBF;(2)求证:四边形AEBD是菱形;(3)若BC=8,BE=5,求BG的长.42.(2022•萧山区开学)如图,在△ABC中,D、E分别是AB、AC的中点,BE =2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.43.(2022春•九龙坡区校级期中)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.44.(2022春•双台子区期末)如图,点O是线段AB上的一点,OA=OC,OD 平分∠AOC交AC于点D,OF平分∠COB,CF⊥OF于点F.(1)求证:四边形CDOF是矩形;(2)当∠AOC多少度时,四边形CDOF是正方形?并说明理由.45.(2022春•汶上县期末)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC到点F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)连接OE,若AD=10,EC=4,求OE的长度.46.(2022春•天山区校级期末)如图,在Rt△ABC中,∠BAC=90°,D是BC 的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:四边形ADCF是菱形;(2)若AC=6,AB=8,求菱形ADCF的面积.47.(2022•龙华区校级一模)如图,在正方形ABCD中,点E是BC的中点,连接DE,过点A作AG⊥ED交DE于点F,交CD于点G.(1)证明:△ADG≌△DCE;(2)连接BF,求证:AB=FB.48.(2022春•阳新县期末)如图,在四边形ABCD中,AD∥BC,对角线AC、BD交于点O,且AO=OC,过点O作EF⊥BD,交AD于点E,交BC于点F.(1)求证:四边形ABCD为平行四边形;(2)连接BE,若∠BAD=100°,∠DBF=2∠ABE,求∠ABE的度数.49.(2021秋•临沂期末)如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.50.(2022秋•铁西区月考)如图,已知四边形ABCD是正方形,AB=4,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE,EF为邻边作矩形DEFG,连CG.(1)求证:四边形DEFG是正方形;(2)求AE2+CE2的最小值.51.(2022•湘潭县校级模拟)如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.(1)求证:四边形ACDF是平行四边形;(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.。

