城市给水管网水力计算程序及例题-湖南大学环境科学与工程学院
给排水管网水力计算方法
给排水管网水力计算方法在给排水工程中,水力计算是非常重要的环节,特别是在设计给排水管网时。
给排水管网的水力计算涉及到流量、压力、速度等多个参数,需要综合考虑。
本文将介绍给排水管网水力计算的方法和步骤。
1. 给排水管网的定义给排水管网是建筑物内或城市管道系统中,传输水、废水的管道和相关附件的总称。
它由供水管网和排水管网组成。
供水管网主要是将清水输送给用户,而排水管网则主要负责排出污水和废水。
2. 给排水管网水力计算的目的在给排水管网水力计算中,主要是要计算出管道内的流量、速度和压力等参数。
这些参数可以帮助我们评估管道的输送能力,确定合适的管道规格和数量,保证给排水系统的正常运行。
3. 给排水管网水力计算的方法给排水管网水力计算一般采用以下两种方法:3.1 简化方法简化方法是指在管道的水力计算中,忽略管道的一些细节,按照一定的模型进行简化。
这种方法适用于一些简单的给排水管网,如单管计算、梯级计算等。
3.2 完整计算方法完整计算方法是指在管道的水力计算中,考虑管道的各种细节因素,包括流体的黏度、管道的弯头、三通、泵站等,以及管道长度、直径等因素。
这种方法适用于复杂的给排水管网,如城市供水、排水系统等。
4. 给排水管网水力计算步骤在进行给排水管网水力计算时,需要遵循以下步骤:4.1 确定管道参数管道参数包括管道长度、直径、材质、壁厚等。
这些参数将影响到管道的流量和阻力。
因此,在进行水力计算之前,需要准确地确定这些参数。
4.2 计算流量流量是指单位时间内通过管道横截面的液体体积。
在给排水管网水力计算中,通常是根据需求流量来计算,因此需要首先确定需求流量。
在确定需求流量后,可以根据流量公式计算出流量大小。
4.3 确定管道阻力管道阻力是指管道内液体流动时,流体与管道壁之间产生的阻力。
在给排水管网水力计算中,需要根据管道直径、材质和流量等参数来计算管道的阻力。
4.4 计算管道压力管道压力是指管道中液体的压强大小。
管网水力计算(精)
例题:某城市供水区总用水量93.75L/s.节点4接某工 厂,工业用水量为6.94L/s 。节点0-8都是两边供水。 求比流量
水塔
3 2
水泵
600 0 300 1 450 4
650
8
5
6
7
1.管线总长度:ΣL=2425m,其中水塔到
205
节点0的管段两侧无用户不计入。
2.比流量:
(93.75-6.94)÷2425=0.0358L/s
4.5.2 管网图形及简化
1.管网设计图中的元素 (1)节点:有集中流量进出、管道合并或分叉以 及边界条件发生变化的地点 (2)管段:两个相邻节点之间的管道管线:顺序 相连的若干管段 (3)环:起点与终点重合的管线 ①基环:不包含其它环的环 ②大环:包含两个或两个以上基环的环
③虚环:多水源的管网,为了计算方便,有时将两 个或多个水压已定的水源节点(泵站、水塔等) 用虚线和虚节点0连接起来,也形成环,因实际上 并不存在,所以叫做虚环。
管段编号
1-2 2-3 3-4 1-5 3-5 4-6 5-6 6-7
合计
管段计算总长度 (m)
800 0.5×600=300
0.5×600=300 0.5×600=300
800 800 600 500
4400
比流量 (L/s.m) 0.03182
沿线流量 (L/s)
25.45 9.55 9.55 9.55 25.45 25.45 19.09 15.91
(1)消防时:假设在泵房供水区、水塔供水区各又 一着火点,每个消防用水额定(20L/S)
泵房节点流量为 237.5+20=257.5 水塔节点流量为54.2+20=74.2
3给水管网系统水力计算
W~De
3.5 水头损失计算
流量和水头损失的关系 • 沿程水头损失:
h沿 = alq2 = sq2
a=λ 8 1 π 2g D5
s = al
• 局部水头损失:h局=(15~25)%h沿
13
水头损失公式的指数形式
有利于管网理论分析,便于计算机程序设计。 1.沿程水头损失公式的指数形式为:
hf hf
= kq n l Dm
• 流量符号规定:
离开节点的管段流量为正,流向节点的为负
• 管网节点方程数=J-1
3.2.2 压降方程
hij = [H i − H j ] =〔sij qinj〕ij
• Hi、Hj-管段两端节点i、j的水压高程,m • hij-管段水头损失,m • sij-管段摩阻 • qij-管段流量,m3/s。 • n=1.852~2 • 管网的压降方程数=管段数P
= aq n l
式中
k、n、m——指数公式参数;
a——比阻,即单位管长的摩
阻系数,a
=
k Dm
;
hf = s f qn
sf
——摩阻系数,s f
= al =
kl 。 Dm
2.局部水头损失公式的指数形式为: hm = sm q n
式中 Sm——局部阻力系数;
3.沿程水头损失与局部水头损失之和
hg
= hm
k (qt
+
l
− l
x
ql )n
dx
=
k
(qt
+
ql )n+1
−
qtn +1
l
0
dm
(n + 1)d m ql
根据水力等效原则
给水管网水力分析和计算.
