高一数学简单随机抽样2
简单随机抽样教学设计-高一下学期数学人教A版(2019)必修第二册
9.1.1简单随机抽样一、内容和内容解析内容:简单随机抽样的概念以及如何实施简单随机抽样.内容解析:本节课选自《普通高中课程标准数学教科书-必修第二册》(人教A版)第九章第1节第1课时的内容.本节内容是统计的初步内容——简单随机抽样,是其他抽样方法的基础,也是估计总体结果的前提,同时也是初中频率知识的延伸.数理统计学包括两类问题,一类是如何从总体中抽取样本,另一类是如何根据对样本的整理、计算和分析,对总体的情况作出一种推断.可见,抽样方法是数理统计学中的重要内容.简单随机抽样作为一种简单的抽样方法,又在其中处于一种非常重要的地位.因此它对于学习后面的其它较复杂的抽样方法奠定了基础,同时它强化对概率性质的理解,加深了对概率公式的运用.因此它起到了承上启下的作用,在教材中占有重要地位.二、目标和目标解析目标:(1)正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤.(2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本.(3)通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性.目标解析:(1)简单随机抽样是一种简单且基本的抽样方法,是很多抽样方法的基础,在抽样理论中占有重要低位..(2)抽签法和随机数表法是实现简单随机抽样的两种方法,两种抽样都可以归纳为编号,抽取,成样三个步骤,明确两种方法的优劣,选择合适的方法进行抽取.(3)数学核心素养是数学教学的重要目标,但数学核心素养需要在每一堂课中寻找机会去落实.简单随机抽样的教学中,利用利用抽样方法解决实际问题是进行数学建模教学的好机会.基于上述分析,本节课的教学重点定为:普查与抽查、简单随机抽样、总体平均数与样本平均数.三、教学问题诊断分析1.教学问题一:用样本估计总体或多或少会存在误差,从对总体估计的角度看,误差小的样本是“好”样本,误差大的样本是“坏”样本.如何获得一个好样本是学生理解的一个难点。
【课件】简单随机抽样+课件高一下学期数学人教A版(2019)必修第二册+
样本量为50的平均数 165.2 162.8 164.4 164.4 165.6 164.8 165.3 164.7 165.7 165.0
样本量为100的平均 数
164.4 165.0 164.7 164.9 164.6 164.9 165.1 165.2 165.1
165.2
下图中的红线表示树人中学高一年级全体学生身高的平均数.
(1)抽签法 (2)随机数法
(1)抽签法
开始 712名同学从1到712编号
制作编号为1到712的号签(共712个) 将712个号签搅拌均匀
随机从中逐一抽出n个号签
与所抽取号码一致的学生即被选中
结束
(2)随机数法 随机数法抽取样本的步骤
把总体的N个个体依次编号,例如按0,1,2,···,N-1编号,然 后利用随机数 工具产生0~N-1 范围內的整数随机数,产生的随机 数是几就是选几号个体,直到抽足样本所需的数量.
练习3. 下列抽样中,是简单随机抽样的( D ) A.从无数个个体中抽取50个个体作为样本; B.仓库中有1万只灯泡,从中一次性抽取100只灯泡进行质检; C.某年级从300名学生中挑选出20名最优秀的学生参加数学竞赛; D.从全班50名学生中任意选取5名进行家访.
总体均值与样本均值
P178
(1)总体均值
2.最常用的简单随机抽样 抽签法 随机数法(随机试验、信息技术)
3.总体均值与样本均值
Y
Y1 Y2 YN N
1 N
N
Yi
i1
4.加权平均数公式
y
y1
y2
n
yn
1 n
n i1
yi
统计学:
??? ?
是研究如何收集、整理、归纳和分析数据的学科,它可以为人
高一数学简单随机抽样
知识探究(一):简单随机抽样的基本思想
思考1:从5件产品中任意抽取一件,则 每一件产品被抽到的概率是多少?一般 地,从N个个体中任意抽取一个,则每 一个个体被抽到的概率是多少? 思考2:从6件产品中随机抽取一个容量 为3的样本,可以分三次进行,每次从中 随机抽取一件,抽取的产品不放回,这 叫做逐个不放回抽取.在这个抽样中,某 一件产品被抽到的概率是多少?
简单随机抽样的含义: 一般地,设一个总体有N个个体, 从中逐个不放回地抽取n个个体作为样 本(n≤N), 如果每次抽取时总体内 的各个个体被抽到的机会都相等, 则 这种抽样方法叫做简单随机抽样.
思考5:根据你的理解,简单随机抽样有 哪些主要特点?
(1)总体的个体数有限;
(2)样本的抽取是逐个进行的,每次 只抽取一个个体; (3)抽取的样本不放回,样本中无重 复个体; (4)每个个体被抽到的机会都相等, 抽样具有公平性.
方法一:抽签法; 方法二:随机数表法.
例3 利用随机数表法从500件产品 中抽取40件进行质检. (1)这500件产品可以怎样编号? (2)如果从随机数表第10行第8列的数 开始往左读数,则最先抽取的5件产品 的编号依次是什么?
小结作业
1.简单随机抽样包括抽签法和随 机数表法,它们都是等概率抽样,从 而保证了抽样的公平性.
第二章 统 计
2.1 随机抽样 2.1.1 简单随机抽样
问题提出
1.我们生活在一个数字化时代,时 刻都在和数据打交道,例如,产品的合 格率,农作物的产量,商品的销售量, 电视台的收视率等.这些数据常常是通 过抽样调查而获得的,如何从总体中抽 取具有代表性的样本,是我们需要研究 的课题.
2.要判断一锅汤的味道需要把整锅 汤都喝完吗?应该怎样判断? 3.将锅里的汤“搅拌均匀”,品尝 一小勺就知道汤的味道,这是一个简 单随机抽样问题,对这种抽样方法, 我们从理论上作些分析.
高中数学(新人教A版)必修第二册同步习题:简单随机抽样(同步习题)【含答案及解析】
第九章统计9.1随机抽样9.1.1简单随机抽样基础过关练题组一统计学的有关概念1.下列调查中,可以用普查的方式进行调查的是()A.检验一批钢材的抗拉强度B.检验海水中微生物的含量C.调查某小组10名成员的业余爱好D.检验一批汽车的使用寿命2.为了解某班学生的会考合格率,要从该班70人中选30人进行考察分析,则70人的会考成绩的全体是,样本是,样本量是.3.某学校根据高考考场要求,需要给本校45个高考考场配备监控设备,该校高考前购进45套监控设备,现需要检查这批监控设备的质量,是全部检查还是抽取部分检查?谈谈你的想法和理由.深度解析题组二 简单随机抽样4.下列几个抽样中,简单随机抽样的个数是( )①仓库中有1万支奥运火炬,从中一次性抽取100支火炬进行质量检查;②某班从50名同学中选出5名数学成绩最优秀的同学代表本班参加数学竞赛;③一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地抽出7个号签;④为了进一步严厉打击交通违法,交警队在某一路口随机抽查司机是否酒驾.A.0 B .1 C .2 D .35.(2020河南信阳高一下学期第一次月考)用简单随机抽样方法从含有10个个体的总体中抽取一个容量为3的样本,则某一特定个体“第一次被抽到”“第二次被抽到”的可能性分别是( )A.110,110B.310,15C.15,310D.310,310 6.在总体量为N 的一批零件中抽取一个容量为30的样本,若每个零件被抽取的概率为25%,则N 的值为 .题组三 抽签法和随机数法7.下列抽样试验中,适合用抽签法的是( )A.从某厂生产的3 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3000件产品中抽取10件进行质量检验8.为迎接2022年北京冬季奥运会,奥委会现从报名的某高校30名志愿者中选取6人组成奥运志愿小组,请用抽签法设计抽样方案.9.为检验某公司生产的袋装牛奶的质量是否达标,需从800袋袋装牛奶中抽取50袋进行检验.试利用随机数法抽取样本,并写出抽样过程.题组四总体平均数与样本平均数10.下列判断正确的是()A.样本平均数一定小于总体平均数B.