中考数学复习专题特殊平行四边形

中考数学复习专题特殊平行四边形

中考(Kao)数学复习专题特殊平行四边形小(Xiao)题)1.下列性质中,菱形具有(You)而平行四边形不具有的性质是()A.对边平(Ping)行且相等B.对角线互(Hu)相平分C.对角线互相(Xiang)垂直 D.对角互补2.能判定一个四边形是菱形的条件是()A.对角线互相平分且相等B.对角线互相垂直且相等C.对角线互相垂直且对角相等D.对角线互相垂直,且一条对角线平分一组对角3.矩形具有而菱形不一定具有的性质是()A.对边分别相等B.对角分别相等C.对角线互相平分 D.对角线相等4.以下条件不能判别四边形ABCD是矩形的是()A.AB=CD,AD=BC,∠A=90°B.OA=OB=OC=ODC.AB=CD,AB∥CD,AC=BD D.AB=CD,AB∥CD,OA=OC,OB=OD5.顺次连接四边形ABCD各边中点所成的四边形为菱形,那么四边形ABCD的对角线AC 和BD只需满足的条件是()A.相等B.互相垂直C.相等且互相垂直 D.相等且互相平分6.已知菱形的两条对角线长分别是6cm和8cm,则菱形的边长是()A.12cm B.10cm C.7cm D.5cm7.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,以A为圆心,AB长为半径画弧交AD于F,若BF=12,AB=10,则AE的长为()A.16 B.15 C.14 D.138.如(Ru)图,E,G,F,H分(Fen)别是矩形(Xing)ABCD四条边上的(De)点,EF⊥GH,若(Ruo)AB=2,BC=3,则(Ze)EF:GH=()A.2:3 B.3:2 C.4:9 D.无法确(Que)定9.如(Ru)图:点P是Rt△ABC斜边AB上的一点,PE⊥AC于E,PF⊥BC于F,BC=15,AC=20,则线段EF的最小值为()A.12 B.6 C.12.5 D.2510.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF为()A.80°B.70°C.65°D.60°11.如图,在菱形ABCD中,∠A=110°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC的度数为()A.55°B.50°C.45°D.35°12.如(Ru)图,矩形(Xing)ABCD中(Zhong),O为(Wei)AC中点(Dian),过点(Dian)O的(De)直线分别与(Yu)AB,CD交于点E,F,连接BF交AC于点M,连接DE,BO.若∠COB=60°,FO=FC,则下列结论:①FB⊥OC,OM=CM;②△EOB≌△CMB;③四边形EBFD是菱形;④MB:OE=3:2.其中正确结论的个数是()A.1 B.2 C.3 D.4评卷人得分二.填空题(共6小题)13.如图,菱形纸片ABCD,∠A=60°,P为AB中点,折叠菱形纸片ABCD,使点C落在DP所在的直线上,得到经过点D的折痕DE,则∠DEC等于度.14.如图,在平面直角坐标系中(Zhong),菱形(Xing)ABCD在第一象(Xiang)限内,边(Bian)BC与(Yu)x轴(Zhou)平行,A,B两点(Dian)的纵坐标分别为(Wei)3,1,反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为.15.如图:在矩形ABCD中,AB=4,BC=8,对角线AC、BD相交于点O,过点O作OE 垂直AC交AD于点E,则DE的长是.16.平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AD,E、F、G分别是OC、OD,AB的中点.下列结论:①EG=EF;②△EFG≌△GBE;③FB平分∠EFG;④EA平分∠GEF;⑤四边形BEFG是菱形.其中正确的是.17.如图,矩形ABCD中,对角线AC、BD交于点O,点E是BC上一点,且AB=BE,∠1=15°,则∠2=.18.如图所示(Shi),在矩形(Xing)ABCD中(Zhong),AB=6,AD=8,P是(Shi)AD上(Shang)的动点,PE⊥AC,PF⊥BD于(Yu)F,则(Ze)PE+PF的值(Zhi)为.评卷人得分三.解答题(共6小题)19.如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,AE∥CD,CE∥AB,连接DE 交AC于点O.(1)证明:四边形ADCE为菱形.(2)BC=6,AB=10,求菱形ADCE的面积.20.已知,如图,BD为平行四边形ABCD的对角线,O为BD的中点,EF⊥BD于点O,与AD、BC分别交于点E、F.试判断四边形BFDE的形状,并证明你的结论.21.如图,在△ABC中,AB=AC,点D是BC的中点,DE⊥AC于点E,DG⊥AB于点G,EK⊥AB于点K,GH⊥AC于点H、EK和GH相交于点F.求证:GE与FD互相垂直平分.22.如图(Tu):在△ABC中(Zhong),CE、CF分(Fen)别平分∠ACB与它的(De)邻补角∠ACD,AE⊥CE于(Yu)E,AF⊥CF于(Yu)F,直(Zhi)线(Xian)EF分别交AB、AC于M、N.(1)求证:四边形AECF为矩形;(2)试猜想MN与BC的关系,并证明你的猜想;(3)如果四边形AECF是菱形,试判断△ABC的形状,直接写出结果,不用说明理由.23.如图:矩形ABCD中,AB=2,BC=5,E、P分别在AD、BC上,且DE=BP=1.(1)判断△BEC的形状,并说明理由?(2)判断四边形EFPH是什么特殊四边形?并证明你的判断;(3)求四边形EFPH的面积.24.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)求证:BD=DF;(2)求证:四边形BDFG为菱形;(3)若AG=13,CF=6,求四边形BDFG的周长.2017---2018学年中(Zhong)考数学复习专题(Ti)--《特殊平行(Xing)四边形》参考答案与试题解(Jie)析一.选择(Ze)题(共(Gong)12小(Xiao)题)1.下列性质(Zhi)中,菱形具有而平行四边形不具有的性质是()A.对边平行且相等 B.对角线互相平分C.对角线互相垂直 D.对角互补【解答】解:A、平行四边形的对边平行且相等,所以A选项错误;B、平行四边形的对角线互相平分,所以B选项错误;C、菱形的对角线互相垂直,平行四边形的对角线互相平分,所以C选项正确;D、平行四边形的对角相等,所以D选项错误.故选C.2.能判定一个四边形是菱形的条件是()A.对角线互相平分且相等B.对角线互相垂直且相等C.对角线互相垂直且对角相等D.对角线互相垂直,且一条对角线平分一组对角【解答】解:∵对角线互相垂直平分的四边形是菱形.∴A、B、D都不正确.∵对角相等的四边形是平行四边形,而对角线互相垂直的平行四边形是菱形.故C正确.故选C.3.矩形具有而菱形不一定具有的性质是()A.对边分别相等B.对角分别相等C.对角线互相平分 D.对角线相等【解答】解:矩形的性质有:①矩形的对边相等且平行,②矩形的对角相等,且都是直角,③矩形的对角线互相平分、相等;菱(Ling)形的性质有:①菱形的四条(Tiao)边都相等,且对边平行,②菱(Ling)形的对角相等,③菱形的对角(Jiao)线互相平分、垂直,且每一条对角线平分一组对角;∴矩形具有而菱形不一定具有的性质(Zhi)是对角线相等,故(Gu)选(Xuan)D.4.以下条件不(Bu)能判别四边形ABCD是矩形的是()A.AB=CD,AD=BC,∠A=90°B.OA=OB=OC=ODC.AB=CD,AB∥CD,AC=BD D.AB=CD,AB∥CD,OA=OC,OB=OD【解答】解:如图:A、∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∵∠BAD=90°,∴四边形ABCD是矩形,故本选项错误;B、∵OA=OB=OC=OD,∴AC=BD,∴四边形ABCD是平行四边形,∴四边形ABCD是矩形,故本选项错误;C、∵AB=CD,AB∥CD,∴四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形,故本选项错误;D、∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,根据OA=OC,OB=OD不能推出平行四边形ABCD是矩形,故本选项正确;故选D.5.顺(Shun)次连接四边形(Xing)ABCD各边(Bian)中点所成的四边形为菱形,那么四边形(Xing)ABCD的(De)对角线(Xian)AC和(He)BD只需满足的条件(Jian)是()A.相等B.互相垂直C.相等且互相垂直 D.相等且互相平分【解答】解:因为原四边形的对角线与连接各边中点得到的四边形的关系:①原四边形对角线相等,所得的四边形是菱形;②原四边形对角线互相垂直,所得的四边形是矩形;③原四边形对角线既相等又垂直,所得的四边形是正方形;④原四边形对角线既不相等又不垂直,所得的四边形是平行四边形.因为顺次连接四边形ABCD各边中点所成的四边形为菱形,所以四边形ABCD的对角线AC和BD相等.故选A.6.已知菱形的两条对角线长分别是6cm和8cm,则菱形的边长是()A.12cm B.10cm C.7cm D.5cm【解答】解:如图:∵菱形ABCD中BD=8cm,AC=6cm,∴OD=BD=4cm,OA=AC=3cm,在直角三角形AOD中AD===5cm.故选D.7.如图,在(Zai)平行四边形(Xing)ABCD中,用直尺(Chi)和圆规作∠BAD的(De)平分线(Xian)AG交(Jiao)BC于(Yu)点(Dian)E,以A为圆心,AB长为半径画弧交AD于F,若BF=12,AB=10,则AE的长为()A.16 B.15 C.14 D.13【解答】解:连结EF,AE与BF交于点O,如图,∵AO平分∠BAD,∴∠1=∠2,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,同理:AF=BE,又∵AF∥BE,∴四边形ABEF是平行四边形,∴四边形ABEF是菱形,∴AE⊥BF,OB=OF=6,OA=OE,在Rt△AOB中,由勾股定理得:OA===8,∴AE=2OA=16.故选:A.8.如(Ru)图,E,G,F,H分别(Bie)是矩形(Xing)ABCD四(Si)条边上的点,EF⊥GH,若(Ruo)AB=2,BC=3,则(Ze)EF:GH=()A.2:3 B.3:2 C.4:9 D.无法(Fa)确定【解(Jie)答】解:过F作FM⊥AB于M,过H作HN⊥BC于N,则∠4=∠5=90°=∠AMF∵四边形ABCD是矩形,∴AD∥BC,AB∥CD,∠A=∠D=90°=∠AMF,∴四边形AMFD是矩形,∴FM∥AD,FM=AD=BC=3,同理HN=AB=2,HN∥AB,∴∠1=∠2,∵HG⊥EF,∴∠HOE=90°,∴∠1+∠GHN=90°,∵∠3+∠GHN=90°,∴∠1=∠3=∠2,即∠2=∠3,∠4=∠5,∴△FME∽△HNG,∴==∴EF:GH=AD:CD=3:2.故(Gu)选(Xuan)B.9.如(Ru)图:点(Dian)P是(Shi)Rt△ABC斜(Xie)边(Bian)AB上的一(Yi)点,PE⊥AC于E,PF⊥BC于F,BC=15,AC=20,则线段EF的最小值为()A.12 B.6 C.12.5 D.25【解答】解:如图,连接CP.∵∠C=90°,AC=3,BC=4,∴AB===25,∵PE⊥AC,PF⊥BC,∠C=90°,∴四边形CFPE是矩形,∴EF=CP,由垂线段最短可得CP⊥AB时,线段EF的值最小,=BC•AC=AB•CP,此时,S△ABC即(Ji) ×20×15=×25•CP,解(Jie)得(De)CP=12.故(Gu)选(Xuan)A.10.如图(Tu),在菱形(Xing)ABCD中(Zhong),∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF为()A.80°B.70°C.65°D.60°【解答】解:如图,连接BF,在△BCF和△DCF中,∵CD=CB,∠DCF=∠BCF,CF=CF∴△BCF≌△DCF∴∠CBF=∠CDF∵FE垂直平分AB,∠BAF=×80°=40°∴∠ABF=∠BAF=40°∵∠ABC=180°﹣80°=100°,∠CBF=100°﹣40°=60°∴∠CDF=60°.故(Gu)选(Xuan)D.11.如图(Tu),在菱形(Xing)ABCD中(Zhong),∠A=110°,E,F分别(Bie)是边(Bian)AB和(He)BC的中点,EP⊥CD于点P,则∠FPC的度数为()A.55°B.50°C.45°D.35°【解答】解:延长PF交AB的延长线于点G.如图所示:在△BGF与△CPF中,,∴△BGF≌△CPF(ASA),∴GF=PF,∴F为PG中点.又∵由题可知,∠BEP=90°,∴EF=PG,∵PF=PG,∴EF=PF,∴∠FEP=∠EPF,∵∠BEP=∠EPC=90°,∴∠BEP﹣∠FEP=∠EPC﹣∠EPF,即(Ji)∠BEF=∠FPC,∵四(Si)边形(Xing)ABCD为(Wei)菱形,∴AB=BC,∠ABC=180°﹣∠A=70°,∵E,F分(Fen)别为(Wei)AB,BC的中(Zhong)点,∴BE=BF,∠BEF=∠BFE=(180°﹣70°)=55°,∴∠FPC=55°;故(Gu)选:A.12.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB,CD交于点E,F,连接BF交AC于点M,连接DE,BO.若∠COB=60°,FO=FC,则下列结论:①FB⊥OC,OM=CM;②△EOB≌△CMB;③四边形EBFD是菱形;④MB:OE=3:2.其中正确结论的个数是()A.1 B.2 C.3 D.4【解答】解:连接BD,∵四边形ABCD是矩形,∴AC=BD,AC、BD互相平(Ping)分,∵O为(Wei)AC中(Zhong)点,∴BD也(Ye)过(Guo)O点(Dian),∴OB=OC,∵∠COB=60°,OB=OC,∴△OBC是等边三(San)角形,∴OB=BC=OC,∠OBC=60°,在(Zai)△OBF与△CBF中∴△OBF≌△CBF(SSS),∴△OBF与△CBF关于直线BF对称,∴FB⊥OC,OM=CM;∴①正确,∵∠OBC=60°,∴∠ABO=30°,∵△OBF≌△CBF,∴∠OBM=∠CBM=30°,∴∠ABO=∠OBF,∵AB∥CD,∴∠OCF=∠OAE,∵OA=OC,易证△AOE≌△COF,∴OE=OF,∴OB⊥EF,∴四边形EBFD是菱形,∴③正确,∵△EOB≌△FOB≌△FCB,∴△EOB≌△CMB错(Cuo)误.∴②错(Cuo)误,∵∠OMB=∠BOF=90°,∠OBF=30°,∴MB=,OF=,∵OE=OF,∴MB:OE=3:2,∴④正(Zheng)确;故(Gu)选:C.二(Er).填空题(共(Gong)6小(Xiao)题)13.如图(Tu),菱形纸片ABCD,∠A=60°,P为AB中点,折叠菱形纸片ABCD,使点C 落在DP所在的直线上,得到经过点D的折痕DE,则∠DEC等于75度.【解答】解:连接BD,∵四边形ABCD为菱形,∠A=60°,∴△ABD为等边三角形,∠ADC=120°,∠C=60°,∵P为AB的中点,∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,∴∠PDC=90°,∴由折叠的性质得到∠CDE=∠PDE=45°,在(Zai)△DEC中(Zhong),∠DEC=180°﹣(∠CDE+∠C)=75°.故答案(An)为:75.14.如图,在平面直角坐标系中(Zhong),菱形(Xing)ABCD在第一象(Xiang)限内,边(Bian)BC与(Yu)x轴平行,A,B两点的纵坐标分别为3,1,反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为4.【解答】解:过点A作x轴的垂线,与CB的延长线交于点E,∵A,B两点在反比例函数y=的图象上且纵坐标分别为3,1,∴A,B横坐标分别为1,3,∴AE=2,BE=2,∴AB=2,S菱(Ling)形(Xing)ABCD=底(Di)×高(Gao)=2×2=4,故(Gu)答案为(Wei)4.15.如图(Tu):在矩形(Xing)ABCD中,AB=4,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则DE的长是3.【解答】解:如图,连接CE,,设DE=x,则AE=8﹣x,∵OE⊥AC,且点O是AC的中点,∴OE是AC的垂直平分线,∴CE=AE=8﹣x,在Rt△CDE中,x2+42=(8﹣x)2解得x=3,∴DE的(De)长是(Shi)3.故(Gu)答案为:3.16.平(Ping)行四边形(Xing)ABCD中,对(Dui)角线(Xian)AC、BD相交(Jiao)于点O,BD=2AD,E、F、G分别是OC、OD,AB的中点.下列结论:①EG=EF;②△EFG≌△GBE;③FB平分∠EFG;④EA平分∠GEF;⑤四边形BEFG是菱形.其中正确的是①②④.【解答】解:令GF和AC的交点为点P,如图所示:∵E、F分别是OC、OD的中点,∴EF∥CD,且EF=CD,∵四边形ABCD为平行四边形,∴AB∥CD,且AB=CD,∴∠FEG=∠BGE(两直线平行,内错角相等),∵点G为AB的中点,∴BG=AB=CD=FE,在△EFG和△GBE中,,∴△EFG≌△GBE(SAS),即②成立,∴∠EGF=∠GEB,∴GF∥BE(内错角相等,两直线平行),∵BD=2BC,点(Dian)O为平行四边形对角线交(Jiao)点,∴BO=BD=BC,∵E为(Wei)OC中(Zhong)点,∴BE⊥OC,∴GP⊥AC,∴∠APG=∠EPG=90°∵GP∥BE,G为(Wei)AB中(Zhong)点,∴P为(Wei)AE中(Zhong)点,即AP=PE,且GP=BE,在△APG和△EGP中,,∴△APG≌△EPG(SAS),∴AG=EG=AB,∴EG=EF,即①成立,∵EF∥BG,GF∥BE,∴四边形BGFE为平行四边形,∴GF=BE,∵GP=BE=GF,∴GP=FP,∵GF⊥AC,∴∠GPE=∠FPE=90°在(Zai)△GPE和(He)△FPE中(Zhong),,∴△GPE≌△FPE(SAS),∴∠GEP=∠FEP,∴EA平(Ping)分∠GEF,即(Ji)④成(Cheng)立.故(Gu)答案为:①②④.17.如(Ru)图,矩形ABCD中,对角线AC、BD交于点O,点E是BC上一点,且AB=BE,∠1=15°,则∠2=30°.【解答】解:∵四边形ABCD是矩形,∴∠ABC=∠BAD=90°,OB=OD,OA=OC,AC=BD,∴OB=OC,OB=OA,∴∠OCB=∠OBC,∵AB=BE,∠ABE=90°,∴∠BAE=∠AEB=45°,∵∠1=15°,∴∠OCB=∠AEB﹣∠EAC=45°﹣15°=30°,∴∠OBC=∠OCB=30°,∴∠AOB=30°+30°=60°,∵OA=OB,∴△AOB是(Shi)等边三角形,∴AB=OB,∵∠BAE=∠AEB=45°,∴AB=BE,∴OB=BE,∴∠OEB=∠EOB,∵∠OBE=30°,∠OBE+∠OEB+∠BEO=180°,∴∠OEB=75°,∵∠AEB=45°,∴∠2=∠OEB﹣∠AEB=30°,故(Gu)答案为:30°.18.如图所示(Shi),在矩形(Xing)ABCD中(Zhong),AB=6,AD=8,P是(Shi)AD上(Shang)的动点,PE⊥AC,PF⊥BD于(Yu)F,则PE+PF的值为.【解答】解:连接OP,∵四边形ABCD是矩形,∴∠DAB=90°,AC=2AO=2OC,BD=2BO=2DO,AC=BD,∴OA=OD=OC=OB,∴S △AOD =S △DOC =S △AOB =S △BOC =S 矩(Ju)形(Xing)ABCD =×6×8=12,在(Zai)Rt △BAD 中,由勾股(Gu)定理得:BD===10,∴AO=OD=5,∵S △APO +S △DPO =S △AOD , ∴×AO ×PE +×DO ×PF=12,∴5PE +5PF=24, PE +PF=,故答(Da)案为:.三.解(Jie)答题(共(Gong)6小(Xiao)题) 19.如(Ru)图,在(Zai)Rt △ABC 中(Zhong),∠ACB=90°,D 为(Wei)AB 的中(Zhong)点,AE ∥CD ,CE ∥AB ,连(Lian)接(Jie)DE 交(Jiao)AC 于点O .(1)证明:四边形ADCE 为菱形.(2)BC=6,AB=10,求菱形ADCE的面积.【解答】证明:(1)∵在Rt△ABC中,∠ACB=90°,D为AB中点,∴CD=AB=AD,又∵AE∥CD,CE∥AB∴四边形ADCE是平行四边形,∴平行四边形ADCE是菱形;(2)在Rt△ABC中,AC===8.∵平行四边形ADCE是菱形,∴CO=OA,又∵BD=DA,∴DO是△ABC的中位线,∴BC=2DO.又∵DE=2DO,∴BC=DE=6,===24.∴S菱(Ling)形(Xing)ADCE20.已知(Zhi),如图,BD为平(Ping)行四边形(Xing)ABCD的对(Dui)角线,O为(Wei)BD的(De)中点,EF⊥BD于点O,与AD、BC分别交于点E、F.试判断四边形BFDE的形状,并证明你的结论.【解答】答:四边形BFDE的形状是菱形,理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,OB=OD,∵∠EDO=∠FBO,∠OED=∠OFB,∴△OED≌△OFB,∴DE=BF,又∵ED∥BF,∴四边形BEDF是平行四边形,∵EF⊥BD,∴▱BEDF是菱形.21.如图,在△ABC中,AB=AC,点D是BC的中点,DE⊥AC于点E,DG⊥AB于点G,EK⊥AB于点K,GH⊥AC于点H、EK和GH相交于点F.求证:GE与FD互相垂直平分.【解(Jie)答】证(Zheng)明:∵DE⊥AC,DG⊥AB,EK⊥AB,GH⊥AC,∴∠DGB=∠DEC=90°,EK∥DG,DE∥GH,∴四(Si)边形(Xing)DEFG是平行四边(Bian)形,∵AB=AC,∴∠B=∠C,在(Zai)△DGB和(He)△DEC中(Zhong),,∴△DGB≌△DEC(AAS),∴DG=DE,∵四边形DEFG是平行四边形,∴四边形DEFG是菱形,∴GE与FD互相垂直平分.22.如图:在△ABC中,CE、CF分别平分∠ACB与它的邻补角∠ACD,AE⊥CE于E,AF⊥CF于F,直线EF分别交AB、AC于M、N.(1)求证:四边形AECF为矩形;(2)试猜想MN与BC的关系,并证明你的猜想;(3)如果四边形AECF是菱形,试判断△ABC的形状,直接写出结果,不用说明理由.【解(Jie)答】(1)证(Zheng)明:∵AE⊥CE于(Yu)E,AF⊥CF于(Yu)F,∴∠AEC=∠AFC=90°,又(You)∵CE、CF分别(Bie)平分∠ACB与它的(De)邻补角∠ACD,∴∠BCE=∠ACE,∠ACF=∠DCF,∴∠ACE+∠ACF=(∠BCE+∠ACE+∠ACF+∠DCF)=×180°=90°,∴三个角为直角的(De)四边形AECF为矩形.(2)结论:MN∥BC且MN=BC.证明:∵四边形AECF为矩形,∴对角线相等且互相平分,∴NE=NC,∴∠NEC=∠ACE=∠BCE,∴MN∥BC,又∵AN=CN(矩形的对角线相等且互相平分),∴N是AC的中点,若M不是AB的中点,则可在AB取中点M1,连接M1N,则(Ze)M1N是(Shi)△ABC的中位(Wei)线,MN∥BC,而(Er)MN∥BC,M1即(Ji)为点(Dian)M,。

