人教版九年级数学上册第二次月考试题 docx
人教版九年级上册第二次月考数学试卷含答案解析-精选
九年级(上)第二次月考数学试卷一.选择题(共8小题,每小题3分,共24分)1.下列四个点,在反比例函数y=的图象上的是()A.(1,﹣6)B.(2,4)C.(3,﹣2)D.(﹣6,﹣1)2.小明在测量楼高时,先测出楼房落在地面上的影长BA为15米(如图),然后在A处树立一根高2米的标杆,测得标杆的影长AC为3米,则楼高为()A.10米B.12米C.15米D.22.5米3.若函数为反比例函数,则m的值为()A.±1 B.1 C.D.﹣14.一个正方体切去拐角后得到形状如图的几何体,其俯视图是()A. B.C.D.5.在△ABC中,,则△ABC为()A.直角三角形B.等边三角形C.含60°的任意三角形D.是顶角为钝角的等腰三角形6.若点(﹣5,y1),(﹣3,y2),(3,y3)都在反比例函数图象上,则()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y1>y3>y27.如图所示,△ABC的顶点是正方形网格的格点,则sinA的值为()A.B.C.D.8.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列4个结论:①a>0;②b<0;③b<a+c;④4a+2b+c>0其中正确结论的有()A.①②③ B.①②④ C.①③④ D.②③④二、填空题(共7小题,每小题3分,共21分)9.若α为锐角,tanα•tan30°=1,则α=度.10.如图,一次函数y=mx与反比例函数y=的图象交于A、B两点,过点A作AM⊥x轴,垂足为M,连接BM,若S△ABM =3,则k的值是.11.在我们刚刚学过的九年级数学下册课本第11页,用“描点法”画某个二次函数图象时,列了如下表格:x … 3 4 5 6 7 8 …y …7.5 5 3.5 3 3.5 5 …根据表格上的信息回答问题:该二次函数在x=9时,y=.12.用配方法将二次函数y=﹣x2+x﹣1化成y=a(x﹣h)2+k的形式,则y=.13.如图,直线y=kx与双曲线y=(x>0)交于点A(1,a),则k=.14.如图,在矩形ABCD中,点E在AB边上,沿CE折叠矩形ABCD,使点B落在AD边上的点F处.若AB=4,BC=5,则tan∠AFE的值为.15.如图,已知AB、CD分别表示两幢相距30米的大楼,小明在大楼底部点B处观察,当仰角增大到30度时,恰好能通过大楼CD的玻璃幕墙看到大楼AB的顶部点A的像,那么大楼AB的高度为米.三、解答题:(共75分16.计算(1)﹣2cos45°+(7﹣)0﹣()﹣1+tan30°(2)×sin45°﹣()﹣2+|﹣3|﹣.17.如图,路灯下一墙墩(用线段AB表示)的影子是BC,小明(用线段DE表示)的影子是EF,在M处有一颗大树,它的影子是MN.(1)指定路灯的位置(用点P表示);(2)在图中画出表示大树高的线段;(3)若小明的眼睛近似地看成是点D,试画图分析小明能否看见大树.18.已知y=y1﹣y2,y1与x成反比例,y2与(x﹣2)成正比例,并且当x=3时,y=5,当x=1时,y=﹣1;求y与x之间的函数关系式.19.如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A﹙﹣2,﹣5﹚,C﹙5,n﹚,交y轴于点B,交x轴于点D.(1)求反比例函数y=和一次函数y=kx+b的表达式;(2)连接OA,OC.求△AOC的面积.(3)当kx+b>时,请写出自变量x的取值范围.20.小刚学想测量灯杆AB的高度,结果他在D处时用测角仪测灯杆顶端A的仰角∠AEG=30°,然后向前走了8米来到C处,又测得A的仰角∠AFG=45°,又知测角仪高1.6米,求灯杆AB的高度.(结果保留一位小数;参考数据:≈1.73)21.已知二次函数y=ax2+bx的图象经过点(2,0)、(﹣1,3).(1)求二次函数的解析式;(2)画出它的图象;(3)写出它的对称轴和顶点坐标.22.如图,已知二次函数y=x2+bx+c的图象经过点A(0,3)且对称轴是直线x=2.(1)求该函数的表达式;(2)在抛物线上找点,使△PBC的面积是△ABC的面积的2倍,求点P的坐标.23.如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°,若坡角∠FAE=30°,求大树的高度(结果保留整数,参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,≈1.73)参考答案与试题解析一.选择题(共8小题,每小题3分,共24分)1.下列四个点,在反比例函数y=的图象上的是()A.(1,﹣6)B.(2,4)C.(3,﹣2)D.(﹣6,﹣1)【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象上点的坐标特征进行判断.【解答】解:∵1×(﹣6)=﹣6,2×4=8,3×(﹣2)=6,(﹣6)×(﹣1)=6,∴点(3,﹣2)在反比例函数y=的图象上.故选D.2.小明在测量楼高时,先测出楼房落在地面上的影长BA为15米(如图),然后在A处树立一根高2米的标杆,测得标杆的影长AC为3米,则楼高为()A.10米B.12米C.15米D.22.5米【考点】相似三角形的应用.【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.根据相似三角形的对应边的比相等,即可求解.【解答】解:∵=即=,∴楼高=10米.故选A.3.若函数为反比例函数,则m的值为()A.±1 B.1 C.D.﹣1【考点】反比例函数的定义.【分析】根据反比例函数的定义即可求出m的值.【解答】解:根据题意得:m2﹣2=﹣1,且m﹣1≠0解得:m=﹣1.故选D.4.一个正方体切去拐角后得到形状如图的几何体,其俯视图是()A. B.C.D.【考点】简单几何体的三视图.【分析】根据俯视图是从上面看到的图形判定则可.【解答】解:从上面看,是正方形右下角有阴影,故选C.5.在△ABC中,,则△ABC为()A.直角三角形B.等边三角形C.含60°的任意三角形D.是顶角为钝角的等腰三角形【考点】特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】首先结合绝对值以及偶次方的性质得出tanA﹣3=0,2cosB﹣=0,进而利用特殊角的三角函数值得出答案.【解答】解:∵(tanA﹣3)2+|2cosB﹣|=0,∴tanA﹣3=0,2cosB﹣=0,∴tanA=,cosB=,∠A=60°,∠B=30°,∴△ABC为直角三角形.故选:A.6.若点(﹣5,y1),(﹣3,y2),(3,y3)都在反比例函数图象上,则()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y1>y3>y2【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象上点的坐标特征,分别计算出y2、y1、y3的值,然后比较大小即可.【解答】解:当x=﹣5时,y1=﹣;当x=﹣3时,y2=﹣;当x=3时,y3=,所以y2<y1<y3.故选C.7.如图所示,△ABC的顶点是正方形网格的格点,则sinA的值为()A.B.C.D.【考点】锐角三角函数的定义;勾股定理.【分析】利用网格构造直角三角形,根据锐角三角函数的定义解答.【解答】解:如图:在B点正上方找一点D,使BD=BC,连接CD交AB于O,根据网格的特点,CD⊥AB,在Rt△AOC中,CO==;AC==;则sinA===.故选:B.8.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列4个结论:①a>0;②b<0;③b<a+c;④4a+2b+c>0其中正确结论的有()A.①②③ B.①②④ C.①③④ D.②③④【考点】二次函数图象与系数的关系.【分析】①首先根据抛物线开口向上,可得a>0,故①正确;②然后根据抛物线的对称轴为直线x=﹣>0,可得b<0,故②正确;③根据二次函数y=ax2+bx+c(a≠0)的图象,可得当x=﹣1时,y>0,所以a﹣b+c>0,故③正确.④根据二次函数y=ax2+bx+c(a≠0)的图象,可得当x=2时,y<0,所以4a+2b+c<0,故③不正确;故选A.【解答】解:∵抛物线开口向上,∴a>0,故①正确;∵抛物线的对称轴为直线x=﹣>0,∴b<0,故②正确;∵当x=﹣1时,y>0,∴a﹣b+c>0,∴故③正确;∵x=2时,y<0,∴4a+2b+c<0,∴结论④错误;综上,可得正确的结论有:①②③.故选A.二、填空题(共7小题,每小题3分,共21分)9.若α为锐角,tanα•tan30°=1,则α=60度.【考点】特殊角的三角函数值.【分析】本题可根据tan30°=,得出tanα的值,再运用三角函数的特殊值解出α的值.【解答】解:∵tan30°=,tanα•tan30°=1,∴tanα=,又∵α为锐角,∴α=60°.故答案为:60.10.如图,一次函数y=mx与反比例函数y=的图象交于A、B两点,过点A作AM⊥x轴,垂足为M,连接BM,若S△ABM =3,则k的值是3.【考点】反比例函数系数k 的几何意义;反比例函数图象的对称性.【分析】由反比例函数图象的对称性和反比例函数系数k 的几何意义可得:△ABM 的面积为△AOM 面积的2倍,S △ABM =2S △AOM =|k |.【解答】解:由题意得:S △ABM =2S △AOM =3,S △AOM =|k |=,则k=3.故答案为:3.11.在我们刚刚学过的九年级数学下册课本第11页,用“描点法”画某个二次函数图象时,列了如下表格:x … 3 4 5 6 7 8 …y … 7.5 5 3.5 3 3.5 5 …根据表格上的信息回答问题:该二次函数在x=9时,y= 7.5 . 【考点】二次函数的图象. 【分析】根据二次函数的图象关于对称轴对称并观察表格知当x=3和当x=9时的函数值相等,据此可以求得当x=9时的函数值.【解答】解:∵二次函数的图象关于对称轴对称,且观察表格知低昂x=4和当x=8时的函数值相等,∴当x=3和当x=9时的函数值相等,∵当x=3时y=7.5,∴当x=9时y=7.5.故答案为7.5.12.用配方法将二次函数y=﹣x 2+x ﹣1化成y=a (x ﹣h )2+k 的形式,则y= ﹣(x ﹣1)2﹣ .【考点】二次函数的三种形式.【分析】利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.【解答】解:y=﹣x 2+x ﹣1,=﹣(x 2﹣2x +1)﹣1﹣,=﹣(x ﹣1)2﹣,即y=﹣(x ﹣1)2﹣,故答案是:﹣(x ﹣1)2﹣.13.如图,直线y=kx 与双曲线y=(x >0)交于点A (1,a ),则k= 2 .【考点】反比例函数与一次函数的交点问题.【分析】直接利用图象上点的坐标性质进而代入求出即可.【解答】解:∵直线y=kx 与双曲线y=(x >0)交于点A (1,a ),∴a=2,k=2,故答案为:2.14.如图,在矩形ABCD中,点E在AB边上,沿CE折叠矩形ABCD,使点B落在AD边上的点F处.若AB=4,BC=5,则tan∠AFE的值为.【考点】翻折变换(折叠问题).【分析】由四边形ABCD是矩形,可得:∠A=∠B=∠D=90°,CD=AB=4,AD=BC=5,由折叠的性质可得:∠EFC=∠B=90°,CF=BC=5,由同角的余角相等,即可得∠DCF=∠AFE,然后在Rt△DCF中,即可求得答案.【解答】解:∵四边形ABCD是矩形,∴∠A=∠B=∠D=90°,CD=AB=4,AD=BC=5,由题意得:∠EFC=∠B=90°,CF=BC=5,∴∠AFE+∠DFC=90°,∠DFC+∠FCD=90°,∴∠DCF=∠AFE,∵在Rt△DCF中,CF=5,CD=4,∴DF=3,∴tan∠AFE=tan∠DCF==.故答案为:.15.如图,已知AB、CD分别表示两幢相距30米的大楼,小明在大楼底部点B处观察,当仰角增大到30度时,恰好能通过大楼CD的玻璃幕墙看到大楼AB的顶部点A的像,那么大楼AB的高度为20米.【考点】解直角三角形的应用-仰角俯角问题.【分析】根据仰角为30°,BD=30米,在Rt△BDE中,可求得ED的长度,根据题意恰好能通过大楼CD的玻璃幕墙看到大楼AB的顶部点A的像,可得AB=2ED.【解答】解:在Rt△BDE中,∵∠EBD=30°,BD=30米,∴=tan30°,解得:ED=10(米),∵当仰角增大到30度时,恰好能通过大楼CD的玻璃幕墙看到大楼AB的顶部点A的像,∴AB=2DE=20(米).故答案是:20.三、解答题:(共75分16.计算(1)﹣2cos45°+(7﹣)0﹣()﹣1+tan30°(2)×sin45°﹣()﹣2+|﹣3|﹣.【考点】二次根式的混合运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】(1)原式第一项化为最简二次根式,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,第四项利用负指数幂法则计算,最后一项利用特殊角的三角函数值计算即可得到结果;(2)根据二次根式、特殊角的三角函数值、负整数指数幂、绝对值的意义运算,再根据实数的运算顺序即可得出答案.【解答】解:(1)﹣2cos45°+(7﹣)0﹣()﹣1+tan30°=2﹣2×+1﹣2+×=2﹣+1﹣2+1=;(2)×sin45°﹣()﹣2+|﹣3|﹣=2×﹣4+3﹣(﹣1)=2﹣4+3﹣+1=2﹣.17.