样本平均数一定大于总体平均数C.样本平均数一定等于总体平均数D.样本量越大,样本平均数越接近总体平均数11.用抽签法抽取一个容量为5的样本,样本数据分别为2,4,5,7,9,则该样本的平均数为()A.4.5B.4.8C.5.4D.612.从有400人参加的某项运动的达标测试中,通过简单随机抽样抽取50人的成绩,统计数据如下表,则这400人成绩的平均数的估计值是.分数54321人数5152055答案全解全析基础过关练1.C A.不能用普查的方式进行调查,因为这种试验具有破坏性;B.用普查的方式进行调查无法完成;C.可以用普查的方式进行调查;D.试验具有破坏性,且需要耗费大量的时间,普查在实际生产中无法实现.2.答案总体;所选30人的会考成绩;30解析为了强调调查目的,由总体、样本、样本量的定义知,70人的会考成绩的全体是总体,样本是所选30人的会考成绩,样本量是30.3.解析必须全部检查,即普查.因为高考是一件非常严肃、责任重大的事情,对高考的要求非常严格,所配设备必须全部合格,且这批设备数量较少,全部检查的方案是可行的,所以应该进行全部检查,这样可确保万无一失.深度剖析全面调查与抽样调查:方法特点全面调查抽样调查优点所调查的结果比较全面、系统1.迅速、及时;2.节约人力、物力和财力缺点耗费大量的人力、物力和财力获取的信息不够全面、系统适用范围1.调查对象很少;2.要获取详实、系统和全面的信息1.大批量检验;2.破坏性试验;3.不需要全面调查等4.B①不是简单随机抽样,虽然“一次性抽取”和“逐个抽取”不影响个体被抽到的可能性,但简单随机抽样要求的是“逐个抽取”;②不是简单随机抽样,因为每个个体被抽到的可能性不同,不符合简单随机抽样中“等可能抽样”的要求;③是简单随机抽样,因为总体中的个体数是有限的,且是从总体中逐个进行抽取的,每个个体被抽到的可能性相同;④不是简单随机抽样,因为被抽取的总体中的个体数不确定.综上,只有③是简单随机抽样..5.A简单随机抽样中每个个体被抽取的机会均等,都为1106.答案120=25%=0.25,解得N=120.解析根据题意,得30N7.B A中总体容量较大,样本容量也较大,不适合用抽签法;B中总体容量较小,样本容量也较小,且同厂生产的两箱产品可视为搅拌均匀了,可用抽签法;C中甲、乙两厂生产的两箱产品质量可能差别较大,不能满足搅拌均匀的条件,不能用抽签法;D中总体容量较大,不适合用抽签法.8.解析①将30名志愿者编号,号码分别是1,2, (30)②将号码分别写在外观、质地等无差别的小纸片(也可以是卡片、小球等)上作为号签;③将小纸片放入一个不透明的盒里,充分搅拌;④从盒中不放回地逐个抽取6个号签,使与号签上编号相同的志愿者进入样本.9.解析①将800袋袋装牛奶分别编号,为1,2,3, (800)②利用随机数工具产生1~800范围内的整数随机数;③把产生的随机数作为抽中的编号,使与编号对应的个体进入样本,重复上述过程,直到抽足样本所需的50袋.10.D由样本平均数的定义可知,样本量越大,其平均数越接近总体平均数.11.C样本的平均数为2+4+5+7+9=5.4.512.答案 3.2解析抽取的50人的成绩的平均数为1×(5×5+4×15+3×20+2×5+1×5)=3.2,所以这50400人成绩的平均数的估计值是3.2.。
9.1.2分层随机抽样课件-高一下学期数学人教A版必修第二册
在分层抽样中,按各层在总体中所占的比例分配样本量,即
每层样本量 = 该层个体数 × 总样本量 总体的个体数
每层样本量 该层个体数
=
总样本量 总体的个体数
抽样比k
在分层随机抽样中,如果每层样本量都与层的大小成比例,那么称这种样本 量的分配方式为比例分配,此比例为抽样比.
则样本结构与总体结构具有一致性,每个个体被抽到的可能性都相等.
156.0 157.0 161.0 159.0 156.0 174.0 168.0 155.0 158.0 167.0
166.0 160.0 166.0 175.0 154.0 157.0 173.0 161.0 160.0 171.0
157.0 170.0 174.0 171.5 175.0 153.0 155.0 158.0 167.0 178.0
[解析] A中总体所含个体无差异且个数较少,适合用简单随机抽样;
C和D中总体所含个体无差异但个数较多,不适合用分层随机抽样;
B中总体所含个体差异明显,适合用分层随机抽样.
四.新知应用
例 2.一个单位有职工 160 人,其中有业务人员 112 人,管理人员 16 人,后勤服务人员 32 人,为了了解职工对单位的改革意见的某种情况,要从中抽取一个容量为 20 的样本,
总体平均数160.6
因此总样本平均数为 170.6×
23 +160.6× 50
27
= 165.2
170.6×
326 +160.6× 712
386
三.学习新知 2.总体平均数的估计
问题7:一般地,分层随机抽样中,是否可以直接用样本平均数估计总体平 均数?
第1层 第2层
包含的 各个个体 个体数 的变量值
9.1.1 简单随机抽样 课件(第1课时)2024学年高一下学期数学人教A版(2019)必修第二册
.用信息技术工具产生随机数最大的优点是方便、快捷.
新知探索
思考2:用简单随机抽样方法抽取样本,样本量是否越大越好?
新知探索
我们知道,在重复试验中,试验次数越多,频率接近概率的可能性越大.与
此类似,用简单随机抽样的方法抽取学生,样本量越大,样本中不同身高的比例
样本:从总体中抽取的那部分个体称为样本
样本容量:样本中包含的个体数称为样本容量,简称样本量
样本数据:调查样本获得的变量值称为样本的观测数据,简称样本数据
新知探索
相对全面调查而言,抽样调查由于只抽取一部分个体进行调查,因此具有
花费少、效率高的特点.在总体规模比较大的调查中,如果经费、时间受限,那
么抽样调查是比较合适的调查方法.在有些调查中,抽样调查则具有不可替代的
复.
新知探索
②用电子表格软件生成随机数
在电子表格软件的任意单元格中输入“=RANDBETWEEN(1,712)”,即可
生成一个1—712范围内的整数随机数.再利用电子表格软件的自动填充功能,可
以快速生成大量的随机数.这样产生的随机数可能会有重复.
新知探索
随着信息技术的发展,人们越来越多地利用计算器、数学软件、统计软件等
弃编号,这样产生的随机数可能会有重复.
新知探索
(2)用信息技术生成随机数
①用计算器生成随机数
进入计算器的计算模式(不同的计算器型号可能会有不同),调出生成随机数的
函数并设置参数,例如RandInt#(1,712),按“=”键即可生成1—712范围内的
整数随机数.重复按“=”键,可以生成多个随机数.这样产生的随机数可能会有重
简单随机抽样(教学课件)高一数学(人教A版2019必修第二册)
生的平均身高等.要正确阅读并理解这些数据,需要具备一些统计学的知
识.
统计的研究对象是数据,核心是通过数据分析研究和解决问题,因
此,首先要设法获取与问题有关的数据,从而为解决问题奠定基础.
温故知新
统计的相关概念
名称
定义
总体
所要 考察对象 的全体叫作总体
)
A.要求总体的个体数有限
B.从总体中逐个抽取
C.每个个体被抽到的机会不一样
D.这是一种不放回抽样
【解答】解:根据随机抽样的定义可知,要求总体的
个体数有限,为了保证抽样的公平性,
要求每个个体被抽到的机会是相同的.从总体
中逐个抽取,这是一种不放回抽样.
综合以上几点可知C错误.
故选:C.
变式训练
下列抽样方法是简单随机抽样的是(
过程,直到抽足所需要人数.
比较随机数法与抽签法,它们各有什么优点和缺点?
(1)随机数法的概念:
利用随机数工具产生的随机数进行抽样方法,叫做随机数法.
(2)随机数法的步骤:
①将总体的个体编号;
②在产生的随机数选择数字;
③读数获取样本号码.
如果生成的随机数有重复,即同与编号被多次抽到,
可以剔除重复的编号并重新产生随机数,直到产生的
个”抽取,故不是简单随机抽样;
故选:C.
解题技巧
判断所给的抽样是否为简单随机抽样的依据是简单随机抽样
的四个特征:
上述四点特征,如果有一点不满足,就不是简单随机抽样.