“特殊平行四边形专题复习”教学实录与评析

“特殊平行四边形专题复习”教学实录与评析

特殊平行四边形专题复习教学实录与评析教学实录(一)复习引入,彰显本质师:……,如图1,已知平行四边形ABCD 纸片.如何用剪刀剪一刀, 将这个纸片分成面积相等的两部分? 生1:沿着对角线AC 剪.生2:沿着对角线BD 剪也一样. 师:能说明理由吗?生2:因平行四边形对边平行且相等,所以这两个三角形是等底同高的,当然它们也是全等的. 师:表述得很完整.那么,还有其他不同的剪法吗? 生3:也可沿着对边中点的连线剪.生4:只要沿着任何过对角线交点的直线剪都是可以的. 师:你能解释一下吗? (显示图1中的直线EF)生4:因平行四边形的对角线互相平分.如图,若此直线交对边于E,F 两点,则容易证明△AOF ≌△COE,这样四边形AFED 的面积就等于△ADC 的面积,也就等于平行四边形面积的一半. 师:解释的很好,确实如此.那为什么平行四边形会有这么美妙的结论呢? 众生:因为它是一个中心对称图形.师:很好.平行四边形的本质就是中心对称,因此我们容易得到:对边相等,对角相等,三角形全等等性质,进而也能得到图形之间的面积关系.下面我们围绕对称做更深入的探讨.点评:由一个简单的问题入手,能使学生迅速进入到学习状态,而对方法背后的本质探讨,既凸显了本堂课的认知线索,也激发了学生进一步探究的兴趣与欲望,可谓低起点,高认知,深立意! (二)围绕本质,变式提高问题①:如图2,已知平行四边形ABCD,M 是对角线BD 上一点,EH//AB, FG//AD,若四边形AGME 面积为5,则四边形MHCF 的面积是多少?生5:因四边形ABCD 是平行四边形,BD 为对角线,所以,S DCB ADB ∆=△S 又EH//AB,FG//AD,由平行线的传递性可得,AB//CD//EH,AD//BC//FG,这样就得到了平行四边形DEMF,MGBH,再利用对角线平分面积,得到MHB MGB DFM DEM S S ,S ∆∆∆==△S ,这样就得到了四边形MHCF 的面积等于四边形AGME 的面积,所以,四边形MHCF 的面积是5.师:讲得很完整.解几何题就是要牢牢把握图形的本质,要善于在已知条件中寻找隐含的等量关系.下面一起让我们来看一个变式.图 2变式1:如图3,已知点D 是Rt △ABC 中斜边BC 上的一点,过D 分别作DE//AC 交AB 于E,DF//AB 交AC 于F,若BE=8,CF=6,求四边形DFAE 的面积.师:看来这道题有点难度,那不妨大家先大胆猜猜看,它的面积可能会是多少? 生(齐答):48师:很好!合理的猜想常能启发给我们解题的思路.既然大家都认为此矩形的面积等于48,那如何表示这个面积呢?生6:可以设元,若设y AF x AE ==,,那么,问题就是证明48=xy . 师:那如何才能得到这个关系呢?请大家试一下……师(巡视了一遍后):我发现许多同学都在尝试用勾股定理建立等量关系,但得不到需要的结果,这是为什么?生7:用这个方法得不到需要的xy .师:那请大家认真思考一下,在这个图形中,怎样的等量关系可以出现xy ? 生7:我知道了,用面积.即)6)(8(21821621y x y xy x ++=⨯++⨯,化简就得,48=xy . 师:上述解题过程告诉我们,遇到困难时,一要大胆猜想,二要学会逐渐逼近目标.将几何问题代数化,是几何解题中的常见方法.但是,除了上面这个代数方法外,能否直接运用几何方法呢? 生8:老师,还能用相似三角形知识来做.容易得到△BDE ∽△DCF,则有CFBECF DE =,即48=xy . 师:真棒!这位同学通过相似三角形的性质把分散的y x ,有效进行集中.那么,有没有直接把这两个分散的量聚集起来的方法呢?对照前面的图形,你有什么联想?生9:明白了,可以通过平移的方式.即以AC 、AB 为边,补全成一个矩形(如图4), 则有MD=CF=6,ND=BE=8,那么四边形GMDN 的面积就是48,这就和上一题完全一样了,于是,四边形DFAE 的面积也为48.师:同学们都讲得很好!其实很多几何问题就是从最基本的图形演变而来的, 所以,在平时的学习过程中,对这些问题要多研究,多挖掘本质特征.点评:这里,执教老师既没有可以刻意强调问题与原型之间的联系,也没有直接告知学生解题的思路,而是在不断的启发过程中让学生体会数学学习中一般有用的方法.先猜后证,尝试错误;分析目标,寻求思路;顺应思路,有效引导;生成方法,体验联系,这些都体现了执教老师较为扎实的教学基本功与机智的课堂应变能力.图 3图 4(三)横向迁移,发散思维问题②:如图5,已知菱形ABCD的边长为6,∠ADC=60°,点E是AD边上的中点,请在对角线BD上找一点M,使得AM+ME的值最小,并求出这个最小值.师:同学们,以前有没有遇到过类似的问题?生(齐答):有!“将军饮马”问题.师:谁来帮大家解释一下,这个将军该怎么走,为什么要这样走?生10:……,两点之间线段最短.师:这位同学对基础知识的理解非常到位.那么,同学们对上面这道题大家有思路了吗?生11:利用菱形的轴对称性,因点A关于BD的对称点就是点C,所以AM=MC,于是AM+ME的最小值就是EM+MC 的最小值,即CE的长就为最短距离,并且最短距离EC的长是33.师(追问):你是如何求的,请说明解题过程?生11:因∠ADC=60°,易证△ADC是等边△,而点E为AD中点,故有CE⊥AD,于是在ECDRt∆中,用勾股定理求即可.师:看来,问题的解决是利用了直角三角形的性质.下面我们将题目稍作变化.变式2:如图6,已知菱形ABCD的边长为6,∠ADC=60°,点E是DC的中点,请在AC上找一点M,使DM+EM的值最小,并求这个最小值.师:本题中DM+EM的最小值,即BE的长,又该如何求呢?生12:老师,现在BE不在直角三角形中了……生13:那就构造一个直角三角形.师:讲得好.没有直角三角形的时候,要学会构造直角三角形.那么如何构造呢?生14:如图7①,可以连接AE,因E是等边△一边上的中点,所以∠EAC=30°,从而有∠EAB=90°.这样BE就在直角三角形中了.而AE=33,AB=6,则由勾股定理可得BE=73.生15:也可以延长DC,并过B作这条延长线的垂线,垂足为F(如图6②),这时易知BF=33,而在BCFRt∆中,∠BCF=60°,故CF=3,则EF=6,于是由勾股定理可得BE=73.生16:还可以延长BC,过E作这条延长线的垂线,垂足为F(如图6③),这时易得,CF=1.5,EF=35.1,则BF=7.5,同样可求得BE的长.生17:老师,我还有办法.如图6④,只要连接BD,作EF⊥BD,这时∠BDC=30°,于是DB,EF,DF,BF的长均可求得,这样也就可求出BE的长.图 5图 6师:真是八仙过海,各显神通!同学们都很会动脑筋,也把握住了解题的关键,即构造一个所求边所在的直角三角形.好!让我们进一步探究下去.点评:从引导学生联想问题解决的基本模型,到学生根据菱形的轴对称性顺利解决问题;从点明问题解决的关键,到引发学生自然的联想构造,整个教学过程自然流畅,一气呵成.而学生中不断涌现的创造性解法既反映了学生思维水平的提升,(四)适度拓展,综合提升问题3 将正方形ABCD 放置在如图7所示的直角坐标系中,点P 为AB 的中点,点B 的坐标为(8,0),连接CP,将△BCP 沿PC 对折,使点B 落在y 轴的M 点,且M 的纵坐标为4.(1)求点A 的坐标;(2)请在x 轴上找一点Q,使得△CMQ 的周长最短,并求出Q (3)将AC 绕点A 顺时针旋转45°得到AE,AF 是∠CAE 的角平分线,点N 是AE 上的一个动点,请在AF 上找一点G,使得NG+EG 的值最小,求最小值.师:请结合条件与结论思考,求A 点坐标的实质是什么?折叠又能告诉你什么? 生18:求A 点坐标就是求OA 或OP 的长,折叠可以得到对应边相等,对应角相等.师:很好!从几何问题的解决策略看,寻找所求元素的三角形,并研究这些元素之间的关系是最基本,也是最重要的方法.从这个角度分析,你找到解决问题的方法了吗?生19:找到了.根据对称,可以得到MP+OP=BP+OP=8,这样设x OP =,则x MP -=8,于是由勾股定理可得222)8(4x x -=+,求得3=x ,所以A 点坐标应为(-2,0).师:让我们继续来思考第2个问题.假设Q 在x 轴上的某一位置,请画图试一试,看看有什么发现? 生19:无论Q 在哪里,CM 的长总是不变的.生20:这样一来,求周长的最小值实际上就是求MQ+CQ 的最小值,这与我们前面所研究的问题是一样的. 师:请说说具体的求解过程? 生20:由于点M 关于x 轴的对称点M ’(0,-4),则Q 点就是CM ’与x 轴的交点,设直线CM ’的函数解析式为4-=kx y ,把C(8,10)代入,可得47=k ,于是447-=x y .令716,0==x y 则,故Q(716,0),而由勾股定理可得CM=10,CM ’=652,所以最短周长就为10652+.师:解释得很好,看到了问题的本质,也能综合运用知识求解.当遇到类似的问题时,你可以先假设它在某个固定的位置,看看此时的情况,再逐步改变它位置,以便发现哪些量是不变的,哪些量在变化,又怎么在变,从而发现解决问题的有效办法.由于时间关系,第3小题留给同学们课后探究.点评:此题实质上是对前一个问题的有效拓展,但更具内涵,既可以充分考查学生前面的学习成效,也可以充分提高学生综合运用知识的能力.而问题解决过程中先让学生动手实践,再到探究分析,发现规律,最后教师进行归纳指导,都较好体现了“学为主体、教为主导”的教学理念.(五)聚点成面,形成网络师:特殊平行四边形的本质就是它们的对称性(中心对称与轴对称).本堂课,我们是以对称为认知线索,解决了一系列问题.归纳起来就是:可利用点的对称求最小值,可利用线的对称来计算图形面积.由于计算线段长度与证明线段关系常会用到勾股定理,因此,构造直角三角形是解决几何问题的有效手段,而以不变量的不同角度表示来建立等量关系,则体现了几何问题代数化的具体策略.评析本课主题明确,线索清晰,问题设置恰当;教师启发有力,学生思维活跃,教学目标达成度较高,较好实现了数学学习中“基础、方法和能力”的有机统一.[1]精心设置问题,强化本质理解问题既是数学学习的心脏,也是思维活动的起点.通过问题来驱动教学,往往是实现夯实知识基础,揭示本质特征,提炼数学方法,提升思维水平等复习要求的有效途径.综观本节专题复习课,归老师围绕对称(中心对称与轴对称)这条认知主线,对所呈现的问题与图形均作了精心的思考.无论是引例的选择,还是两个例题及其对应变式的配置,再到拓展性例题的设计,问题环环相扣,层层深入,链接紧密.既强化了学生对每类图形的本质理解与方法认知,又突出反映了图形之间的内在联系与区别,这样的教学设计有效遵循了学生的已有知识经验与认知规律,有利于促进学生学习.[2]立足方法引领,重在思维提升数学学习的主要目的就是学习方法,发展思维.这就需要教师充分的展现教学智慧,应该说,本节课的教学较好的体现了这一点.如在变式1的教学中,一句“让我们大胆猜猜看”给了学生解题目标,“如何表示这个面积?”则使学生有了解题方向;当学生盲目的寻求等量关系时,教师的适时启发引领又使学生迅速明白了产生错误的根源,形成了正确的解题思路;当学生灵活运用相似三角形的知识得到结果时,教师机智的提出“能否直接把两个分散的条件聚集起来呢”,使学生冒出了平移的想法,从而不仅把原型与变式之间的关系揭示出来,也深刻理解了问题的本质与变化过程.而在问题2的教学中,一句“看来,问题的解决是利用了直角三角形的性质”的总结,直接为变式2中学生提出构造想法,以及众多创造性方法的产生提供了外显到内隐的思维场…….这一切,都使学生在学习过程中不断体验到数学解题中一般有用的方法,也有效提升了他们的认知水平,发展了他们的思维能力.[3]创设和谐氛围,注重全体参与,本节课中,无论是引例的安排,还是问题1,2的设置,学生大多能凭借原有的知识经验顺利解决,既夯实了基础,也使学生得到心理保障,从而知无不言,言无不尽,以愉悦的心情投入到后续的学习过程之中,使教学面向全体成为现实.变式问题与拓展练习,也给学生带来了极大的挑战,有效激发了学生的学习兴趣与探究热情.整个教学过程中执教老师平和的语调,宽松的环境,以及适时的鼓励,耐心的启发引导、解释归纳等和谐氛围的构建,都使学生的精彩想法被不断激发出来,客观上成就了本课复习的高效率.值得商榷的是,本课基本上以师生对话为主的教学方式稍显单调,生生互动交流明显不足,客观上造成了教学前松后紧,虎头蛇尾;同时,教学过程中留给学生思考、消化与整理的时间也相对欠缺,这样易使部分学生随着教学进程的深入被逐渐边缘化,这些现象也确实值得我们广大教师深思!。