回顾
管段压降方程(根据能量守恒定律)
管段两端节点水头之差等于该管段的压降:
HFi –HTi= hi
HFi——管段i的上端点水头; HTi——管段i的下端点水头; hi——管段i的压降; M——管段模型中的管段总数。
i-1,2,…,M
管网水力分析条件和目的:
1、已知条件: (1)管网布置:枝状管网、环状管网; (2)节点:节点流量、地面标高、服务压力; (3)管段:长度、管径、经济流速 、摩阻系数; 2、管网水力分析求解内容: (1)计算管段流量; (2)计算节点压力; (3)确定水泵流量、扬程; 3、管网水力分析目的——满足安全供水目标: (1)设计方案水力状态-流量、压力分布和变化; (2)管网事故、消防、转输流量工况校核。
(4)
[8]
( 5)
[9]
(6)
Q4
q8,h8
Q5
q9,h9
Q6
H 7 H 1 h1 H1 H 2 h2 H 2 H 3 h3 H 8 H 3 h4
H1 H 4 h5 H 2 H 5 h6 H 3 H 6 h7 H 4 H 5 h8 H 5 H 6 h9
枝状管网直接算法
1、管段流量:采用逆推法。 从树枝末端节点流量开始,用节点流量连续性方程, 向前逐一累加,每一管段下游所有节点流量的和即为 该管段的管段流量;
2、节点压力(水头):采用顺推法。 从已知压力节点出发,用管段能量方程求节点水头, 可立即解出。
例5.1 某城市树状给水管网系统如图所示,节点(1)处为水厂 清水池,向整个管网供水,管段[1]上设有泵站,其水力特性为: sp1=311.1(流量单位m3/s,水头单位m),he1=42.6m, n=1.852。根据清水池高程设计,节点(1)水头为H1=7.8m, 各节点流量、各管段长度与直径如图所示,各节点地面标高见表 5.1,试进行水力分析,计算各管段流量与流速、各节点水头与 自由水头。
管网水力计算
1 Q j Q j y qi 2 q j j点大用户用水量( l / s)
例:
57
1
沿线流量60(L/S)
2
24
3
4
13
24
5
9
9
6
30
7
11
10
8
5
8
9
试计算各点的节点流量. 5点的节点流量:1/2(24+13+9+10)=28(L/S)
【例题】某城市最高时总用水量为260L/s,其中
2.配水干管比流量
qcb Qh qi
l
260 120 4400 0.03182 l / s m
3.沿线流量:
qy qcb li
(l / s)
各 管 段 沿 线 流 量 计 算
管段编号 1-2 2-3 3-4 1-5 3-5 4-6 5-6 6-7
合 计
管段计算总长度 ( m) 800 0.5×600=300 0.5×600=300 0.5×600=300 800 800 600 500
(1)管网图形简化可分为分解、合并、省略 ①分解:只由一条管线连接的两管网,都可以把连 接管线断开,分解成为两个独立的管网。由两条 管线连接的分支管网,如它位于管网的末端且连 接管线的流向和流量可以确定,也可进行分解, 管网经分解后即可分别计算。 ②合并:管径较小、相互平行且靠近的管线可考虑 合并。 ③省略:管线省略时,首先是略去水力条件影响较 小的管线,也就是省略管网中管径相对较小的管 线,管线省略后的计算结果是偏于安全的。
4.5 管段流量、管径和水头损失
内 容:求出所有管道的直径、水头损 失、水泵扬程和水塔高度。并对事故时、消 防时、最大转输时的水泵扬程进行较核。
给水管网水力分析计算
第5章 给水管网水力分析计算 (4h)5.1 给水管网水力特性分析管段水力特性: ei n ii i i T Fi i h q q s H H h -=-=-1,s i = s fi + s mi + s pi ,h ei : 静扬程 ei nii i T i F i h q s H H h -±=-=)( (流量方向与管段方向一致时+号)ni i f i T i F i q s H H h )(±=-= (管段上无泵站和局部阻力)( 用海曾-威廉公式 87.4852.1852.167.10DC l q h wi f =)管网恒定流方程组求解条件:节点流量或压力必须有一个已知(定流节点和定压节点) 管网中必须有一个定压节点管网恒定流方程组求解方法:树状管网(管段流量可唯一确定,一次计算完成)环状管网(解环方程组,或解节点方程组,多次计算才能完成)5.2 树状管网水力分析求管段流量:从末端开始逆推法 求节点压头:从定压节点开始顺推法例题:某给水管网如图所示,节点(1) 为清水池,管段[1]上泵站特性为h p =42.6-311.1q p 1.852,节点(1)水头7.80m ,各节点流量、管段参数见图,管道Cw=100。
