2019-2020学年度苏锡常镇高三教学情况调研(参考解答)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019~2020学年度苏锡常镇高三教学情况调研(一)

数学参考答案

2020.3

数学Ⅰ

一、填空题:本大题共14小题,每小题5分,共计70分. 1

2

2.2

3.0.08 4.3 5.

56 6.6

7.必要不充分

8.211n -+

9.30x y --= 10.1

9

-

11.2π3

12.3 13.2

e (1e ),

14

.二、解答题:本大题共6小题,共计90分. 15.(本小题满分14分)

解:(1

)因为cos sin 0b A B =,

所以由正弦定理可得sin cos sin 0B A A B =. ·································· 2分 因为0B <<π,所以sin 0B >

,所以cos A A =, 因为0A <<π

,所以cos 0A A =>

,所以tan A = ······················· 6分 因为(0)A ∈π,,所以6A π

=

. ······························································ 8分 (2

)因为36a B A ππ===,, 所以在△ABC 中,2

C π

=. ································································· 10分

由正弦定理

sin sin a b

A B

=

,可得sin 261

sin 2

a B

b A ===, ······················ 12分

所以11

622

ABC S ab ==⨯=△ ·················································· 14分

16.(本小题满分14分) 证:(1)连结AC 交BD 于O ,因为ABCD 为平行四边形,所以O 为AC 的中点.

连结EO ,在△PAC 中,因为E 是PC 的中点,所以EO ∥AP . ··················· 2分 又因为AP ⊄平面EBD ,EO ⊂平面EBD , 所以AP ∥平面EBD . ········································································· 6分 (2)因为△PDC 为正三角形,E 是PC 的中点, 所以DE ⊥PC . ················································································· 8分 又因为平面PCD ⊥平面ABCD ,平面PCD I 平面ABCD DC =,且BD DC ⊥,

BD ABCD ⊂平面,所以BD ⊥平面PCD .

因为PC ⊂平面PCD ,所以BD ⊥PC . ·················································· 11分 又因为DE PC ⊥,且BD DE D =I ,BD BDE ⊂平面,DE BDE ⊂平面, 所以PC BDE ⊥平面.

因为BE BDE ⊂平面,所以BE PC ⊥. ·················································· 14分 17.(本小题满分14分) 解:(1)以A 为原点,1l 所在的直线为x 轴,AM 所

在直线为y 轴建立平面直角坐标系(如图),则由

题可知1

(00)(1)2

A B ,,,. ·························· 1分

设抛物线方程为22 (0)x py p =>,则1

122

p =⨯,

解得1p =, ··········································· 3分

所以栈道AB 的方程为

22 (01)x y x =≤≤. ······························ 5分

(注:不写定义域扣1分,开、闭区间都对)

(2)过点P 作3PH l ⊥于点H ,设00()P x y ,(其中001

0102

x y ≤≤,≤≤),

则02PH y =-,设EPH FPH αβ∠=∠=,,则EPF αβ∠=+,

所以00

00

11tan tan 22x x y y αβ+-=

=--,, ······················································· 7分 所以00000

2

0002

000112

222tan()1111122(2)x x y y y x x x y y y αβ+-+

---+==+---⋅---- 0022

20000

2(2)2(2)

(2)1(2)12y y y x y y --=

=--+--+. ····························· 9分 令03

2[2]2

t y =-∈,,

则2222231

0tan()312(2)233

222

t t t t t t t t t t

αβ+<+=

===-+--++-⋅-≤.

当且仅当3t t

=,即3

3[2]2t =∈,时取“=”. ·

······································· 12分 (注:等号成立条件不说明扣1分)

因为(0)2αβπ∈,,且tan()0αβ+>,所以(0)2αβπ+∈,,因为tan y x =在(0)

2

π

,上递增,所以当tan()αβ+最大时,αβ+最大,即EPF ∠最大.

此时002331y x =-=-,,即(3123)P --,. ································· 13分

相关文档
最新文档