如图,路灯下一墙墩(用线段AB表示)的影子是BC,小明(用线段DE表示)的影子是EF,在M处有一颗大树,它的影子是MN.(1)指定路灯的位置(用点P表示);(2)在图中画出表示大树高的线段;(3)若小明的眼睛近似地看成是点D,试画图分析小明能否看见大树.【考点】中心投影.【分析】根据中心投影的特点可知,连接物体和它影子的顶端所形成的直线必定经过点光源.所以分别把AB和DE的顶端和影子的顶端连接并延长可交于一点,即点光源的位置,再由点光源出发连接MN顶部N的直线与地面相交即可找到MN影子的顶端.线段GM是大树的高.若小明的眼睛近似地看成是点D,则看不到大树,GM处于视点的盲区.【解答】解:(1)点P是灯泡的位置;(2)线段MG是大树的高.(3)视点D看不到大树,GM处于视点的盲区.18.已知y=y1﹣y2,y1与x成反比例,y2与(x﹣2)成正比例,并且当x=3时,y=5,当x=1时,y=﹣1;求y与x之间的函数关系式.【考点】待定系数法求反比例函数解析式.【分析】根据题意设出反比例函数与正比例函数的解析式,代入y=y1﹣y2,再把当x=3时,y=5,当x=1时,y=﹣1代入关于y的关系式,求出未知数的值,即可求出y与x之间的函数关系式.【解答】解:因为y1与x成反比例,y2与(x﹣2)成正比例,故可设y1=,y2=k2(x﹣2),因为y=y1﹣y2,所以y=﹣k2(x﹣2),把当x=3时,y=5;x=1时,y=﹣1,代入得,解得,再代入y=﹣k2(x﹣2)得,y=+4x﹣8.19.如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A﹙﹣2,﹣5﹚,C﹙5,n﹚,交y轴于点B,交x轴于点D.(1)求反比例函数y=和一次函数y=kx+b的表达式;(2)连接OA,OC.求△AOC的面积.(3)当kx+b>时,请写出自变量x的取值范围.【考点】反比例函数与一次函数的交点问题.【分析】(1)把A的坐标代入y=求出m,即可得出反比例函数的表达式,把C的坐标代入y=求出C的坐标,把A、C的坐标代入y=kx+b得出方程组,求出k、b,即可求出一次函数的表达式;(2)把x=0代入y=x﹣3求出OB,分别求出△AOB和△BOC的面积,相加即可;(3)根据A、C的坐标和图象得出即可.【解答】解:(1)把A﹙﹣2,﹣5﹚代入y=得:m=10,即反比例函数的表达式为y=,把C﹙5,n﹚代入y=得:n=2,即C(5,2),把A、C的坐标代入y=kx+b得:,解得:k=1,b=﹣3,所以一次函数的表达式为y=x﹣3;(2)把x=0代入y=x﹣3得:y=﹣3,即OB=3,∵C(5,2),A﹙﹣2,﹣5﹚,∴△AOC的面积为×3×|﹣2|+×3×5=10.5;(3)由图象可知:当kx+b>时,自变量x的取值范围是﹣2<x<0或x>5.20.小刚学想测量灯杆AB的高度,结果他在D处时用测角仪测灯杆顶端A的仰角∠AEG=30°,然后向前走了8米来到C处,又测得A的仰角∠AFG=45°,又知测角仪高1.6米,求灯杆AB的高度.(结果保留一位小数;参考数据:≈1.73)【考点】解直角三角形的应用-仰角俯角问题.【分析】设AG的长为x米,根据正切的概念分别表示出GF、GE的长,计算即可得到AG,求出AB即可.【解答】解:设AG的长为x米,在Rt△AGE中,EG==x,在Rt△AGF中,GF=AG=x,由题意得,x﹣x=8,解得,x≈10.9,则AB=AG+GB≈12.5米,答:灯杆AB的高度约为12.5米.21.已知二次函数y=ax2+bx的图象经过点(2,0)、(﹣1,3).(1)求二次函数的解析式;(2)画出它的图象;(3)写出它的对称轴和顶点坐标.【考点】待定系数法求二次函数解析式;二次函数的图象.【分析】(1)利用待定系数法求二次函数解析式解答;(2)根据二次函数图象的画法,列表、描点、连线,画出图象即可;(3)把二次函数解析式化为顶点式解析式,然后写出对称轴与顶点坐标即可.【解答】解:(1)依题意,得:,解得:,所以,二次函数的解析式为:y=x2﹣2x;(2)y=x2﹣2x=x2﹣2x+1﹣1=(x﹣1)2﹣1,由对称性列表如下:x …﹣2 ﹣1 0 1 2 3 4 …y …8 3 0 ﹣1 0 3 8 …;(3)由y=(x﹣1)2﹣1可知对称轴为直线x=1,顶点坐标为(1,﹣1).22.如图,已知二次函数y=x2+bx+c的图象经过点A(0,3)且对称轴是直线x=2.(1)求该函数的表达式;(2)在抛物线上找点,使△PBC的面积是△ABC的面积的2倍,求点P的坐标.【考点】待定系数法求二次函数解析式.【分析】(1)将点A坐标代入可得c的值,根据对称轴可得b的值;(2)先根据解析式求得点B、C的坐标,继而可得△ABC的面积,设点P(a,a2﹣4a+3),从而表示出△PBC的面积,根据二次函数的最小值及面积间关系得出关于a的方程,即可求得a的值,可得答案.【解答】解:(1)将点A(0,3)代入y=x2+bx+c,得:c=3,∵抛物线对称轴为x=2,∴﹣=2,得:b=﹣4,∴该二次函数解析式为y=x2﹣4x+3;(2)令y=0,得:x2﹣4x+3=0,解得:x=1或x=3,∴点B(1,0)、C(3,0),=×2×3=3,则S△ABC设点P(a,a2﹣4a+3),=×2×|a2﹣4a+3|=|a2﹣4a+3|,则S△PBC∵y=x2﹣4x+3=(x﹣2)2﹣1,∴二次函数的最小值为﹣1,根据题意可得a2﹣4a+3=6,解得:a=2,∴点P的坐标为(2+,6)或(2﹣,6).23.如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°,若坡角∠FAE=30°,求大树的高度(结果保留整数,参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,≈1.73)【考点】解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.【分析】根据矩形性质得出DG=CH,CG=DH,再利用锐角三角函数的性质求出问题即可.【解答】解:如图,过点D作DG⊥BC于G,DH⊥CE于H,则四边形DHCG为矩形.故DG=CH,CG=DH,在直角三角形AHD中,∵∠DAH=30°,AD=6,∴DH=3,AH=3,∴CG=3,设BC为x,在直角三角形ABC中,AC==,∴DG=3+,BG=x﹣3,在直角三角形BDG中,∵BG=DG•tan30°,∴x﹣3=(3+)解得:x≈13,∴大树的高度为:13米.。
人教版九年级(上第二次月考数学试卷(解析版)
人教版九年级(上)第二次月考数学试卷一、选择题(每小题3分,共36分)1.方程x2=3x的解为()A.x=3B.x=0C.x1=0,x2=﹣3D.x1=0,x2=32.长度为下列各组数据的线段(单位:cm)中,成比例的是()A.1,2,3,4B.6,5,10,15C.3,2,6,4D.15,3,4,103.已知,则的值是()A.B.C.D.4.如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC相似的是()A.B.C.D.5.在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次试验发现,摸出红球的频率稳定在0.25左右,则袋子中红球的个数最有可能是()A.5B.10C.12D.156.如图,已知在△ABC中,P为AB上一点,连接CP,以下条件中不能判定△ACP∽△ABC的是()A.∠ACP=∠B B.∠APC=∠ACB C.D.7.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有实数根,则k的取值范围是()A.k>B.k≥C.k>且k≠1D.k≥且k≠18.如图,在四边形ABCD中,顺次连接各边上的中点,得到四边形EFGH.要使得四边形EFGH为矩形,对角线AC、BD要满足()A.AC=BD B.AC=BD或AC⊥BDC.AC⊥BD D.AC和BD相互平分9.放假了,小明与小颖两家准备从红荷湿地、台儿庄古城、莲青山中选择一景点游玩,小明与小颖通过抽签方式确定景点,则两家抽到同一景点的概率是()A.B.C.D.10.如图,已知AB∥CD∥EF,它们依次交直线l1、l2于点A、D、F和点B、C、E,如果AD:DF=3:1,BE=10,那么CE等于()A.B.C.D.11.△ABC中,DE∥BC,且AD:DB=2:3,那么S△ADE:S四边形DBCE等于()A.2:3B.4:21C.2:5D.4:912.如图,在平行四边形ABCD中,∠BAC=90°,AB=AC,过点A作边BC的垂线AF交DC的延长线于点E,点F是垂足,连接BE、DF,DF交AC于点O.则下列结论:①四边形ABEC是正方形;②CO:BE=1:3;③DE=BC;④S四边形OCEF=S△AOD,正确的个数是()A.1B.2C.3D.4二、填空题(每小题3分,共12分)13.若(b+d+f≠0),则=.14.已知线段AB=10,C为AB的黄金分割点(AC>BC),则AC=.15.在一次会议上,每两人都只握一次手,如果一共握手55次,则参加会议的人数为.16.如图,平面直角坐标系中A(4,0),B(0,3),C是AB的中点,M在折线AOB上,直线CM截三角形与三角形ABO相似,M的坐标是.三、解答题(共72分)17.已知:如图,△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)以点B为位似中心,在网格内画出△A1B1C1,使△A1B1C1与△ABC位似,且位似比为2:1,点C1的坐标是;(2)△A1B1C1的面积是平方单位.18.解下列方程:(1)2x2+5x=7(公式法);(2)2x2+6x+3=0(配方法).19.求证:不论k取什么实数,方程x2﹣(k+6)x+4(k﹣3)=0一定有两个不相等的实数根.20.数学实践小组的同学利用太阳光下形成的影子测量大树的高度.在同一时刻下,他们测得身高为1.5米的同学立正站立时的影长为2米,大树的影子分别落在水平地面和台阶上.已知大树在地面的影长为2.4米,台阶的高度均为0.3米,宽度均为0.5米.求大树的高度AB.21.如图,△ABC中,BD是角平分线,过D作DE∥AB交BC于点E,AB=5cm,BE=3cm,求EC的长.22.已知:如图,在▱ABCD中,点E是BC的中点,连接AE并延长交DC的延长线于点F,连接BF.(1)求证:△ABE≌△FCE;(2)若AF=AD,求证:四边形ABFC是矩形.23.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:四边形ADCF是菱形;(2)若AC=12,AB=16,求菱形ADCF的面积.24.如图,一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?25.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件商品每降价1元,商场平均每天可多售出2件.(1)设每件商品降价x元,则商场日销售量增加件,每件商品,盈利元(用含x的代数式表示);(2)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?26.目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.(1)根据图中信息求出m=,n=;(2)请你帮助他们将这两个统计图补全;(3)根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?(4)已知A、B两位同学都最认可“微信”,C同学最认可“支付宝”,D同学最认可“网购”.从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.27.现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?28.如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)根据题意知:BP=,BQ=.(用含t的代数式表示)(2)运动几秒时,△BPQ与△ABC相似?(3)连接AQ、CP,若AQ⊥CP,求t的值.参考答案与试题解析一.选择题(共12小题)1.方程x2=3x的解为()A.x=3B.x=0C.x1=0,x2=﹣3D.x1=0,x2=3【分析】因式分解法求解可得.【解答】解:∵x2﹣3x=0,∴x(x﹣3)=0,则x=0或x﹣3=0,解得:x=0或x=3,故选:D.2.长度为下列各组数据的线段(单位:cm)中,成比例的是()A.1,2,3,4B.6,5,10,15C.3,2,6,4D.15,3,4,10【分析】根据如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段,对每一项进行分析即可.【解答】解:A、1×4≠2×3,故本选项错误;B、5×15≠6×10,故本选项错误;C、2×6=3×4,故选项正确;D、3×15≠4×10,故选项错误.故选:C.3.已知,则的值是()A.B.C.D.【分析】根据等式的性质,可用b表示a,根据分式的性质,可得答案.【解答】解:由,得a=b,==﹣,故选:D.4.如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC相似的是()A.B.C.D.【分析】根据网格中的数据求出AB,AC,BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.