用MATLAB求周期矩形脉冲幅频谱图

合集下载

实验1信号的频谱图

实验1信号的频谱图

1


-3 -2 -1 0 1 2 3
t
图 1-5 周期三角信号波形 2. 试用 MATLAB 分析上图中周期三角信号的频谱。当周期三角信号的周期和三角信号
的宽度变化时,试观察其频谱的变化。 3 傅里叶变换及其性质
在前面讨论的周期信号中,当周期T ® ¥ 时,周期信号就转化为非周期信号。当周期 T ® ¥ 时,周期信号的各次谐波幅度及谱线间隔将趋近于无穷小,但频谱的相对形状保持 不变。这样,原来由许多谱线组成的周期信号的离散频谱就会连成一片,形成非周期信号 的连续频谱。为了有效地分析非周期信号的频率特性,我们引入了傅里叶变换分析法。
10
15
20
图 1-4 周期矩形脉冲信号的傅里叶系数 从图中可以看出,脉冲宽度 t 越大,信号的频谱带宽越小;而周期越小,谱线之间间隔越 大,验证了傅里叶级数理论。 【练习】 1. 已知周期三角信号如图所示,试求出该信号的傅里叶级数,利用 MATLAB 编程实现
其各次谐波的叠加,并验证其收敛性。
f (t )
=
2p T
,该信号可展开为三角形式的傅里
叶级数,即为:
f (t ) = a + a cosw t + a cos2w t + L + b sin w t + b sin w t + L
0
1
0
2
0
1
0
2
0
¥
å ( ) = a + 0
an
cosnw t 0
+
bn
sin nw t 0
n=1
其中,正弦项与余弦项的系数an 和bn 成为傅里叶系数,根据函数的正交性,得

《信号与系统》实验三

《信号与系统》实验三
实验记录及个人小结(包括:实验源程序、注释、结果分析与讨论等)
三:
源程序:
(1):τ/T=1/4时的周期矩形脉冲的幅度谱和相位谱:
n=-20:20;
F=zeros(size(n));
forii=-20:20
F(ii+21)= sin(ii*pi/4)/(ii*pi+eps);
end
F(21)=1/4;
实验
内容
1.求图1所示周期信号( , )的傅里叶级数,用Matlab做出其前3、9、21、45项谐波的合成波形与原信号作比较,并做出其单边幅度谱和相位谱。
图1 周期为2的三角脉冲信号
2. 求图2所示的单个三角脉冲( )的傅里叶变换,并做出其幅度谱和相位谱。
图2 单个三角脉冲
3. 求不同占空比下周期矩形脉冲的幅度谱和相位谱,例如 、 。
y=1/4;
forn=1:m
y=y+4/(n*n*pi*pi)*(1-cos(n*pi/2)).*cos(n*pi.*t);
end
源代码:
t=-6:0.01:6;
d=-6:2:6;
fxx=pulstran(t,d,'tripuls');
f1=fourierseries(3,t);
f2=fourierseries(9,t);
n=1:10;
a=zeros(size(n));
fori=1:10
a(i)=angle(4/(i*i*pi*pi)*(1-cos(i*pi/2)))
end
n=0:pi:9*pi
stem(n,a,'fill','linewidth',2);
axis([0,9*pi,-0.2,0.2])

信号与系统实验_矩形信号的分解

信号与系统实验_矩形信号的分解

学号: 姓名:实验三、矩形信号的分解一、实验目的1、分析典型的矩形脉冲信号,了解矩形脉冲信号谐波分量的构成;2、观察矩形脉冲信号分解出各谐波分量的情况。

二、预备知识1.学习“周期信号的傅里叶级数分析”一节;2.复习matlab 软件的使用方法。

3.信号的滤波知识三、实验原理1、信号的频谱与测量信号的时域特性和频域特性是对信号的两种不同的描述方式。

对于一个时域的周期信号)t (f ,只要满足狄利克莱(Dirichlet)条件,就可以将其展开成三角形式或指数形式的傅里叶级数。

例如,对于一个周期为T 的时域周期信号)t (f ,可以用三角形式的傅里叶级数求出它的各次分量,在区间)T t ,t (11+内表示为)sin cos ()(10t n b t n a a t f n n n Ω+Ω+=∑∞=即将信号分解成直流分量及许多余弦分量和正弦分量,研究其频谱分布情况。

AA(c)图3-1 信号的时域特性和频域特性信号的时域特性与频域特性之间有着密切的内在联系,这种联系可以用图3-1来形象地表示。

其中图3-1(a)是信号在幅度--时间--频率三维座标系统中的图形;图3-1(b)是信号在幅度--时间座标系统中的图形即波形图;把周期信号分解得到的各次谐波分量按频率的高低排列,就可以得到频谱图。

反映各频率分量幅度的频谱称为振幅频谱。

图3-1(c)是信号在幅度--频率座标系统中的图形即振幅频谱图。

反映各分量相位的频谱称为相位频谱。

在本实验中只研究信号振幅频谱。

周期信号的振幅频谱有三个性质:离散性、谐波性、收敛性。

测量时利用了这些性质。

从振幅频谱图上,可以直观地看出各频率分量所占的比重。

测量方法有同时分析法和顺序分析法。

2、 矩形脉冲信号的频谱一个幅度为E ,脉冲宽度为τ,重复周期为T 的矩形脉冲信号,如图10-3所示。

图3-2 周期性矩形脉冲信号其傅里叶级数为:t n Tn Sa T E T E t f n i ωπτττcos )(2)(1∑=+= 该信号第n 次谐波的振幅为:Tn T n T E T n Sa T E a n /)/sin(2)(2τπτπττπτ== 由上式可见第n 次谐波的振幅与E 、T 、τ有关。

周期信号的频谱

周期信号的频谱

f (t)
1


T

2
0
2
T
t
图17-7 周期矩形脉冲
15
实验内容 2
图17-8 当T=2,5,10时周期矩形波的频谱 16
实验步骤与方法
1、计算如图17-6所示周期锯齿波和周期三角波的傅里叶级 数的表达式。参考教材。
2、计算如图17-7所示周期矩形波的傅里叶级数复系数Fn 。参考教材。
Fn_min=min(abs(F_n));
subplot(2,1,1),stem(n,abs(F_n),'.');
% 在2幅图中的第1子图画幅度频谱
axis([n0 n1 Fn_min-0.1 Fn_max+0.1]);
line([n0 n1],[0 0],'color','r');
% 画直线,表示横轴,线为红色
17
实验报告要求
实验内容中详细的理论推导,根据推导的数 学模型所编写出的程序。
上机调试程序的方法。 根据实验观测结果,归纳、总结周期信号的
频谱的特征。以及离散频谱和连续频谱的关 系。 心得体会及其他。
18
omega_0=2*pi;
% 基波频率为2for k=1:N
n=[];
n=[1:2:n_max(k)]; b_n=4./(pi*n);
% n=1,3,5,等 % 计算傅里叶系统 bn
x=b_n*sin(omega_0*n'*t);
% 计算前几项的部分和
% 在N幅图中的第k子图画波形
subplot(N,1,k),plot(t,x,'linewidth',2);

毕业设计(论文)-信号与系统中的典型问题的matlab分析[管理资料]