试进行水力分析,计算各管段流量、各节点水头与自由水头。
节点号(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 地面标高m 9.80 11.50 11.80 15.20 17.40 13.30 12.80 13.70 12.50 15.00解:第一步:从节点(10)开始逆推法求管段流量计算各管段压降第二步:从定压节点(1)开始顺推法求节点水头。
求节点自由水头5.3 环状管网水力分析基本环能量方程虚环 2哈代-克洛斯法管网平差计算步骤:(1) 根据供水情况拟定环状网管段方向,由连续性方程并考虑可靠供水要求分配各管段初始流量q ij ;(2) 求个管段的磨阻系数s (海曾-威廉87.4852.167.10D Cw l s ⋅⋅=,曼宁333.5229.10Dl n s ⋅⋅=),然后求水头损失n q s h ⋅=(海曾-威廉n=1.852, 曼宁n=2);(3) 假定顺时针方向管段水头损失为正,计算环内各管段水头损失代数和Σh ij ,如果Σh ij 不为零,以Δh i 表示,称为闭合差。
城市给水排水管网水力计算
初步分配的流量一般不满足能量方程:
F1(q10 , q20 , q30 , , qP0 ) 0 F2 (q10 , q20 , q30 , , qP0 ) 0
FL (q10 , q20 , q30 , , qP0 ) 0
初步分配流量与实际流量的的差额为 Δq,实际流量应满足能量方程:
FL (q10 , q20 , q30 , , qP0 ) hL
将闭合差项移到方程组的左边,得到关 于流量误差(校正流量)的线性方程组:
F1 q1
q1
F1 q2
q2
F1 qP
qP
h1
F2 q1
q1
F2 q2
q2
F2 qP
qP
h2
FL q1
q1
FL q2
q2
FL qP
qP
hL
利用线性代数的多种方法可求解 出校正流量。因为忽略了高阶项,得 到的解仍然不能满足能量方程,需要 反复迭代求解,直到误差小于允许误 差值。
650
650×0.0358=23.27
230
230×0.0358=8.23
190
190×0.0358=6.80
205
205×0.0358=7.34
2425
86.81
5.节点流量:
节点 0 1 2 3 4 5 6 7 8
合计
节点流量(L/s) 0.5×10.74=5.37 0.5×(10.74+5.37+16.11)=16.11 0.5×(5.37+8.95) =7.16 0.5×8.95=4.48 0.5×(16.11+23.27+8.23)=23.80 0.5×(8.23+6.80)=7.52 0.5×(6.80+7.34)=7.07 0.5×7.34=3.67 0.5×23.27=11.63
《管网水力计算》课件
目 录
• 管网水力计算概述 • 管网模型建立 • 水力计算原理 • 水力计算实例 • 结果分析与应用
01
CATALOGUE
管网水力计算概述
定义与目的
定义
管网水力计算是对给定管网系统中的 水流运动进行模拟和分析的过程。
目的
确定管网中各管段的流量、水头损失 、节点水压等参数,为管网的规划、 设计、运行和管理提供依据。
详细描述
该实例为一个由多个独立水源分散供应的管网,管道无环状结构,水流从各个水源经由管网分别输送到用户。计 算时需要考虑各个水源的供水能力和管网的阻力损失,以实现水压和流量的合理分配,满足用户需求。
05
CATALOGUE
结果分析与应用
结果分析
计算结果准确性
确保计算结果的准确性,对误差来源进行详细分析,并采取措施 减小误差。
近似法
基于经验公式和简化假设,对管 网水力计算进行简化处理,得到 近似的解。适用于快速估算和初 步设计。
02