【解答】解:根据题意得:AB==,AC=2,BC==,∴BC:AC:AB=1::,A、三边之比为1::,图中的三角形(阴影部分)与△ABC相似;B、三边之比::3,图中的三角形(阴影部分)与△ABC不相似;C、三边之比为1::2,图中的三角形(阴影部分)与△ABC不相似;D、三边之比为2::,图中的三角形(阴影部分)与△ABC不相似.故选:A.5.在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次试验发现,摸出红球的频率稳定在0.25左右,则袋子中红球的个数最有可能是()A.5B.10C.12D.15【分析】设袋子中红球有x个,根据摸出红球的频率稳定在0.25左右列出关于x的方程,求出x的值,从而得出答案.【解答】解:设袋子中红球有x个,根据题意,得:=0.25,解得x=5,∴袋子中红球的个数最有可能是5个,故选:A.6.如图,已知在△ABC中,P为AB上一点,连接CP,以下条件中不能判定△ACP∽△ABC的是()A.∠ACP=∠B B.∠APC=∠ACB C.D.【分析】A、加一公共角,根据两角对应相等的两个三角形相似可以得结论;B、加一公共角,根据两角对应相等的两个三角形相似可以得结论;C、其夹角不相等,所以不能判定相似;D、其夹角是公共角,根据两边的比相等,且夹角相等,两三角形相似.【解答】解:A、∵∠A=∠A,∠ACP=∠B,∴△ACP∽△ABC,所以此选项的条件可以判定△ACP∽△ABC;B、∵∠A=∠A,∠APC=∠ACB,∴△ACP∽△ABC,所以此选项的条件可以判定△ACP∽△ABC;C、∵,当∠ACP=∠B时,△ACP∽△ABC,所以此选项的条件不能判定△ACP∽△ABC;D、∵,又∠A=∠A,∴△ACP∽△ABC,所以此选项的条件可以判定△ACP∽△ABC,本题选择不能判定△ACP∽△ABC的条件,故选:C.7.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有实数根,则k的取值范围是()A.k>B.k≥C.k>且k≠1D.k≥且k≠1【分析】根据根的判别式和一元二次方程的定义可得4﹣4(k﹣1)(﹣2)=8k﹣4≥0且k≠1,求出k的取值范围即可.【解答】解:∵关于x的一元二次方程(k﹣1)x2+2x﹣2=0有实数根,∴△≥0且k≠1,∴△=4﹣4(k﹣1)(﹣2)=8k﹣4≥0且k≠1,∴k≥且k≠1,故选:D.8.如图,在四边形ABCD中,顺次连接各边上的中点,得到四边形EFGH.要使得四边形EFGH为矩形,对角线AC、BD要满足()A.AC=BD B.AC=BD或AC⊥BDC.AC⊥BD D.AC和BD相互平分【分析】根据题意画出相应的图形,如图所示,由四边形EFGH为矩形,根据矩形的四个角为直角得到∠FEH =90°,又EF为三角形ABD的中位线,根据中位线定理得到EF与DB平行,根据两直线平行,同旁内角互补得到∠EMO=90°,同理根据三角形中位线定理得到EH与AC平行,再根据两直线平行,同旁内角互补得到∠AOD=90°,根据垂直定义得到AC与BD垂直.【解答】证明:如图,∵四边形EFGH是矩形,∴∠FEH=90°,又∵点E、F、分别是AD、AB边的中点,∴EF是三角形ABD的中位线,∴EF∥BD,∴∠FEH=∠OMH=90°,又∵点E、H分别是AD、CD各边的中点,∴EH是三角形ACD的中位线,∴EH∥AC,∴∠OMH=∠COB=90°,即AC⊥BD.故选:C.9.放假了,小明与小颖两家准备从红荷湿地、台儿庄古城、莲青山中选择一景点游玩,小明与小颖通过抽签方式确定景点,则两家抽到同一景点的概率是()A.B.C.D.【分析】首先用A,B,C分别表示红荷湿地、台儿庄古城、莲青山,然后画出树状图,再由树状图求得所有等可能的结果与两家抽到同一景点的情况,继而求得答案.【解答】解:用A,B,C分别表示红荷湿地、台儿庄古城、莲青山,画树状图得:∵共有9种等可能的结果,两家抽到同一景点的有3种情况,∴两家抽到同一景点的概率是:=.故选:A.10.如图,已知AB∥CD∥EF,它们依次交直线l1、l2于点A、D、F和点B、C、E,如果AD:DF=3:1,BE=10,那么CE等于()A.B.C.D.【分析】根据平行线分线段成比例定理得到==3,则BC=3CE,然后利用BC+CE=BE=10可计算出CE的长.【解答】解:∵AB∥CD∥EF,∴==3,∴BC=3CE,∵BC+CE=BE,∴3CE+CE=10,∴CE=.故选:C.11.△ABC中,DE∥BC,且AD:DB=2:3,那么S△ADE:S四边形DBCE等于()A.2:3B.4:21C.2:5D.4:9【分析】根据相似三角形的判定和性质定理即可得到结论.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴S△ADE:S△ABC=()2,∵AD:DB=2:3,∴S△ADE:S△ABC=()2=,∴S△ADE:S四边形DBCE=,故选:B.12.如图,在平行四边形ABCD中,∠BAC=90°,AB=AC,过点A作边BC的垂线AF交DC的延长线于点E,点F是垂足,连接BE、DF,DF交AC于点O.则下列结论:①四边形ABEC是正方形;②CO:BE=1:3;③DE=BC;④S四边形OCEF=S△AOD,正确的个数是()A.1B.2C.3D.4【分析】①先证明△ABF≌△ECF,得AB=EC,再得四边形ABEC为平行四边形,进而由∠BAC=90°,得四边形ABCD是正方形,便可判断正误;②由△OCF∽△OAD,得OC:OA=1:2,进而得OC:BE的值,便可判断正误;③根据BC=AB,DE=2AB进行推理说明便可;④由△OCF与△OAD的面积关系和△OCF与△AOF的面积关系,便可得四边形OCEF的面积与△AOD的面积关系.【解答】解:①∵∠BAC=90°,AB=AC,∴BF=CF,∵四边形ABCD是平行四边形,∵∠AFB=∠CFE,∴△ABF≌△ECF(AAS),∴AB=CE,∴四边形ABEC是平行四边形,∵∠BAC=90°,AB=AC,∴四边形ABEC是正方形,故此题结论正确;②∵CF∥AD,∴△OCF∽△OAD,∴OC:OA=CF:AD=CF:BC=1:2,∴OC:AC=1:3,∵AC=BE,∴OC:BE=1:3,故此小题结论正确;③∵AB=CD=EC,∴DE=2AB,∵AB=AC,∠BAC=90°,∴AB=BC,∴DE=2×,故此小题结论正确;④∵△OCF∽△OAD,∴,∴,∵OC:AC=1:3,∴3S△OCF=S△ACF,∵S△ACF=S△CEF,∴,∴,故此小题结论正确.故选:D.二.填空题(共4小题)13.若(b+d+f≠0),则=.【分析】直接根据等比性质求解.【解答】解:∵,故答案为.14.已知线段AB=10,C为AB的黄金分割点(AC>BC),则AC=5﹣5.【分析】根据黄金分割点的定义,知AC为较长线段;则AC=AB,代入数据即可得出AC的值.【解答】解:由于C为线段AB=10的黄金分割点,且AC>BC,AC为较长线段;则AC=10×=5﹣5.15.在一次会议上,每两人都只握一次手,如果一共握手55次,则参加会议的人数为11.【分析】设参加会议有x人,每个人都与其他(x﹣1)人握手,共握手次数为x(x﹣1),根据题意列方程即可.【解答】解:设参加会议有x人,依题意得:x(x﹣1)=55,整理得:x2﹣x﹣110=0,解得x1=11,x2=﹣10,(舍去),答:参加这次会议的有11人.故答案为:11.16.如图,平面直角坐标系中A(4,0),B(0,3),C是AB的中点,M在折线AOB上,直线CM截三角形与三角形ABO相似,M的坐标是(0,)或(2,0)或(,0).【分析】根据勾股定理求出AB,分点M在OB上、点M在OA上两种情况,根据相似三角形的性质计算,得到答案.【解答】解:∵A(4,0),B(0,3),∴OA=4,OB=3,由勾股定理得,AB==5,当点M在OB上,△BMC∽△BOA时,=,∵C是AB的中点,∴OM=OB﹣BM=,∴点M的坐标为(0,);当点M在OA上,△AM′C∽△AOB时,==,∴AM′=2,∴OM′=OA﹣AM′=2,∴点M的坐标为(2,0);当点M在OA上,△AM′′C∽△ABO时,=,即=,解得,AM′′=,∴OM′′=4﹣=,∴点M的坐标为(,0);综上所述,直线CM截三角形与三角形ABO相似,M的坐标是(0,)或(2,0)或(,0).三.解答题17.已知:如图,△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)以点B为位似中心,在网格内画出△A1B1C1,使△A1B1C1与△ABC位似,且位似比为2:1,点C1的坐标是(1,0);(2)△A1B1C1的面积是10平方单位.(2)利用梯形面积减去周围三角形面积求出△A1B1C1的面积.【解答】解:(1)如图所示:△A1B1C1即为所求,点C1的坐标是(1,0);故答案为:(1,0);(2))△A1B1C1的面积是:(2+4)×6﹣×2×4﹣×2×4=10.故答案为:10.18.解下列方程:(1)2x2+5x=7(公式法);(2)2x2+6x+3=0(配方法).【分析】(1)方程利用公式法求出解即可;(2)方程利用配方法求出解即可.【解答】解:(1)方程整理得:2x2+5x﹣7=0,这里a=2,b=5,c=﹣7,∵△=b2﹣4ac=25+56=81>0,∴x==,即x1=1,x2=﹣;(2)方程整理得:x2+3x=﹣,配方得:x2+3x+=,即(x+)2=,开方得:x+=±,解得:x1=﹣+,x2=﹣﹣.19.求证:不论k取什么实数,方程x2﹣(k+6)x+4(k﹣3)=0一定有两个不相等的实数根.0即可.【解答】证明:∵△=(k+6)2﹣4×1×4(k﹣3)=(k﹣2)2+80,而(k﹣2)2≥0,∴(k﹣2)2+80>0,即△>0,所以不论k取什么实数,方程x2﹣(k+6)x+4(k﹣3)=0一定有两个不相等的实数根.20.数学实践小组的同学利用太阳光下形成的影子测量大树的高度.在同一时刻下,他们测得身高为1.5米的同学立正站立时的影长为2米,大树的影子分别落在水平地面和台阶上.已知大树在地面的影长为2.4米,台阶的高度均为0.3米,宽度均为0.5米.求大树的高度AB.【分析】延长DH交BC于点M,延长AD交BC于N,构造相似三角形,利用相似三角形对应边成比例求解.【解答】解:延长DH交BC于点M,延长AD交BC于N.∴BM=3.4,DM=0.9.由,可得MN=1.2.∴BN=3.4+1.2=4.6.由,可得AB=3.45.所以,大树的高度为3.45米.21.如图,△ABC中,BD是角平分线,过D作DE∥AB交BC于点E,AB=5cm,BE=3cm,求EC的长.【分析】根据平行线和角平分线,可以证明△CDE∽△CAB,DE=BE,根据相似三角形的对应边的比相等,就可以求出EC的长.【解答】解:∵BD平分∠ABC,∴∠ABD=∠DBC.∵DE∥AB,∴∠ABD=∠BDE,∴∠DBC=∠BDE,∴DE=BE=3cm.∵DE∥AB,∴△CDE∽△CAB,∴=,即=,解得EC=4.5cm.22.已知:如图,在▱ABCD中,点E是BC的中点,连接AE并延长交DC的延长线于点F,连接BF.(1)求证:△ABE≌△FCE;(2)若AF=AD,求证:四边形ABFC是矩形.【分析】(1)根据平行四边形性质得出AB∥DC,推出∠1=∠2,根据AAS证两三角形全等即可;(2)根据全等得出AB=CF,根据AB∥CF得出平行四边形ABFC,推出BC=AF,根据矩形的判定推出即可.【解答】证明:(1)如图.∵四边形ABCD是平行四边形,∴AB∥DC即AB∥DF,∴∠1=∠2,在△ABE和△FCE中,,∴△ABE≌△FCE(AAS).(2)∵△ABE≌△FCE,∴AB=FC,∵AB∥FC,∴四边形ABFC是平行四边形,∴AD=BC,∵AF=AD,∴AF=BC,∴四边形ABFC是矩形.23.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:四边形ADCF是菱形;(2)若AC=12,AB=16,求菱形ADCF的面积.【分析】(1)先证明△AEF≌△DEB(AAS),得AF=DB,根据一组对边平行且相等可得四边形ADCF是平行四边形,由直角三角形斜边中线的性质得:AD=CD,根据菱形的判定即可证明四边形ADCF是菱形;(2)先根据菱形和三角形的面积可得:菱形ADCF的面积=直角三角形ABC的面积,即可解答.【解答】(1)证明:∵E是AD的中点,∴AE=DE,∵AF∥BC,∵,∴△AEF≌△DEB(AAS),∴AF=DB,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=CD=BC,∴四边形ADCF是菱形;(2)解:设AF到CD的距离为h,∵AF∥BC,AF=BD=CD,∠BAC=90°,∴S菱形ADCF=CD•h=BC•h=S△ABC=AB•AC=×12×16=96.24.如图,一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?【分析】根据正方形的对边平行得到BC∥EF,利用“平行于三角形的一边的直线截其它两边或其它两边的延长线,得到的三角形与原三角形相似”,设正方形零件的边长为xmm,则KD=EF=xmm,AK=(80﹣x)mm,根据相似三角形的性质得到比例式,解方程即可得到结果.【解答】解:∵四边形EGHF为正方形,∴BC∥EF,∴△AEF∽△ABC;设正方形零件的边长为xmm,则KD=EF=xmm,AK=(80﹣x)mm,∵AD⊥BC,∴=,∴=,解得:x=48.答:正方形零件的边长为48mm.25.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件商品每降价1元,商场平均每天可多售出2件.