特殊的平行四边形专题复习

特殊的平行四边形专题复习

菱形专题复习一. 填空题1..若菱形两条对角线长分别为6 cm和8 cm,则它的周长是________,面积是_________.2. 菱形的一个内角为120°,平分这个内角的一条对角线长为12 cm,则菱形的周长为_________.3. 菱形有_______条对称轴,对称轴之间具有___________的位置关系.4. 已只菱形周长是24cm,一个内角为60°,则面积为 cm25. 若菱形两邻角的比为1:2,周长为24 cm,则较短对角线的长为______________.6. 若从菱形的一个顶点到对边的距离等于边长的一半,则菱形两相邻内角的度数分别是_______.7. 菱形的一边与两条对角线夹角的差是20°,那么菱形的各角的度数为_____________.8. 菱形的一个角是60°,边长是8 cm,那么菱形的两条对角线的长分别是____________.9、如图,已知菱形ABCD中,E是AB的中点,且DE⊥AB,∠ABC=°。

二、选择题1. 菱形具有而一般四边形不具有的性质是 ( )A. 两组对边分别平行B. 两组对边分别相等C. 一组邻边相等D. 对角线相互平分2. 菱形ABCD中,AE⊥BC于E,若S菱形ABCD=24cm2,则AE=6cm,则菱形ABCD的边长为 ( )A. 4 cmB. 5 cmC. 6 cmD. 7 cm3. 在菱形ABCD中,AE⊥BC, AF⊥CD,且BE=EC, CF=FD,则∠AEF等于 ( )A. 120°B. 45°C. 60°D. 150°4. 已知菱形的一条对角线与边长相等,则菱形的邻角度数分别为 ( )A. 45°, 135°B. 60°, 120°C. 90°, 90°D. 30°, 150°5. 在菱形ABCD中,若∠ADC=120°,则BD:AC等于 ( )A. 3:2B. 3:3C. 1:2D. 3:16.下列条件中,不能判定四边形ABCD为菱形的是().A.AC⊥BD,AC与BD互相平分 B.AB=BC=CD=DAC.AB=BC,AD=CD,且AC⊥BD D.AB=CD,AD=BC,AC⊥BD8.用直尺和圆规作一个菱形,如图,能得到四边形ABCD 是菱形的依据是( ) A 、一组临边相等的四边形是菱形B 、四边相等的四边形是菱形C 、对角线互相垂直的平行四边形是菱形D 、每条对角线平分一组对角的平行四边形是菱形9、如图.若要使平行四边形ABCD 成为菱形.则需要添加的条件是( ) A.AB =CDB.AD =BCC.AB =BCD. AC =BD10、如图,在三角形ABC 中,AB >AC ,D 、E 分别是AB 、AC 上的点,△ADE 沿线段DE 翻折,使点A 落在边BC 上,记为A '.若四边形ADA E '是菱形,则下列说法正确的是 ( )A. DE 是△ABC 的中位线B. AA '是BC 边上的中线C. AA '是BC 边上的高D. AA '是△ABC 的角平分线第10题图 第11题图 第12题图11、如图,菱形ABCD 中,∠B =60°,AB =2,E 、F 分别是BC 、CD 的中点,连接AE 、EF 、AF ,则△AEF 的周长为( )A . 32B . 33C . 34D . 312、如图,在▱ABCD 中,对角线AC 与BD 相交于点O ,过点O 作EF⊥AC 交BC 于点E ,交AD 于点F ,连接AE 、CF .则四边形AECF 是( ) A . 梯形 B . 矩形 C . 菱形 D . 正方形 13、如图,在菱形ABCD 中,∠A =110°,E ,F 分别是边AB 和BC 的中点,EP ⊥CD 于点P ,则∠FPC =( )A .35°B .45°C .50°D .55° 14. 如图,菱形ABCD 的周长为20cm ,DE ⊥AB ,垂足为E ,54A cos =,则下列结论中正确 的个数为( )①DE =3cm ; ②EB =1cm ; ③2ABCD 15S cm =菱形.个A .3个B .2个C .1个D .0FADEBCABCDEA '第8题图第9题图321FEDCBA第12题图 第13题图 第14题图三、判断题,对的画“√”错的画“×” 1.对角线互相垂直的四边形是菱形( ) 2.一条对角线垂直另一条对角线的四边形是菱形( ) 3.对角线互相垂直且平分的四边形是菱形( ) 4.对角线相等的四边形是菱形( ) 四、解答题1、已知菱形ABCD 的周长为20 cm,面积为20 cm 2,求对角线AC,BD 的长.2、□ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别交于E 、F ,四边形AFCE 是否是菱形?为什么?3、、如图在△ABC 中,AD 平分∠BAC 交BC 于D 点,过D 作DE ∥AC 交AB 于E 点, 过D 作DF ∥AB 交AC 于F 点. 求证:(1)四边形AEDF 是平行四边形 ;(2)∠2﹦∠3 ;(3)四边形AEDF 是菱形。

【单元复习】第一章 特殊平行四边形(知识精讲+考点例析+举一反三+实战演练)(原卷版)

【单元复习】第一章 特殊平行四边形(知识精讲+考点例析+举一反三+实战演练)(原卷版)

【单元复习】第一章特殊平行四边形知识精讲第一章特殊平行四边形一、平行四边形1.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形。