典例分析
题型二 抽签法的应用
例2.用抽签法从50个个体中选出5个个体,则共需制作号签的
个数为(
新人教A版高中数学必修2第九章统计的第一节第一课时—简单随机抽样-经典教学设计
(3)通过调查历城二中高一学生的平均身高来估计济南市高一学生的平均身高,请你写出此次调查的总体,个体样本和样本容量。
通过熟悉的生活情境引入普查、抽样调查的适用范围,回顾总体、样本、个体、样本容量的概念。
通过提问,从学生熟悉的具体问题入手,迅速吸引学生的注意力,体会到了抽样调查的必要性。
2.简单随机抽样的特点:
总体有限,逐个抽取,等概率抽样。
3.简单随机抽样的方法:
抽签法和随机数法
学生回顾本节课所学知识点。
小结本节课知识点,加深对知识点的记忆理解。总结提炼,理清脉络,有利于帮助学生建构知识体系,起到画龙点睛的作用。
6.课后作业
1.一个学生在一次竞赛中要回答的8道题是这样产生的:从15道物理题中随机抽3道;从20道化学题中随机抽3道;从12道生物题中随机抽2道.选用合适的方法确定这个学生所要回答的三门学科的题的序号(物理题的编号为1~15,化学题的编号为16~35,生物题的编号为36~47).
此处设计遵循由特殊到一般的认知规律,让学生在观察中归纳,在具体问题中进行总结,自然而然地形成简单随机抽样的概念,培养数学抽象的学科核心素养,最终实现突破难点的目的。
2.实践探究,形成概念
请小组在全班范围内交流,教师在学生回答基础上完善补充,得到下列结论:
(1)一般地,设一个总体含有N(N为正整数)个个体,从中逐个不放回地抽取n(1≤n<N)个个体作为样本,每次抽取时总体内未进入样本的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做不放回简单随机抽样。如果抽取是放回的,且每次抽取时总体内的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做放回简单抽样。
高中数学第九章统计9.1.1简单随机抽样同步练习含解析新人教A版必修第二册
课时素养评价三十四简单随机抽样(15分钟30分)1.在“世界读书日”前夕,为了了解某地5 000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析,在这个问题中,5 000名居民的阅读时间的全体是(A.总体B.个体C.样本量D.从总体中抽取的一个样本【解析】选A.根据题意,结合总体、样本、个体、样本量的定义可知,5 000名居民的阅读时间的全体是总体.2.为了检验某种产品的质量,决定从10 000件产品中抽取100件进行检查,选用法抽样更合适.【解析】由于个体量与样本量都较大,选用抽签法制签、抽取都比较困难,应选用随机数法.答案:随机数法3.为了了解某市100 000户居民的日用电量,甲用简单随机抽样从该市抽取100户调查,得到日用电量的平均数为5.2千瓦时,乙用同样的方法抽查了300户,得到日用电量的平均数为5.5千瓦时,据此推断该市居民日用电量的平均数约为千瓦时.【解析】由于乙抽取的样本量大于甲的,我们更愿意用他的调查结果估计该市的平均数.答案:5.54.省环保局收到各县市报送的环保案例28件,为了了解全省环保工作的情况,要从这28件案例中抽取7件作为样本研究.试确定抽取方法并写出操作步骤.【解析】总体容量小,样本量也小,可用抽签法.步骤如下:(1)将28件环保案例进行编号,号码是01,02,03, (28)(2)将以上28个号码分别写在28张相同的小纸条上,制成形状、大小均相同的号签.(3)把号签放入一个不透明的容器中,充分搅拌均匀.(4)从容器中无放回地逐个抽取7个号签,并记录上面的号码.(5)找出和所得号码对应的7件案例,组成样本.(20分钟40分)一、选择题(每小题5分,共20分,全部选对得5分,选对但不全的得3分,有选错的得0分)1.下列抽样方法不是简单随机抽样的是(A.从50个零件中逐个抽取5个做质量检验B.从50个零件中有放回地抽取5个做质量检验C.从实数集中随机抽取10个分析奇偶性D.运动员从8个跑道中随机选取一个跑道【解析】选C.A是,因为逐个抽取是不放回简单随机抽样.B是有放回简单随机抽样.C不是,因为实数集是无限集.D是无放回简单随机抽样.2.从一群玩游戏的小孩中随机抽出k人,一人分一个苹果,让他们返回继续玩游戏.过了一会儿,再从中任取m人,发现其中有n个小孩曾分过苹果,估计参加游戏的小孩的人数为( A. B.k+m-nC. D.不能估计【解析】选C.设参加游戏的小孩有x人,则=,x=.3.某校高一12个班男生百米体测的平均成绩为13.6 s,已知1,3,4,7,8班男生的平均成绩为13.5 s,2,10,11班男生的平均成绩为14 s,5,6,12班男生的平均成绩为13.3 s,则9班男生的平均成绩为( A.13.5 s B.13.6 sC.13.7 sD.13.8 s【解析】选D.设9班男生百米体测的平均成绩为x s,由题意知,=13.6,解得x=13.8.4.(多选题)在以下调查中,适合抽样调查不适合普查的是(A.调查某个班一次数学测验的及格率B.调查某厂8月份生产的盒装牛奶的合格率C.调查一批炮弹的杀伤半径D.调查某校学生结核病的发病率【解析】选BC.抽查牛奶质量不能每盒检测、抽查炮弹的杀伤半径不能把每枚炮弹都投放,所以适合抽样调查,不能普查.二、填空题(每小题5分,共10分)5.采用抽签法从含有3个个体的总体{1,3,8}中抽取一个容量为2的样本,则所有可能的样本是.【解析】从含有3个个体的总体中任取2个即可组成样本,所以所有可能的样本为{1,3},{1,8},{3,8}.答案:{1,3},{1,8},{3,8}6.某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4.则平均命中环数为;估计该学员射击一次命中环数为.【解析】=7.用样本估计总体,估计环数最可能为7.答案:7 7三、解答题7.(10分)一个学生在一次竞赛中要回答的8道题是这样产生的:从15道物理题中随机抽3道;从20道化学题中随机抽3道;从12道生物题中随机抽2道.选用合适的方法确定这个学生所要回答的三门学科的题的序号(物理题的编号为1~15,化学题的编号为16~35,生物题的编号为36~47).【解析】方法一:抽签法第一步,将试题的编号1~47分别写在纸条上,将纸条揉成团,制成号签,并将物理、化学、生物题的号签分别放在不透明的袋子中,搅匀.第二步,从装有物理题的号签的袋子中逐个抽取3个号签,从装有化学题的号签的袋子中逐个抽取3个号签,从装有生物题的号签的袋子中逐个抽取2个号签,并记录所得号签上的编号,这便是这个学生所要回答的问题的序号.方法二:随机数法第一步,将物理题的序号对应改成01,02,…,15,其余两科题的序号不变.第二步,准备10个大小、质地一样的小球,小球上分别写上数字0,1,2,…,9,把它们放入一个不透明的袋子中.第三步,从袋子中有放回摸取2次,每次摸取前充分搅拌,并把第1,2次摸到球的数字分别作为十位、个位,这样就生成了一个两位随机数.凡不在01~47中的数跳过去不读,前面已经读过的也跳过去不读,从01~15中选3个号码,从16~35中选3个号码,从36~47中选2个号码,记录下来.第四步,与这些编号对应的即为所要回答的三门学科的题的序号.。
高一数学必修3同步练习:2-1-1简单随机抽样