毕业设计(论文)-信号与系统中的典型问题的matlab分析[管理资料]

2011届学士学位论文信号与系统中典型问题的MATLAB分析系别: 电子信息系专业: 电子信息科学与技术学号:姓名:指导教师:指导教师职称: 教授2011年4月30日信号与系统中典型问题的MATLAB分析摘要从信号与系统课程的特点出发,结合MATLAB软件优势,针对实例进行分析。

主要从连续信号、离散信号两方面应用MATLAB软件进行仿真和分析。

分别对连续信号和离散信号中线性时不变(LTI)系统信号分析,应用MATLAB软件进行仿真和分析。

对连续时间信号和离散时间信号的线性时间不变(LTI)系统的变换域,卷积和采样定理进行了模拟。

实例中运用了连续模块库、离散模块库等。

通过实例表明了MATLAB软件的便捷性,可以提高工作效率。

实践证明,采用MATLAB软件进行辅助分析可以我们对知识点的理解更深入更透彻。

关键词MATLAB仿真;时域分析;频域分析;卷积;序列卷和;冲激响应;阶跃响应;The Applied Research of Signal ProcessingBased on MATLABAbstract we give an overview of the examples from the characteristics of signal and system course, combining with MATLAB software advantages. The main idea is that MATLAB simulation and analysis software were applied in the continuous-time signals and discrete-time signals. In continuous-time signals and discrete-time signals the response signal of linear time invariant(LTI) system and its analysis of the transform domain and convolution and Sampling theorem were simulated. The examples used the continuous and discrete blocks library and communication toolbox, etc. Some examples show that processing signals can bring us great convenience and high efficiency. Practice has proved, using MATLAB software were aided analysis on knowledge points we can understand deeper and more thoroughly.Key-words MATLAB; the Time-domain Analysis;Frequency domain analysis;convolution ;Sequence convolution ;Impulse response ;Order step-response目录1引言 (1)2 MATLAB软件介绍 (2)3 MATLAB对连续时间信号的分析 (3)MATLAB仿真线性时不变(LTI)系统响应的信号表示 (3)MATLAB对连续信号变换域的分析 (4)连续时间信号的卷积计算及MATLAB的实现 (5)连续时间系统抽样定理的验证 (6)84 MATLAB对离散时间信号的分析 (10)离散系统的单位样值响应 (11)离散系统的变换域分析 (12)离散时间信号的卷积计算 (13)结论 (15)参考文献 (16)致谢 (17)附录一 (18)附录二 (19)附录三 (21)1 引言随着软件的发展,为仿真实验提供了另一思路,MATLAB软件具有强大的数值计算和矩阵处理功能。

基于MATLAB的信号与系统实验指导编程练习

基于MATLAB的信号与系统实验指导编程练习

基于MATLAB的信号与系统实验指导编程练习2连续时间信号在M A T L A B中的表⽰2-1.利⽤MATLAB命令画出下列连续信号的波形图(1)>> t=0:0.01:3;>> ft=2*cos(3*t+pi/4);>> plot(t,ft),grid on;>> axis([0 3 -2.2 2.2]);>> title('2cos(3t+pi/4)')(2)>> t=0:0.01:3;>> ft=2-exp(-t);>> plot(t,ft),grid on;>> title('(2-exp(-t))u(t)')(3)>> t=-1:0.01:1;>> ft=t.*(uCT(t)-uCT(t-1));>> plot(t,ft),grid on>> axis([-1 1 -0.2 1.2]);>> title('t[u(t)-u(t-1)]')(4)>> t=-1:0.01:3;>> ft=(1+cos(pi*t)).*(uCT(t)-uCT(t-2)); >> plot(t,ft),grid on>> axis([-1 3 -0.2 2.2]);>> title('[1+cos(pi*t)][u(t)-u(t-2)]')2-2.利⽤MATLAB命令画出下列复信号的实部、虚部、模和辐⾓(1)>> t=0:0.01:3;>> ft=2+exp(i*(pi/4)*t)+exp(i*(pi/2)*t);>> subplot(2,2,1);plot(t,real(ft));title('实部');axis([0 3 0 4]);grid on; >> subplot(2,2,2);plot(t,imag(ft));title('虚部');axis([0 3 0 2]);grid on; >> subplot(2,2,3);plot(t,abs(ft));title('模');axis([0 3 0 4]);grid on;>> subplot(2,2,4);plot(t,angle(ft));title('相⾓');axis([0 3 0 2]);grid on;(2)t=0:0.01:3;>> ft=2*exp(i*(t+pi/4));>> subplot(2,2,1);plot(t,real(ft));title('实部');axis([0 3 0 2]);grid on;>> subplot(2,2,2);plot(t,imag(ft));title('虚部');axis([0 3 0 2]);grid on;>> subplot(2,2,3);plot(t,abs(ft));title('模');axis([0 3 0 4]);grid on;>> subplot(2,2,4);plot(t,angle(ft));title('相⾓');axis([0 3 0 4]);grid on;2-3.利⽤MATLAB命令产⽣幅度为1、周期为1、占空⽐为0.5的⼀个周期矩形脉冲信号>> t=-0.5:0.01:3;>> ft=square(2*pi*t,50);>> plot(t,ft);grid on;axis([-0.5 3 -1.2 1.2]);>> title('幅度为1、周期为1、占空⽐0.5的周期举⾏脉冲信号')3连续时间信号在MATLAB中的运算3-1.试⽤MATLAB命令绘出以下信号的波形图(1)>> syms x t;>> t=-1:0.01:1;>> x=exp(-t).*sin(10*pi*t)+exp(-0.5*t).*sin(9*pi*t);>> plot(t,x)(2)>> syms x t;>> t=-1:0.01:1;>> x=sinc(t).*cos(10*pi*t);>> plot(t,x)3-2.已知连续时间信号f(t)的波形如图3-6所⽰,试⽤MATLAB 命令画出下列信号的波形图先画出图3-6:>> t=-2:0.01:2;>>f=(-t-1).*(-uCT(t+2)+uCT(t+1))+uCT(t+1)+uCT(t)-uCT(t-1)-(t-1).*(uCT(t-1)-uCT(t-2))-uC T(t-2); >> plot(t,f)>> axis([-4 4 -1 2])>> title('图3-6')>> t=-2:0.01:2;>> f1=funct2(t-1);>> f2=funct2(2-t);>> f3=funct2(2*t+1);>> f4=funct2(4-t/2);>> f5=(funct2(t)+funct2(-t)).*uCT(t);>> subplot(231);plot(t,f1);grid on;title('f(t-1)');axis([-3 3 -1 2]);>> subplot(232);plot(t,f2);grid on;title('f(2-t)');axis([-3 3 -1 2]);>> subplot(233);plot(t,f3);grid on;title('f(2t-1)');axis([-3 3 -1 2]);>> subplot(234);plot(t,f4);grid on;title('f(4-t/2)');axis([-3 3 -1 2]); >> subplot(235);plot(t,f5);grid on;title('(f(t)+f(-t))u(t)');axis([-3 3 -1 2]);3-3.试⽤MATLAB命令绘出如图3-7所⽰信号的偶分量和奇分量>> t=0:0.01:2;>> f=(uCT(t)-uCT(t-2)).*(-t+1);>> plot(t,f);title('图3-7')>> f1=fliplr(f);>> fe=(f+f1)/2;fo=(f-f1)/2;>> subplot(211),plot(t,fe);grid on>> title('fe')>> subplot(212),plot(t,fo);grid on;title('fo')4连续时间信号的卷积计算4-1⽤MATLAB命令绘出下列信号的卷积积分的时域波形图>> dt=0.001;t1=-0.5:dt:3.5;>> f1=uCT(t1)-uCT(t1-2);>> t2=t1;>> f2=uCT(t2)+uCT(t2-1)-uCT(t2-2)-uCT(t2-3);>> [t,f]=ctsconv(f1,f2,t1,t2,dt);6周期信号的傅⾥叶级数及频谱分析6-1已知周期三⾓信号如图6-5所⽰,试求出该信号的傅⾥叶级数,利⽤MATLAB编程实现其各次谐波的叠加,并验证其收敛性。