(1)设每件商品降价x元,则商场日销售量增加2x件,每件商品,盈利(50﹣x)元(用含x的代数式表示);(2)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?【分析】(1)分别表示出增加的件数和盈利的金额即可;(2)日盈利=每件商品盈利的钱数×(原来每天销售的商品件数30+2×降价的钱数),把相关数值代入求解即可.【解答】解:(1)设每件商品降价x元,则商场日销售量增加2x件,每件商品,盈利(50﹣x)元,故答案为:2x,(50﹣x).(2)由题意得:(50﹣x)(30+2x)=2000,化简得:x2﹣35x+250=0,解得:x1=10,x2=25,∵该商场为了尽快减少库存,则x=10不合题意,舍去,∴x=25,答:每件商品降价25元,商场日盈利可达2000元;26.目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.(2)请你帮助他们将这两个统计图补全;(3)根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?(4)已知A、B两位同学都最认可“微信”,C同学最认可“支付宝”,D同学最认可“网购”.从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.【分析】(1)由共享单车人数及其百分比求得总人数m,用支付宝人数除以总人数可得其百分比n的值;(2)总人数乘以网购人数的百分比可得其人数,用微信人数除以总人数求得其百分比即可补全两个图形;(3)总人数乘以样本中微信人数所占百分比可得答案;(4)列表得出所有等可能结果,从中找到这两位同学最认可的新生事物不一样的结果数,根据概率公式计算可得.【解答】解:(1)∵被调查的总人数m=10÷10%=100人,∴支付宝的人数所占百分比n%=×100%=35%,即n=35,故答案为:100、35;(2)网购人数为100×15%=15人,微信对应的百分比为×100%=40%,补全图形如下:(3)估算全校2000名学生中,最认可“微信”这一新生事物的人数为2000×40%=800(人);答:大约有800人最认可“微信”这一新生事物.(4)列表如下:共有12种等可能情况,这两位同学最认可的新生事物不一样的有10种;所以这两位同学最认可的新生事物不一样的概率为P==.27.现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?【分析】(1)设该快递公司投递总件数的月平均增长率为x,根据“今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同”建立方程,解方程即可;(2)首先求出今年6月份的快递投递任务,再求出21名快递投递业务员能完成的快递投递任务,比较得出该公司不能完成今年6月份的快递投递任务,进而求出至少需要增加业务员的人数.【解答】解:(1)设该快递公司投递总件数的月平均增长率为x,根据题意得10(1+x)2=12.1,解得x1=0.1,x2=﹣2.1(不合题意舍去).答:该快递公司投递总件数的月平均增长率为10%;(2)今年6月份的快递投递任务是12.1×(1+10%)=13.31(万件).∵平均每人每月最多可投递0.6万件,∴21名快递投递业务员能完成的快递投递任务是:0.6×21=12.6<13.31,∴该公司现有的21名快递投递业务员不能完成今年6月份的快递投递任务∴需要增加业务员(13.31﹣12.6)÷0.6=1≈2(人).答:该公司现有的21名快递投递业务员不能完成今年6月份的快递投递任务,至少需要增加2名业务员.28.如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)根据题意知:BP=5tcm,BQ=(8﹣4t)cm.(用含t的代数式表示)(2)运动几秒时,△BPQ与△ABC相似?(3)连接AQ、CP,若AQ⊥CP,求t的值.【分析】(1)根据题意列式即可;(2)根据勾股定理即可得到结论;分两种情况:①当△BPQ∽△BAC时,BP:BA=BQ:BC;当△BPQ∽△BCA 时,BP:BC=BQ:BA,再根据BP=5t,QC=4t,AB=10cm,BC=8cm,代入计算即可;(3)过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=5t,PM=3t,MC=8﹣4t,根据△ACQ∽△CMP,得出AC:CM=CQ:MP,代入计算即可.【解答】解:(1)根据题意知:BP=5tcm,BQ=8﹣4tcm,故答案为:5tcm,(8﹣4t)cm;(2)∵∠ACB=90°,AC=6cm,BC=8cm,∴AB===10(cm);分两种情况讨论:①当△BPQ∽△BAC时,,∵BP=5t,QC=4t,AB=10,BC=8,∴,解得,t=1,②当△BPQ∽△BCA时,,∴=,解得,t=;∴t=1或时,△BPQ∽△BCA;(3)过P作PM⊥BC于点M,AQ,CP交于点N,如图所示,则PB=5t,PM=3t,MC=8﹣4t,∵∠NAC+∠NCA=90°,∠PCM+∠NCA=90°,∴∠NAC=∠PCM,∵∠ACQ=∠PMC,∴△ACQ∽△CMP,∴=,∴=,解得t=.。
九年级上册数学第二次月考试卷
九年级上册数学第二次月考复习试卷考试范围:九年级上册数学;考试时间:100分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________一.选择题(共10小题,满分30分,每小题3分)1.方程(x ﹣2)(x +3)=0的解是( )A .x =2B .x =﹣3C .x 1=2,x 2=3D .x 1=2,x 2=﹣32.如图,⊙O 是△ABC 的外接圆,∠BOC =120°,则∠BAC 的度数是( )A .70°B .60°C .50°D .30°3.已知点A 的坐标为(a ,b ),O 为坐标原点,连接OA ,将线段OA 绕点O 按逆时针方向旋转90°得OA 1,则点A 1的坐标为( )A .(﹣a ,b )B .(a ,﹣b )C .(﹣b ,a )D .(b ,﹣a )4.在△ABC 中,I 是内心,∠BIC =130°,则∠A 的度数是( )A .40°B .50°C .65°D .80°5.如图,⊙O 的直径AB 与弦AC 的夹角为30°,切线CD 与AB 的延长线交于点D ,若⊙O 的半径为3,则CD 的长为( )A .6B .6√3C .3D .3√3(2题图) (5题图) (6题图) (7题图)6.如图,在▱ABCD 中,∠B =60°,⊙C 的半径为3,则图中阴影部分的面积是( )A .πB .2πC .3πD .6π7.如图,点A ,B ,C 的坐标分别为(0,﹣1),(0,2),(3,0).从下面四个点M (3,3),N (3,﹣3),P (﹣3,0),Q (﹣3,1)中选择一个点,以A ,B ,C 与该点为顶点的四边形不是中心对称图形,则该点是( )A .MB .NC .PD .Q8.如图,二次函数y =ax 2+bx 的图象开口向下,且经过第三象限的点P .若点P 的横坐标为﹣1,则一次函数y =(a ﹣b )x +b 的图象大致是( )A .B .C .D .9.若抛物线y =x 2+ax +b 与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线x =1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )A .(﹣3,﹣6)B .(﹣3,0)C .(﹣3,﹣5)D .(﹣3,﹣1)10.已知学校航模组设计制作的火箭的升空高度h (m )与飞行时间t (s )满足函数表达式h =﹣t 2+24t +1.则下列说法中正确的是( )A .点火后9s 和点火后13s 的升空高度相同B .点火后24s 火箭落于地面C .点火后10s 的升空高度为139mD .火箭升空的最大高度为145m二.填空题(共5小题,满分15分,每小题3分)11.若关于x 的一元二次方程x 2﹣6x +c =0(c 是常数)没有实数根,则c 的取值范围是 .12.如图,AB 是⊙O 的直径,BĈ=BD ̂,∠A =25°,则∠BOD 的度数为 度. 13.如图所示的图案由三个叶片组成,绕点O 旋转120°后可以和自身重合,若每个叶片的面积为4cm 2,∠AOB =120°,则图中阴影部分的面积为 .14.在平面直角坐标系中,已知A (2,3),B (0,1),C (3,1),若线段AC 与BD 互相平分,则点D 关于坐标原点的对称点的坐标为 .15.如图,二次函数y =ax 2+bx +c 的图象与x 轴交于点A (﹣1,0),与y 轴的交点B 在(0,2)与(0,3)之间(不包括这两点),对称轴为直线x =2.下列结论:①abc >0;②9a +3b +c >0;③若点M (12,y 1)点N (52,y 2)是函数图象上的两点,则y 1>y 2;④−35<a <−25;⑤ax 2+bx +c =0的两根是x =5或x =﹣1;其中正确结论有 .(填序号)(12题图) (13题图) (15题图)三.解答题(共8小题,满分75分)16.(8分)解下列方程:(1)2x 2﹣4x ﹣5=0; (2)(x ﹣1)(x +2)=2(x +2).17.(9分)如图,已知在△ABC 中,∠A =90°,请用圆规和直尺作⊙P ,使圆心P 在AC 上,且与AB 、BC 两边都相切.(要求保留作图痕迹,不必写出作法和证明)18.(9分)如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC 沿射线平移至△FEG,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连接CG,求证:四边形CBEG是正方形.19.(9分)如图,现有可建造60m围墙的材料,准备依靠原有旧墙围成如图所示的矩形仓库,墙长为a m.(1)能否围成总面积为225m2的仓库?若能,AB的长为多少米?(2)能否围成总面积为400m2的仓库?说说你的理由.20.(9分)如图,⊙O是△ABC的外接圆,AB是直径,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC,分别交AC,AB的延长线于点E,F.求证:EF是⊙O的切线;21.(10分)如图,有一直径是1米的圆形铁皮,要从中剪出一个圆心角是120°的扇形ABC,求:(1)被剪掉阴影部分的面积.(2)若用所留的扇形铁皮围成一个圆锥,该圆锥底面圆的半径是多少?22.(10分)“绿水青山就是金山银山”的理念已融入人们的日常生活中,因此,越来越多的人喜欢骑自行车出行.某自行车店在销售某型号自行车时,以高出进价的50%标价.已知按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同.(1)求该型号自行车的进价和标价分别是多少元?(2)若该型号自行车的进价不变,按(1)中的标价出售,该店平均每月可售出51辆;若每辆自行车每降价20元,每月可多售出3辆,求该型号自行车降价多少元时,每月获利最大?最大利润是多少?23.(11分)如图,抛物线y=ax2+12x+c交x轴于A,B两点,交y轴于点C.直线y=−12x﹣2经过点A,C.(1)求抛物线的解析式;(2)点P是抛物线上一动点,过点P作x轴的垂线,交直线AC于点M,设点P的横坐标为m.①当△PCM是直角三角形时,求点P的坐标;②作点B关于点C的对称点B',则平面内存在直线l,使点M,B,B′到该直线的距离都相等.当点P在y轴右侧的抛物线上,且与点B不重合时,请直接写出直线l:y=kx+b的解析式.(k,b可用含m的式子表示)参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:方程(x ﹣2)(x +3)=0,可得x ﹣2=0或x +3=0,解得:x 1=2,x 2=﹣3,选:D .2.解:∵BĈ=BC ̂, ∴∠BAC =12∠BOC =12×120°=60°,选:B .3.解:设点A (a ,b )坐标平面内一点,逆时针方向旋转90°后A 1应与A 分别位于y 轴的两侧,在x 轴的同侧,横坐标符号相反,纵坐标符号相同.作AM ⊥x 轴于M ,A ′N ⊥x 轴于N 点,在直角△OAM 和直角△A 1ON 中,OA =OA 1,∠AOM =∠OA 1N ,∠AMO =∠ONA 1=90°,∴△OAM ≌△A 1ON∴A 1N =OM ,ON =AM∴A 1的坐标为(﹣b ,a )选:C .4.解:∵∠BIC =130°,∴∠IBC +∠ICB =50°,又∵I 是内心即I 是三角形三个内角平分线的交点,∴∠ABC +∠ACB =100°,∴∠A =80°.选:D .5.选:D.6.解:∵在▱ABCD中,∠B=60°,⊙C的半径为3,∴∠C=120°,∴图中阴影部分的面积是:120×π×32360=3π,选:C.7.解:根据平行四边形的判定,已知M、N、Q都能够和已知的三个点组成平行四边形,则一定是中心对称图形.选:C.8.解:由二次函数的图象可知,a<0,b<0,当x=﹣1时,y=a﹣b<0,∴y=(a﹣b)x+b的图象在第二、三、四象限,选:D.9.解:∵某定弦抛物线的对称轴为直线x=1,∴该定弦抛物线过点(0,0)、(2,0),∴该抛物线解析式为y=x(x﹣2)=x2﹣2x=(x﹣1)2﹣1.将此抛物线向左平移2个单位,再向下平移3个单位,得到新抛物线的解析式为y=(x﹣1+2)2﹣1﹣3=(x+1)2﹣4.