2-1-1简单随机抽样一、选择题1.某校期末考试后,为了分析该校高一年级1000名学生的学习成绩,从中随机抽取了100名学生的成绩单,就这个问题来说,下面说法中正确的是()A.1000名学生是总体B.每名学生是个体C.每名学生的成绩是所抽取的一个样本D.样本的容量是100[答案] D[解析]1000名学生的成绩是统计中的总体,每个学生的成绩是个体,被抽取的100名学生的成绩是一个样本,其样本的容量为100.2.某校有40个班,每班50人,每班选派3人参加“学代会”,在这个问题中样本容量是()A.40 B.50C.120 D.150[答案] C3.关于简单随机抽样的特点,有以下几种说法,其中不正确的是()A.要求总体中的个体数有限B.从总体中逐个抽取C.这是一种不放回抽样D.每个个体被抽到的机会不一样,与先后顺序有关[答案] D[解析]简单随机抽样,除具有A、B、C三个特点外,还具有:是等可能抽样,各个个体被抽取的机会相等,与先后顺序无关.4.简单随机抽样的结果()A.完全由抽样方式所决定B.完全由随机性所决定C.完全由人为因素所决定D.完全由计算方法所决定[答案] B[解析]据简单随机抽样的定义,总体中每个个体被抽到的机会相等,因此抽样结果只与随机性有关,∴选B.5.下面的抽样方法是简单随机抽样的是()A.在某年明信片销售活动中,规定每100万张为一个开奖组,用随机抽取的方式确定号码的后四位为270 9的为三等奖B.某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,检验其质量是否合格C.某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解对学校机构改革的意见D.用抽签法从10件产品中抽取3件进行质量检验[答案] D6.从10个篮球中任取一个,检查其质量,用随机数法抽取样本,则编号应为()A.1,2,3,4,5,6,7,8,9,10B.-5,-4,-3,-2,-1,0,1,2,3,4C.10,20,30,40,50,60,70,80,90,100D.0,1,2,3,4,5,6,7,8,9[答案] D7.从总数为N 的一批零件中抽取一个容量为30的样本,若每个零件被抽取的可能性为25%,则N 为( )A .150B .200C .100D .120[答案] D[解析] ∵每个个体被抽到机会相等,都是30N=0.25,∴N =120. 8.用简单随机抽样的方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个个体a “第一次被抽到”的可能性,“第二次被抽到”的可能性的大小关系是( )A .相等B .“第一次被抽到”的可能性大C .“第二次被抽到”的可能性大D .无法比较[答案] A9.某校高一共有10个班,编号1至10,某项调查要从中抽取三个班作为样本,现用抽签法抽取样本,每次抽取一个号码,共抽3次,设五班第一次被抽到的可能性为a ,第二次被抽到的可能性为b ,则( )A .a =310,b =29B .a =110,b =19C .a =310,b =310D .a =110,b =110 [答案] C[解析] 由简单随机抽样的定义知,每个个体在每次抽取中都有相同的可能性被抽到,故五班在每次抽样中被抽到的可能性都是310.10.某总体容量为M ,其中带有标记的有N 个,现用简单随机抽样的方法从中抽取一个容量为m 的样本,则抽取的m 个个体中带有标记的个数估计为( )A.mN MB.mM NC.MN mD .N[答案] A[解析] 总体中带有标记的比例是N M,则抽取的m 个个体中带有标记的个数估计为mN M. 二、填空题11.采用简单随机抽样时,常用的方法有________、________.[答案] 抽签法 随机数法12.下列调查方式正确的是________.①为了了解炮弹的杀伤力,采用普查的方式②为了了解全国中学生的睡眠状况,采用普查的方式③为了了解人们保护水资源的意识,采用抽样调查的方式④对载人航天器“神舟飞船”零部件的检查,采用抽样调查的方式[答案] ③[解析] 由于①中的调查具有破坏性,则①不正确;由于全国中学生太多,则②不正确;③正确;④中考虑到安全性,④不正确.13.某大学为了支援西部教育事业,现从报名的18名志愿者中选取6人组成志愿小组.用抽签法设计抽样方案如下:第一步 将18名志愿者编号,号码为1,2, (18)第二步将号码分别写在一张纸条上,揉成团,制成号签;第三步将号签放入一个不透明的袋子中,并充分搅匀;第四步_____________________________________________;第五步所得号码对应的志愿者就是志愿小组的成员.则第四步步骤应为_____________________________________.[答案]从袋子中依次抽出6个号签,记录下上面的编号.14.一个总体的60个个体编号为00,01,…,59,现需从中抽取一容量为6的样本,请从随机数表的倒数第5行(如下表,且表中下一行接在上一行右边)第10列开始,向右读取,直到取足样本,则抽取样本的号码是________.95339522001874720018387958693281768026928280842539[答案]01,47,20,28,17,02[解析]读取的数字两个一组为01,87,47,20,01,83,87,95,86,93,28,17,68,02,…,则抽取的样本号码是01,47,20,28,17,02.三、解答题15.(2011~2012.上海高一检测)2011年5月,西部志愿者计划开始报名,上海市闸北区共有50名志愿者参与了报名,现要从中随机抽出6人参加一项活动,请用抽签法进行抽样,并写出过程.[解析]第一步,将50名志愿者编号,号码为1,2,3, (50)第二步,将号码分别写在一张纸条上,揉成团,制成号签.第三步,将所有号签放入一个不透明的箱子中,充分搅匀.第四步,一次取出1个号签,连取6次,并记录其编号.第五步,将对应编号的志愿者选出即可.16.现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验.如何用随机数法设计抽样方案?[分析]重新编号,使每个号码的位数相同.[解析]第一步,将元件的编号调整为010,011,012,...,099,100, (600)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7个数9.第三步,从数9开始,向右读,每次读取三位,凡不在010~600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263.第四步,与以上这6个号码对应的6个元件就是所要抽取的样本.17.上海某中学从40名学生中选1人作为上海男篮啦啦队的成员,采用下面两种选法:选法一将这40名学生从1~40进行编号,相应地制作1~40的40个号签,把这40个号签放在一个暗箱中搅匀,最后随机地从中抽取1个号签,与这个号签编号一致的学生幸运入选;选法二将39个白球与1个红球(球除颜色外,其他完全相同)混合放在一个暗箱中搅匀,让40名学生逐一从中摸取一球,则摸到红球的学生成为啦啦队成员.试问:这两种选法是否都是抽签法?为什么?这两种选法有何异同?[解析]选法一满足抽签法的特征,是抽签法;选法二不是抽签法,因为抽签法要求所有的号签编号互不相同,而选法二中的39个白球无法相互区分.这两种选法相同之处在于每名学生被选中的可能性都相等,均为140.18.为制定本市初中七、八、九年级学生校服的生产计划,有关部门准备对180名初中男生的身高进行调查,现有三种调查方案:A.测量少年体校中180名男子篮球、排球队员的身高;B.查阅有关外地180名男生身高的统计资料;C.在本市的市区和郊县各任选一所完全中学、两所初级中学,在这所学校有关的年级(1)班中,用抽签的方法分别选出10名男生,然后测量他们的身高.为了达到估计本市初中这三个年级男生身高分布的目的,你认为采用上述哪一种调查方案比较合理,为什么?[分析]根据每种调查方案所提供的资料逐一分析,看哪一种调查方案合理.[解析]A中少年体校的男子篮球、排球运动员的身高一定高于一般的情况,因此测量的结果不公平,无法用测量的结果去估计总体的结果;B中用外地学生的身高也不能准确的反映本地学生身高的实际情况;而C中的抽样方法符合随机抽样,因此用C方案比较合理.。
第二章统计简单随机抽样知识梳理简...