CATALOGUE
管网模型建立
模型选择
确定模型类型
根据管网的规模、复杂性和计算精度要求,选择 适合的模型类型,如一维、二维或三维模型。
确定模型范围
根据实际需求,确定模型的计算范围,包括管网 的起止点、分支点和边界条件等。
数据对比分析
将计算结果与实际数据进行对比,分析差异原因,以提高计算精 度。
结果可视化
使用图表、图像等形式展示计算结果,便于理解和分析。
结果应用
工程设计优化
根据计算结果优化管网设计,提高工程的安全 性和经济性。
运行调度优化
根据计算结果优化管网的运行调度,提高供水 效率。
应急预案制定
给水管网-第6章(6.1)
6.1 树状网水力计算
一、树状网计算的具体步骤 1.求各管段的沿线流量、 求各管段的沿线流量 1. 求各管段的沿线流量、节点流量 2.在注明节点流量的计算草图上 在注明节点流量的计算草图上, 2. 在注明节点流量的计算草图上,按照任一管段中 的流量等于其后面的所有节点流量之和的关系, 的流量等于其后面的所有节点流量之和的关系, 求出每一管段的流量 求出每一管段的流量 3.选定泵房到控制点的管线为干线 选定泵房到控制点的管线为干线, 3. 选定泵房到控制点的管线为干线,按经济流速求 出管径和水头损失 4.将干线上各管段的水头损失相加 求出干线的总 将干线上各管段的水头损失相加, 4. 将干线上各管段的水头损失相加,求出干线的总 水头损失, 水头损失,并按照第三章的公式计算出二泵站所 扬程和水塔所需高度(前面4 需扬程和水塔所需高度(前面4步讲的是干管的 水力计算,下面讲支线) 水力计算,下面讲支线)
94 − 93 94 − 93.75 = 2.12 − 2.07 2.12 − 1000i
2.11 h = il = × 600 = 1.27 1000
1000i=2.1075= 1000i=2.1075=2.11
14
(2)利用公式( h = il 、h = alq 2 ) 利用公式( • 已知:q=93.75 已知: 4q 假定: 假定: v= 2 • D取350mm,根据 πd ,求出v=0.97,不在平均经济流速范围内 350mm, 求出v 0.97, • D取400mm,求出v=0.75,在平均经济流速范围内 400mm,求出v 0.75, • D取450mm,求出v=0.59 ,不在平均经济流速范围内 450mm,求出v • ①∵v<1.2∴将D=400mm,v=0.75代入5-24公式,求出 v<1.2∴ 400mm, 0.75代入 24公式 代入5 公式, h = il = 0.00212 × 600 = 1.27 i=0.00212 • • • • v= ②∵ v=0.75 ∴ a 的值查表5-2 ∵D=400 的值查表5 ∴ a =0.2232 的值查表5 ∵v= K= K的值查表5-3 ∵v=0.75 ∴ K=1.07 代入公式 h = 1.07 × 0.2232 × 600 × 0.09375 2 = 1.26 • 最后,将干管线上各管段的水头损失相加,求出干管总水头损失 最后,将干管线上各管段的水头损失相加,
给水管网水力计算-给水管网水力计算
点击查看
1.7 给水管网的水力计算
1.7.3 水表和特殊附件的局部水头 损失
(一) 水表的分类及比较 1. 水表的分类 (1)按计量元件运动原理分类:
a. 容积式水表 b.速度式水表
速 度 旋翼式 式 水 螺翼式 表
单流束 多流束 水平螺翼式 垂直螺翼式
阀门和螺纹管件的摩阻损失的 当量长度表点击查看
1.7 给水管网的水力计算
1.7.2 给水管网和水表水头损失的计算
按管网沿程水头损失的百分数取值法 不同材质管道、三通分水与分水器分水管内径大小的局
部水头损失占沿程水头损失百分数的经验取值,分别见不同 材质管道的局部水头损失估算值表和三通分水与分水器分水 的局部水头损失估算值表。
qg 0.2 U Ng
[解]
配水最不利点为低水箱坐便器,故计算管路为0、1、 2、……9。该建筑为普通住宅Ⅱ类,
选用公式 qg 0.2 U 计 N算g 各管段设计秒流量。
由住宅最高日生活用水定额及小时变化表查:
用 按
水
定
额
q0=
2
0
0
L/
(
人
·d
)
,小时变
化
系
数
K
h=
2.