2.平行四边形的性质(1)平行四边形的对边平行且相等。

(对边)(2)平行四边形相邻的角互补,对角相等(对角)(3)平行四边形的对角线互相平分。

(对角线)(4)平行四边形是中心对称图形,对称中心是对角线的交点。

常用点:(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。

(2)推论:夹在两条平行线间的平行线段相等。

3.平行四边形的判定(1)定义:两组对边分别平行的四边形是平行四边形。

(对边)(2)定理1:两组对边分别相等的四边形是平行四边形。

(对边)(3)定理2:一组对边平行且相等的四边形是平行四边形。

(对边)(4)定理3:两组对角分别相等的四边形是平行四边形。

(对角)(5)定理4:对角线互相平分的四边形是平行四边形。

(对角线)4.两条平行线的距离两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。

注意:平行线间的距离处处相等。

5.平行四边形的面积: S平行四边形=底边长×高=ah二、菱形1.菱形的定义:有一组邻边相等的平行四边形叫做菱形2.菱形的性质(1)菱形的四条边相等,对边平行。

(边)(2)菱形的相邻的角互补,对角相等。

(对角)(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角。

(对角线)(4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等);对称轴有两条,是对角线所在的直线。

3.菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形。

(2)定理1:四边都相等的四边形是菱形。

(边)(3)定理2:对角线互相垂直的平行四边形是菱形。

(对角线)(4)定理3:对角线垂直且平分的四边形是菱形。

(对角线)4.菱形的面积:S菱形=底边长×高=两条对角线乘积的一半三、矩形1.矩形的定义:有一个角是直角的平行四边形叫做矩形。

专题复习:特殊平行四边形练习题

专题复习:特殊平行四边形练习题

练习(一)基础部分(一)、判断题1、对角线相等的四边形是矩形。

()2、一组对边平行,另一组对边相等的四边形是平行四边形。

()3、四个角相等的四边形是正方形。

()4、邻角相等的平行四边形是矩形。

()5、正方形的对角线相等、垂直且平分。

()6、对角线垂直且平分的四边形是菱形。

()7、对角线互相垂直的矩形是正方形。

()8、对角线相等的菱形是正方形。

()(二)、开放题1、(2005年.云南)请你添加一个条件,使平行四边形ABCD成为一个菱形,你添加的条件是_____________。

2.已知:AD∥BC,要使四边形ABCD为平行四边形,需要增加一个条件是_______3、要使一个矩形成为正方形需添加的一个条件是_______________________4、要使一个菱形成为正方形需增加的一个条件是____________________。

(三)、填空题1、在平行四边形、直角三角形、菱形、梯形中,既是中心对称图形又是轴对称图形的是_______________。

2、在直角三角形ABC中,∠C= 900 ,D是AB边的中点,CD = 5cm,则A B = _ ____cm3、如图:已知平行四边形ABCD中,两邻角∠A:∠B==3:2,则∠A =___, B=___4、已知菱形的两条对角线长分别是6cm、8cm,则菱形的周长 =_______cm,面积 =_______cm2。

5、已知矩形ABCD的对角线AC、BD相交于点O,∠AOB = 600 ,AB = 4cm,则矩形的对角线AC =_______cm,面积=_______cm2。

6、若平行四边形一边长为8cm,一条对角线长为6cm,则另一条对角线长X的取值范围是_____________。

7、三角形ABC的周长为1,点D、E、F分别是AB、BC、AC的中点,顺次连接各边中得第二个小DEF,则图中有_____个平行四边形,三角形DEF的面积=______,周长=_____,依次类推理…,则第2007个小三角形的周长=_______。

特殊的平行四边形专题(题型详细分类)要点

特殊的平行四边形专题(题型详细分类)要点

特殊的平⾏四边形专题(题型详细分类)要点特殊的平⾏四边形讲义知识点归纳矩形,菱形和正⽅形之间的联系如下表所⽰:四边形分类专题汇总专题⼀:特殊四边形的判定矩形菱形正⽅形性质边对边平⾏且相等对边平⾏,四边相等对边平⾏,四边相等⾓四个⾓都是直⾓对⾓相等四个⾓都是直⾓对⾓线互相平分且相等互相垂直平分,且每条对⾓线平分⼀组对⾓互相垂直平分且相等,每条对⾓线平分⼀组对⾓判定 ·有三个⾓是直⾓; ·是平⾏四边形且有⼀个⾓是直⾓; ·是平⾏四边形且两条对⾓线相等. ·四边相等的四边形;·是平⾏四边形且有⼀组邻边相等;·是平⾏四边形且两条对⾓线互相垂直。

·是矩形,且有⼀组邻边相等; ·是菱形,且有⼀个⾓是直⾓。

对称性既是轴对称图形,⼜是中⼼对称图形(1)______________ (2)______________ (3)______________ (4)______________ (5)______________2.矩形的判定⽅法:(1)______________ (2)______________ (3)______________3.菱形的判定⽅法:(1)______________ (2)______________ (3)______________4.正⽅形的判定⽅法:(1)______________ (2)______________ (3)______________5.等腰梯形的判定⽅法:(1)______________ (2)______________ (3)______________【练⼀练】⼀.选择题1.能够判定四边形ABCD是平⾏四边形的题设是().A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠DC.AB=CD,AD=BC D.AB=AD,CB=CD2.具备下列条件的四边形中,不能确定是平⾏四边形的为().A.相邻的⾓互补 B.两组对⾓分别相等C.⼀组对边平⾏,另⼀组对边相等 D.对⾓线交点是两对⾓线中点3.下列条件中,能判定四边形是平⾏四边形的条件是( )A.⼀组对边平⾏,另⼀组对边相等B.⼀组对边平⾏,⼀组对⾓相等C.⼀组对边平⾏,⼀组邻⾓互补D.⼀组对边相等,⼀组邻⾓相等4.如下左图所⽰,四边形ABCD的对⾓线AC和BD相交于点O,下列判断正确的是().A.若AO=OC,则ABCD是平⾏四边形;B.若AC=BD,则ABCD是平⾏四边形;C.若AO=BO,CO=DO,则ABCD是平⾏四边形;D.若AO=OC,BO=OD,则ABCD是平⾏四边形5.不能判定四边形ABCD是平⾏四边形的条件是()A.AB=CD,AD=BC B.AB∥CD,AB=CDC.AB=CD,AD∥BC D.AB∥CD,AD∥BC6.四边形ABCD的对⾓线AC,BD相交于点O,能判断它为矩形的题设是()A.AO=CO,BO=DO B.AO=BO=CO=DOC.AB=BC,AO=CO D.AO=CO,BO=DO,AC⊥BD7.四边形ABCD的对⾓线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD8.在四边形ABCD中,O是对⾓线的交点,下列条件能判定这个四边形是正⽅形的是()A、AC=BD,AB∥CD,AB=CDB、AD∥BC,∠A=∠CC、AO=BO=CO=DO,AC⊥BDD、AC=CO,BO=DO,AB=BC9.在下列命题中,真命题是()A.两条对⾓线相等的四边形是矩形B.两条对⾓线互相垂直的四边形是菱形C.两条对⾓线互相平分的四边形是平⾏四边形D.两条对⾓线互相垂直且相等的四边形是正⽅形10.在下列命题中,正确的是()11.如图,已知四边形ABCD 是平⾏四边形,下列结论中不正确的是() A .当AB=BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形C .当∠ABC=900时,它是矩形D .当AC=BD 时,它是正⽅形12.如图,在ABC △中,点E D F ,,分别在边AB ,BC ,CA 上,且DE CA ∥,DF BA ∥.下列四个判断中,不正确...的是() A .四边形AEDF 是平⾏四边形B .如果90BAC ∠=o ,那么四边形AEDF 是矩形C .如果AD 平分BAC ∠,那么四边形AEDF 是菱形D .如果AD BC ⊥且AB AC =,那么四边形AEDF 是菱形 13.下列条件中不能判定四边形是正⽅形的条件是()。

九年级数学特殊的平行四边形中考总复习

九年级数学特殊的平行四边形中考总复习

《特殊的平行四边形》专题复习学习目标:1.平行四边形、矩形、菱形、正方形的性质和判定在几何问题中的综合运用。

2.连平行四边形、矩形、菱形、正方形的对角线,能得到特殊三角形(直角三角形和等腰三角形)、全等三角形,要用心体会方程思想(直角三角形)和分类讨论思想(等腰三角形)在解决问题中的作用.知识梳理:一.矩形、菱形、正方形的性质与判定.二.矩形、菱形、正方形与平行四边形的关系.(小组讨论)注意:以平行四边形为基础,从边、角、对角线等不同角度进行演变,推出特殊的四边形:矩形、菱形、正方形。

他们之间既有联系又有区别。

(1)矩形的性质与判定.注意:从矩形的图形中可以分解出:直角三角形、等腰三角形、对角线的夹角是60°时有等边三角形。

(2)矩形性质的推论:直角三角形斜边上的中线等于斜边的一半. (3)菱形的性质与判定.注意:从菱形的图形中可以分解出:直角三角形、等腰三角形或等边三角形。

(4)菱形的面积1.运用平行四边形的面积公式: .2.菱形的面积等于两条对角线乘积的一半.(5)正方形的性质与判定.注意:从正方形的图形中可以分解出:等腰直角三角形。

例1.如图,在菱形ABCD 中,P 是对角线AC 上任一点(不与A ,C 重合),连接BP ,DP ,过P 作PE ∥CD 交AD 于E ,过P 作PF ∥AD 交CD 于F ,连接EF .(1)求证:△ABP ≌△ADP ;(2)若BP=EF ,求证:四边形EPFD 是矩形.S =⨯平行四形底高12ABCD S AC BD =⋅菱形跟踪练习.如图,四边形ABCD是矩形,把矩形沿对角线AC折叠,点B落在点E处,CE与AD相交于点O.(1)求证:△AOE≌△COD;(2)若∠OCD=30°,AB=,求△AOC的面积.例2.如图,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:四边形AEBD是菱形;(2)若DC=,tan∠DCB=3,求菱形AEBD的面积.跟踪练习.如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O 的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.巩固提高:准备一张矩形纸片,按如图操作:将△ABE沿BE翻折,使点A落在对角线BD上的M点,将△CDF沿DF翻折,使点C落在对角线BD上的N点.(1)求证:四边形BFDE是平行四边形;(2)若四边形BFDE是菱形,AB=2,求菱形BFDE的面积.总结中考这类题做题方法与注意事项:专项训练:1.如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB 上,EF⊥AB,OG∥EF.(1)求证:四边形OEFG是矩形;(2)若AD=10,EF=4,求OE和BG的长.2. 如图,四边形ABCD是平行四边形,DE∥BF,且分别交对角线AC于点E,F,连接BE,DF.(1)求证:AE=CF;(2)若BE=DE,求证:四边形EBFD为菱形.3. 如图,在△ABC中,AB=AC,点D、E分别是线段BC、AD的中点,过点A作BC 的平行线交BE的延长线于点F,连接CF.(1)求证:△BDE≌△FAE;(2)求证:四边形ADCF为矩形.4. 如图,在边长为l的正方形ABCD中,E是边CD的中点,点P是边AD上一点(与点A、D不重合),射线PE与BC的延长线交于点Q.(1)求证:△PDE≌△QCE;(2)过点E作EF∥BC交PB于点F,连结AF,当PB=PQ时,①求证:四边形AFEP是平行四边形;②请判断四边形AFEP是否为菱形,并说明理由.5. 如图,矩形ABCD中,AB=4,BC=2,点E、F分别在AB、CD上,且BE=DF=.(1)求证:四边形AECF是菱形;(2)求线段EF的长.6. 如图,已知在△ABC中,D,E,F分别是AB,BC,AC的中点,连结DF,EF,BF.(1)求证:四边形BEFD是平行四边形;(2)若∠AFB=90°,AB=6,求四边形BEFD的周长.7. 如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.(1)求证:四边形ACDF是平行四边形;(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.8. 如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,求ABCD的面积?9. 如图,已知A、F、C、D四点在同一条直线上,AF=CD,AB∥DE,且AB=DE.(1)求证:△ABC≌△DEF;(2)若EF=3,DE=4,∠DEF=90°,请直接写出使四边形EFBC为菱形时AF的长度.10. 如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.11. 如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC,EF ⊥CD于点F.(1)求证:四边形AECD是菱形;(2)若AB=6,BC=10,求EF的长.12. 如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F.(1)证明:四边形CDEF是平行四边形;(2)若四边形CDEF的周长是25cm,AC的长为5cm,求线段AB的长度.13. 如图,菱形ABCD的对角线AC与BD相交于点O,且BE∥AC,CE∥BD.(1)求证:四边形OBEC是矩形;(2)若菱形ABCD的周长是4,tanα=,求四边形OBEC的面积.14. 如图,在正方形ABCD中,点E,F分别在AD,CD上,且DE=CF,AF与BE相交于点G.(1)求证:BE=AF(2)若AB=4,DE=1,求AG的长.15.如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,16.延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.。