第二章统计2.1 随机抽样2.1.1 简单随机抽样知识梳理:1.简单随机抽样的含义一般地,设一个总体含有N个个体,从中________地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会________,就把这种抽样方法叫做简单随机抽样。
2.简单随机抽样的方法(1)抽签法(抓阄法)一般地,抽签法就是________,把号码写在号签上,把号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。
(2)随机数法随机数法:利用________、________或________产生的随机数进行抽样。
思考探究:1.简单随机抽样有哪些特点?2.在用随机数法抽样时,如果题目所给的编号数不一致,该如何处理?自主测评:1.某校期末考试后,为了分析该校高一年级1000名学生的学习成绩,从中随机抽取了100名学生的成绩单,就这个问题来说,下面说法中正确的是()A.1 000名学生是总体B.每名学生是个体C.每名学生的成绩是所抽取的一个样本D.样本的容量是1002.在简单随机抽样中,某一个个体被抽到的可能性()A.与第几次抽样有关,第一次抽到的可能性最大B.与第几次抽样有关,第一次抽到的可能性最小C.与第几次抽样无关,每一次抽到的可能性相等D.与第几次抽样无关,与抽取几个样本有关3.抽签法中确保样本代表性的关键是()A.制签B.搅拌均匀C.逐一抽取D.抽取不放回4.某工厂的质检人员对生产的100件产品,采用随机数法抽取10件进行检查,对100件产品采用下面编号方法:①01,02,03,…,100;②001,002,003,…,100;③00,01,02,…99。
其中最恰当的序号是________。
典例探究突破:类型一:简单随机抽样的概念例1:下面抽取样本的方式是简单随机抽样吗,为什么?(1)从无限多个个体中抽取50个个体作为样本;(2)箱子里共有100个零件,今从中选取10个零进行检验,在抽样操作时,从中任意地拿出一个零件进行质量检验后再把它放回箱子里;(3)从50个个体中一次性抽取5个个体作为样本;(4)某班45名同学指定个子最高的5名同学参加学校组织的某项活动。
新教材高中数学课时作业11总体与样本简单随机抽样含解析新人教B版必修第二册
总体与样本、简单随机抽样一、选择题1.下面的抽样方法是简单随机抽样的是( )A.在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2709的为三等奖B.某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,检验其质量是否合格C.某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解学校机构改革的意见D.用抽签法从10件产品中选取3件进行质量检验2.某工厂的质检人员对生产的100件产品,采用随机数表法抽取10件检查,对100件产品采用下面的编号方法:①1,2,3,...,100;②001,002,...,100;③00,01,02,...,99;④01,02,03, (100)其中正确的序号是( )A.②③④B.③④C.②③D.①②3.从某年级的500名学生中抽取60名学生进行体重的统计分析,下列说法正确的是( )A.500名学生是总体B.每个学生是个体C.抽取的60名学生的体重是一个样本D.抽取的60名学生的体重是样本容量4.总体由编号为01,02,…19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字,则选出来的第5个个体的编号为( )A.08 B.07C.02D.01二、填空题5.某中学高一年级有700人,高二年级有600人,高三年级有500人,以每人被抽取的机会为0.03,从该中学学生中用简单随机抽样的方法抽取一个样本,则样本容量n为________.6.下列抽样试验中,用抽签法最方便的是________.①从某厂生产的3000件产品中抽取600件进行质量检验②从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验③从某厂生产的3000件产品中抽取10件进行质量检验7.从30个个体(编号00~29)中抽取10个样本,现给出某随机数表的第11行到第15行(见下表),如果某人选择第12行的第6列和第7列中的数作为第一个数并且由此数向右读,则选取的前4个的号码分别为________.9264 4607 2021 3920 7766 3817 3256 16405858 7766 3170 0500 2593 0545 5370 78142889 6628 6757 8231 1589 0062 0047 38155131 8186 3709 4521 6665 5325 5383 27029055 7196 2172 3207 1114 1384 4359 4488三、解答题8.从30架钢琴中抽取6架进行质量检查,请用抽签法确定这6架钢琴.9.假设要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,先将800袋牛奶按000,001,…,799进行编号,如果从随机数表第8行第7列的数开始向右读,请你依次写出最先检测的5袋牛奶的编号________.(下面摘取了随机数表第7行至第9行)8105010805 4557182405 3530342814 8879907439 23403097328326977602 020******* 6855574818 7305385247 18623385796357332135 0532547048 9055857518 2846828709 8340125624[尖子生题库]10.为了检验某种药品的副作用,从编号为1,2,3,…,120的服药者中用随机数法抽取10人作为样本,写出抽样过程.课时作业(十一) 总体与样本、简单随机抽样1.解析:对每个选项逐条落实简单随机抽样的特点.A、B不是简单随机抽样,因为抽取的个体间的间隔是固定的;C不是简单随机抽样,因为总体的个体有明显的层次;D是简单随机抽样.答案:D2.解析:根据随机数表法的步骤可知,①④编号位数不统一.答案:C3.解析:由题可知在此简单随机抽样中,总体是500名学生的体重,A错误,个体是每个学生的体重,B错误;样本容量为60,D错误.故选C.答案:C4.解析:从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字开始向右读,第一个数为65,不符合条件,第二个数为72,不符合条件,第三个数为08,符合条件,以下符合条件依次为02,14,07,01,故第5个数为01.答案:D5.解析:n=(700+600+500)×0.03=54.答案:546.解析:抽签法适于样本总体较小,样本容量较小,且总体中样本差异不太明显的抽样试验,从①②③来看,②最符合.答案:②7.解析:在随机数表中,将处于00~29的号码选出,第一个数76不合要求,第2个63不合要求,满足要求的前4个号码为17,00,02,07.答案:17,00,02,078.解析:第一步,将30架钢琴编号,号码是01,02, (30)第二步,将号码分别写在一张纸条上,揉成团,制成号签;第三步,将得到的号签放入一个不透明的袋子中,并充分搅匀;第四步,从袋子中逐个抽取6个号签,并记录上面的编号;第五步,所得号码对应的6架钢琴就是要抽取的对象.9.解析:找到第8行第7列的数开始向右读,凡不在000~799的跳过去不读,前面读过的也跳过去不读,得到的符合题意的五个数据依次为760,202,051,656,574.答案:760,202,051,656,57410.解析:第一步,将120名服药者重新进行编号,分别为001,002,003, (120)第二步,在随机数表(教材P103)中任选一数作为初始数,如选第9行第7列的数3;第三步,从选定的数3开始向右读,每次读取三位,凡不在001~120中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到074,100,094,052,080,003,105,107,083,092;第四步,以上这10个号码所对应的服药者即是要抽取的对象.。
简单随机抽样(人教A版2019 必修第二册)
(1)关于简单随机抽样的特点有以下几种说
)
D.每个个体被抽到的机会不一样,与先后顺序有关
(2)下列问题中最适合用简单随机抽样方法的是(
)
A.某学校有学生1 320人,卫生部门为了了解学生身体发育
情况,准备从中抽取一个容量为300的样本
B.为了准备省政协会议,某政协委员计划从1 135个村庄中
抽取50个进行收入调查
(2)如果用随机试验生成部分随机数如下所示,据此写出应抽取的袋装牛奶的编号.
【解析】
(1)第一步,将500袋牛奶编号为001,002,…,500.
第二步,用随机数工具产生1~500范围内的随机数.
第三步,把产生的随机数作为抽中的编号,使编号对应的袋装牛奶进入样本.
第四步,重复上述过程,直到产生不同的编号等于样本所需要的数量.
A.与第几次抽样无关,第一次抽到的概率要大些
B.与第几次抽样无关,每次抽到的概率都相等
C.与第几次抽样有关,最后一次抽到的概率要大些
D.每个个体被抽到的概率无法确定
(二)简单随机抽样
知识点三 抽签法
先给总体中的N个个体 编号 ,然后把所有编号写在外观、质地等无差别的小纸片(也可以是卡片、小球等)
上作为号签,并将这些小纸片放在一个不透明的盒里, 充分搅拌
一件玩,玩后放回再拿一件,连续玩了5件它不是“逐个”抽取.②不是简单随机抽样.虽然“一次性抽取”和
“逐个抽取”不影响个体被抽到的可能性,但简单随机抽样要求的是“逐个抽取”.③不是简单随机抽样.因