当x=﹣3时,y=(x+1)2﹣4=0,∴得到的新抛物线过点(﹣3,0).选:B.10.解:A、当t=9时,h=136;当t=13时,h=144;所以点火后9s和点火后13s的升空高度不相同,此选项错误;B、当t=24时h=1≠0,所以点火后24s火箭离地面的高度为1m,此选项错误;C、当t=10时h=141m,此选项错误;D 、由h =﹣t 2+24t +1=﹣(t ﹣12)2+145知火箭升空的最大高度为145m ,此选项正确; 选:D .二.填空题(共5小题,满分15分,每小题3分)11.解:根据题意得Δ=(﹣6)2﹣4c <0,解得c >9.答案为c >9.12.解:连接OC ;由圆周角定理,得:∠BOC =2∠A =50°;∵BĈ=BD ̂, ∴∠BOD =∠BOC =50°.13.解:∵每个叶片的面积为4cm 2,∴图形的面积是12cm 2,∵图案绕点O 旋转120°后可以和自身重合,∠AOB =120°,∴图形中阴影部分的面积是图形的面积的 13, ∴图中阴影部分的面积之和为4cm 2.答案为:4.14.解:如图所示:∵A (2,3),B (0,1),C (3,1),线段AC 与BD 互相平分, ∴D 点坐标为:(5,3),∴点D 关于坐标原点的对称点的坐标为:(﹣5,﹣3).答案为:(﹣5,﹣3).15.解:∵抛物线开口向下,与y 轴交点在x 轴上方,∴a <0,c >0,∵对称轴在y轴右侧,∴b>0,∴abc<0,①错误,不符合题意.∵抛物线对称轴为直线x=2,点A坐标为(﹣1,0),∴抛物线与x轴另一交点坐标为(5,0),∴x=3时,y>0,∴9a+3b+c>0,②正确,符合题意.∵2−12>52−2,抛物线开口向下,∴y1<y2,③错误,不符合题意.∵抛物线对称轴为直线x=−b2a=2,∴b=﹣4a,当x=﹣1时,y=a﹣b+c=a+4a+c=5a+c=0,∴c=﹣5a,由图象可得2<c<3,∴2<﹣5a<3,∵a<0,∴−35<a<−25,④正确,符合题意.∵抛物线与x轴交点坐标为(﹣1,0),(5,0),∴ax2+bx+c=0的两根是x=5或x=﹣1,⑤正确,符合题意.答案为:②④⑤.三.解答题(共8小题,满分75分)16.解:(1)∵2x2﹣4x﹣5=0,∴2x2﹣4x=5,∴x2−2x=5 2,∴x2−2x+1=52+1,∴(x−1)2=7 2,∴x−1=±12√14,∴x1=1+12√14,x2=1−12√14;(2)∵(x﹣1)(x+2)=2(x+2),移项可得:(x﹣1)(x+2)﹣2(x+2)=0,因式分解可得:(x +2)(x ﹣1﹣2)=0,化为一元一次方程可得:x +2=0或x ﹣1﹣2=0,解得:x 1=﹣2,x 2=3.17.解:如图所示,则⊙P 为所求作的圆.18.(1)解:FG ⊥ED .理由如下:∵△ABC 绕点B 顺时针旋转90°至△DBE 后,∴∠DEB =∠ACB ,∵把△ABC 沿射线平移至△FEG ,∴∠GFE =∠A ,∵∠ABC =90°,∴∠A +∠ACB =90°,∴∠DEB +∠GFE =90°,∴∠FHE =90°,∴FG ⊥ED ;(2)证明:根据旋转和平移可得∠GEF =90°,∠CBE =90°,CG ∥EB ,CB =BE , ∵CG ∥EB ,∴∠BCG =∠CBE =90°,∴∠BCG =90°,∴四边形BCGE 是矩形,∵CB =BE ,∴四边形CBEG 是正方形.19.解:设AB =x 米,则AD =60−x 3米,根据题意得:x •60−x 3=225, 解得:x =15或x =45,答:AB 的长为15米或45米;(2)同理可得:x •60−x 3=400整理得:x 2﹣60x +1200=0,∵b 2﹣4ac =﹣1200<0,∴此方程无实数根,即不能围成400平方米的仓库.20.证明:连接OD 交BC 于H ,如图所示:∵OA =OD ,∴∠OAD =∠ODA ,∵AD 平分∠BAC ,∴∠OAD =∠DAC ,∴∠ODA =∠DAC ,∴OD ∥AE ,∵DE ⊥AC ,∴OD ⊥EF ,∵OD 是⊙O 的半径,∴EF 是⊙O 的切线;21.解:(1)设O 为圆心,连接OA 、OB ,OC ,BC ,且OA 与BC 交于点D ,如图所示: 在△ABO 和△ACO 中,{OB =OCAB =AC OA =OA,∴△ABO ≌△ACO (SSS ),又∵∠BAC =120°,∴∠BAO =∠CAO =60°,又OA =OB ,∴△ABO 是等边三角形,∴AB =OA =12×1=12(米), ∴S 扇形ABC =120π×(12)2360=π12m 2, ∴S 阴影=π (12)2−π12=π6m 2;(2)弧BC 的长l =120⋅π⋅12180=π3m ,设圆锥的底面半径为r ,∴π3=2πr ,∴r =16,∴圆锥底面圆的半径是16m .22.解:(1)设进价为x 元,则标价是1.5x 元,由题意得:1.5x ×0.9×8﹣8x =(1.5x ﹣100)×7﹣7x ,解得:x =1000,1.5×1000=1500(元),答:进价为1000元,标价为1500元;(2)设该型号自行车降价a 元,利润为w 元,由题意得:w =(51+a 20×3)(1500﹣1000﹣a ), =−320(a ﹣80)2+26460, ∵−320<0,∴当a =80时,w 最大=26460,答:该型号自行车降价80元出售每月获利最大,最大利润是26460元.23.解:(1)当x =0时,y =−12x ﹣2=﹣2,∴点C 的坐标为(0,﹣2);当y =0时,−12x ﹣2=0,解得:x =﹣4,∴点A 的坐标为(﹣4,0).将A (﹣4,0),C (0,﹣2)代入y =ax 2+12x +c ,得:{16a −2+c =0c =−2,解得:{a =14c =−2, ∴抛物线的解析式为y =14x 2+12x ﹣2.(2)①∵PM ⊥x 轴,∴∠PMC ≠90°,∴分两种情况考虑,如图1所示.(i )当∠MPC =90°时,PC ∥x 轴,∴点P 的纵坐标为﹣2.当y =﹣2时,14x 2+12x ﹣2=﹣2, 解得:x 1=﹣2,x 2=0,∴点P 的坐标为(﹣2,﹣2);(ii )当∠PCM =90°时,设PC 与x 轴交于点D .∵∠OAC +∠OCA =90°,∠OCA +∠OCD =90°,∴∠OAC =∠OCD .又∵∠AOC =∠COD =90°,∴△AOC ∽△COD ,∴OD OC =OC OA ,即OD 2=24, ∴OD =1,∴点D 的坐标为(1,0).设直线PC 的解析式为y =kx +b (k ≠0),将C (0,﹣2),D (1,0)代入y =kx +b ,得:{b =−2k +b =0,解得:{k =2b =−2, ∴直线PC 的解析式为y =2x ﹣2.联立直线PC 和抛物线的解析式成方程组,得:{y =2x −2y =14x 2+12x −2, 解得:{x 1=0y 1=−2,{x 2=6y 2=10, 点P 的坐标为(6,10).综上所述:当△PCM 是直角三角形时,点P 的坐标为(﹣2,﹣2)或(6,10).②当y =0时,14x 2+12x ﹣2=0, 解得:x 1=﹣4,x 2=2,∴点B 的坐标为(2,0).∵点C 的坐标为(0,﹣2),点B ,B ′关于点C 对称,∴点B ′的坐标为(﹣2,﹣4).∵点P 的横坐标为m (m >0且m ≠2),∴点M 的坐标为(m ,−12m ﹣2).利用待定系数法可求出:直线BM 的解析式为y =−m+42m−4x +m+4m−2,直线B ′M 的解析式为y =−m+42m+4x −5m+4m+2,直线BB ′的解析式为y =x ﹣2.分三种情况考虑,如图2所示:当直线l ∥BM 且过点C 时,直线l 的解析式为y =−m+42m−4x ﹣2;当直线l ∥B ′M 且过点C 时,直线l 的解析式为y =−m+42m+4x ﹣2;当直线l ∥BB ′且过线段CM 的中点N (12m ,−14m ﹣2)时,直线l 的解析式为y =x −34m ﹣2. 综上所述:直线l 的解析式为y =−m+42m−4x ﹣2,y =−m+42m+4x ﹣2或y =x −34m ﹣2.。
人教版九年级数学上第二次月考试题及答案
九年级数学第二次月考试题班级: 姓名: 座号: 成绩: 一、选择题(每小题3分,共42分)1.下列图形中,是中心对称图形的是( )A .B .C .D . 2.一元二次方程01x x 22=+-的一次项系数和常数项依次是( ) A 、-1和1 B 、1和1 C 、2和1 D 、0和1 3.方程x 2﹣2x+3=0的根的情况是( )A .有两个相等的实数根B .只有一个实实数根C .没有实数根D .有两个不相等的 4.如图1,A ,B ,C 是⊙O 上的三个点,∠ABC=25°,则∠AOC 的度数是( ) A .25° B .50° C .60° D .90°5.⊙O 的半径为7cm ,点P 到圆心O 的距离OP=10cm ,则点P 与⊙O 的位置关系为( ) A .点P 在圆上 B .点P 在圆内 C .点P 在圆外 D .无法确定 6.在平面直角坐标系中,⊙P 的圆心坐标为(4,8数根),半径为5,那么x 轴与⊙P 的位置关系是( ) A .相交B .相离C .相切D .以上都不是7.对于二次函数y=(x-1)2+2的图象,下列说法正确的是( ) A .开口向下 B .对称轴是x=-1 C .顶点坐标是(1,2) D .与x 轴有两个交点8.一个扇形的弧长是20πcm,面积是240πcm 2,则这个扇形的圆心角等于( ) A .160° B .150° C .120° D .60°9.如图2所示,P 为⊙O 外一点,PA 、PB 分别切⊙O 于A 、B ,CD 切⊙O 于点E ,分别交PA 、PB 于点C 、D ,若PA=15,则△PCD 的周长为( ) A .15 B .12 C .20 D .3010.关于x 的方程kx 2+2x ﹣1=0有实数根,则k 的取值范围是( ) A .k≥﹣1 B .k≥﹣1且k≠0 C .k≤﹣1 D .k≤1且k≠0 11.已知点A (1,a )、点B (b ,2)关于原点对称,则a+b 的值为( ) A .1 B .3 C .﹣1 D .﹣312.如图3,AB 是⊙O 的直径,弦CD⊥AB 于点E ,已知,CD=8,AE=2,则⊙O 的半径长是( ) A .10cmB .6cmC .5cmD .3cm13.二次函数y=ax 2+bx+c 的图象如图4所示,则下列结论正确的是( ) A .a <0 B .b 2-4ac <0 C .当-1<x <3时,y >0 D .-b2a=114.如图5,在扇形AOB 中∠AOB=90°,正方形CDEF 的顶点C 是的中点,点D在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为2时,则阴影部分的面积为( )A .2π﹣8B .4π﹣8C .2π﹣4D .4π﹣4 二、填空题(每小题4分,共16分)15.关于x 的一元二次方程x 2+mx+3=0的一个根是1,则m 的值为 。
人教版九年级数学上册笫二次月考测试题(A)..docx
初中数学试卷 桑水出品九年级数学笫二次月考测试题(A ).班级----- 姓名----- 评分-----一、选择题(每小题4分,共48分)1. 若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为a ,最小距离为b (a>b ),则此圆的半径为( )A .2b a +B .2b a - C .22b a b a -+或 D .b a b a -+或 2. 如图24—A —1,⊙O 的直径为10,圆心O 到弦AB 的距离OM的长为3,则弦AB 的长是( )A .4B .6C .7D .8 3.已知点O 为△ABC 的外心,若∠A=80°,则∠BOC 的度数为( )A .40°B .80°C .160°D .120°4.如图24—A —4,AB 为⊙O 的直径,点C 在⊙O 上,若∠B=60°,则∠A 等于( )A .80°B .50°C .40°D .30°5.如图24—A —5,P 为⊙O 外一点,PA 、PB 分别切⊙O 于A 、B ,CD 切⊙O 于点E ,分别交PA 、PB 于点C 、D ,若PA=5,则△PCD 的周长为( )A .5B .7C .8D .106.若粮仓顶部是圆锥形,且这个圆锥的底面直径为4m ,母线长为3m ,为防雨需在粮仓顶部铺上油毡,则这块油毡的面积是( )A .26mB .26m πC .212mD .212m π图24—A —17. 下列事件中是必然事件的是( )A .小菊上学一定乘坐公共汽车B .某种彩票中奖率为1%,买10000张该种票一定会中奖 C .一年中,大、小月份数刚好一样多D .将豆油滴入水中,豆油会浮在水面上8.如图4,一小鸟受伤后,落在阴影部分的概率为( )A .21B .31C .41D . 19.连掷两次骰子,它们的点数都是4的概率是( )A.61B.41C.161D.361 10.下列事件发生的概率为0的是( )A .随意掷一枚均匀的硬币两次,至少有一次反面朝上;B .今年冬天黑龙江会下雪;C .随意掷两个均匀的骰子,朝上面的点数之和为1;D .一个转盘被分成6个扇形,按红、白、白、红、红、白排列,转动转盘,指针停在红色区域。
九年级上册第二次月考数学试题 (含答案) (精选5套试题) (1)