5
,
每
户
3.5人计。
1.7 给水管网的水力计算
1.7.4 求给水系统所需压力
确定
给水计算管路水头损之失后 水表和特殊附件的水头损失
根据公式
H H1 H2 H3 H4 H5 求得建筑内部给水系统所需压力 H
1.7 给水管网的水力计算
首 先1根. 据7 .建5 筑 平水面力图 和计初算定的的 给方水法方步式 ,骤绘 给 水 管 道 平
管网水力计算
水头损失的定义: 水流在管道中流 动时,由于摩擦、 阻力等因素造成 的能量损失
水头损失的类型: 沿程水头损失、 局部水头损失、 水头损失系数
水头损失的计算 方法:采用伯努 利方程进行计算
水头损失的影响 因素:管道直径 、粗糙度、流速 、流体密度等
流量:单位时间内通过管道的流 体量
流量和流速的关系:流量=流速× 管道截面积
收集数据:收集管网系统的相关数据,如水压、流量等
建立模型:建立管网系统的水力模型,如水力平衡方程等
求解模型:利用数值方法求解水力模型,如迭代法、有限 元法等
分析结果:分析计算结果,如压力分布、流量分布等
优化设计:根据计算结果对管网系统进行优化设计,如调 整管径、调整泵站等
水力计算软件:如Hydrulic Toolbox、WterCD等 水力计算工具:如流量计、压力表、水泵等 水力计算模型:如管网水力模型、水力平衡模型等 水力计算方法:如伯努利方程、连续方程、能量守恒方程等
管道阻力系数的 取值范围一般为 0.01-0.05
连续方程:描述管道中水流的连续性 伯努利方程:描述管道中水流的能量守恒 雷诺数:描述管道中水流的湍流特性 摩阻系数:描述管道中水流的阻力特性 流量公式:结合以上公式,计算管道中的流量
公式:Hf = K * (Q^2 /
D^5) * L
其中,Hf为 管道水头损 失,K为管道 水头损失系 数,Q为管 道流量,D为 管道直径,L 为管道长度
某大型住宅小区给排水管网水力 计算
添加标题
添加标题
某工业园区排水管网水力计算
添加标题
添加标题
某城市污水处理厂排水管网水力 计算
计算方法:采用水力计算软件进行模拟计算
计算结果:得到管网水力计算结果,包括流量、压力、流速等参数
给水管网水力计算方法步骤
给水管网水力计算
1.确定给水管网各管段的管径
给水管道的流速控制范围:
1、对于生活或生产给水管道,一般采用1.0~1.5m/s,不宜大于2.0m/s,当有防噪声要求,且管径小于或等于25mm时,生活给水管道内的流速可采用0.8~1.0m/s;
2、消火栓给水管道的流速不宜大于2.5m/s;
3、其自动喷水灭火系统给水管道的流速不宜大于5m/s,其配水支管在特殊情况下不得大于10m/s。
2.给水系统水压的确定
H=H1+H2+H3+H4
H1——引入管起点至配水最不利点位置高度所要求的静水压;
H2——引入管起点至配水最不利点的给水管路即计算管路的沿程与局部阻力水头损失之和;
H3——水表的水头损失;
H4——配水最不利点所需的流出水头。
3.水力计算方法和步骤
1、根据综合因素初定给水方式;
2、根据建筑功能、空间布局及用水点分布情况,布置给水管道,并绘制出给水平面图和轴侧草图;
3、绘制水利计算表格;
4、根据轴侧图选择配水最不利点,确定计算管路;
5、以流量变化处为节点,从配水最不利点开始,进行节点编号,并标注两节点间的计算管段的长度;
6、按建筑的性质选择设计秒流量的计算公式,计算各管道的设计秒流量;
7、根据设计秒流量,考虑流速,查水利计算表进行管网的水利计算,确定管径,并求出给水系统所需压力;
8、校核(H0≥H;H0略<H ;H0远<H )
9、确定非计算管路各管径。
给水管网水力计算方法步骤
给水管网水力计算
1.确定给水管网各管段的管径
给水管道的流速控制范围:
1、对于生活或生产给水管道,一般采用1.0~1.5m/s,不宜大于2.0m/s,当有防噪声要求,且管径小于或等于25mm时,生活给水管道内的流速可采用0.8~1.0m/s;
2、消火栓给水管道的流速不宜大于2.5m/s;
3、其自动喷水灭火系统给水管道的流速不宜大于5m/s,其配水支管在特殊情况下不得大于10m/s。
2.给水系统水压的确定
H=H1+H2+H3+H4
H1——引入管起点至配水最不利点位置高度所要求的静水压;
H2——引入管起点至配水最不利点的给水管路即计算管路的沿程与局部阻力水头损失之和;
H3——水表的水头损失;
H4——配水最不利点所需的流出水头。
3.水力计算方法和步骤
1、根据综合因素初定给水方式;
2、根据建筑功能、空间布局及用水点分布情况,布置给水管道,并绘制出给水平面图和轴侧草图;
3、绘制水利计算表格;
4、根据轴侧图选择配水最不利点,确定计算管路;
5、以流量变化处为节点,从配水最不利点开始,进行节点编号,并标注两节点间的计算管段的长度;
6、按建筑的性质选择设计秒流量的计算公式,计算各管道的设计秒流量;
7、根据设计秒流量,考虑流速,查水利计算表进行管网的水利计算,确定管径,并求出给水系统所需压力;
8、校核(H0≥H;H0略<H ;H0远<H )
9、确定非计算管路各管径。
02-4给水管网的水力计算
第2章建筑内部给水系统2.4给水管网的水力计算在求得各管段的设计秒流量后,根据流量公式,即可求定管径:给水管网水力计算的目的在于确定各管段管径、管网的水头损失和确定给水系统的所需压力。
