2019-2020学年度苏锡常镇高三教学情况调研(参考解答)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019~2020学年度苏锡常镇高三教学情况调研(一)
数学参考答案
2020.3
数学Ⅰ
一、填空题:本大题共14小题,每小题5分,共计70分. 1
.
2
2.2
3.0.08 4.3 5.
56 6.6
7.必要不充分
8.211n -+
9.30x y --= 10.1
9
-
11.2π3
12.3 13.2
e (1e ),
14
.二、解答题:本大题共6小题,共计90分. 15.(本小题满分14分)
解:(1
)因为cos sin 0b A B =,
所以由正弦定理可得sin cos sin 0B A A B =. ·································· 2分 因为0B <<π,所以sin 0B >
,所以cos A A =, 因为0A <<π
,所以cos 0A A =>
,所以tan A = ······················· 6分 因为(0)A ∈π,,所以6A π
=
. ······························································ 8分 (2
)因为36a B A ππ===,, 所以在△ABC 中,2
C π
=. ································································· 10分
由正弦定理
sin sin a b
A B
=
,可得sin 261
sin 2
a B
b A ===, ······················ 12分
所以11
622
ABC S ab ==⨯=△ ·················································· 14分
16.(本小题满分14分) 证:(1)连结AC 交BD 于O ,因为ABCD 为平行四边形,所以O 为AC 的中点.
连结EO ,在△PAC 中,因为E 是PC 的中点,所以EO ∥AP . ··················· 2分 又因为AP ⊄平面EBD ,EO ⊂平面EBD , 所以AP ∥平面EBD . ········································································· 6分 (2)因为△PDC 为正三角形,E 是PC 的中点, 所以DE ⊥PC . ················································································· 8分 又因为平面PCD ⊥平面ABCD ,平面PCD I 平面ABCD DC =,且BD DC ⊥,
BD ABCD ⊂平面,所以BD ⊥平面PCD .
因为PC ⊂平面PCD ,所以BD ⊥PC . ·················································· 11分 又因为DE PC ⊥,且BD DE D =I ,BD BDE ⊂平面,DE BDE ⊂平面, 所以PC BDE ⊥平面.
因为BE BDE ⊂平面,所以BE PC ⊥. ·················································· 14分 17.(本小题满分14分) 解:(1)以A 为原点,1l 所在的直线为x 轴,AM 所
在直线为y 轴建立平面直角坐标系(如图),则由
题可知1
(00)(1)2
A B ,,,. ·························· 1分
设抛物线方程为22 (0)x py p =>,则1
122
p =⨯,
解得1p =, ··········································· 3分
所以栈道AB 的方程为
22 (01)x y x =≤≤. ······························ 5分
(注:不写定义域扣1分,开、闭区间都对)
(2)过点P 作3PH l ⊥于点H ,设00()P x y ,(其中001
0102
x y ≤≤,≤≤),
则02PH y =-,设EPH FPH αβ∠=∠=,,则EPF αβ∠=+,
所以00
00
11tan tan 22x x y y αβ+-=
=--,, ······················································· 7分 所以00000
2
0002
000112
222tan()1111122(2)x x y y y x x x y y y αβ+-+
---+==+---⋅---- 0022
20000
2(2)2(2)
(2)1(2)12y y y x y y --=
=--+--+. ····························· 9分 令03
2[2]2
t y =-∈,,
则2222231
0tan()312(2)233
222
t t t t t t t t t t
αβ+<+=
===-+--++-⋅-≤.
当且仅当3t t
=,即3
3[2]2t =∈,时取“=”. ·
······································· 12分 (注:等号成立条件不说明扣1分)
因为(0)2αβπ∈,,且tan()0αβ+>,所以(0)2αβπ+∈,,因为tan y x =在(0)
2
π
,上递增,所以当tan()αβ+最大时,αβ+最大,即EPF ∠最大.
此时002331y x =-=-,,即(3123)P --,. ································· 13分