2024年中考第一轮复习特殊平行四边形2

2024年中考第一轮复习特殊平行四边形2
在 Rt△ AFE 中,EF= 2 + 2 =2 15.
3.[2019·上海]如图25-7,在正方形ABCD中,E是边AD的中点.将△ABE沿直线BE
翻折,点A落在点F处,连结DF,那么∠EDF的正切值是
图25-7
.
[答案]2
1
[解析] 如图所示,由折叠可得 AE=FE,∠AEB=∠FEB= ∠AEF,
■ 知识梳理
1.定义:顺次连结四边形各边中点所得的四边形称为中点四边形.
2.任意四边形的中点四边形是① 平行四边形 .
对角线相等的四边形的中点四边形是② 菱形
.
对角线垂直的四边形的中点四边形是③ 矩形
.
对角线互相垂直且相等的四边形的中点四边形是④ 正方形 .
考向一
中点四边形
例1 如图25-4,D,E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB,AC的中点
1
2
∵AC=BD=8,AE=CF=2,∴OD=4,OE=OF= (8-2-2)=2.
由勾股定理,得 DE= 2 + 2 = 42 + 22 =2 5,
∴四边形 BEDF 的周长=4DE=4×2 5=8 5.
■ 知识梳理
图25-2
考点二
中点四边形
4.顺次连结任意四边形各边的中点,所得的四边形一定是
,O是△ABC所在平面上的动点,连结OA,OB,OC,点G,F分别是OB,OC的中点,顺
次连结点D,G,F,E.
(1)当点O在△ABC的内部时,求证:四边形DGFE是平行四边形;
解:(1)证明:∵D,E 分别是 AB,AC 的中点,
1
∴DE∥BC,且 DE=2BC.
1
同理,GF∥BC,且 GF=2BC,

中考数学《特殊平行四边形》专题复习课件(共32张PPT)

中考数学《特殊平行四边形》专题复习课件(共32张PPT)
ACEF是菱形?请回答并证明你的结论. (3)四边ACEF有可能是正方形吗?请证明
你的结论。
7.如图,OABC是一张放在平面直角坐标系中的 矩形纸片,O为原点,点A在x轴上,点C在y 轴上,OA=10,OC=6。
(1)如图①,在OA上选取一点G,将△COG 沿CG翻折,使点O落在BC边上,设为E, 求折痕CG所在直线的解析式。
谢谢观赏
You made my day!
我们,还在路上……
⑵当x为何值时,⊿PBC的周长最 小,并求出此时y的值
❖1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月5日星期六2022/3/52022/3/52022/3/5 ❖2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/52022/3/52022/3/53/5/2022 ❖3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/52022/3/5March 5, 2022 ❖4、享受阅读快乐,提高生活质量。2022/3/52022/3/52022/3/52022/3/5
一、四边形的分类及转化
两组对边平行 平行四边形
任意四边形
一组对边平行
梯形
另一组对边不平行
矩形
菱 形
正方形
等腰梯形
直角梯形
二、几种特殊四边形的性质:
项目 四边形
对边

对角线
对称性
对角相等
平行且相等
平行四边形
邻角互补
四个角
矩形 平行且相等 都是直角
平行
对角相等

中考数学总复习《(特殊)平行四边形的动点问题》专题训练(附答案)

中考数学总复习《(特殊)平行四边形的动点问题》专题训练(附答案)