υπ42dq g =πυgq d 4=式中 q g ——计算管段的设计秒流量,m 3/s ;d j ——计算管段的管内径,m ;υ——管道中的水流速,m/s 。
(2-12)当计算管段的流量确定后,流速的大小将直接影响到管道系统技术、经济的合理性,流速过大易产生水锤,引起噪声,损坏管道或附件,并将增加管道的水头损失,使建筑内给水系统所需压力增大。
而流速过小,又将造成管材的浪费。
考虑以上因素,建筑物内的给水管道流速一般可按表2-12选取。
但最大不超过2m/s。
工程设计中也可采用下列数值: DN15~DN20,V =0.6~1.0m/s ;DN25~DN40,V =0.8~1.2m/s 。
生活给水管道的水流速度 表2-122.4.2 给水管网和水表水头损失的计算2.4.2 给水管网和水表水头损失的计算给水管网水头损失的计算包括沿程水头损失和局部水头损失两部分内容。
1. 给水管道的沿程水头损失(2-13)——沿程水头损失,kPa;式中 hyL——管道计算长度,m;i——管道单位长度水头损失,kPa/m,按下式计算:2.4 给水管网的水力计算2.4.2 给水管网和水表水头损失的计算式中i——管道单位长度水头损失, kPa/m ;dj——管道计算内径,m;q g——给水设计流量,m3/s;Ch——海澄-威廉系数:塑料管、内衬(涂)塑管C h = 140;铜管、不锈钢管C h = 130;衬水泥、树脂的铸铁管C h = 130;普通钢管、铸铁管Ch = 100。
(2-14)设计计算时,也可直接使用由上列公式编制的水力计算表,由管段的设计秒流量,控制流速在正常范围内,查出管径和单位长度的水头损失。
“给水钢管水力计算表”、“给水铸铁管水力计算表”以及“给水塑料管水力计算表”分别见附表2-1、附表2-2和附表2-3。
城市给排水系统的管网水力计算与优化
城市给排水系统的管网水力计算与优化城市给排水系统是一个复杂且关键的基础设施,其目的是为了有效地收集、输送和处理城市中产生的废水和雨水。
在给排水系统中,管网的水力计算与优化是确保系统正常运行和高效工作的重要步骤。
本文将探讨城市给排水系统的管网水力计算与优化的方法和技巧。
一、水力计算城市给排水系统的水力计算是指计算管道内流体传输时的压力、流速和水位等参数的过程。
水力计算包括两个主要方面:管道参数的确定和管网的布置。
1. 管道参数的确定为了进行水力计算,需要确定管道的几何参数和水力参数。
管道的几何参数包括管道的直径、长度和高程等信息,水力参数包括摩阻系数、水力坡度和流量等参数。
这些参数的准确确定对于水力计算的精确性至关重要。
2. 管网的布置在进行水力计算之前,需要先设计管网的布置。
合理的管网布置可以最大限度地减小管道的流阻和压力损失,提高系统的输水能力和运行效率。
管网布置要考虑到整个城市的地形和建筑物分布等因素,确保管道的连接和流向符合实际情况,并且能够满足设计要求。
二、水力优化水力优化是指通过调整管网的几何形状和水力参数,使得系统的输水能力和运行效率达到最佳。
水力优化可以提高系统的稳定性和经济性,减少能耗和维护成本。
1. 管道直径的选择在进行水力优化时,需要合理选择管道的直径。
管道的直径决定了管网的输水能力和压力损失。
过小的直径会导致管道流速过高,增加压力损失;过大的直径则会增加建设和维护成本。
因此,需要综合考虑管道的材质、流量和水负荷等因素,选择合适的管道直径。
2. 管道水力坡度的调整管道的水力坡度是指管道的纵向倾斜程度。
合适的水力坡度能够保证水在管道中的正常流动,防止积水和阻塞。
在进行水力优化时,需要根据管道的长度和流量等因素,适当调整管道的水力坡度,以保证系统的正常运行。
3. 管道的排气和排污在城市给排水系统中,排气和排污是非常重要的环节。
排气管可以排除管道中气体的积聚,防止气阻和压力波动;排污管可以排除管道中的污物和杂质,防止堵塞和阻塞。
3.3城市污水管网水力计算
解:
1 I v R I n n
dv 0 d
2 3
1 2
1 2
sin d 4 (1 )
2 3
令
得
257 0 30 /
257 0 30 / h sin sin 0.81 D 4 4
2 2
★例1.已知流量q管径D和流速v,求充满度h/D和水力坡度I
1.54m D=300mm 44.22m
h/D=0.55
Q=40L/s
46.06m
L=240m
地面坡度i=0.0024
1.54m
若管顶平接
高
D=300mm
44.22m
低
h/D=0.55 水面平接
• 解:由于上游管段的覆土厚度较大,设计管段
坡度应尽量小于地面坡度以减少管段埋深。
(1)试算D=300mm,
水 深 h
管 径 D
D D ( ) 2 (h ) 2 2 2 2 h (1 h ) sin D 2 D D 2
三、水力要素
2.用充盈角表示
1、按充满度表示
充盈角
水 深 h
管 径 D
D2 A ( sin ) 8 D 2 1 h D2 h h h cos (1 2 ) (1 2 ) (1 ) 4 D 2 D D D
二、基本公式(按均匀流)
1 q AR 3 I 2 nm
vC 1 Ri R 6 n
1
2
1
1 Ri R 3 I 2 n
2
1
充盈角