信号的频域特性分析及MATLAB实现

信号的频域特性分析及MATLAB实现

长沙理工大学上机实验报告班级通信1401班学号201454080136姓名胡国庆实验目的:1、掌握利用MATLAB对连续信号进行傅里叶变换2、学会应用MATLAB对常用信号进行频域特性分析3、掌握利用MATLAB对信号进行频域的可视化的方法实验要求:1、利用MATLAB完成P129页周期矩形脉冲信号的频谱图,τ=2,τ/T分别取1/4,1/16和1/64;(利用4.3-3结论绘制频谱图)2、利用MATLAB绘制习题P205,4.26的频谱图。

实验内容和步骤:(程序和必要的注释)P129,周期矩形脉冲信号的频谱图n=-40:40;t=-10:0.01:10;%(t/T=1/4)f1=1/4*sinc(1/4*pi*n);subplot(2,2,1);stem(n,f1,'r');title('t/T=1/4的频谱图');xlabel('w');ylabel('f');%(t/T=1/4)f2=1/16*sinc(1/16*pi*n);subplot(2,2,2);stem(n,f2,'b');title('t/T=1/16的频谱图');xlabel('w');ylabel('f');%(t/T=1/64)f3=1/64*sinc(1/4*pi*n);subplot(2,2,3);stem(n,f3,'k');title('t/T=1/64的频谱图');xlabel('w');ylabel('f');P206 4.26y=inline('abs(t)<=1.*(1/2).*(1+cos(pi.*t)).*exp(-j*w*t)');w=linspace(-6*pi,6*pi,200*pi);n=length(w);g=zeros(1,n);for k=1:ng(k)=quadl(y,-1,1,[],[],w(k));endsubplot(2,2,4);plot(w,abs(g));xlabel('w');ylabel('f');实验结果及分析:P129,周期矩形脉冲信号的频谱图实验分析:因为幅度Fn的函数为sin(w pi)类型,所以当w相同时,零点都是相同的,所以不管占空比为多少,以上三个图的零点都一样。

汽车振动分析作业习题与参考答案(更新)

汽车振动分析作业习题与参考答案(更新)

1、 方波振动信号的谐波分析,00,02(),2T x t x t T x t T⎧<<⎪⎪=⎨⎪-<<⎪⎩。

绘制频谱图。

解:()x t 的数学表达式可写为: 计算三要素:()a n =0202()()sin 22Tn t b n x t dt T T π⎛⎫ ⎪= ⎪⎪⎝⎭⎰=20042sin Tn t x dt T T π⎛⎫ ⎪⎝⎭⎰=0222cos T n t n T ππ⎡⎤⎛⎫ ⎪⎢⎥⎝⎭⎣⎦=()021cos ,1,2,x n n n ππ-=⋅⋅⋅⋅⋅⋅⎡⎤⎣⎦ =4,1,3,5x n nπ=⋅⋅⋅⋅⋅⋅ 01()cos sin 222n n n a n t n t X t a b T T ππ∞=⎛⎫ ⎪∴=++ ⎪ ⎪⎝⎭∑=12sin n n n t b T π∞=∑=0142sin n x n t nT ππ∞=∑,n=1,3,5, ⋅⋅⋅⋅⋅⋅,02T t <<或2Tt T <<振幅频谱图4,1,3,5n n x A b n nπ===⋅⋅⋅⋅⋅⋅ ()⎩⎨⎧≤≤-≤≤-=02/2/00t T T t x x t x相位频谱图1tan 0,1,3,5nn n a n b φ-⎛⎫===⋅⋅⋅⋅⋅⋅⎪⎝⎭2、 求周期性矩形脉冲波的复数形式的傅立叶级数,绘频谱图。