为5名同学是从中挑出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单随机抽样中“等可能抽样”
的要求.④是简单随机抽样.因为总体中的个体数是有限的,并且是从总体中逐个进行抽取的,等可能的抽
新人教版高中数学必修第二册《随机抽样》教案
随机抽样【教学目标】1.理解全面调查、抽样调查、总体、个体、样本、样本量、样本数据等概念2.理解简单随机抽样的概念,掌握简单随机抽样的两种方法:抽签法和随机数法3.理解分层随机抽样的概念,并会解决相关问题【教学重难点】1.抽样调查2.简单随机抽样3.分层随机抽样【教学过程】一、问题导入预习教材内容,思考以下问题:1.全面调查、抽样调查、总体、个体、样本、样本量、样本数据的概念是什么?2.什么叫简单随机抽样?3.最常用的简单随机抽样方法有哪两种?4.抽签法是如何操作的?5.随机数法是如何操作的?6.什么叫分层随机抽样?7.分层随机抽样适用于什么情况?8.分层随机抽样时,每个个体被抽到的机会是相等的吗?9.获取数据的途径有哪些?二、基础知识1.全面调查与抽样调查(1)对每一个调查对象都进行调查的方法,称为全面调查,又称普查W.(2)在一个调查中,我们把调查对象的全体称为总体,组成总体的每一个调查对象称为个体W.(3)根据一定的目的,从总体中抽取一部分个体进行调查,并以此为依据对总体的情况作出估计和推断的调查方法,称为抽样调查W.(4)把从总体中抽取的那部分个体称为样本W.(5)样本中包含的个体数称为样本量W.(6)调查样本获得的变量值称为样本的观测数据,简称样本数据.2.简单随机抽样(1)有放回简单随机抽样一般地,设一个总体含有N (N 为正整数)个个体,从中逐个抽取n (1≤n <N )个个体作为样本,如果抽取是放回的,且每次抽取时总体内的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做放回简单随机抽样.(2)不放回简单随机抽样如果抽取是不放回的,且每次抽取时总体内未进入样本的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做不放回简单随机抽样.(3)简单随机抽样放回简单随机抽样和不放回简单随机抽样统称为简单随机抽样.(4)简单随机样本通过简单随机抽样获得的样本称为简单随机样本.(5)简单随机抽样的常用方法实现简单随机抽样的方法很多,抽签法和随机数法是比较常用的两种方法.名师点拨(1)从总体中,逐个不放回地随机抽取n 个个体作为样本,一次性批量随机抽取n 个个体作为样本,两种方法是等价的.(2)简单随机抽样中各个个体被抽到的机会都相等,从而保证了抽样的公平性.3.总体平均数与样本平均数(1)总体平均数①一般地,总体中有N 个个体,它们的变量值分别为Y 1,Y 2,…,Y N ,则称Y - =Y 1+Y 2+…+Y N N =1N∑Ni =1Y i为总体均值,又称总体平均数.②如果总体的N 个变量值中,不同的值共有k (k ≤N )个,不妨记为Y 1,Y 2,…,Y k ,其中Y i 出现的频数f i (i =1,2,…,k ),则总体均值还可以写成加权平均数的形式Y - =1N ∑ki =1f i Y i W.(2)样本平均数如果从总体中抽取一个容量为n 的样本,它们的变量值分别为y 1,y 2,…,y n ,则称y - =y 1+y 2+…+y n n =1n∑ni =1y i 为样本均值,又称样本平均数.在简单随机抽样中,我们常用样本平均数y -去估计总体平均数Y -.4.分层随机抽样(1)分层随机抽样一般地,按一个或多个变量把总体划分成若干个子总体,每个个体属于且仅属于一个子总体,在每个子总体中独立地进行简单随机抽样,再把所有子总体中抽取的样本合在一起作为总样本,这样的抽样方法称为分层随机抽样,每一个子总体称为层W.(2)比例分配在分层随机抽样中,如果每层样本量都与层的大小成比例,那么称这种样本量的分配方式为比例分配.5.分层随机抽样中的总体平均数与样本平均数(1)在分层随机抽样中,如果层数分为2层,第1层和第2层包含的个体数分别为M 和N ,抽取的样本量分别为m 和n .我们用X 1,X 2,…,X M 表示第1层各个个体的变量值,用x 1,x 2,…,x m 表示第1层样本的各个个体的变量值;用Y 1,Y 2,…,Y N 表示第2层各个个体的变量值,用y 1,y 2,…,y n 表示第2层样本的各个个体的变量值,则:①第1层的总体平均数和样本平均数分别为X -=X 1+X 2+…+X M M =1M ∑M i =1X i ,x - =x 1+x 2+…+x m m =1m ∑mi =1x i .②第2层的总体平均数和样本平均数分别为Y - =Y 1+Y 2+…+Y N N =1N∑Ni =1Y i,y - =y 1+y 2+…+y n n =1n∑ni =1y i .③总体平均数和样本平均数分别为W - =∑Mi =1X i +∑N i =1Yi M +N ,w - =∑mi =1x i +∑ni =1y i m +nW.(2)由于用第1层的样本平均数x -可以估计第1层的总体平均数X -,用第2层的样本平均数y -可以估计第2层的总体平均数Y -.因此我们可以用M ×x - +N ×y -M +N =M M +N x - +N M +N y -估计总体平均数W - .(3)在比例分配的分层随机抽样中,m M =n N =m +nM +N ,可得M M +N x - +N M +N y -=m m +n x - +n m +n y -=w -.因此,在比例分配的分层随机抽样中,我们可以直接用样本平均数w - 估计总体平均数W -.6.获取数据的途径获取数据的基本途径有:(1)通过调查获取数据;(2)通过试验获取数据;(3)通过观察获取数据;(4)通过查询获取数据三、合作探究总体、样本等概念辨析题例1:为了调查参加运动会的1 000名运动员的平均年龄,从中抽取了100名运动员进行调查,下面说法正确的是()A .1 000名运动员是总体B .每个运动员是个体C .抽取的100名运动员是样本D .样本量是100【解析】根据调查的目的可知,总体是这1 000名运动员的年龄,个体是每个运动员的年龄,样本是抽取的100名运动员的年龄,样本量为100.故答案为D .【答案】D[规律方法]此类题目要正确理解总体与个体的概念,要弄明白概念的实质,并注意样本与样本容量的不同,其中样本量为数目,无单位.简单随机抽样的概念例2:下面的抽样方法是简单随机抽样吗?为什么?(1)从无数个个体中抽取50个个体作为样本;(2)仓库中有1万支奥运火炬,从中一次抽取100支火炬进行质量检查;(3)某连队从200名党员官兵中,挑选出50名最优秀的官兵赶赴灾区开展救灾工作.【解】(1)不是简单随机抽样.因为简单随机抽样要求被抽取的样本总体的个数是有限的.(2)不是简单随机抽样.虽然“一次性抽取”和“逐个抽取”不影响个体被抽到的可能性,但简单随机抽样要求的是“逐个抽取”.(3)不是简单随机抽样.因为这50名官兵是从中挑选出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单随机抽样中“等可能抽样”的要求.[规律方法]要判断所给的抽样方法是否为简单随机抽样,关键是看它们是否符合简单随机抽样的定义,即简单随机抽样的四个特点.抽签法及随机数法的应用例3:某班有50名学生,要从中随机地抽出6人参加一项活动,请分别写出利用抽签法和随机数法抽取该样本的过程.【解】(1)利用抽签法步骤如下:第一步:将这50名学生编号,编号为01,02,03, (50)第二步:将50个号码分别写在纸条上,并揉成团,制成号签.第三步:将得到的号签放在一个不透明的容器中,搅拌均匀.第四步:从容器中逐一抽取6个号签,并记录上面的号码.对应上面6个号码的学生就是参加该项活动的学生.(2)利用随机数法步骤如下:第一步:将这50名学生编号,编号为1,2,3, (50)第二步:用随机数工具产生1~50范围内的整数随机数,把产生的随机数作为抽中的编号,使与编号对应的学生进入样本.第三步:重复第二步的过程,直到抽足样本所需人数.对应上面6个号码的学生就是参加该项活动的学生.[规律方法](1)利用抽签法抽取样本时应注意以下问题:①编号时,如果已有编号(如学号、标号等)可不必重新编号.(例如该题中50名同学,可以直接利用学号)②号签要求大小、形状完全相同.③号签要搅拌均匀.④抽取号签时要逐一、不放回抽取.(2)利用随机数法抽取样本时应注意的问题:如果生成的随机数有重复,即同一编号被多次抽到,应剔除重复的编号并重新产生随机数,直到产生的不同编号个数等于样本所需的人数.分层随机抽样中的有关计算例4:(1)某单位共有老、中、青年职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍,为了解职工身体状况,现采用分层随机抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工的人数为W.(2)某高中学校为了促进学生个体的全面发展,针对学生发展要求,开设了富有地方特色的“泥塑”与“剪纸”两个社团,已知报名参加这两个社团的学生共有800人,按照要求每人只能参加一个社团,各年级参加社团的人数情况如下表:高一年级高二年级高三年级泥塑a b c 剪纸xyz其中x ∶y ∶z =5∶3∶2,且“泥塑”社团的人数占两个社团总人数的35,为了了解学生对两个社团活动的满意程度,从中抽取一个50人的样本进行调查,则从高二年级“剪纸”社团的学生中应抽取人.【解析】(1)设该单位老年职工人数为x ,由题意得3x =430-160,解得x =90.则样本中的老年职工人数为90×32160=18.(2)法一:因为“泥塑”社团的人数占总人数的35,故“剪纸”社团的人数占总人数的25,所以“剪纸”社团的人数为800×25=320;因为“剪纸”社团中高二年级人数比例为y x +y +z =32+3+5=310,所以“剪纸”社团中高二年级人数为320×310=96.