九年级上学期第二次月考数学试卷一、选择题(每小题3分,共30分)1.下列关于x的方程:①ax2+bx+c=0;②3(x﹣9)2﹣(x+1)2=1;③x+3=;④(a2+a+1)x2﹣a=0;⑤=x﹣1,其中一元二次方程的个数是()A.1 B.2 C.3 D.42.用配方法解一元二次方程x2﹣4x=5时,此方程可变形为()A.(x+2)2=1 B.(x﹣2)2=1 C.(x+2)2=9 D.(x﹣2)2=9 3.下面图形中是中心对称但不是轴对称图形的是()A.平行四边形B.长方形C.菱形D.正方形4.菱形具有而矩形不具有的性质是()A.对角相等B.四边相等C.对角线互相平分D.四角相等5.目前我国建立了比较完善的经济困难学生资助体系.某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元,设每半年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是()A.438(1+x)2=389 B.389(1+x)2=438C.389(1+2x)2=438 D.438(1+2x)2=3896.如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是()A.24 B.16 C.4D.27.已知:如图,在矩形ABCD中,E,F,G,H分别为边AB,BC,CD,DA的中点.若AB=2,AD=4,则图中阴影部分的面积为()A.3 B.4 C.6 D.88.三角形的两边长分别为2和6,第三边是方程x2﹣10x+21=0的解,则第三边的长为()A.7 B.3 C.7或3 D.无法确定9.下列说法错误的是()A.一组对边平行且一组对角相等的四边形是平行四边形B.每组邻边都相等的四边形是菱形C.对角线互相垂直的平行四边形是正方形D.四个角都相等的四边形是矩形10.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12 B.24 C.12D.16二、填空题(每小题3分,共27分)11.将方程(x+1)2=2x化成一般形式为,其二次项是,一次项是,常数项是.12.若一元二次方程ax2﹣bx﹣2016=0有一根为x=﹣1,则a+b=.13.已知四边形ABCD中,∠A=∠B=∠C=90°,若添加一个条件即可判定该四边形是正方形,那么这个条件可以是.14.若关于x的一元二次方程mx2+3x﹣4=0有实数根,则m.15.如图,在矩形ABCD中,对角线AC与BD相交于O点,且AB=OA=2cm,则BD的长为cm,BC的长为cm.16.如图,四边形ABCD是正方形,延长AB到E,使AE=AC,则∠BCE的度数是度.17.菱形两条对角线长度比为1:,则菱形较小的内角的度数为度.18.已知菱形ABCD的边长为6,∠A=60°,如果点P是菱形内一点,且PB=PD=2,那么AP的长为.19.如图:矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为.三、解答题(共43分)20.解下列方程:(1)x2﹣18=7x(用配方法解)(2)4x(x﹣1)=1(用配方法解)(3)2x2﹣4x﹣1=0 (用公式法解)(4)(2﹣3x)+(3x﹣2)2=0 (用因式法解)21.如图,在△ABC中,AD平分∠BAC,DE∥AC,DF∥A B.求证:四边形AEDF是菱形.22.关于x的方程kx2+(k+2)x+=0有两个不相等的实数根;(1)求k的取值范围;(2)是否存在实数k,使方程的两个实数根的倒数和等于0?若存在,求出k的值;若不存在,请说明理由.23.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.24.某商场在“五•一”节里实行让利销售,全部商品一律按九折销售.这样每天所获得的利润恰是销售收入的,如果第一天的销售收入是4万元,并且每天的销售收入都有增长,第三天的利润是1.25万元.(1)求第三天的销售收入是多少万元?(2)求第二天和第三天销售收入平均每天的增长率是多少?四.附加题:(附加题20分)25.分别把带有指针的圆形转盘A、B分成4等份、3等份的扇形区域,并在每一个小区域内标上数字(如图所示).欢欢、乐乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘.(1)试用列表或画树状图的方法,求欢欢获胜的概率;(2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.26.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t 秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.参考答案与试题解析一、选择题(每小题3分,共30分)1.下列关于x的方程:①ax2+bx+c=0;②3(x﹣9)2﹣(x+1)2=1;③x+3=;④(a2+a+1)x2﹣a=0;⑤=x﹣1,其中一元二次方程的个数是()A.1 B.2 C.3 D.4【考点】一元二次方程的定义.【分析】根据一元二次方程的定义:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.【解答】解:①当a=0时,ax2+bx+c=0是一元一次方程;②3(x﹣9)2﹣(x+1)2=1是一元二次方程;③x+3=是分式方程;④(a2+a+1)x2﹣a=0是一元二次方程;⑤=x﹣1是无理方程,故选:B.2.用配方法解一元二次方程x2﹣4x=5时,此方程可变形为()A.(x+2)2=1 B.(x﹣2)2=1 C.(x+2)2=9 D.(x﹣2)2=9【考点】解一元二次方程-配方法.【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.【解答】解:∵x2﹣4x=5,∴x2﹣4x+4=5+4,∴(x﹣2)2=9.故选D.3.下面图形中是中心对称但不是轴对称图形的是()A.平行四边形B.长方形C.菱形 D.正方形【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、平行四边形是中心对称但不是轴对称图形,故本选项正确;B、长方形是中心对称也是轴对称图形,故本选项错误;C、菱形是中心对称也是轴对称图形,故本选项错误;D、正方形是中心对称也是轴对称图形,故本选项错误.故选A.4.菱形具有而矩形不具有的性质是()A.对角相等 B.四边相等C.对角线互相平分D.四角相等【考点】矩形的性质;菱形的性质.【分析】菱形和矩形都是平行四边形,具有平行四边形的所有性质,菱形还具有独特的性质:四边相等,对角线垂直;矩形具有独特的性质:对角线相等,邻边互相垂直.【解答】解:A、对角相等,菱形和矩形都具有的性质,故A错误;B、四边相等,菱形的性质,矩形不具有的性质,故B正确;C、对角线互相平分,菱形和矩形都具有的性质,故C错误;D、四角相等,矩形的性质,菱形不具有的性质,故D错误;故选:B.5.目前我国建立了比较完善的经济困难学生资助体系.某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元,设每半年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是()A.438(1+x)2=389 B.389(1+x)2=438 C.389(1+2x)2=438 D.438(1+2x)2=389 【考点】由实际问题抽象出一元二次方程.【分析】先用含x的代数式表示去年下半年发放给每个经济困难学生的钱数,再表示出今年上半年发放的钱数,令其等于438即可列出方程.【解答】解:设每半年发放的资助金额的平均增长率为x,则去年下半年发放给每个经济困难学生389(1+x)元,今年上半年发放给每个经济困难学生389(1+x)2元,由题意,得:389(1+x)2=438.故选B.6.如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是()A.24 B.16 C.4D.2【考点】菱形的性质;勾股定理.【分析】由菱形ABCD的两条对角线相交于O,AC=6,BD=4,即可得AC⊥BD,求得OA 与OB的长,然后利用勾股定理,求得AB的长,继而求得答案.【解答】解:∵四边形ABCD是菱形,AC=6,BD=4,∴AC⊥BD,OA=AC=3,OB=BD=2,AB=BC=CD=AD,∴在Rt△AOB中,AB==,∴菱形的周长是:4AB=4.故选:C.7.已知:如图,在矩形ABCD中,E,F,G,H分别为边AB,BC,CD,DA的中点.若AB=2,AD=4,则图中阴影部分的面积为()A.3 B.4 C.6 D.8【考点】矩形的性质;三角形中位线定理.【分析】阴影部分的面积等于矩形面积减去四个直角三角形的面积.【解答】解:矩形的面积=2×4=8;S=×1×2=1;△AEF∴阴影部分的面积=8﹣1×4=4.故选B.8.三角形的两边长分别为2和6,第三边是方程x2﹣10x+21=0的解,则第三边的长为()A.7 B.3 C.7或3 D.无法确定【考点】解一元二次方程-因式分解法;三角形三边关系.【分析】将已知的方程x2﹣10x+21=0左边分解因式,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解得到原方程的解为3或7,利用三角形的两边之和大于第三边进行判断,得到满足题意的第三边的长.【解答】解:x2﹣10x+21=0,因式分解得:(x﹣3)(x﹣7)=0,解得:x1=3,x2=7,∵三角形的第三边是x2﹣10x+21=0的解,∴三角形的第三边为3或7,当三角形第三边为3时,2+3<6,不能构成三角形,舍去;当三角形第三边为7时,三角形三边分别为2,6,7,能构成三角形,则第三边的长为7.故选A9.下列说法错误的是()A.一组对边平行且一组对角相等的四边形是平行四边形B.每组邻边都相等的四边形是菱形C.对角线互相垂直的平行四边形是正方形D.四个角都相等的四边形是矩形【考点】多边形.【分析】分别利用平行四边形、矩形、菱形、正方形的判定方法进而得出即可.【解答】解;A、一组对边平行且一组对角相等的四边形是平行四边形,首先由两直线平行,同旁内角互补及等角的补角相等得出另一组对角相等,然后根据两组对角分别相等的四边形是平行四边形可知是个真命题,正确,不合题意;B、每组邻边都相等的四边形是菱形,正确,不合题意;C、对角线互相垂直的平行四边形是菱形,故此选项错误,符合题意;D、四个角都相等的四边形是矩形,正确,不合题意;故选:C.10.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12 B.24 C.12D.16【考点】翻折变换(折叠问题);矩形的性质.【分析】根据平行线的性质和折叠的性质易证得△EFB′是等边三角形,继而可得△A′B′E中,B′E=2A′E,则可求得B′E的长,然后由勾股定理求得A′B′的长,继而求得答案.【解答】解:在矩形ABCD中,∵AD∥BC,∴∠DEF=∠EFB=60°,∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,∴∠EFB=∠EFB′=60°,∠B=∠A′B′F=90°,∠A=∠A′=90°,AE=A′E=2,AB=A′B′,在△EFB′中,∵∠DEF=∠EFB=∠EB′F=60°∴△EFB′是等边三角形,Rt△A′EB′中,∵∠A′B′E=90°﹣60°=30°,∴B′E=2A′E,而A′E=2,∴B′E=4,∴A′B′=2,即AB=2,∵AE=2,DE=6,∴AD=AE+DE=2+6=8,∴矩形ABCD的面积=AB•AD=2×8=16.故答案为:16.二、填空题(每小题3分,共27分)11.将方程(x+1)2=2x化成一般形式为x2+1=0,其二次项是x2,一次项是0,常数项是1.【考点】一元二次方程的一般形式.【分析】根据完全平方公式,移项、合并同类项,可得答案.【解答】解:(x+1)2=2x化成一般形式是x2+1=0,其二次项是x2,一次项0,常数项为1,故答案为:x2+1=0,x2,0,112.若一元二次方程ax2﹣bx﹣2016=0有一根为x=﹣1,则a+b=2016.【考点】一元二次方程的解.【分析】由方程有一根为﹣1,将x=﹣1代入方程,整理后即可得到a+b的值.【解答】解:把x=﹣1代入一元二次方程ax2﹣bx﹣2016=0得:a+b﹣2015=0,即a+b=2016.故答案是:2016.13.已知四边形ABCD中,∠A=∠B=∠C=90°,若添加一个条件即可判定该四边形是正方形,那么这个条件可以是AB=AD或AC⊥BD等.【考点】正方形的判定;矩形的判定与性质.【分析】由已知可得四边形ABCD是矩形,则可根据有一组邻边相等或对角线互相垂直的矩形是正方形添加条件.【解答】解:由∠A=∠B=∠C=90°可知四边形ABCD是矩形,根据根据有一组邻边相等或对角线互相垂直的矩形是正方形,得到应该添加的条件为:AB=AD或AC⊥BD等.故答案为:AB=AD或AC⊥BD等.14.若关于x的一元二次方程mx2+3x﹣4=0有实数根,则m≥且m≠0.【考点】根的判别式;一元二次方程的定义.【分析】根据一元二次方程的定义和△的意义得到m≠0且△≥0,即32﹣4×m×(﹣4)≥0,求出两个不等式的公共部分即可.【解答】解:∵关于x的一元二次方程mx2+3x﹣4=0有实数根,∴m≠0且△≥0,即32﹣4×m×(﹣4)≥0,解得m≥﹣,∴m的取值范围为m≥﹣且m≠0.故答案为:≥﹣且m≠0.15.如图,在矩形ABCD中,对角线AC与BD相交于O点,且AB=OA=2cm,则BD的长为4cm,BC的长为2cm.【考点】矩形的性质;三角形内角和定理;等边三角形的判定与性质;勾股定理.