解: 数学表达式:计算三要素:傅立叶级数复数形式:频谱图0000,0sin ,0,n x t n TA x n t n n n T ππ⎧=⎪⎪=⎨⎪≠-∞<<∞⎪⎩()⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤≤≤--≤≤-=220222200000T t t t t t x t t T t x 偶函数 T x t a 0002=2sin 2010tn n x a n ωπ⋅=0=n b 2sin 22010tn n x a ib a X n n nn ωπ⋅==-=()2sin 1101012/2/02/2/102/2/02/2/010********t n n x tin e e T x t in e T x dt e x T dt e t x T X t in t in t t t in t in t t tin T T n ωπωωωωωωω⋅=--⋅=-⋅=⋅⋅=⋅⋅=-------⎰⎰T t x t n n x X n 00010002sinlim =⋅=→ωπ()∑∑∞-∞=∞-∞===n tin n t in n e n t n x e X t x 112sin 010ωωωπ2.1解:(1)能量法222341222111()()222e a a k x k x k x a a += 2232122244e a a k k k a a ∴=+(2)能量法222 (1214)111222e a m x m x m x a ⎛⎫+= ⎪⎝⎭212124e a m m m a ∴=+(3)固有频率222132224211e e k a k a k p m a m a m +==+2.3解:平衡位置系统受力如图 则122,2F G F G == 弹簧1k 变形112G x k =,弹簧变形222Gx k =,且m 静位移1222x x x =+ 12124422e G G Gx x x k k k ∴==+=+ ()1212,4e e k k k m m k k ∴==+∴固有圆频率()121212e e k k k p m k k m==+2.5解对数衰减率:111110ln ln 0.06920 2.5j A j A δ+=== 相对阻尼系数:22110.01122110.069ζππδ===⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭衰减系数:9.80.0110.3140.012n k g n ms ζωζζ===== 阻尼系数:220.3149 5.652(/)c nm N s m ==⨯⨯= 临界阻尼: 5.652513.8(/)0.011c cc N s m ζ=== 2.7解受力分析如图-xs ’)单自由度振动系统振动微分方程()2022s sn n n smx c x x kx mx cx kx cx x x x x ζωωζω+-+=∴++=∴++=设iwtcs x e =,则()c cs x H x ω=22222()212n n n i iH i iζωωζλωωωζωωλζλ∴==-+-+()H ω=,相位差角:122tan ()12ζλπϕλ-=--()()()()()i iwt i wt s x t H x t H e ae ϕϕωω--===()0sin )s x a t x t t ωωϕ=∴=-Xa =其中,n ωλω==ζ= 2.8 解:1、 系统的振动微分方程为:0=⎪⎭⎫ ⎝⎛-+++•••s x x k kx x c x m即:s kx kx x c x m =++2激励函数为:()T t t Tdk kx s ≤≤=0 傅立叶级数三要素:kd tdt T dk T a T ==⎰002()0cos 20=⋅=⎰dt nwt t T dk T a T n()πn kd dt nwt t T d k T b T n -=⋅=⎰sin 20所以,激励函数的前四项为:()()()∑=⋅+⋅+=41sin cos 2n n n s t n b t n a a kx ωω)4sin 413sin 312sin 21(sin 2wt wt wt wt d k d k+++-=π 系统稳态响应的前三项为:])6()91(3)3sin()4()41(2)2sin()2()1()sin([24)2()1(2)sin(4222322222221312222ζλλψζλλψζλλψπλζλψ+--++--++---=+--+=∑=wt wt wt dd n n k nwt b d x n n n 其中3,2,1,12arctan22=-=n n n n λλζψ2.9 解:运用杜哈美积分法())]03.0sin()02.0(sin(50)03.0cos()02.0cos(5.0[)03.0sin()03.0(sin )(1)03.0sin(03.0)];01.0sin(50)01.0cos(5.0[)01.0sin()01.0(sin )50(1)01.0sin(01.0);01.00(50)(;)(sin )(1sin )(sin )(1sin )/(cos 20001.0020001.00000000000.0p p p p p mpF p p d p f mp p p x s t p p p mp F p pd p F F mpp px s t t t F F t f d t p f mppt p d t p f mp pt p x pt x t t t ---+=-+==+-+=--+==≤≤-=-+=-+⎪⎭⎫ ⎝⎛+=⎰⎰⎰⎰υτττυυτττυτττυτττχ时,当时,当4.1解直接法()11121221111221222213222212320()0()0()0m x k k x k x m x k x k x x m x k x x k x m x k x k k x ++-=⎧+--=⎧⎪⇒⎨⎨+-+=-++=⎪⎩⎩122111223222000k k k m x x k k k m x x +-⎡⎤⎡⎤⎡⎤⎡⎤∴+=⎢⎥⎢⎥⎢⎥⎢⎥-+⎣⎦⎣⎦⎣⎦⎣⎦其中,122223k k k K k k k +-⎡⎤=⎢⎥-+⎣⎦拉格朗日法系统为无阻尼自由振动系统,拉格朗日方程形式为:0ii id TT Udt q q q δδδδδδ⎛⎫-+= ⎪⎝⎭ 广义坐标为:12,x x2211221122T m x m x =+ 0,1,2iTi x δδ== 111111,T d T m x m x x dt x δδδδ⎛⎫== ⎪⎝⎭222222,T d T m x m x x dt x δδδδ⎛⎫== ⎪⎝⎭()2221122132111222U k x k x x k x =+-+ 112212213212(),()U U k x k x x k x x k x x x δδδδ=--=-+ ∴()11121221111221222213222212320()0()0()0m x k k x k x m x k x k x x m x k x x k x m x k x k k x ++-=⎧+--=⎧⎪⇒⎨⎨+-+=-++=⎪⎩⎩影响系数法令121,0x x ==11112112k k x k x k k =+=+ 2112212k k k x k ==-=-令120,1x x ==22223223k k x k x k k =+=+122223k k k K k k k +-⎡⎤∴=⎢⎥-+⎣⎦4.2解:直接法∴111213311113112332212123222111222333232331333122233()()0()0()()0()0()()0()0J k r k r J k r k r k r k r J k r k r J k r k r k r k r J k r k r J k r k r k r k r θθθθθθθθθθθθθθθθθθθθθθθθθθθ⎧⎧----=++--=⎪⎪+---=⇒-++-=⎨⎨⎪⎪+-+-=--++=⎩⎩ ∴12300100000100001J M J J J ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦131311223223211121112k r k rk r k r K k rk r k r k r kr k rk rk r k r +----⎡⎤⎡⎤⎢⎥⎢⎥=-+-=--⎢⎥⎢⎥⎢⎥⎢⎥--+--⎣⎦⎣⎦4.3解a,1234mmMmm⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,1222233334444k k kk k k kKk k k kk k+-⎡⎤⎢⎥-+-⎢⎥=⎢⎥-+-⎢⎥-⎢⎥⎣⎦b,1234mmMmm⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,222233334444k kk k k kKk k k kk k-⎡⎤⎢⎥-+-⎢⎥=⎢⎥-+-⎢⎥-⎢⎥⎣⎦c,1234mmMmm⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,12222333344443k k kk k k kKk k k kk k k+-⎡⎤⎢⎥-+-⎢⎥=⎢⎥-+-⎢⎥-+⎢⎥⎣⎦4.4解:质心位于距左端34l处0324l m xdx mllx lm⎛⎫+⎪==⎪⎪⎝⎭⎰令1,0xθ==11211223442 k kx kx kl kl k k kx kx l=+===-=-令0x=,1θ=22233544448l l k k k l l kl θθ=+= ∴刚度矩阵为,222528kl kK kl kl ⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦令1,0x θ==1122m mx m ∴==21120m m ==令0,1x θ==222524m I ml θ==,3222445()424ll m l I x dx m ml l -=+=⎰∴质量矩阵为,2205024mM ml ⎡⎤⎢⎥=⎢⎥⎣⎦22202205502428kl mk x x klml kl θθ⎡⎤-⎡⎤⎢⎥⎡⎤⎡⎤⎢⎥∴+=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥-⎣⎦⎢⎥⎣⎦特征矩阵为,22222222552824n n nkl k m H K M kl kl ml