中考数学总复习《(特殊)平行四边形的动点问题》专题训练(附答案)学校:___________班级:___________姓名:___________考号:___________1.已知,矩形ABCD 中,AB =4cm ,BC =8cm ,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O .(1)如图1,连接AF 、CE .求证四边形AFCE 为菱形,并求AF 的长;(2)如图2,动点P 、Q 分别从A 、C 两点同时出发,沿△AFB 和△CDE 各边匀速运动一周.即点P 自A →F →B →A 停止,点Q 自C →D →E →C 停止.在运动过程中,①已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,求t 的值.②若点P 、Q 的运动路程分别为a 、b (单位:cm ,ab ≠0),已知A 、C 、P 、Q 四点为顶点的四边形是平行四边形,求a 与b 满足的数量关系式.2.(1)如图1,点P 为矩形ABCD 对角线BD 上一点,过点P 作//EF BC ,分别交AB 、CD 于点E 、F .若2BE =,PF=6,AEP △的面积为1S ,CFP 的面积为2S ,则12S S +=________;(2)如图2,点P 为ABCD 内一点(点P 不在BD 上),点E 、F 、G 、H 分别为各边的中点.设四边形AEPH 的面积为1S ,四边形PFCG 的面积为2S (其中21S S >),求PBD △的面积(用含1S 、S的代数式表示);2(3)如图3,点P为ABCD内一点(点P不在BD上)过点P作//EF AD,HG//AB与各边分别相交于点E、F、G、H设四边形AEPH的面积为1S,四边形PGCF的面积为2S(其中21),S S求PBD△的面积(用含1S、2S的代数式表示);(4)如图4 点A B C D把O四等分.请你在圆内选一点P(点P不在AC BD 上)设PB PC BC围成的封闭图形的面积为1S PA PD AD围成的封闭图形的面积为2S PBD△的面积为3S PAC△的面积为4S.根据你选的点P的位置直接写出一个含有1S2S3S4S的等式(写出一种情况即可).3.已知直线y=x+4与x轴y轴分别交于A B两点∠ABC=60°BC与x轴交于点C.(1)试确定直线BC的解析式.(2)若动点P从A点出发沿AC向点C运动(不与A C重合)同时动点Q从C点出发沿CBA向点A运动(不与C A重合) 动点P的运动速度是每秒1个单位长度动点Q的运动速度是每秒2个单位长度.设△APQ的面积为S P点的运动时间为t秒求S与t的函数关系式并写出自变量的取值范围.(3)在(2)的条件下当△APQ的面积最大时y轴上有一点M 平面内是否存在一点N 使以A Q M N为顶点的四边形为菱形?若存在请直接写出N点的坐标;若不存在请说明理由.4.如图在等腰梯形ABCD中AB∥DC AB=8cm CD=2cm AD=6cm.点P 从点A出发以2cm/s的速度沿AB向终点B运动;点Q从点C出发以1cm/s的速度沿CD DA向终点A运动(P Q两点中有一个点运动到终点时所有运动即终止).设P Q同时出发并运动了t秒.(1)当PQ将梯形ABCD分成两个直角梯形时求t的值;(2)试问是否存在这样的t 使四边形PBCQ的面积是梯形ABCD面积的一半?若存在求出这样的t的值若不存在请说明理由.5.如图在平面直角坐标系中以坐标原点O为圆心2为半径画⊙O P是⊙O上一动点且P在第一象限内过点P作⊙O的切线与轴相交于点A与轴相交于点B.(1)点P在运动时线段AB的长度也在发生变化请写出线段AB长度的最小值并说明理由;(2)在⊙O上是否存在一点Q使得以Q O A P为顶点的四边形时平行四边形?若存在请求出Q点的坐标;若不存在请说明理由.6.如图已知长方形ABCD中AD=6cm AB=4cm 点E为AD的中点.若点P在线段AB上以1cm/s的速度由点A向点B运动同时点Q在线段BC上由点B向点C运动.(1)若点Q的运动速度与点P的运动速度相等经过1秒后△AEP与△BPQ是否全等请说明理由并判断此时线段PE和线段PQ的位置关系;(2)若点Q的运动速度与点P的运动速度相等运动时间为t秒设△PEQ的面积为Scm2请用t的代数式表示S;(3)若点Q的运动速度与点P的运动速度不相等当点Q的运动速度为多少时能够使△AEP与△BPQ全等?7.如图长方形ABCD中5cm,8cm==现有一动点P从A出发以2cm/s的速度沿AB BC----返回到点A停止设点P运动的时间为t秒.长方形的边A B C D At=时BP=___________cm;(1)当2(2)当t为何值时连接,,△是等腰三角形;CP DP CDP(3)Q为AD边上的点且6DQ=P与Q不重合当t为何值时以长方形的两个顶点及点P为顶点的三角形与DCQ全等.8.如图平行四边形ABCD中6cmB∠︒G是CD的中点E是BC==60AB=8cm边AD上的动点EG的延长线与BC的延长线交于点F连接CE DF.(1)求证:四边形CEDF是平行四边形;(2)①AE=______时四边形CEDF是矩形;②AE=______时四边形CEDF是菱形.9.在平面直角坐标系中点A在第一象限AB⊥x轴于点B AC⊥y轴于点C已知点B(b0)C(0 c)其中b c满足|b﹣8|6+-=0.c(1)直接写出点A坐标.(2)如图2 点D从点O出发以每秒1个单位的速度沿y轴正方向运动同时点E从点A出发以每秒2个单位的速度沿射线BA运动过点E作GE⊥y轴于点G设运动时间为t 秒当S四边形AEGC<S△DEG时求t的取值范围.(3)如图3 将线段BC平移使点B的对应点M恰好落在y轴负半轴上点C的对应点为N连接BN交y轴于点P当OM=4OP时求点M的坐标.10.如图在平面直角坐标系中点A B的坐标分别是(﹣4 0)(0 8)动点P从点O出发沿x轴正方向以每秒1个单位的速度运动同时动点C从点B出发沿12.在四边形ABCD中//,90,10cm,8cm∠=︒===点P从点A出发沿折线AB CD BCD AB AD BCABCD方向以3cm/s的速度匀速运动;点Q从点D出发沿线段DC方向以2cm/s的速度匀速运动.已知两点同时出发当一个点到达终点时另一点也停止运动设运动时间为()s t.(1)求CD的长;(2)当四边形PBQD为平行四边形时求四边形PBQD的周长;(3)在点P Q的运动过程中是否存在某一时刻使得BPQ的面积为220cm若存在请求出所有满足条件的t的值;若不存在请说明理由.13.在平面直角坐标系中矩形OABC的边OA任x轴上OC在y轴上B(4 3)点M从点A开始以每秒1个单位长度的速度沿AB→BC→CO运动设△AOM的面积为S 点M运动的时间为t.(1)当0<t<3时AM=当7<t<10时OM=;(用t的代数式表示)(2)当△AOM为等腰三角形时t=;(3)当7<t<10时求S关于t的函数关系式;(4)当S=4时求t的值.14.如图1 在平面直角坐标系中正方形OABC的边长为6 点A C分别在x y 正半轴上点B在第一象限.点P是x正半轴上的一动点且OP=t连结PC将线段PC绕点P顺时针旋转90度至PQ连结CQ取CQ中点M.(1)当t=2时求Q与M的坐标;(2)如图2 连结AM以AM AP为邻边构造平行四边形APNM.记平行四边形APNM 的面积为S.①用含t的代数式表示S(0<t<6).②当N落在△CPQ的直角边上时求∠CPA的度数;(3)在(2)的条件下连结AQ记△AMQ的面积为S'若S=S'则t=(直接写出答案).15.如图平面直角坐标系中矩形OABC的顶点B的坐标为(7 5)顶点A C 分别在x轴y轴上点D的坐标为(0 1)过点D的直线与矩形OABC的边BC交于点G 且点G不与点C重合以DG为一边作菱形DEFG 点E在矩形OABC的边OA 上设直线DG的函数表达式为y=kx+b(1)当CG=OD时求直线DG的函数表达式;(2)当点E的坐标为(5 0)时求直线DG的函数表达式;(3)连接BF 设△FBG的面积为S CG的长为a 请直接写出S与a的函数表达式及自变量a 的取值范围.16.如图 在四边形ABCD 中 //AD BC 3AD = 5DC = 42AB = 45B ∠=︒ 动点M 从点B 出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从点C 出发沿线段CD 以每秒1个单位长度的速度向终点D 运动 设运动的时间为s t .(1)求BC 的长.(2)当//MN AB 时 求t 的值(3)试探究:t 为何值时 MNC ∆为等腰三角形?参考答案:1.(1)证明:∵四边形ABCD 是矩形∴AD ∥BC∴∠CAD =∠ACB ∠AEF =∠CFE∵EF 垂直平分AC 垂足为O∴OA =OC∴△AOE ≌△COF∴OE =OF∴四边形AFCE 为平行四边形又∵EF ⊥AC∴四边形AFCE 为菱形设菱形的边长AF =CF =x cm 则BF =(8﹣x )cm在Rt △ABF 中 AB =4cm由勾股定理得42+(8﹣x )2=x 2解得x =5iii )如图3 当P 点在AB 上 Q 点在CD 上时 AP =CQ 即12﹣a =b 得a +b =12. 综上所述 a 与b 满足的数量关系式是a +b =12(ab ≠0).2.(1)过P 点作AB∥MN∵S 矩形AEPM +S 矩形DFPM =S 矩形CFPN +S 矩形DFPM =S 矩形ABCD -S 矩形BEPN又∵11,,22AEP CFP AEPM CFPN SS S S ==矩形矩形 ∴1==26=62AEP CFP S S ⨯⨯, ∴1212.S S +=(2)如图 连接PA PC在APB △中 因为点E 是AB 中点可设APE BPE S S a ==同理 ,,BPF CPF CPG DFG DPH APH S S b S S c S S d ======所以APE APH CPF AEPH PFCG CPG S S SS a b d S S c =+++=++++四边形四边形 BPE BPF DPH DPH EDFP HPGD S S S S S S a b c d +=+++=+++四边形四边形.所以12EBFP HPGD AEPH PFCG S S S S S S +++=+四边形四边形四边形四边形所以1212ABD ABCD SS S S ==+ 所以1DPH APH S S S a ==-. ()()()1121121PBD ABD BPE PDH S S S S S S S S a S a S S =-++=+-++-=-.(3)易证四边形EBGP 四边形HPFD 是平行四边形.EBP SHPD S .()()121211122222ABD ABCD EBF HPD EBP HPD SS S S S S S S S S ==+++=+++ ()()12112FBD ABD EBP HPD S S S S S S S =-++=-. (4)试题解析:(1)由已知得A 点坐标(﹣4﹐0) B 点坐标(0﹐43﹚ ∵OB=3OA ∴∠BAO=60° ∵∠ABC=60° ∴△ABC 是等边三角形 ∵O C=OA=4 ∴C 点坐标﹙4 0﹚ 设直线BC 解析式为y kx b =+∴ ∴直线BC 的解析式为343y x =-+; ﹙2﹚当P 点在AO 之间运动时 作QH⊥x 轴 ∵QH CQ OB CB= ∴2843QH t = ∴QH=3t ∴S △APQ =AP•QH=132t t ⋅=232t ﹙0<t≤4﹚ 同理可得S △APQ =t·﹙833t -﹚=23432t t -+﹙4≤t<8﹚∴223(04)2{343?(48)2t t S t t t <≤=-+≤<; (3)存在 如图当Q 与B 重合时 四边形AMNQ 为菱形 此时N 坐标为(4 0) 其它类似还有(﹣4 8)或(﹣4 ﹣8)或(﹣4 ).4.(1)53(2)存在 使四边形PBCQ 的面积是梯形ABCD 面积的一半.(1)过D 作DE⊥AB 于E 过C 作CF⊥AB 于F 通过Rt ADE Rt BCF ∆≅∆ 得AE BF = 若四边形APQD 是直角梯形 则四边形DEPQ 为矩形 通过AP AE EP =+ 代入t 值 即可求解(2)假设当时 通过点Q 在CD 上或在AD 上 两种情况进行讨论求解5.(1)线段AB 长度的最小值为4理由如下:连接OP如图② 设四边形APQO 为平行四边形因为OQ PA ∥ 90APO ︒∠=所以90POQ ︒∠= 又因为OP OQ =所以45PQO ︒∠= 因为PQ OA ∥所以PQ y ⊥轴.设PQ y ⊥轴于点H在Rt △OHQ 中 根据2,45OQ HQO ︒=∠= 得Q 点坐标为(2,2-)所以符合条件的点Q 的坐标为(2,2-)或(2,2-).6.(1)∵长方形ABCD∴∠A =∠B =90°∵点E 为AD 的中点 AD =6cm∴AE =3cm又∵P 和Q 的速度相等可得出AP =BQ =1cm BP =3 ∴AE =BP在△AEP 和△BQP 中∴y=xy 3=4-y⎧⎨⎩ 解得:x=1y=1⎧⎨⎩ (舍去). 综上所述,点Q 的运动速度为32cm /s 时能使两三角形全等.7.(1)1(2)54t =或4或232 (3) 3.5t = 5.5或10(1)解:动点P 的速度是2cm/s∴当2t =时 224AP =⨯=∵5cm AB =∴BP =1cm ;(2)解:①当点P 在AB 上时 CDP △是等腰三角形∴PD CP =在长方形ABCD 中 ,90AD BC A B =∠=∠=︒∴()HL DAP CBP ≌∴AP BP =∴1522AP AB ==∵动点P 的速度是2cm/s∵90D5DP CD == 2AB CB CD t ++=∴要使一个三角形与DCQ 全等①当点P运动到1P时16△≌△DCQ CDPCP DQ==此时1∴点P的路程为:1527AB BP+=+=∴72 3.5t=÷=;②当点P运动到2P时26△≌△CDQ ABPBP DQ==此时2∴点P的路程为:25611+=+=AB BP∴112 5.5t=÷=③当点P运动到3P时35△≌△CDQ BAP==此时3AP DQ∴点P的路程为:3585220AB BC CD DP+++=+++=∴20210t=÷=④当点P运动到4P时即P与Q重合时46△≌△CDQ CDPDP DQ==此时4∴点P的路程为:4585624+++=+++=AB BC CD DPt=÷=此结果舍去不符合题意∴24212综上所述t的值可以是: 3.5t= 5.5或10.8.(1)四边形ABCD是平行四边形∥∴BC AD∴∠=∠FCG EDGG是CD的中点∴=CG DG△中在CFG△和DEGCFG∴≅(ASA)DEGFG EG∴=又CG DG=∴四边形CEDF是平行四边形.2)①当5AE=如图过60B∠=12BM∴=5AE=DE AD∴=在MBA△BM DEB=⎧⎪∠=∠⎨⎪(SAS)MBA EDC∴≅CED AMB∴∠=∠四边形CEDF是平行四边形∴平行四边形CEDF②当2AE cm =时 四边形CEDF 是菱形 理由如下:四边形ABCD 是平行四边形8AD ∴= 6CD AB == 60CDE B ∠=∠=︒2AE =6DE AD AE ∴=-=DE CD ∴=CDE ∴∆是等边三角形CE DE ∴=四边形CEDF 是平行四边形∴平行四边形CEDF 是菱形故答案为:2;9.(1)解:∵|b ﹣8|6c +-=0∴b -8=0 c -6=0∴b =8 c =6∵B (b 0) C (0 c )∴B (8 0) C (0 6)又∵AB ⊥x 轴 AC ⊥y 轴∴A (8 6);(2)∵AB ⊥x 轴 AC ⊥y 轴 GE ⊥y 轴∴四边形AEGC 是矩形设运动时间为t 秒∴OD =t AE =2t DG =6+2t-t =6+t∴S 四边形AEGC =8×2t =16t S △DEG =12×(6+t )×8=4t +242∵OM=4OP∴-m=-4×62m解得m=-12综上所述m的值为-4或-12.10.(1)∵点A B的坐标分别是(﹣4 0)(0 8)∴OA=4 OB=8∵点C运动到线段OB的中点∴OC=BC=12OB=4∵动点C从点B出发沿射线BO方向以每秒2个单位的速度运动∴2t=4解之:t=2;∵PE=OA=4 动点P从点O出发沿x轴正方向以每秒1个单位的速度运动∴OE=OP+PE=t+4=2+4=6∴点E(6 0)(2)证明:∵四边形PCOD是平行四边形∴OC=PD OC∥PD当点C在y轴的负半轴上时③如果点M在DE上时24163(3)22t tt--=++解得423t=+④当N在CE上时28(3)8214tt tt-⋅++-=-+解得12t=综上分析可得满足条件的t的值为:t1=28﹣16 3t2=2 t3=4+2 3t4=12.11.(1) ()30D,,()1,3E;(2)933022933222572222t tS t tt t⎧⎛⎫-+≤≤⎪⎪⎝⎭⎪⎪⎛⎫=-<≤⎨ ⎪⎝⎭⎪⎪⎛⎫-≤⎪ ⎪⎝⎭⎩<(3)198s解:(1)3922y x=-+当y=0时39=022x-+则x=3 即点()30D,当y=3时39=322x-+则x=1 故点()1,3E故:()30D,,()1,3E;(2)如图1 ①当点P在OD段时此时0≤t<32119()2223233S PD OC t t=⨯⨯=⨯-⨯=-+;②当点P在点D时此时t=32此时三角形不存在0S=;''6ADP BEP S S -=-30232t t ⎛⎫≤≤ ⎪⎝⎭⎫<≤⎪;即当点P 在边AB 上运动 且PD PE +的值最小时 运动时间t 为198s . 12.(1)16cm ;(2)(8813)cm +;(3)53t =秒或395秒 解:(1)如图1过A 作AM DC ⊥于M在四边形ABCD 中 //AB CD 90BCD ∠=︒//AM BC ∴∴四边形AMCB 是矩形10AB AD cm == 8BC cm =8AM BC cm ∴== 10CM AB cm ==在Rt AMD ∆中 由勾股定理得:6DM cm =10616CD DM CM cm cm cm =+=+=;(2)如图2当四边形PBQD 是平行四边形时 PB DQ =即1032t t -=解得2t =此时4DQ = 12CQ = 22413BQ BC CQ =+=所以()28813PBQD C BQ DQ =+=+;1003t 14(102BPQ BP BC ==解得53t =;P 在BC 上时 63t1(32BP CQ t =此方程没有实数解;CD 上时:在点Q 的右侧54(34PQ BC =6< 不合题意若P 在Q 的左侧 如图6 即3485t <14(534)202BPQ S PQ BC t ∆==-= 解得395t =; 综上所述 当53t =秒或395秒时 BPQ ∆的面积为220cm . 13.(1)t 10-t ;(2)5;(3)S =20-2t ;(4)2或8. 解:(1)当0<t <3时 点M 在线段AB 上 即AM =t 当7<t <10时 点M 在线段OC 上 OM =10-t故填:t 10-t ;(2)∵四边形ABCO 是矩形 B (4 3)∴OA =BC =4 AB =OC =3∵△AOM 为等腰三角形∴只有当MA =MO 此时点M 在线段BC 上 CM =BM =2 ∴t =3+2=5故填:5;(3)∵当7<t <10时 点M 在线段OC 上∴114(10)20222S OA OM t t =⋅⋅=⨯⨯-=-;(4)①当点M 在线段AB 上时 4=12×4t 解得t =2;②当点M 在线段BC 上时 S =6 不符合题意;当点M 在线段OC 上时 4=20-2t 解得t =8.∴OD =OP +PD =8∴Q (8 2)∵M 是CQ 的中点 C (0 6)∴M (4 4);(2)①∵△COP ≌△PDQ∴OP =OQ =t OC =PD =6∴OD =t +6∴Q (t +6 t )∵C (0 6)∴M (62t + 62t +) 当0<t <6时 S =AP ×y M =(6﹣t )×62t +=2362t -; ②分两种情况:a 当N 在PC 上时 连接OB PM 如图2﹣1所示:∵点M 的横 纵坐标相等∴点M 在对角线BD 上∵四边形OABC 是正方形∴OC =OA ∠COM =∠AOM∴∠MPA =12(180°﹣45°)=67.5° ∴∠CPA =67.5﹣45=22.5°;综上所述 当点N 在△CPQ 的直角边上时 ∠CPA 的度数为112.5°或22.5°;(3)过点M 作MH ⊥x 轴于点H 过点Q 作QG ⊥x 轴于点G∵AMQ AHM AGQ MHGQ S S S S =--△△△梯形∴S '=12(62t ++t )•62t +﹣12(6﹣62t +)•62t +﹣12t •t =3t ①当0<t <6时 即点AP 在点A 左侧时 如图3所示:∵S =S '∴2362t -=3t 解得:t =﹣3+35 或t =﹣3﹣35(舍去);②当t >6时 即点P 在点A 右侧时 如图4所示:S =AP ×y M =(t ﹣6)×62t +=2362t - ∵S =S '将D (0 1)G (10 5)代入y=kx+b 得:1105b k b =⎧⎪⎨+=⎪⎩解得:21051k b ⎧=⎪⎨⎪=⎩∴当CG=OD 时 直线DG 的函数表达式为y=2105x+1.(3)设DG 交x 轴于点P 过点F 作FM⊥x 轴于点M 延长MF 交BC 于点N 如图所示.∵DG∥EF∴∠FEM=∠GPO.∵BC∥OA∴∠DGC=∠GPO=∠FEM.在△DCG 和△FME 中90DCG FME DGC FEMDG FE⎧∠=∠=⎪∠=∠⎨⎪=⎩ ∴△DCG≌△FME(AAS )∴FM=DC=4.∵MN⊥x 轴∴四边形OMNC 为矩形在Rt△CDH 中 由勾股定理可得: HC=22543-=∴BC=BK+KH+HC=4+3+3=10;(2)如图② 过D 作DG∥AB 交BC 于G 点 则四边形ADGB 为平行四边形 ∴BG=AD=3∴GC=BC−BC=10−3=7由题意得 当M N 运动t 秒后 CN=t CM=10−2t∵AB∥DG MN∥AB∴DG∥MN∴∠NMC=∠DGC又∵∠C=∠C∴△MNC ~△GDC∴CN CM CD CG=, ∴10257tt -=解得t=5017; (3)第一种情况:当NC=MC 时 如图③22∵∠C=∠C∠MFC=∠DHC=90°∴△MFC~△DHC∴FC MCHC DC=即:1 102253tt-=解得:t=6017;综上所述当t=103t=258或t=6017时△MNC为等腰三角形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