【分析】根据矩形的性质得到OA=OC,OB=OD,AC=BD,∠ABC=90°,推出BD=AC=2OA=4,OA=OB=AB=2,得出等边△OAB,求出∠ACB=30°,根据勾股定理即可求出B C.【解答】解:∵矩形ABCD,∴OA=OC,OB=OD,AC=BD,∠ABC=90°,∴OA=OB,∵AB=OA=2,∴BD=AC=2OA=4,OA=OB=AB=2,∴△OAB是等边三角形,∴∠BAC=60°,∴∠ACB=90°﹣60°=30°,由勾股定理得:BC===2.故答案为:4,2.16.如图,四边形ABCD是正方形,延长AB到E,使AE=AC,则∠BCE的度数是22.5度.【考点】等腰三角形的性质;三角形内角和定理;正方形的性质.【分析】根据正方形的性质,易知∠CAE=∠ACB=45°;等腰△CAE中,根据三角形内角和定理可求得∠ACE的度数,进而可由∠BCE=∠ACE﹣∠ACB得出∠BCE的度数.【解答】解:∵四边形ABCD是正方形,∴∠CAB=∠BCA=45°;△ACE中,AC=AE,则:∠ACE=∠AEC==67.5°;∴∠BCE=∠ACE﹣∠ACB=22.5°.故答案为22.5.17.菱形两条对角线长度比为1:,则菱形较小的内角的度数为60度.【考点】菱形的性质;解直角三角形.【分析】根据已知可得到菱形的较小的内角的一半的度数,从而就不难求得较小内角的度数.【解答】解:因菱形的对角线互相垂直平分,且每一条对角线平分一组对角,可得菱形较小的内角的一半的正切值为1:,则菱形较小的内角的一半为30°,则菱形较小的内角的度数为60°.18.已知菱形ABCD的边长为6,∠A=60°,如果点P是菱形内一点,且PB=PD=2,那么AP的长为或.【考点】菱形的性质.【分析】根据题意得,应分P与A在BD的同侧与异侧两种情况进行讨论.【解答】解:当P与A在BD的异侧时:连接AP交BD于M,∵AD=AB,DP=BP,∴AP⊥BD(到线段两端距离相等的点在垂直平分线上),在直角△ABM中,∠BAM=30°,∴AM=AB•cos30°=3,BM=AB•sin30°=3,∴PM==,∴AP=AM+PM=4;当P与A在BD的同侧时:连接AP并延长AP交BD于点MAP=AM﹣PM=2;当P与M重合时,PD=PB=3,与PB=PD=2矛盾,舍去.AP的长为4或2.故答案为4或2.19.如图:矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为28.【考点】平移的性质.【分析】运用平移个观点,五个小矩形的上边之和等于AD,下边之和等于BC,同理,它们的左边之和等于AB,右边之和等于CD,可知五个小矩形的周长之和为矩形ABCD的周长.【解答】解:由勾股定理,得AB==6,将五个小矩形的所有上边平移至AD,所有下边平移至BC,所有左边平移至AB,所有右边平移至CD,∴五个小矩形的周长之和=2(AB+BC)=2×(6+8)=28.故答案为:28.三、解答题(共43分)20.解下列方程:(1)x2﹣18=7x(用配方法解)(2)4x(x﹣1)=1(用配方法解)(3)2x2﹣4x﹣1=0 (用公式法解)(4)(2﹣3x)+(3x﹣2)2=0 (用因式法解)【考点】解一元二次方程-因式分解法;解一元二次方程-直接开平方法;解一元二次方程-配方法;解一元二次方程-公式法.【分析】(1)移项后配方,开方,即可得出两个一元一次方程,求出方程的解即可;(2)整理后配方,开方,即可得出两个一元一次方程,求出方程的解即可;(3)求出b2﹣4ac的值,再代入公式求出即可;(4)先分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(1)x2﹣18=7x,x2﹣7x=18,x2﹣7x+()2=18+()2,(x﹣)2=,x﹣=,x1=9,x2=﹣2;(2)4x(x﹣1)=1,4x2﹣4x+1=1+1,(2x﹣1)2=2,2x﹣1=,x1=,x2=;(3)2x2﹣4x﹣1=0,b2﹣4ac=(﹣4)2﹣4×2×(﹣1)=24,x=,x1=,x2=;(4)(2﹣3x)+(3x﹣2)2=0,(2﹣3x)(1+2﹣3x)=0,2﹣3x=0,1+2﹣3x=0,x1=,x2=1.21.如图,在△ABC中,AD平分∠BAC,DE∥AC,DF∥A B.求证:四边形AEDF是菱形.【考点】菱形的判定.【分析】由已知易得四边形AEDF是平行四边形,由角平分线和平行线的定义可得∠F AD=∠FDA,∴AF=DF,∴四边形AEDF是菱形.【解答】证明:∵AD是△ABC的角平分线,∴∠EAD=∠F AD,∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∠EAD=∠ADF,∴∠F AD=∠FDA∴AF=DF,∴四边形AEDF是菱形.22.关于x的方程kx2+(k+2)x+=0有两个不相等的实数根;(1)求k的取值范围;(2)是否存在实数k,使方程的两个实数根的倒数和等于0?若存在,求出k的值;若不存在,请说明理由.【考点】根的判别式;根与系数的关系.【分析】(1)由于x的方程kx2+(k+2)x+=0有两个不相等的实数根,由此可以得到判别式是正数,这样就可以得到关于k的不等式,解不等式即可求解;(2)不存在符合条件的实数k.设方程kx2+(k+2)x+=0的两根分别为x1、x2,由根与系数关系有:x1+x2=﹣,x1•x2=,又+=,然后把前面的等式代入其中即可求k,然后利用(1)即可判定结果【解答】解:(1)由△=[(k+2)]2﹣4×k•>0,∴k>﹣1又∵k≠0,∴k的取值范围是k>﹣1,且k≠0;(2)不存在符合条件的实数k理由:设方程kx2+(k+2)x+=0的两根分别为x1、x2,由根与系数关系有:x1+x2=﹣,x1•x2=,又∵+==0,∴=0,解得k=﹣2,由(1)知,k=﹣2时,△<0,原方程无实解,∴不存在符合条件的k的值.23.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.【考点】矩形的判定;正方形的判定.【分析】(1)利用平行四边形的判定首先得出四边形AEBD是平行四边形,进而由等腰三角形的性质得出∠ADB=90°,即可得出答案;(2)利用等腰直角三角形的性质得出AD=BD=CD,进而利用正方形的判定得出即可.【解答】(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,∴四边形AEBD是平行四边形,∵AB=AC,AD是∠BAC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴平行四边形AEBD是矩形;(2)当∠BAC=90°时,理由:∵∠BAC=90°,AB=AC,AD是∠BAC的角平分线,∴AD=BD=CD,∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.24.某商场在“五•一”节里实行让利销售,全部商品一律按九折销售.这样每天所获得的利润恰是销售收入的,如果第一天的销售收入是4万元,并且每天的销售收入都有增长,第三天的利润是1.25万元.(1)求第三天的销售收入是多少万元?(2)求第二天和第三天销售收入平均每天的增长率是多少?【考点】一元二次方程的应用.【分析】(1)直接根据这样每天所获得的利润恰是销售收入的进行计算;(2)设第二天和第三天销售收入平均每天的增长率是m,则根据第一天的4万元增长到6.25万元列方程求解.【解答】解:(1)1.25÷=6.25(万元)所以第三天的销售收入是6.25万元;(2)设第二天和第三天销售收入平均每天的增长率是m,则4(1+m)2=6.25.解得m1=25%,m2=﹣2.25%(不合题意舍去).答:第二天和第三天销售收入平均每天的增长率约是25%.四.附加题:(附加题20分)25.分别把带有指针的圆形转盘A、B分成4等份、3等份的扇形区域,并在每一个小区域内标上数字(如图所示).欢欢、乐乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘.(1)试用列表或画树状图的方法,求欢欢获胜的概率;(2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.【考点】游戏公平性;列表法与树状图法.【分析】(1)列举出所有情况,看指针所指两区域的数字之积为奇数的情况占总情况的多少即可求得欢欢胜的概率;(2)由(1)进而求得乐乐胜的概率,比较两个概率即可.【解答】解:(1)共有12种情况,积为奇数的情况有6种情况,所以欢欢胜的概率是=;(2)由(1)得乐乐胜的概率为1﹣=,两人获胜的概率相同,所以游戏公平.26.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t 秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.【考点】相似形综合题.【分析】(1)利用t表示出CD以及AE的长,然后在直角△CDF中,利用直角三角形的性质求得DF的长,即可证明;(2)易证四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,据此即可列方程求得t的值;(3)分两种情况讨论即可求解.【解答】(1)证明:∵直角△ABC中,∠C=90°﹣∠A=30°.∵CD=4t,AE=2t,又∵在直角△CDF中,∠C=30°,∴DF=CD=2t,∴DF=AE;解:(2)∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10,即当t=10时,▱AEFD是菱形;(3)当t=时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).理由如下:当∠EDF=90°时,DE∥B C.∴∠ADE=∠C=30°∴AD=2AE∵CD=4t,∴DF=2t=AE,∴AD=4t,∴4t+4t=60,∴t=时,∠EDF=90°.当∠DEF=90°时,DE⊥EF,∵四边形AEFD是平行四边形,∴AD∥EF,∴DE⊥AD,∴△ADE是直角三角形,∠ADE=90°,∵∠A=60°,∴∠DEA=30°,∴AD=AE,AD=AC﹣CD=60﹣4t,AE=DF=CD=2t,∴60﹣4t=t,解得t=12.综上所述,当t=时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).北师大版九年级上学期第二次月考数学试卷一、精心选一选,相信你一定能选对!(每题3分,共36分)1.如图,在平行四边形ABCD中,AB=2,BC=3,∠ABC、∠BCD的平分线分别交AD于点E、F,则EF的长是()A.3 B.2C.1.5D.12.如图,EF过▱ABCD对角线的交点O,并交AD于E,交BC于F,若AB=4,BC=5,OE=1.5,则四边形EFCD的周长是()A.16 B.14 C.12 D.103.平行四边形一边长为10,那么它的对角线长度和可以为()A.8和12B.20和30 C.6和8 D.4和64.不能判定四边形ABCD为平行四边形的题设是()A.AB平行且等于CD B.∠A=∠C,∠B=∠DC.AB=AD,BC=CD D.AB=CD,AD=BC5.下面性质中菱形有而矩形没有的是()A.邻角互补B.内角和为360°C.对角线相等D.对角线互相垂直6.正方形具有而菱形不一定具有的性质是()A.对角线相等B.对角线互相垂直平分C.对角线平分一组对角D.四条边相等7.顺次连接任意四边形四边中点所得的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形8.下列各图中,不是中心对称图形的是()A.B.C.D.9.下列命题中,真命题是()A.有两边相等的平行四边形是菱形B.有一个角是直角的四边形是直角梯形C.四个角相等的菱形是正方形D.两条对角线相等的四边形是矩形10.如图,四边形ABCD为矩形纸片,把纸片ABCD折叠,使点B恰好落在CD边的中点E 处,折痕为AF,若CD=6,则AF等于()A.B.C.D.811.如图,在平行四边形ABCD中,点E、F分别在边AB、CD上移动,且AE=CF,则四边形不可能是()A.平行四边形B.矩形C.菱形D.梯形12.如图,菱形ABCD的对角线交于点O,AC=8cm,BD=6cm,则菱形的高为()A.cm B.cm C.cm D.cm二、细心填一填,相信你填得又快又准!(每题4分,共20分)13.▱ABCD中,∠A=50°,则∠B=,∠C=,∠D.14.已知菱形两条对角线的长分别为5cm和8cm,则这个菱形的面积是cm2.15.矩形一个角的平分线分矩形一边为1cm和3cm两部分,则这个矩形的面积为cm2.16.对角线长为2的正方形的周长为,面积为.17.等腰梯形的上、下底分别是3cm和5cm,一个角是135°,则等腰梯形的面积为.三、用心做一做,培养你的综合运用能力,相信你是最棒的18.如图,E、F是平行四边形ABCD对角线AC上的两点,且AE=CF.求证:△ADF≌△CBE.19.已知:如图,平行四边形ABCD的对角线AC、BD相交于点O,E、F是直线AC上的两点,并且AE=CF.求证:四边形BFDE是平行四边形.20.已知:如图中,AD是∠A的角平分线,DE∥AC,DF∥A B.求证:四边形AEDF是菱形.21.如图,已知E是▱ABCD中BC边的中点,连接AE并延长AE交DC的延长线于点F.(1)求证:△ABE≌△FCE.(2)连接AC、BF,若∠AEC=2∠ABC,求证:四边形ABFC为矩形.22.证明:等腰梯形上底的中点与下底两端点的距离相等.23.