ωωω⎡⎤--⎢⎥=-=⎢⎥⎢⎥--⎢⎥⎣⎦将20n H K M ω=-=整理为,22422221440335n n m ll km k l ωω-+=求得特征值为,2120.735k k m m ω⎛=≈ ⎝,222 3.265k k mm ω⎛=+≈ ⎝ 2n H K M ω=-的伴随阵,2222558242222n n kl kl ml adjH kl k m ωω⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦将22120.735, 3.265k km mωω==代入 得对应特征向量,1211,1.0599.06A A l l ⎡⎤⎡⎤⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦则主振型矩阵为,111.0599.06A l l ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦模态质量矩阵为21111201.0599.06 1.0599.065024TT P mM A MA ml l l l l ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦2.2340019.1mm ⎡⎤=⎢⎥⎣⎦模态刚度矩阵为21111221.0599.06 1.0599.06528TT P kl k K A KA kl kl l l l l ⎡⎤-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥--⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦1.6420062.362kk ⎡⎤=⎢⎥⎣⎦归一化因子为,i α==∴归一化因子方阵,0.669000.229R ⎤=⎥⎦ ∴正则振型矩阵为,110.6690.2290.66901.0599.060.708 2.07500.229N A AR ll l l ⎡⎤⎡⎤⎡⎤⎢⎥⎥===--⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎦正则模态质量矩阵为,20.6690.2290.6690.229200.9990.0000.7082.0750.708 2.07550.000 1.002024TTN N N mM A MA ml ll l l ⎡⎤⎡⎤⎡⎤⎡⎤⎥⎥⎢===--⎢⎥⎢⎥⎢⎥⎢⎣⎦⎢⎥⎢⎥⎣⎦⎦正则模态刚度矩阵为,20.6690.2290.6690.22920.7340.00020.7082.0750.708 2.07550.0003.16528T TN N N kl kk K A KA kl m kl l l l l ⎡⎤-⎡⎤⎡⎤⎢⎥⎡⎤⎥⎥===⎢--⎢⎥⎢⎥⎢⎥⎣⎦⎢-⎢⎥⎢⎥⎦⎦⎢⎣⎦第一阶主振型示意图,1N 为节点1第二阶主振型示意图,2N 为节点1.265习题4.6解:(1)直接法,受力如图f f k mz)r r l ϕ2m ρϕ2()()0()()0r r f f r r r f f f mz k z l k z l m k z l l k z l l ϕϕρϕϕϕ+++-=⎧⎪⎨++--=⎪⎩222()()0()()0f r r r f f r r f f r r f f mz k k z k l k l m k l k l z k l k l ϕρϕϕ+++-=⎧⎪⇒⎨+-++=⎪⎩ 运动微分方程为222000f r r r f f r rf f r r f f k k k l k l mz z k l k lk l k l m ρϕϕ+-⎡⎤⎡⎤⎡⎤⎡⎤+=⎢⎥⎢⎥⎢⎥⎢⎥-+⎣⎦⎣⎦⎣⎦⎣⎦ 特征矩阵为222222f r r r f fr r f f r r f f k k m k l k l H K M k l k l k l k l m ωωωρ⎡⎤+--=-=⎢⎥-+-⎢⎥⎣⎦由20H K M ω=-=得()()2422222()0f r r r f f f r f r m k k m kl k l m k k l l ρωρω⎡⎤-+++++=⎣⎦21ω=22ω=H 的伴随矩阵22222r r f ff f r r f f r r f r k l k l m k l k l adjH k l k l k k m ωρω⎡⎤+--=⎢⎥-+-⎢⎥⎣⎦将固有频率21ω、22ω代入adjH ,得主振型:22(1)(2)1211,f r f r f f r r f f r r k k m k k m A A k l k l k l k l ωω⎡⎤⎡⎤⎢⎥⎢⎥+-+-==⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦(2)f f r r k l k l = 则运动微分方程变为22200000f r r r f f k k mz z k l k l m ρϕϕ+⎡⎤⎡⎤⎡⎤⎡⎤+=⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦⎣⎦ z自由度的固有频率为ω=ϕ自由度的固有频率为ω=两运动互不相关 (3)2f r l l ρ=()()21,22fr f f r r f f r rf rll k l k l k l k l ml l ω++±-=若f f r r k l k l >()()2212,f r rf r ffrl l k l l k ml ml ωω++==,(1)(2)111,1f r A A l l ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥--⎢⎥⎢⎥⎣⎦⎣⎦若f f r r k l k l <()()2212,f r ff r rrfl l k l l k ml ml ωω++==,(1)(2)111,1f r A A l l ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥--⎢⎥⎢⎥⎣⎦⎣⎦4.9柔度矩阵 F=1111122123k ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦刚度矩阵 K=1210121011F k --⎡⎤⎢⎥⎢⎥=--⎢⎥⎢⎥-⎣⎦质量矩阵 000000J M J J ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦所以222362422322025600nn nn n n nk J kH K M k k J kJ J k Jk k kk J ωωωωωωω--=-=---=-+-+=--解得:2(1)2(2)2(3)0.2, 1.5, 3.2nn n k k k J J Jωωω===(1)(2)(3)N1111.80.5 1.22.240.750.441111.80.5 1.22.240.750.440.330.740.62A0.60.370.740.740.560.27P0.5TCpA A AA⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎡⎤⎢⎥⎢⎥∴=-⎢⎥⎢⎥-⎣⎦∴⎡⎤⎢⎥⎢⎥=-⎢⎥⎢⎥-⎣⎦=对应主振型正则振型矩阵TN NPNiNi2Pi PiN0.67P A P0.11.5T sin t0.249.26000 1.81000 2.634.07k00K K00.75k0008.97kPXK M0.6XTP p PTp PJA MA JJA Aωω⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥∴==-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦=-∴=质量模态矩阵 M刚度模态矩阵简谐力作用下2222N N2274.07k9.26J0.110.75k1.81J0.248.97k 2.63J0.0094.07k9.26J0.539X=A X0.75k1.81J0.4938.97k 2.63Jωωωωωω⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦∴-⎡⎤⎢⎥-⎢⎥⎢⎥=⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦物理坐标下位移响应4.102222(1)2(2)(1)(2)P TP P Pi Pi i i 0202202113,,A ,A 1111A 11Q 0P P A P Q 2Q X P (1cos t)/n nnnn m k k M K m kk k mk H K M kk mk k m m ωωωωωωω-⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦--∴=-==--⎡⎤⎡⎤∴====⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤∴=⎢⎥⎢⎥-⎣⎦⎡⎤⎡⎤=∴==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦=-对应主振型由杜哈梅积分得2P 2P P 0m X 2k Q(1cos t)312mQ X A X (13k 1ω⎡⎤⎢⎥∴=⎢⎥-⎢⎥⎣⎦⎡⎤∴==-⎢⎥⎢⎥⎣⎦5.1 解:系统质量刚度矩阵分别为22,2m kk m k k k M K m kk k m kk -⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥==⎢⎥⎢⎥--⎢⎥⎢⎥-⎣⎦⎣⎦第一瑞丽商:假设21111112111112111,0.2;2211111222;1233123411,0.1234;22111112221,0.112331234TTTT A KA k A p A MA m A MA k p A MFMA m k p trD m⎡⎤⎢⎥⎢⎥===⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥===⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦1则第二瑞丽商:1系统柔度矩阵 F=k 假设 A 则邓克莱法:m D=FM=则k这三种方法中,第二瑞丽商精度最高,邓克莱法计算结果偏小。