水 深 h
管 径 D
几何关系
cos
2
城给水管网水力计算程序及例题
给水排水管道工程课程设计指导书环境科学与工程学院第一部分城市给水管网水力计算程序及习题一、程序#define M 18#define N 6#define ep 0.01#include <math.h>int sgn(doublex);main(){ int k, i,ko,q,p,flag=0;double h[M];doublel[]={?};doubleD[]={?};doubleQ[]={?};int io[]={?};int jo[]={?};doublef[N+1],r[N+1],dq[N+1]; for(k=0;k<=M -1;k++){Q[k]=Q[k]*0.001;}for(k=0;k<=M -1;k++){ Q[k]=Q[k]*sgn(io[k]);}ko=0;loop:for(k=0;k<=M -1;k++){ h[k]=10.67*pow(fabs(Q[k]),1.852)*l[k];h[k]=h[k]/(pow(100,1.852)*pow(D[k],4.87))*sgn(Q[k]);for(i=1;i<=N;i++){ f[i]=0;r[i]=0; dq[i]=0;for(k=0;k<=M -1;k++){if(abs(io[k])!=i) goto map;f[i]=f[i]+h[k]; r[i]=r[i]+(h[k]/Q[k]);map: if( abs(jo[k])!=i) continue; f[i]=f[i]+h[k]*sgn(jo[i]);r[i]=r[i]+(h[k]/Q[k]); }dq[i]=-(f[i]/(r[i]*2));}{if (fabs(f[N])<=ep)flag=1;}if (flag==1) goto like;for(k=0;k<=M -1;k++){p=abs(io[k]);q=abs(jo[k]); Q[k]=Q[k]+dq[p]+(dq[q]*sgn(jo[k]));}ko=ko+1;if(flag==0) goto loop;like:printf("\n\n");for(i=1;i<=N;i++){printf("%f\n",f[i]);}printf("ep=%f\n",0.01); printf("n=%d,m=%d,ko=%d\n",N,M,ko); for(k=0;k<=M -1;k++){ printf("%d)",k+1);printf("k=%d, l=%f, h=%f, ",k+1,l[k],h[k]);printf("Q=%f, ",Q[k]*1000);printf("v=%f\n",4*Q[k]/(3.1416*pow(D[k],2)));}}int sgn(doublex){ if(x>0)return 1;elseif(x==0) return 0; elsereturn -1;}变量说明ep --- 环内水头损失闭合差允许值(m);N ——环数;M ——管段数;cz ——管道粗糙系数;k ——管段编号;kO ――校正次数;L ——管段长度(m);D ---- 管径(m);Q ――管段流量(L/s);io ――管段所属环号(小环号);初分流量为顺时针,io 为正,初分流量为逆时针,io 为负;jo ――管段所属环号(大环号),均为负,不相临为零;s ――管段摩阻系数;h 管段水头损失(m)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
给水排水管道工程
课程设计指导书
环境科学与工程学院
第一部分城市给水管网水力计算程序及习题
一、程序
#define M 18
#define N 6
#define ep 0.01
#include <math.h>
int sgn(double x);
main()
{ int k, i,ko,q,p,flag=0;
double h[M];
double
l[]={?};
double
D[]={?};
double
Q[]={?};
int io[]={?};
int jo[]={?};
double f[N+1],r[N+1],dq[N+1];
for(k=0;k<=M-1;k++)
{
Q[k]=Q[k]*0.001;
}
for(k=0;k<=M-1;k++)
{ Q[k]=Q[k]*sgn(io[k]);
}
ko=0;
loop:
for(k=0;k<=M-1;k++)
{ h[k]=10.67*pow(fabs(Q[k]),1.852)*l[k];
h[k]=h[k]/(pow(100,1.852)*pow(D[k],4.87))*sgn(Q[k]);
}
for(i=1;i<=N;i++)
{ f[i]=0;r[i]=0; dq[i]=0;
for(k=0;k<=M-1;k++)
{
if(abs(io[k])!=i) goto map;
f[i]=f[i]+h[k];
r[i]=r[i]+(h[k]/Q[k]);
map: if( abs(jo[k])!=i) continue;
f[i]=f[i]+h[k]*sgn(jo[i]);
r[i]=r[i]+(h[k]/Q[k]);