由题意知,抽样比为50800=116,所以从高二年级“剪纸”社团中抽取的人数为96×116=6.法二:因为“泥塑”社团的人数占总人数的35,故“剪纸”社团的人数占总人数的25,所以抽取的50人的样本中,“剪纸”社团中的人数为50×25=20.又“剪纸”社团中高二年级人数比例为y x +y +z =32+3+5=310,所以从高二年级“剪纸”社团中抽取的人数为20×310=6.【答案】(1)18(2)6[规律方法]分层随机抽样中有关计算的方法(1)抽样比=该层样本量n 总样本量N=该层抽取的个体数该层的个体数.(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.对于分层抽样中求某层个体数,或某层要抽取的样本个体数,都可以通过上面两个等量关系求解.样本平均数的求法例5:(1)甲在本次飞镖游戏中的成绩为8,6,7,7,8,10,9,8,7,8.求甲在本次游戏中的平均成绩.(2)在了解全校学生每年平均阅读多少本文学经典名著时,甲同学抽取了一个容量为10的样本,并算得样本的平均数为5;乙同学抽取了一个容量为8的样本,并算得样本的平均数为6.已知甲、乙两同学抽取的样本合在一起组成一个容量为18的样本,求合在一起后的样本均值.【解】(1)甲在本次游戏中的平均成绩为6+3×7+4×8+9+1010=7.8.(2)合在一起后的样本均值为10×5+8×610+8=50+4818=499.[规律方法]在分层随机抽样中,如果第一层的样本量为m ,平均值为x ;第二层的样本量为n ,平均值为y ,则样本的平均值为mx +nym +n.【课堂检测】1.在简单随机抽样中,每一个个体被抽中的可能性()A.与第几次抽样有关,第一次抽中的可能性要大些B.与第几次抽样无关,每次抽中的可能性都相等C.与第几次抽样有关,最后一次抽中的可能性要大些D.每个个体被抽中的可能性无法确定解析:选B.在简单随机抽样中,每一个个体被抽中的可能性都相等,与第几次抽样无关.2.若对某校1 200名学生的耐力做调查,抽取其中120名学生,测试他们1500米跑的成绩,得出相应的数值,在这项调查中,样本是指()A.120名学生B.1 200名学生C.120名学生的成绩D.1 200名学生的成绩解析:选C.本题抽取的是120名学生的成绩,因此每个学生的成绩是个体,这120名学生的成绩构成一个样本.3.(2019·广西钦州市期末考试)某中学共有1 000名学生,其中高一年级350人,该校为了了解本校学生视力情况,用分层随机抽样的方法从该校学生中抽出一个容量为100的样本进行调查,则应从高一年级抽取的人数为()A.20B.25C.30D.35解析:选D.高一年级抽取的人数为3501 000×100=35.故选D.4.在调查某中学的学生身高时,利用分层抽样的方法抽取男生20人,女生15人,得到了男生身高的平均值为170,女生身高的平均值为165.试估计该中学所有学生的平均身高是多少?解:20×170+15×16520+15=5 87535=16767.即该中学所有学生的平均身高为16767.第四步,把与号码相对应的人抽出,即可得到所要的样本.。
高中数学必修二课件:简单随机抽样
课时学案
题型一 简单随机抽样的理解
例1 (1)【多选题】下列调查中,适宜采用抽样调查的是( AC ) A.调查某市中小学生每天的运动时间 B.某幼儿园中有位小朋友得了手足口病,对此幼儿园中的小朋友进行检查 C.农业科技人员调查今年麦穗的单穗平均质量 D.调查某快餐店中8位店员的生活质量情况 【解析】 选项B要普查,选项D容量小可以普查,选项A、C总体容量 大,用抽样调查.
1
球被抽出的可能性为____2____,第三次抽取时每一小球被抽出的可能性为
1
____4 ____.
【解析】 因为简单随机抽样每个个体被抽到的可能性为Nn ,所以第一个空
填
1 2
,而抽样是不放回的抽样,第一次抽取时每个小球被抽到的可能性为
1 6
,第
ห้องสมุดไป่ตู้
二次为15,第三次为14.
题型二 抽签法
例2 某省环保局有各地市报送的空气质量材料15份,为了了解全省的空气 质量,要从中抽取一个容量为5的样本,试确定用何种方法抽取,请具体实施操 作.
【解析】 样本的平均数为 -y =6×5+8×8+10×204+12×1+15×2=8.8, 样本中午餐费用不低于10元的比例为4+210+2=0.35, 所以估计该校高一全体学生每天午餐的平均费用为8.8元,午餐费用不低于 10元的学生所占的比例为0.35. 探究4 当总体容量很大时,一般用样本的平均数估计总体的平均数,用样 本中某类个体所占的比例估计该类个体在总体中所占的比例.
【解析】 总体容量小,样本容量也小,可用抽签法. 步骤如下: 第一步,将15份材料随机编号,号码是1,2,3,…,15; 第二步,将以上15个号码分别写在15张相同的小纸条上,揉成小球,制成 号签;
简单随机抽样,系统抽样,分层抽样 (2)
课 题 简单随机抽样,系统抽样,分层抽样 教学目标1.正确理解三种抽样方法的一般步骤和方法2.正确理解三中抽样方法间的区别和联系;重点、难点三种抽样方法概念的理解 2能够灵活应用三种抽样的方法解决统计问题。
考点及考试要求综合题考点一、简单随机抽样的概念一般地,设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N ),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样,这样抽取的样本,叫做简单随机样本。
【说明】简单随机抽样必须具备下列特点:(1)简单随机抽样要求被抽取的样本的总体个数N 是有限的。
(2)简单随机样本数n 小于等于样本总体的个数N 。
(3)简单随机样本是从总体中逐个抽取的。
(4)简单随机抽样是一种不放回的抽样。
(5)简单随机抽样的每个个体入样的可能性均为Nn 。
思考:下列抽样的方式是否属于简单随机抽样?为什么?(1)从无限多个个体中抽取50个个体作为样本。
(2)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子。
抽签法和随机数表法 1、抽签法的定义。
抽签法就是把总体中的N 个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n 次,就得到一个容量为n 的样本。
【说明】抽签法的一般步骤:(1)将总体的个体编号。
(2)连续抽签获取样本号码。
思考:你认为抽签法有什么优点和缺点:当总体中的个体数很多时,用抽签法方便吗?2、随机数表法的定义:利用随机数表、随机数骰子或计算机产生的随机数进行抽样,叫随机数表法,这里仅介绍随机数表法。
【说明】随机数表法的步骤: (1)将总体的个体编号。
(2)在随机数表中选择开始数字。
(3)读数获取样本号码。
【例题精析】例1:人们打桥牌时,将洗好的扑克牌随机确定一张为起始牌,这时按次序搬牌时,对任何一家来说,都是从52张牌中抽取13张牌,问这种抽样方法是否是简单随机抽样?[分析] 简单随机抽样的实质是逐个地从总体中随机抽取样本,而这里只是随机确定了起始张,其他各张牌虽然是逐张起牌,但是各张在谁手里已被确定,所以不是简单随机抽样。
人教版数学必修第二册9.1.1简单随机抽样课件
• 放回简单随机抽样和不放回简单随机抽样统称为简单随机抽样.
(2)简单随机抽样的特点
①总体个数有限:简单随机抽样要求被抽取样本的总体个数有限,这样便
于通过样本对总体进行分析.
②逐个抽取:简单随机抽样是从总体中逐个进行抽取,这样便于实际操作.
A.与第几次抽样有关,第一次抽到的可能性最大
B.与第几次抽样有关,第一次抽到的可能性最小
C.与第几次抽样无关,每一次抽到的可能性相等
D.与第几次抽样无关,与样本量也无关
√
2.下列调查:
①每隔5年进行人口普查; 普查
②报社等进行舆论调查;抽样调查
③灯泡使用寿命的调查;抽样调查
④对入学报名者的学历检查;普查
无法相互区分.
题型二 抽签法和随机数法
[例2 (2)某家具厂要为育才小学一年级新生制作新课桌椅,他们要事先了解全
体一年级学生的平均身高,以便设定可调节课桌椅的标准高度. 已知育才小
学一年级有165名学生,如果通过简单随机抽样的方法调查一年级学生的平
均身高,需抽取16人,需怎样抽取?
①先给165名学生编号,如编号为1~165;
⑤从20台电视机中抽出3台进行质量检查. 抽样调查
其中属于抽样调查的是( B )
A.①②③
B.②③⑤
C.②③④
D.①③⑤
3.一个总体中含有100个个体,以简单随机抽样方法从该总体
中抽取一个容量为5的简单随机样本,则指定的某个个体被抽到
1
的可能性为________.
20
简单随机抽样
每个个体被抽到的概率都相等
个号签放在一个暗箱中搅匀,最后随机地从中抽取1个号签,与这个号签
6.2.1简单随机抽样6.2.2分层抽样课件高一上学期数学
73 79 64 57 53 03 52 96 47 78 35 80 83 42 82 60 93 52 03 44 35 27 38 84 35(第5行)
81 05 01 08 05 45 57 18 24 05 35 30 34 28 14 88 79 90 74 39 23 40 30 97 32(第2行)
83 26 97 76 02 02 05 16 56 92 68 55 57 48 18 73 05 38 52 47 18 62 38 85 79(第3行)
() A.抽签法抽样 B.按性别分层抽样 C.按年龄段分层抽样 D.随机数法抽样
答案:C
解析:该地区老、中、青三个年龄段人员的“微信健步走”活动情况有较大差 异,而男女差异不大,所以按年龄段分层抽样具有代表性,比较合理.