周期矩形脉冲信号的分析

周期矩形脉冲信号的分析

周期矩形脉‎冲信号的分‎析
假设周期矩‎形脉冲信号‎f(t)的脉冲宽度‎为τ,脉冲幅度为‎E,重复周期为‎T,如下图所示‎
这种信号的‎表示为
1.求f(t)的复数振幅‎和展开成傅‎里叶级数
此等式是三‎角傅里叶级‎数展开式,由此作出单‎边谱。

上式为指数‎傅里叶展开‎式,由此画出双‎边谱。

2.画频谱图
由复振幅的‎表达式可知‎,频谱谱线顶‎点的联线所‎构成的包络‎是抽样函
数‎。

1)找出谐波次‎数为零的点‎(即包络与横‎轴的交点)
包络线方程‎为,与横轴的交‎点由下式决‎定:
若这些频率‎恰好基波频‎率恰好是基‎波频率的整‎数倍,则相应的谐‎波为零。

所以,包络线与横‎轴的交点应‎满足两个条‎件:一是谐波条‎件;二是谐波为‎零的条件。

2)粗略求出各‎次谐波的振‎幅值
由的表达式‎可知,当时,最大值为,即当时,第一个零点‎内含有二条‎谱线,依次类推,就大致画出‎了振幅频谱‎图。

3)相位的确定‎
将代入可知‎,,当角度在第‎一、二象限时为‎
正实数,即相位为零‎;当角度在第‎三、四象限时为‎负实数,即相位为π‎。

3.频谱特点分‎析
1)频谱是离散‎的,两谱线间的‎距离为基波‎频率,脉冲周期越‎大,谱线越密。

2)由知:各分量的大‎小与脉幅成‎正比,与脉宽成正‎比,与周期成反‎比。

当E变大时‎,τ变大,则各次谐波‎的幅度愈大‎;T变大,则谐波幅度‎愈小。

3)各谱线的幅‎度按包络线‎变化,当时,谱线的包络‎经过零值。

4)主要能量在‎第一过零点‎内。

主带宽度为‎:。

周期信号的傅里叶级数分析

周期信号的傅里叶级数分析

实验三周期信号的傅里叶级数分析一、实验目的熟悉连续时间周期信号的傅里叶级数分解原理及方法,掌握周期信号的傅里叶频谱的概念及计算方法,熟悉相应MATLAB 函数的调用格式和作用,掌握利用MATLAB 计算傅里叶级数系数及绘制频谱图的方法。

二、实验原理(一)周期信号的傅里叶级数分析原理按傅里叶分析的原理,任何周期信号都可以用一组三角函数)}cos(),{sin(t n t n ΩΩ的组合表示。

1、三角函数形式的傅里叶级数∑∞=Ω+Ω+=+Ω+Ω+Ω+Ω+=1022110)]sin()cos([2...)2sin()2cos()sin()cos(2)(n n n t n b t n a a t b t a t b t a a t f (1) 式中,n n b a a ,,0称为傅里叶系数。

()dt t f T a TT ⎰-=22012()...3,2,1)cos(222=Ω=⎰-n dt t n t f T a TT n ,(),...3,2,1,)sin(222=Ω=⎰-n dt t n t f T b TT n即可以用一组正弦波和余弦波合成任意的周期信号。

式(1)的三角函数形式傅里叶级数可以写成余弦函数的形式:∑∞=+Ω+=10)cos(2)(n n n t n A A t f ϕ其中:00a A =,22n n n b a A +=,nn n a b arctan -=ϕ 2、指数函数形式的傅里叶分析其中系数3、周期信号的频谱(1)三角函数形式频谱w A n ~关系曲线称为幅度频谱图关系曲线称为相位频谱图(2)指数函数形式频谱 w F n ~关系曲线称为幅度频谱图关系曲线称为相位频谱图(二)周期信号的傅里叶级数的MATLAB 实现例1:试用MATLAB 求如图1所示的周期方波信号的傅里叶级数分解。

解:周期方波信号是一个偶函数,又是一个奇谐函数,因此其傅里叶级数只含有奇次谐波的余弦项,即周期方波信号可以分解为: ()...5,3,1)cos(5.04)cos(244-22=Ω=Ω=⎰⎰-n dt t n T dt t n t f T a TT T T n , 求傅里叶系数的程序如下:syms t n T;∑∞-∞==n t jn n F t f Ωe )(⎰-=22-Ωd e )(1T T t jn n t t f T F w n ~ϕw n ~ϕy=0.5*cos(n*2*pi/T*t);an=(4/T)*int(y,-T/4,T/4);运行结果为:an=2*sin(1/2*pi*n)/pi/n则此周期方波信号可以分解为:)(,...5,3,1)2sin(2,0===n n n a b n n ππ 将其展开为三角函数形式的傅里叶级数:,...)3,2,1()cos(2sin 2)(...])5cos(51)3cos(31)[cos(2(12==-+-=∑∞-=j nwt n n t f wt wt wt t f j n πππ) 例2:根据例1的结果,试用正弦信号的叠加近似合成一频率为50Hz ,幅值为3的方波。

信号与系统实验指导书(matlab软件仿真)

信号与系统实验指导书(matlab软件仿真)

信号与系统实验指导书(MATLAB仿真)目录实验一MATLAB 基本应用 (2)实验二信号的时域表示 (7)实验三连续信号卷积 (11)实验四典型周期信号的频谱表示 (18)实验五傅立叶变换性质研究 (23)实验六离散信号分析 (26)实验七离散系统的Z域分析 (29)Matlab相关符号及函数说明 (37)实验一MATLAB 基本应用一、实验目的:学习MATLAB的基本用法,了解 MATLAB 的目录结构和基本功能以及MATLAB在信号与系统中的应用。

二、实验内容:例一已知x的取值范围,画出y=sin(x)的图型。

参考程序:x=0:0.05:4*pi;y=sin(x);plot(y)例二计算y=sin(π/5)+4cos(π/4)例三已知z 取值范围,x=sin(z);y=cos(z);画三维图形。

z=0:pi/50:10*pi;x=sin(z);y=cos(z);plot3(x,y,z)xlabel('x')ylabel('y')zlabel('z')例四已知x的取值范围,用subplot函数绘图。

参考程序:x=0:0.05:7;y1=sin(x);y2=1.5*cos(x);y3=sin(2*x);y4=5*cos(2*x);subplot(2,2,1),plot(x,y1),title('sin(x)')subplot(2,2,2),plot(x,y2),title('1.5*cos(x)')subplot(2,2,3),plot(x,y3),title('sin(2*x)')subplot(2,2,4),plot(x,y4),title('5*cos(2*x)')连续信号的MATLAB表示1、指数信号:指数信号Ae at在MATLAB中可用exp函数表示,其调用形式为:y=A*exp(a*t) (例取A=1,a=-0.4)参考程序:A=1;a=-0.4;t=0:0.01:10;ft=A*exp(a*t);plot(t,ft);grid on;注:grid on是一个函数,表示在画图的时候添加网格线。

实验3-信号的频域分析

实验3-信号的频域分析

一,实验目的四,心得体会了解信号频谱和信号频域,掌握其特性。

一,实验原理实验主要分为四个部分,分别分析了连续和离散信号的周期、非周期情况下特性。

1.连续周期信号的频谱分析首先手算出信号的傅里叶级数,得出信号波形,然后通过代码画出信号波形图。

2.连续非周期信号的频谱分析先由非周期信号的时域信号得到它的频谱X(w),再通过MATLAB求出其傅里叶变换并绘出图形。

X=fourier(x)x=ifourier(x)①符号运算法syms t②数值积分法quad(fun,a,b)③数值近似法3.离散周期信号的频谱分析X=fft(x)4.离散非周期信号的频谱分析可以化为两个相乘的矩阵,从而由MATLAB实现。