}
dq[i]=-(f[i]/(r[i]*2));
}
{
if (fabs(f[N])<=ep)
flag=1;
}
if (flag==1) goto like;
for(k=0;k<=M-1;k++)
{
p=abs(io[k]);q=abs(jo[k]);
Q[k]=Q[k]+dq[p]+(dq[q]*sgn(jo[k]));
}
ko=ko+1;
if(flag==0) goto loop;
like:
printf("\n\n");
for(i=1;i<=N;i++)
{printf("%f\n",f[i]);}
printf("ep=%f\n",0.01);
printf("n=%d,m=%d,ko=%d\n",N,M,ko); for(k=0;k<=M-1;k++)
{ printf("%d)",k+1);
printf("k=%d, l=%f, h=%f, ",k+1,l[k],h[k]);
printf("Q=%f, ",Q[k]*1000);
printf("v=%f\n",4*Q[k]/(3.1416*pow(D[k],2)));
}
}
int sgn(double x)
{ if(x>0)return 1;
else if(x==0) return 0;
else return -1;
}
变量说明
ep——环内水头损失闭合差允许值(m);
N ——环数;
M ——管段数;
cz——管道粗糙系数;
k ——管段编号;
k0——校正次数;
L ——管段长度(m);
D ——管径(m);
Q ——管段流量(L/s);
io——管段所属环号(小环号);初分流量为顺时针,io为正,初分流量为逆时针,io为负;
jo——管段所属环号(大环号),均为负,不相临为零;
s ——管段摩阻系数;
h ——管段水头损失(m)。
1、基础资料
(1)城市总体规划概况:
某市近期规划人口为12万,用水普及率预计100%,城区大部分建筑在6层,屋内有给排水卫生设备和淋浴设备,市内有工业企业甲。
(2)城市用水情况:城市生活用水量变化情况如下表:
(3)工业企业基本情况
甲企业职工人数为1200人,分三班制(0、8、16时),每班8小时,每班400人,无高温车间,每班淋浴人数为250人;生产用水量为3000立方米/日,均匀使用,工业用水要求水压不小于24米,水质同生活饮用水:工厂房屋最大体积为5000立方米(厂房),房屋耐火等级为三,生产品危险等级为乙。
2、要求
进行该市给水管网和流量调节构筑物的设计计算,具体包括:
(1)计算最高日用水量、最高日最高时用水量;
(2)计算调节构筑物、管网、输水管设计流量;
(3)确定高地水池的容积、设置高度:
(4)选择管材,计算管网各管道的管径;
∑。
(5)水力计算平差过程要求编程计算,m
|-
≤
|
.0
.0
h05
01
3、设计参数设定
(1)综合用水量标准采用300L/cap·d;
(2)给水管网布置如图示;
(3)给水管网沿程水头损失计算采用海威公式。
第二部分 给水排水管道工程课程设计指导书
1、名称
某城镇完全分流制排水管道的设计。
2、目的与要求
目的:通过运用课堂所学的理论和技术知识,完成,某城镇排水管网的扩大初步
设计,以达到巩固基本理论,提高设计与绘图能力,熟悉查阅的使用技术资料,了解设计的方法与步骤,进一步将理论和实践相结合等的教学要求。
要求:按照完全分流制设计某城镇排水管道系统,达到初步设计的程度,设计成
果包括污水管道系统的总平面布置图、雨水管道系统的总平面布置图、设计计算及说明书。
3、基础资料
(1)城市规划资料 ①某城镇平面布置图;
②人口分布,房屋建筑,卫生设备状况(见表1); ③各种性质地面所占面积(见表2); ④工业企业规划资料(见表3);
⑤各工业企业的污水经局部处理后允许排入城市污水管道系统。
(2)气象资料
①土壤冰冻深度0.2~0.4米; ②年平均降雨量1400毫米;
③暴雨强度公式
n
b t gp
c A q )()
11(1671++=
,其中参数为A1=20,C=0.7,b=19,n=0.86;
④常年主导风向西北风,夏季主导风向南风。
(3)水文及水文地质资料
①区域内河流水流自东向西,最高水位101m ,最低水位95m ,平均水位97m ; ②地下水位离地面6~7m ; ③地质:砂质粘土。
(4)电力供应情况
电力正常供应,有三个电源可供选择。
(5)附近农田灌溉情况
无污水灌溉农田习惯,也没有农灌渠道。
4、设计内容
(1)污水管道设计部分
排水流域的划分;
布置管线及平面布置的组合;
确定管道的起点埋深并分析在高程布置中可能遇到的情况;划分各污水管道的集水面积,计算各段的污水设计流量;进行管网的水力计算;
整理设计计算与说明书。
(2)雨水管道设计部分
管网布置,决定干管和主干管的流向;
确定设计管段的汇水面积、计算管段长度;
根据气象资料确定暴雨强度;
确定各区的径流系数和地面集水时间;
确定管道的起点埋深;
进行水力计算;
整理设计计算集说明书。
5、设计成果
(1)设计说明书
格式:目录
中文摘要
正文
补充部分(程序)
参考文献
(2)管道平面布置图
表1 人口分布、房屋建筑、卫生设备状况表
表2 各种性质地面所占面积表
表3 工业企业规划资料表
9。