逆向工程关键技术
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、3逆向工程中的关键技术
1、3、1数据采集技术
目前,用来采集物体表面数据的测量设备与方法多种多样,其原理也各不相同、测量方法的选用是逆向工程中一个特不重要的问题。不同的测量方式,不但决定了测量本身的精度、速度与经济性,还造成测量数据类型及后续处理方式的不同。依照测量探头是否与零件表面接触,逆向工程中物体表面数字化三维数据的采集方法基本上能够分为接触式(Contact)与非接触式(Non—contact)两种。
接触式包括三坐标测量机(Coordinate Measuring Machining,CMM)与关节臂测量机;而非接触式主要有基于光学的激光三角法、激光测距法、结构光法、图像分析法以及基于声波、磁学的方法等。这些方法都有各自的特点与应用范围,具体选用何种测量方法与数据处理技术应依照被测物体的形体特征与应用目的来决定、目前,还没有找到一种完全使用于工业设计逆向测量方法。各种数据采集方法分类如图1、3所示。
在接触式测量方法中,CMM是应用最为广泛的一种测量设备;CMM通常是基于力-变形原理,通过接触式探头沿样件表面移动并与表面接触时发生变形,检测出接触点的三维坐标,按采样方式又可分为单点触发式与连续扫描式两种。CMM对被测物体的材质与色泽没有特不要求,可达到特不高的测量精度(±0、5μm),对物体边界与特征点的测量相对精确,关于没有复杂内部型腔、特征几何尺寸多、只有少量特征曲面的规则零件反求特不有效。主要缺点是效率低,测量过程过分依赖于测量者的经验,特不是关于几何模型未知的复杂产品,难以确定最优的采样策略与路径。
ﻩ
MM发展的方向、智能测量
,其关键技术包括零件
CAD/CAM集成技术等。
被动式方法中无特不
操作方便,成本低,可用于户
,
,通过
依照可利用
apeFrom Shadin
,其中在工程中应用较多的是后两种方法。
立体视觉又称为双目视觉或机器视觉,其基本原理是从两个(或多个)视点观察同一景物,以获取不同视角下的感知图像,通过三角测量原理计算图像像素间的位置偏差(即视差)来获取景物的三维信息,这一过程与人类视觉的立体感知过程是类似的、
双目立体视觉的原理如图1、4所示,其中P是空间中任意一点,C
1、C
2
是两
个摄像机的焦点,类似于人的双眼,P
1、P
2
是P点在两个成像面上的像点。空间
点P、C
1、C
2
形成一个三角形,且连线C
1
P与像平面交于P
1
点,连线C
1
P与像平面
交于P
2点。因此,若已知像点p
1
、p
2
,则连线C
1
P
1
与C
2
P
2
必交于空间点P,这种
确定空间点坐标的方法称为三角测量原理、
图1、4 立体视觉原理图
一个完整的立体视觉系统通常由图像获取、摄像机标定、特征提取、立体匹配、深度确定与内插6部分组成。由于它直截了当模拟了人类视觉的功能,能够在多种条件下灵活地测量物体的立体信息;而且通过采纳高精度的边缘提取技术,能够获得较高的空间地位精度(相对误差为1%~2%),因此在计算机被动测距中得到广泛应用。但立体匹配始终是立体视觉中最重要的也是最困难的问题,其有效性有赖于三个问题的解决,即选择正确的匹配特征,特征间的本质属性及建立能正确匹配所选特征的稳定算法。尽管已提出了大量各具特色的匹配算法,但场景中光照、物体的几何形状与物理性质、摄像机特性、噪声干扰与畸变等诸多因素影响,至今仍未有特不行地解决。
利用图像平面上将物体与背影分割开来的遮挡轮廓信息来重构表面,称为遮挡轮廓恢复形状,其原理如图1、5中所示、将视点与物体的遮挡轮廓线相连,即可构成一个视锥体。当从不同的视点观察时,就会形成多个视锥体,物体一定位于这些视锥体的共同交集内。因此,通过体相交法,将各个视锥体相交便得到了物体的三维模型。
图1、5 体相交法原理
遮挡轮廓恢复形状方法通常由相机标定、遮挡轮廓提取以及物体与轮廓间的投影相交三个步骤完成,而且遮挡轮廓恢复形状方法在实现时仅涉及基本的矩阵运算,因此具有运算速度快、计算过程稳定、可获得物体表面致密点集的优点。缺点是精度较低,难以达到工程实用的要求,目前多用于计算机动画、虚拟现实模型、网上展示等场合,而且该方法无法应用于某些具有凹陷表面的物体、如美国Immersion公司开发了Lightscribe系统,该系统由摄像头、背景屏幕、旋转平台及软件系统组成、首先对放置在自动旋转平台上的物体进行摄像,将摄得的图像输入软件后利用体相交技术可自动生成物体的三维模型,但关于物体表面的一些局部细节与凹陷区域,该系统还需要结合主动式的激光扫描进行细化。
随着主动测距手段的日趋成熟,在条件允许的情况下,工程应用更多使用的是主动视觉方法、主动视觉是指测量系统向被测物体投射出特不的结构光,通过扫描、编码或调制,结合立体视觉技术来获得被测物体的三维信息、关于平坦的、无明显灰度、纹理或形状变化的表面区域,用结构光可形成明亮的条纹,作为一种“人工特征”施加到物体表面,从而方便图像的分析与处理、依照不同的原理,应用较为成熟的主动视觉方法又可分为激光三角法与投影栅法两类、
激光三角法是目前最成熟,也是目前应用最广泛的一种主动式方法。激光扫描的原理如图1、6所示、由激光发出的光束,经过一组改变方向的反射镜组成的扫描装置变向后,投射到被测物体上。摄像机固定在某个视点上观察物体表面的漫射点,图中激光束的方向角α与摄像机与反射镜间的基线位置是已知的,β可由焦距f与成像点的位置确定。因此,依照光源、物体表面反射点及摄像机成像点之间的三角关系,能够计算出表面反射点的三维坐标、激光三角法的原理与