三,实验内容(1)已知x(t)是如图周期矩形脉冲信号。

1).计算该信号的傅里叶级数。

2).利用MATLAB绘出由前N次谐波合成的信号波形,观察随着N的变化合成信号波形的变化规律。

3).利用MATLAB绘出周期矩形脉冲信号的频谱,观察参数T和τ变化时对频谱波形的影响。

思考下列问题:①什么是吉伯斯现象?产生吉伯斯现象的原因是什么?②以周期矩形脉冲信号为例,说明周期信号的频谱有什么特点。

③周期矩形脉冲信号参数τ/T的变化,其频谱结构(如频谱包络形状、过零点、频谱间隔等)如何变化?(2)已知x(t)是如图所示矩形脉冲信号。

1).求该信号的傅里叶变幻。

2). 利用MATLAB绘出周期矩形脉冲信号的频谱,观察参数T和τ变化时对频谱波形的影响。

3). 让矩形脉冲宽度始终等于一,改变矩形脉冲宽度,观察矩形脉冲信号时域波形和频谱随矩形脉冲宽度的变化趋势。

①比较矩形脉冲信号和周期矩形脉冲信号的频谱,两者之间有何异同。

②让矩形脉冲的面积始终等于一,改变矩形脉冲的宽度,观察矩形脉冲信号时域波形和频谱波形随矩形脉冲宽度的变化趋势。

(1)已知x(t)是如图所示的周期矩形脉冲信号①,计算该信号的傅里叶级数答:由图中x(t)波形可知信号为通过计算,可以知道所以x(t)的傅里叶级数为。

应用MATLAB实现周期信号和非周期信号频谱仿真课程设计

应用MATLAB实现周期信号和非周期信号频谱仿真课程设计

设计题目:应用MATLAB实现周期信号和非周期信号频谱仿真1 课程设计目的通过课程设计,提高学生综合运用所学知识来解决实际问题、查阅文献资料、及进行科学实验或技术设计的能力。

学会用MATLAB 语言编写信号与系统及数字信号处理的仿真程序;认真分析每个题目的具体要求;上机前初步编好程序,上机时认真调试程序;增加学生对仿真软件MATLAB的感性认识,熟悉MATLAB软件平台的使用和MATLAB编程方法及常用语句;了解MATLAB的编程方法和特点;加深理解采样与重构的概念,掌握连续系统频率响应概念,掌握利用MATLAB分析系统频率响应的方法和掌握利用MATLAB实现连续信号采用与重构的方法初步掌握线性系统的设计方法,培养独立工作能力。

培养学生正确的设计思想,理论联系实际的科学态度,严肃认真、实事求是的科学态度和勇于探索的创新精神。

培养学生综合运用所学信号与系统及数字信号处理的知识,分析和解决工程技术问题的能力。

为毕业设计打下基础。

2 设计原理2.1 MATLAB软件说明MATLAB(Matrix Laboratory)是美国Math Works公司产品,Matrix Laboratory意为“矩阵实验室”,最初的MATLAB只是一个数学计算工具。

但现在的MATLAB已经远不仅仅是一个“矩阵实验室”,它已经成为一个集概念设计、算法开发、建模仿真,实时实现于一体的集成环境,它拥有许多衍生子集工具。

MATLAB现已被广泛于数学、通信、信号处理、自动控制、神经网络、图形处理等许多不同学科的研究中。

MATLAB特点:(1)此高级语言可用于技术计算(2)此开发环境可对代码、文件和数据进行管理(3)交互式工具可以按迭代的方式探查、设计及求解问题(4)数学函数可用于线性代数、统计、傅立叶分析、筛选、优化以及数积分等(5)二维和三维图形函数可用于可视化数据(6)各种工具可用于构建自定义的图形用户界面(7)各种函数可将基于MATLAB 的算法与外部应用程序和语言(如 C 、C++、Fortran 、Java 、COM 以及 Microsoft Excel )集成 (8)不支持大写输入,内核仅仅支持小写2.2 周期信号的频谱分析——傅里叶级数FS(1) 任何满足狄义赫利条件周期函数都可展成傅里叶级数。

matlab实验报告

matlab实验报告

南昌大学信息工程学院信号与系统实验报告班级:通信122班姓名:***学号:**********软件实验部分:1.用matlab实现π的求解解:相应程序如下:for n=1:10000sum=qiuhe(n);pai(1,n)=sqrt(6*sum);endt=[1:10000];plot(t,pai,'r')调用函数sum如下function sum=qiuhe(m);sum=0;for n=1:ma=1/(n^2);sum=sum+a;end2.用simulink实现冲激响应观察波形如图所示:3.1.已知某系统微分方程为r’’(t)+r’(t)+r(t)=e’(t)+e(t)分别用两种方法计算其冲激响应h(t)和阶跃响应g(t),对比理论结果进行验证。

解:a=[1,1,1];b=[1,1];sys=tf(b,a); %定义LTI系统模型t=[0:0.01:10]; %生成0到10s,间隔0.01s的抽样时间figure;subplot(2,2,1);step(sys);subplot(2,2,2);x_step=zeros(size(t)); %产生阶跃信号x_step(t>0)=1;x_step(t==0)=1/2;lsim(sys,x_step,t); %仿真x_step激励sys的响应并绘图subplot(2,2,3);[h1,t1]=impulse(sys,t);plot(t1,h1,'k');title('Impulse Response');xlabel('Time(sec)');ylabel('Amplitude');subplot(2,2,4); %在右下角的子图中用第二种方法绘制冲激响应x_delta=zeros(size(t)); %产生冲激信号x_delta(t==0)=100; %保证数值积分为1[y1,t]=lsim(sys,x_delta,t); %仿真x_delta激励sys的响应并保存y2=y1'-x_delta;plot(t,y2,'k');title('Impulse Response');xlabel('Time(sec)');ylabel('Amplitude');结论:通过比较发现两种方法求解冲击响应和阶跃响应的结果是一致的3.2. 请编写一个自定义函数【F,tF】=int1(f,tf,a).实现数值积分,其中f和tf 分别用列矢量表示待积函数的抽样值和抽样时间,a表示积分的其实时间,F和tF分别表示积分结果的抽样值和抽样时间。

第7章周期信号频域分析及MATLAB实现-文档资料

第7章周期信号频域分析及MATLAB实现-文档资料


7.2.3 双边频谱

周期信号可以分解成一系列虚指数信号之和,并可以求得 相应的傅里叶系数
f( t) ቤተ መጻሕፍቲ ባይዱFe n
n
jn t
a a a t t 0 n jb n jn n jb n jn e e 2 n 2 2 1 1 j 1 F e a j b n A n n n
a 0 A 0 .2 5 0 F 0 2
A5 ≈ 0.09, A10 ≈ 0.063
A4 ≈ 0, A9 ≈ 0.05,
F 0 . 2 2 5 , F 0 . 1 5 9 , F 0 . 0 7 5 , F 0 1 2 3 4 F 0 . 0 4 5 , F 0 . 0 5 3 5 6
6
7.1 周期信号的傅里叶级数与信号的频谱
西华师范大学 物理与电子信息学院
2. 连续时间周期信号的傅里叶级数近似
用有限项的傅里叶级数求和来逼近原函数
f(t)的截断傅里叶级数表示
3. 符号积分函数int()求截断傅里叶级数及傅里叶表示 intf=int(f,v,a,b) 给出符号表达式 f 对指定变量v的定积分。
2 T
7-1a
2
7.1 周期信号的傅里叶级数与信号的频谱
西华师范大学 物理与电子信息学院
傅里叶系数:
2 2 a f() td t f() td t 0 0 T T 1
T 1
T 1 2 T 1 1 2
2 T 1 a f ()c t o sn td t n 0 T 1
N 1
3. Matlab命令
DTFS:
a
1 fft ( x ) N
(7.16) (7.17)

信号与系统Matlab实验作业

信号与系统Matlab实验作业

实验一典型连续时间信号和离散时间信号一、实验目的掌握利用Matlab画图函数和符号函数显示典型连续时间信号波形、典型时间离散信号、连续时间信号在时域中的自变量变换。