故选C.
题型2 简单随机抽样的应用 角度1 抽签法的应用 例2 要从某汽车厂生产的30辆汽车中随机抽取3辆进行测试,请选 择合适的抽样方法,写出抽样过程.
8 44 2 17 8 31 57 4 55 6
88 77 74 47 7 21 76 33 50 63
题型3 分层抽样的应用 例4 (1)甲校有3 600名学生,乙校有5 400名学生,丙校有1 800名学 生,为统计三校学生某方面的情况,计划采用分层抽样法抽取一个样 本量为90的样本,应在这三校分别抽取学生( ) A.30人、30人、30人 B.30人、45人、15人 C.20人、30人、40人 D.30人、50人、10人
方法归纳
一个抽样试验能否用抽签法,关键看两点:一是制签是否方便;二 是号签是否容易被搅匀.一般地,当总体容量和样本量都较小时可用 抽签法.若总体容量非常大,采用抽签法就比较费时、费力,也不方 便,搅拌不均匀有失公平性,从而产生代表性差的样本的可能性增 加.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电玩游戏城 www.anwofs. Nhomakorabean[单选]下列各项肺功检查结果,哪项与阻塞性肺气肿不符合()A.RV/TLC>40%B.MVV低于预计值的80%C.FEV/FVC<60%D.肺泡氮浓度>2.5%E.流速.容量曲线大致正常 [单选]我国门静脉高压症病人的最常见原因是()A.胆汁性肝硬化B.血吸虫性肝硬化C.肝炎后肝硬化D.先天性门静脉狭窄E.酒精性肝硬化 [单选]某大豆种植者在4月份开始种植大豆,并预计在11月份将收获的大豆在市场上出售,预期大豆产量为70吨。为规避大豆价格波动的风险,该种植者决定在期货市场上进行套期保值操作,正确做法应是()。A.买人70吨11月份到期的大豆期货合约B.卖出70吨11月份到期的大豆期货合约C.买 [判断题]河心岛单独存在时,可以取舍,也可以合并。A.正确B.错误 [单选]单位时间内无线电波传播的距离称为()。A.频率B.周期C.速度D.波长 [单选]使子宫对缩宫素敏感增加,下列哪种是正确的()A.大剂量缩宫素B.孕激素C.小剂量缩宫素D.麦角新碱E.雌激素 [单选,B型题]减压病的病因是()。A.高气压B.低气压C.高气温D.高气湿E.高气流 [单选]"产后汗多变痉,因气血亏损,肉理不密,风邪所乘",并提出用小续命汤治疗的是()A.《金匮要略》B.《诸病源候论》C.《傅青主女科》D.《妇人大全良方》E.《景岳全书》 [问答题,简答题]如何点检空透主电机? [单选,A1型题]27岁初产妇,胎儿娩出后无阴道流血,胎盘娩出后阴道流血不断,时多时少,1小时内阴道流血量超过600ml,血压70/50mmHg,脉搏126次/分。紧急措施应是()A.为宫颈裂伤,立即缝合B.为阴道血肿,立即处理C.检查凝血功能,并输纤维蛋白原D.静注麦角新碱加强宫缩E.手入宫 [单选]带状疱疹病人局部皮损水疱已破,红肿明显,宜用()A.炉甘石洗剂外搽B.硼酸溶液湿敷C.阿昔洛韦软膏外搽D.万乃洛韦软膏外搽E.外敷膏药 [单选]乳腺癌的超声特征不包括()。A.边界清晰B.边缘毛刺C.微小钙化D.血流信号丰富E.后方声影 [单选]凝乳块状白带见于()A.外阴阴道假丝酵母菌病B.滴虫阴道炎C.子宫内膜炎D.宫颈炎E.子宫粘膜下肌瘤感染 [填空题]比重()水和不溶于水的易燃(),不可用水扑救。 [单选]建设工程的保修期,自()计算。A.实际竣工之日B.验收合格之日C.提交结算资料之日D.提交竣工验收报告之日 [名词解释]提青 [问答题,简答题]情感在艺术活动有何作用 [判断题]机械密封是依靠固定于轴上的转环和固定在泵壳上的静环两者平滑端面之间的紧密接触来达到密封。A.正确B.错误 [单选]下列哪一项是胎儿循环的遗迹A.镰状韧带B.肝十二指肠韧带C.肝静脉韧带D.冠状韧带E.以上都不是 [单选,A2型题,A1/A2型题]治疗亚硝酸盐食物中毒的特效药物是()。A.美蓝B.二巯基丙醇C.亚硝酸异戊酯D.硫代硫酸钠E.亚硝酸钠 [单选]患者女,23岁,风湿性心脏病二尖瓣狭窄合并心房颤动,有活动性气短,查体:心界增大,心率130次/min,心律绝对不齐,双下肢水肿。ECG示快速心房颤动,最佳治疗是()A.阿替洛尔B.口服地高辛C.静脉注射西地兰D.口服胺碘酮E.静脉注射美托洛尔 [单选]在毒理学研究中,吸入染毒的剂量单位表示为()。A.mg/kgB.mg/mC.mg/LD.mg/mE.mg/g [单选]关于水灰比对混凝土拌合物特性的影响,说法不正确的是()。A.水灰比越大,粘聚性越差B.水灰比越小,保水性越好C.水灰比过大会产生离析现象D.水灰比越大,坍落度越小 [单选,A1型题]下列哪项不属于胎盘功能检查()A.孕妇尿中雌三醇值B.催产素激惹试验C.孕妇尿中β-HCG值D.孕妇血清胎盘生乳素值E.孕妇血清催产素酶值 [问答题,简答题]套装轮箍时,在轮箍和轮心上打上黄色标记起什么作用? [问答题,简答题]伤口换药(污染伤口)男性被检查者,右肩胛部痈,切开引流术后24小时,现由你更换伤口敷料(在医学模拟人进行操作)。 [单选,A2型题,A1/A2型题]对面神经外膜损伤特征的描述,不正确的是()。A.出现面瘫B.损伤限于神经外膜C.神经成分未累及D.神经传导正常E.无面瘫 [多选]下列是绿化的卫生学意义的是()。A.调节改善小气候B.增加太阳辐射C.净化空气,调节气候D.对人类有良好的生理心理作用E.降低地方病的发病 [单选]患者男,45岁,阵发性心房颤动2年,1个月发作2次,症状明显,有夜间阵发性睡眠呼吸困难,目前的抗心律失常药物治疗选择()A.口服阿替洛尔B.口服索他洛尔C.口服华法林D.口服胺碘酮E.口服普罗帕酮 [单选,A2型题,A1/A2型题]灸法的主治作用是()A.蔬肝理气B.安神补心C.温经散寒D.益气养阴E.以上均不是 [单选]患者,男,50岁。自觉两目模糊,视物不清,伴有头痛,眩晕,舌红少苔,脉细弦。治疗应首选()A.升麻B.葛根C.薄荷D.柴胡E.菊花 [问答题,简答题]清洁生产与可持续发展的关系是什么? [单选]()不属于库存状态信息。A.安全库存量B.提前期C.缺货损失D.在途量 [多选]以下各项线路布置时,须要短路保护和过载保护的是()。A.架空线路敷设B.电缆线路敷设C.室内配线敷设D.室外线路敷设E.照明线路敷设 [单选]灰色鱼腥味白带多见于()A.细菌性阴道病B.滴虫阴道炎C.外阴阴道假丝酵母菌病D.输卵管癌E.外阴炎 [多选]根据织造方法不同,织物分为()A.混纺织物B.机织物C.针织物D.非织造织物 [单选]县级以上地方各级人民政府()部门负责本行政区域内的厂内机动车辆安全管理工作。A、管理部门B、安机关交通管理C、质量技术监督部门 [单选]产程中胎心监护,下列哪项是不恰当的?()A.不能分辨与宫缩的关系B.潜伏期应每1~2小时听胎心1次C.听诊胎心应在宫缩间歇期宫缩刚结束时进行D.活跃期应每15~30分钟听胎心1次E.每次听胎心应听1分钟 [单选]动物频频作排粪动作而无粪便排出时,常常是()的表现。A.分娩B.腹泻C.梗阻D.疼痛 [单选]港口与航道程施工总承包特级资质企业近3年年平均工程结算收入应为()以上。A.8亿元B.10亿元C.15亿元D.20亿元