特殊平行四边形专题
一、基础知识点复习:
(一)矩形:
1、矩形的定义:__________________________的平行四边形叫矩形.
2、矩形的性质:①.矩形的四个角都是______;矩形的对角线__________________________.
②.矩形既是对称图形,又是图形,它有条对称轴.
3、矩形的判定:①.有_____个是直角的四边形是矩形.
②.对角线____________________________的平行四边形是矩形.
③.对角线________________________________的四边形是矩形.
4、练习:①矩形ABCD的两条对角线相交于O,∠AOD=120°,AB=4cm,
则矩形对角线AC长为______cm.
②.四边形ABCD的对角线AC,BD相交于点O,能判断它为矩形的题设是()
A.AO=CO,BO=DO B.AO=BO=CO=DO C.AB=BC,AO=CO D.AO=CO,BO=DO,AC⊥BD
③.四边形ABCD中,AD//BC,则四边形ABCD是 ___________,又对角线AC,BD交于点O,若∠1=∠2,则四边形ABCD是_______________.
(二)菱形:
1、菱形的定义:有一组_________________________相等的平行四边形叫菱形.
2、菱形的性质:①.菱形的四条边______;菱形的对角线_____________,且每条对角线
______________.
②.菱形既是对称图形,又是图形,它有条对称轴.
3、菱形的判定:①.__________________边都相等的四边形菱形.
②.对角线_____________________________的平行四边形是菱形.
③.对角线_____________________________________________的四边形是菱形.
4、菱形的面积与两对角线的关系是________________________
A
B
C
D
E
A
B
D
E
C
②. 一个菱形的两条对角线分别是6cm ,8cm ,则这个菱形的周长等于 cm,面积= cm 2
③.若菱形的周长为8cm,高为1cm,则菱形两邻角的度数比为 (三)正方形:
1、正方形的定义: 的平行四边形叫正方形。

2、正方形的性质:①.正方形的四个角是_____角,四条边_____,对角线_______________________.
②.正方形是______对称图形,又是 对称图形,它有______条对称轴.
3.正方形的判定:先判定这个四边形是矩形,•再判定这个矩形还是_____形;
或者先判定四边形是菱形,再判定这个菱形也是_____形.
4.练习:①正方形的面积为4,则它的边长为____,对角线长为_____. ②已知正方形的对角线长是4,则它的边长是 ,面积是 。

③如图所示,在△ABC 中,AB=AC ,点D ,E ,F 分别是边AB ,BC ,AC 的中点,连接DE ,EF ,要使四边形ADEF 是正方形,还需增加条件:_______. 二、复习练习: (一)、选择题:
1、矩形ABCD 的长AD=15cm ,宽AB=10cm ,∠ABC 的平分线分AD 边为AE 、ED
两部分,这AE 、ED 的长分别为( )
A .11cm 和4cm
B .10cm 和5cm
C .9cm 和6cm
D .8cm 和7cm
2、四边形ABCD 的对角线互相平分,要使它变为矩形,需要添加的条件是( ) A .AB=CD B .AD=BC C .AB=BC D .AC=BD
3、如图,在正方形ABCD 的外侧,作等边三角形ADE ,则∠AEBO ( ) A. 10° B .15° C .20° D .12.5°
4、如图,在菱形 ABCD 中,E 、F 分别是AD 、BD 的中点,如果EF=2, 那么菱形ABCD 的周长是( ) A. 4 B .8 C .12 D .16
(二)、填空题
5、已知正方形ABCD 对角线AC ,BD 相交于点O ,•且AC=•16cm ,•则DO=•_____cm ,
•BO=____cm ,∠OCD=____度.
y E
F
且点A 的坐标为(0,2),则点B 坐标( ), 点C 坐标为( ),点D 坐标为( )。

7、一平行四边形的一条边长是9,两条对角线长分别是12和 56,它是 形,它的面积是 ,周长是 。

8、如图ABCD 是一块正方形场地,在AB 边上取定了一点E ,量得EC=30 cm ,EB=10 cm ,则这块场地的面积是 cm 2,对角线的长是 cm (三)解答题:
9、如图,四边形ABCD 是菱形 ,∠ACD=30°,BD=6,求: (1)∠BAD,∠ABC 的度数; (2)边AB 及对角线AC 的长。

10、在Rt △ABC 中,∠ACB=90°CD ⊥AB 于点D ,∠BCD=3∠ACD ,点E 是斜边AB 的中点,求∠ECD 的度数。

11、如图,四边形ABCD 是菱形,对角线AC=8cm ,DB=6cm,DH ⊥AB 于点H ,求DH 的长.
B
A C
D
E A
B
C
D
E
12、如图,矩形ABCD 的对角线相交于点O ,DE ∥AC ,CE ∥BD ,求证:四边形OCED 是菱形。

13、如图:AE ∥BF ,AC 平分∠BAD ,且交BF 于点C ,BD 平分∠ABC ,且交AE 于点D ,连接CD , 求证:四边形ABCD 是菱形
14、如图,E 、F 、M 、N 分别是正方形ABCD 四条边上的点,且AE=BF=CM=DN ,
求证,四边形EFMN 是正方形 。

A
B
D
O
A
B
D
O
E
F
A B
C
D
E
F
N
15、如图,点E、F在正方形ABCD的边BC、CD上,AE、BF相交于点G,BE=CF。

想AE与BF的关系并证明
16、如图,四边形ABCD是正方形,点G是BC上的任意一点,DE⊥AG于点E,BF∥DE,且交AG
于点F。

求证:AF=BF+EF
17在正方形ABCD 中,直线EF 平行于对角线AC ,与边AB 、BC 的交点为E 、F ,在DA 的延长线上取一点G ,使AG=AD ,若EG 与DF 的交点为H ,求证:AH 与正方形的边长相等.
18以直角三角形ABC 的边AB 为边,在三角形ABC 的外部作正方形ABDE ,AF 是BC 边的高,延长FA 使AG=BC ,求证:BG=CD .
_ B _ C
_ F _ C
_B
_ F
19正方形ABCD 的对角线BD 上,取BE=AB ,若过E 作BD 的垂线EF 交CD 于F ,求证:CF=ED .
20.平行四边形ABCD 中,∠A 、∠D 的平分线相交于E ,AE 、DE 与DC 、AB 延长线交于G 、F ,求证:AD=DG=GF=FA .
_
F _ G
_ C
_ D
_ B
_ F
21.在正方形ABCD 的边CD 上任取一点E ,延长BC 到F ,使CF=CE ,求证:BE ⊥DF
22、在正方形ABCD 中,P 是BD 上一点,过P 引PE ⊥BC 交BC 于E ,过P 引PF ⊥CD 于F ,求证:AP ⊥EF .
_ C
_ D
_F。

相关文档
最新文档