二、实验内容1、典型连续信号的波形表示(单边指数信号、复指数信号、抽样信号、单位阶跃信号、单位冲击信号)1)画出教材P28习题1-1(3) ()[(63)(63)]t=----的波形图。

f t e u t u t2)画出复指数信号()()j t f t e σω+=当0.4, 8σω==(0<t<10)时的实部和虚部的波形图。

t=0:0.01:10;f1='exp(0.4*t)*cos(8*t)';f2='exp(0.4*t)*sin(8*t)';figure(1)ezplot(f1,t);grid on;figure(2)ezplot(f2,t);grid on;3)画出教材P16图1-18,即抽样信号Sa(t)的波形(-20<t<20)。

t=-10:0.01:10;f='sin(t)/t';ezplot(f,t);grid on;4)用符号函数sign画出单位阶跃信号u(t-3)的波形(0<t<10)。

t=0:0.01:10;f='(sign(t-3)+1)/2';ezplot(f,t);grid on;5)单位冲击信号可看作是宽度为∆,幅度为1/∆的矩形脉冲,即t=t 1处的冲击信号为11111 ()()0 t t t x t t t otherδ∆⎧<<+∆⎪=-=∆⎨⎪⎩画出0.2∆=, t 1=1的单位冲击信号。

t=0:0.01:2;f='5*(u(t-1)-u(t-1.2))';ezplot(f,t);grid on;axis([0 2 -1 6]);2、典型离散信号的表示(单位样值序列、单位阶跃序列、实指数序列、正弦序列、复指数序列)编写函数产生下列序列:1)单位脉冲序列,起点n0,终点n f,在n s处有一单位脉冲。

Matlab第2章 连续信号的傅里叶变换

Matlab第2章 连续信号的傅里叶变换
第2章
连续信号的傅里叶变换
第2章 连续信号的傅里叶变换
在一些前续课程中,我们讨论信号一般在时域进行,重点考 察其时间函数的特性。从本章起,我们要进入信号与系统的变换 域分析。在变换域分析中,首先讨论傅里叶分析。傅里叶分析的 研究与应用是在傅里叶级数正交函数展开的基础上发展而产生的, 至今已经历一百余年。1807年,法国数学家傅里叶(Jean Baptiste Joseph Fourier,1768 -1830) 向巴黎科学院呈交“热的传播”论文, 推导出著名的热传导方程 ,并在求解该方程时发现解函数可以由 三角函数构成的级数形式表示,从而提出任何一个函数都可以展 成三角函数的无穷级数,傅里叶分析等理论由此产生。当今,傅 里叶分析已经成为信号分析与系统设计不可缺少的重要工具。
(2.1. 5)
n1
式中n为正整数,其各次谐波分量幅度值的计算公式:
直流分量
a0

1 T1
T1 f (t)dt 1
0
T1
T1
2 T1
f (t)dt
2
n次谐波余弦分量的系数
an

2 T1
T1 0
f
(t) cos n1tdt

2 T1
T1
2 T1
f (t) cos n1tdt
须是有限值。
一般周期信号都是满足这三个条件,任何满足狄义赫利条件
的周期函数都可展成傅里叶级数。
1,三角形式的傅里叶级数
由数学分析课程已知,周期信号 ,f(t) 周期为T1,基波
角频率为1

2π T1
,在满足狄义赫利条件时,可展开成

f (t) a0 (an cos n1t bn sin n1t)

MATLAB实验报告(信号与线性系统分析)

MATLAB实验报告(信号与线性系统分析)

实验一 MATLAB 的基本使用【一】 实验目的1.了解MA TALB 程序设计语言的基本特点,熟悉MATLAB 软件的运行环境;2.掌握变量、函数等有关概念,掌握M 文件的创建、保存、打开的方法,初步具备将一般数学问题转化为对应计算机模型处理的能力;3.掌握二维图形绘制的方法,并能用这些方法实现计算结果的可视化。

【二】 MATLAB 的基础知识通过本课程的学习,应基本掌握以下的基础知识: 一. MATLAB 简介 二. MATLAB 的启动和退出 三. MATLAB 使用界面简介 四. 帮助信息的获取五. MATLAB 的数值计算功能六. 程序流程控制 七. M 文件八. 函数文件九. MATLAB 的可视化 【三】上机练习1. 仔细预习第二部分内容,关于MATLAB 的基础知识。

2. 熟悉MATLAB 环境,将第二部分所有的例子在计算机上练习一遍3.已知矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=123456789,987654321B A 。

求A*B ,A .* B ,比较二者结果是否相同。

并利用MATLAB 的内部函数求矩阵A 的大小、元素和、长度以及最大值。

解:代码:A=[1,2,3;4,5,6;7,8,9];B=[9,8,7;6,5,4;3,2,1]; A*B A.*B两者结果不相同A*B=30 24 18 84 69 54 138 114 90 A.*B= 9 16 21 24 25 24 21 16 9求A 矩阵的行和列: [M,N]=size(A)M =3N =3 求A 矩阵的长度:x=length(A)x =3 元素和:sum(sum(A))ans =45最大值:max(max(A))ans =94. Fibonacci 数组的元素满足Fibonacci 规则:),2,1(,12=+=++k a a a k k k ;且121==a a 。

现要求该数组中第一个大于10000的元素。

实验一 用同时分析法观测方波信号的频谱

实验一 用同时分析法观测方波信号的频谱
三、实验任务
已知周期矩形脉冲信号,其幅度为1,脉冲宽度为 ,周期 ,用Matlab语言编程求出该信号三角形式的傅立叶系数,并绘出各次谐波叠加的傅立叶综合波形图。
四、实验要求
写出程序流程图,编制出完整的实验程序。
五、Matlab算法提示及说明
1.采用符号积分int求[0,T]时间内函数的三角级数展开系数:a0,an,bn;
此式可以用以下的MATLAB语句来表示:
f(t)=f(nTs)*Ts*wc/pi*sinc((wc/pi)*(ones(length(nTs),1)*t-nTs’*ones(1,length(t))));
为了比较由采样信号恢复后的信号与原信号的误差,可以用abs()函数进行计算。
当采样频率ωs=2ωm时,称为临界采样,取滤波器截止频率ωc=ωm。
% B_sym第2,3,4……元素依次是1,2,3……次谐波sin项展开系数。
% tao=1 tao/T=0.2
syms t n k x
T=5;tao=0.2*T;a=0.5;
if nargin<4
Nf=6
end
if nargin<5
Nn=32
end
x=time_fun_x(t); %调用符合变量写成的周期矩形脉冲
2.编写子函数y=time_fun_e(t),求出该信号在绘图区间内的信号样值。
3.编写求解信号傅立叶系数及绘制合成波形图的通用函数CTFShchsym,该函数流程如下
调用函数x=time_fun_x(t),获取周期信号的符号表达式。
求信号的傅立叶系数
求各次谐波
绘制各次谐波叠加波形图
调用信号time_fun_e(t),绘制原信号波形图
2、将基波和三次谐波绘制在同一坐标平面上,并且把在内容3中观测到的合成波形也绘制在同一坐标纸上。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档