如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥B D.求证:四边形OCED是菱形.24.等腰梯形ABCD中,AD∥BC,AB=CD,DE⊥BC与E,AE=BE,BF⊥AE与F,线段BF与图中的哪一条线段相等?先写出您的猜想,再加以证明.25.如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.(1)试说明EO=FO;(2)当点O运动到何处时,四边形AECF是矩形并证明你的结论;(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论.参考答案与试题解析一、精心选一选,相信你一定能选对!(每题3分,共36分)1.如图,在平行四边形ABCD中,AB=2,BC=3,∠ABC、∠BCD的平分线分别交AD于点E、F,则EF的长是()A.3 B.2 C. 1.5D.1考点:平行四边形的性质;角平分线的定义;等腰三角形的判定与性质.专题:数形结合.分析:根据平行四边形的性质可知∠DFC=∠FCB,又因为CF平分∠BCD,所以∠DCF=∠FCB,则∠DFC=∠DCF,则DF=DC,同理可证AE=AB,那么EF就可表示为AE+FD﹣BC=2AB﹣BC,继而可得出答案.解答:解:∵平行四边形ABCD,∴∠DFC=∠FCB,又CF平分∠BCD,∴∠DCF=∠FCB,∴∠DFC=∠DCF,∴DF=DC,同理可证:AE=AB,∴2AB﹣BC=AE+FD﹣BC=EF=1cm.故选D.点评:本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题,难度不大,关键是解题技巧的掌握.2.如图,EF过▱ABCD对角线的交点O,并交AD于E,交BC于F,若AB=4,BC=5,OE=1.5,则四边形EFCD的周长是()A.16 B.14 C.12 D.10考点:平行四边形的性质.分析:先利用平行四边形的性质求出AB、CD、BC、AD的值,可利用全等的性质得到△AEO ≌△CFO,即可求出四边形的周长.解答:解:已知AB=4,BC=5,OE=1.5,根据平行四边形的性质,AB=CD=4,BC=AD=5,在△AEO和△CFO中OA=OC,∠OAE=∠OCF,∠AOE=∠COF,所以△AEO≌△CFO,OE=OF=1.5,则EFCD的周长=ED+CD+CF+EF=(DE+CF)+AB+EF=5+4+3=12.则EFCD的周长是12.故选C.点评:本题考查平行四边形的性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.3.平行四边形一边长为10,那么它的对角线长度和可以为()A.8和12 B.20和30 C.6和8 D.4和6考点:平行四边形的性质;三角形三边关系.分析:平行四边形的长为10的一边,与两条对角线的一半构成的三角形的另两边应满足三角形的三边关系,即两边之和大于第三边,两边之差小于第三边.根据这个结论可以判断选择哪一个.。
最新人教版九年级数学上册第二次月考综合检测试题及答案解析.docx
九年级第二次月考数学试题(考试时间:100分钟 满分:120分)特别提醒:1.选择题用2B 铅笔填涂,其余答案一律用黑色笔填写在答题卡上,写在试题卷上无效.2.答题前请认真阅读试题及有关说明.3.请合理安排好答题时间.一.选择题(本大题满分42分,每小题3分)1. 化简2)4(-的结果是A. -4B. 4C. ±4D. 82.下列二次根式中, 与3是同类二次根式的是A.30 B.32C. 12D. 18 3. 函数x y +=3,自变量x 的取值范围是A .x >3B .x >-3C .x ≤-3D .x ≥-3 4. 一元二次方程x x 92=的根是A .0=xB .3=xC .9,021==x xD .3,321-==x x 5.将一元二次方程0222=--x x 配方后所得的方程是A. 3)1(2=-xB. 3)1(2=+xC. 2)1(2=-xD. 3)2(2=+x6.某气象局预报称:“明天本市的降水概率为70%”.这句话指的是A .明天本市70%的时间下雨,30%的时间不下雨B .明天本市70%的地方下雨,30%的地方不下雨C .明天本市一定下雨D .明天本市下雨的可能性是70%7. 一个袋子中装有6个红球3个白球,这些球除颜色外,形状、大小、质地等完全相同. 在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为 A.91 B. 31 C. 21 D. 32 8. 如图1所示,一架投影机插入胶片后图像可投到屏幕上. 已知胶片与屏幕平行,A 点为光源,与胶片BC 的距离为0.1米,胶片的高BC 为0.038米,若需要投影后的图像DE 高1.9米,则投影机光源离屏幕大约为A. 6米B. 5米C. 4米D. 3米9. 在正方形网格中,△ABC 的位置如图2所示,则cosB 的值为 A.55 B. 552 C. 21 D.2 10.如图3,矩形ABCD 中,R 、P 分别是DC 、BC 上的点,E 、F 分别是AP 、RP 的中点,当P 在BC 上从B 向C 移动而R 不动时,那么下列结论成立的是A .线段EF 的长逐渐增大B .线段EF 的长逐渐减小C .线段EF 的长不改变D .无法判断.........................密 ........................封 .AB CED图1ABC 图2ABPEFD C图3RABC图6α11.如图4,□ABCD 中,点E 在CD 上,AE 交BD 于点F ,若DE =2CE ,则FBDF等于 A .43B .21 C .23 D .3212. 如图5,已知∠1=∠2,则添加下列一个条件后,仍无法..判定△ABC ∽△ADE 的是 A.DEBCAD AB =B. AE AC AD AB =C. ∠B=∠ADED. ∠C=∠E 13.如图6,修建抽水站时,沿着坡度为i=1:6的斜坡铺设管道. 下列等式成立的是A .sin α =61B .cos α=61C .tan α=61D .tan α=214. 如图7,在矩形ABCD 中,对角线AC 、BD 交于点O ,OE ⊥BD 交AB 于E ,若∠ABD=30°,DE=6,则矩形ABCD 的周长为 A .63+18B .33+9C . 23+18D .3+9二.填空题(本大题满分16分,每小题4分) 15. 计算:=2)32( .16.已知 35=b a ,则 =-bb a 2 .17.某校图书馆去年底有图书5万册,预计到明年年底增加到7.2万册,则这两年的年平均增长率为 .18.如图8所示,有一电路AB 是由图示的开关控制,任意地闭合两个..开关,使电路形成通路. 能使电 路形成通路的概率为 . 三.解答题(本大题满分62分) 19.(8分)(1)计算 :①7523⨯ ②316)13(2--.(8分)(2)①计算:2sin60°-tan60° ②计算:sin 245°-33tan30°;20. (12分)解方程 (1)2)3(2=-y (2)0542=-+x x (3) 3)52(=-x x21.(8分) 如图9,△ABC 中任意一点P(x 0,y 0)经过平移后对应点为P 1(x 0+4,y 0-1).(1)画出△ABC 作同样的平移后得到的△A 1B 1C 1,并写出A 1、B 1、C 1的坐标.(2)以点P 1为位似中心,画出△A 1B 1C 1的一个位似△A 2B 2C 2,使它与△A 1B 1C 1的相似比为2:1. 并写出A 2、B 2、C 2的坐标.OCBDA图7E ABDC图4E FCE BD A图512Bdcba A图8•P•xyABO (-4,2)CP 1(-3,-1)22. (8分)某中学九年级学生在学习“直角三角形的边角关系”时,组织开展测量物体高度的实践活动.在活动中,某小组为了测量校园内①号楼AB的高度(如图10),站在②号楼的C处,测得①号楼顶部A的仰角α=30°,底部B的俯角β=45°.已知两幢楼的水平距离BD为18米,求①号楼AB的高度.(结果保留根号)23. (8分)一个不透明的盒子中,装有2个白球和1个红球,这些球除颜色外其余都相同.(1)小明认为,搅均后从中任意摸出一个....球,不是白球就是红球,因此模出白球和模出红球这两个事件是等可能的. 你同意他的说法吗?为什么?(2)搅均后从中一把模出两个球.......,请通过树状图或列表,求两个球都是白球的概率;(3)搅均后从中任意模出一个....球,要使模出红球的概率为32,应如何添加红球?24.(10分) 如图11,正方形ABCD中,点P是AD上的一动点(与点D、点A不重合),DE⊥CP,垂足为E,EF⊥BE与DC交于点F.(1)求证:△DEF∽△CEB;(2)当点P运动到DA的中点时,求证:点F为DC的中点.、;【ⅠⅡ红白1 白2红(白1,红)(白2,红)白1(红,白1)(白2,白1)白2(红,白2)(白1,白2)A BCDEFP图11 ECBAαβ图10D②①数学试题答案一选择题:BCDCA DBBAC DACA 二、填空题15、12, 16、1/3 ,17、20%, 18、2/3 三、解答题 19、略 20、略21如图.(1)A 1(0,1)、B 1(1,-2)、C 1(3,2) (2)A 2(-1,2)、B 2(1,-4)、C 2(5,4)(注:画图正确2分,每个点的坐标1分)22略23、(1)不同意小明的说法. ………………………………(1分)因为摸出白球的概率是32,摸出红球的概率是31,因此摸出白球和摸出红球不是等可能的. ………………………(2分) (2)树状图如图(或列表). ………………………(4分)∴ P (两个球都是白球)3162==. …………………………(5分)(3)解法1:设应添加x 个红球,由题意,得 3231=++x x . …………(7分)解得x=3(经检验是原方程的解) 答:应添加3个红球. ……(8分) 解法2:∵ 添加后P (摸出红球)=32,∴ 添加后P (摸出白球)31321=-=.∴ 添加后球的总个数6312=÷=.∴ 应添加6-3=3个红球.…(8分)24.(1) ∵ DE ⊥CP ,EF ⊥BE ,∴ ∠1+∠3=∠DEC=90°,∠2+∠3=∠FEB=90°,∴ ∠1=∠2. ……………………………(2分)• P • xyAB O (-4,2)CP 1(-3,-1)A 1B 1C 1A 2B 2C 2白1 白2 红白1白2红 白2 红 白1∵ 四边形ABCD 是正方形,∴ ∠4+∠6=∠DCB=90°,在Rt △DEC 中,∠4+∠5=90°,∴ ∠5=∠6, …………………………… ∴ △DEF ∽△CEB. ……………………………(5分)(2) ∵ 四边形ABCD 是正方形,∴ 当点P 运动到DA 的中点时,PD=21AD=21DC. ∴ 在Rt △PDC 中,tan ∠4=21=DC PD , ∵ 在Rt △DEC 中,tan ∠4=ECDE, ∴21==DC PD EC DE . ∵ △DEF ∽△CEB ,∴12DF DE CB EC ==. ∵ CB=DC , ∴21=DC DF ∴ 点F 为DC 的中点. ……………………………(10分)1ABCDEFP4653 2图2。
人教版九年级数学上册第二次月考.docx
桑水初中数学试卷桑水出品启用前★秘密富顺一中九年级上期第二次月考数 学 试 卷重新制版:郑宗平 注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在机读卡上.考试结束后,将机读卡和答题卷交回.2.每道题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选其他答案标号,不能答在试题卷上.3.在每个小题给出的四个选项中,只有一项符合题目要求.第Ⅰ卷 选择题 (共40分)一、选择题(每小题4分,共40分)1.观察下列图形,既是轴对称图形又是中心对称图形的有 ( )A.1个B.2个C.3个D.4个 2.一个正多边形的每个外角都等于30°,那么这个多边形的中心角为 ( ) A. 15° B. 30° C. 45° D. 60° 3.要得到 ()2y 2x 23=-+-的图象,需将抛物线2y 2x =-作如下平移( )A.先向右平移2个单位长度,再向上平移3个单位长度B.先向右平移2个单位长度,再向下平移3个单位长度C.先向左平移2个单位长度,再向上平移3个单位长度D.先向左平移2个单位长度,再向下平移3个单位长度 4.一个不透明的袋子中有3个红球和2个黄球,这些球除颜色外完全相同.从袋子中随机摸出1个球,这个球是黄球的是 ( ) A.13 B.25 C.12 D.355.某药品经过两次降价,每瓶零售价由168元,已知两次降价的百分率相同,设每次降价的百分率为x ,根据题意列方程得 ( ) A .()21681x 108+= B.()21681x 108-= C.()16812x 108-= D.()21681x 108-= 6.在同一平面坐标系中,函数y mx m =+和2y mx 2x 2=-++(m 是常数,且m 0≠)的)7.已知两圆的半径R r 、分别是方程2x 5x 60-+=的两根,两圆的圆心距为1,则两圆的位置关系是 ( ) A.外离 B.内切 C.相交 D.外切8.在学校组织的实践活动中,小新同学用纸板制作了一个圆锥模型,它的底面半径为1,高为22,则这个圆锥的侧面积是 ( ) A.4π B.3π C.22π D. 2π 9.如图,⊙O 的直径AB 为垂直于弦CD 于P ,且P 是半径CD 6cm =,则直 径AB 的长是 ( ) A.22cm B.32cmC.42cmD.43cm10.如图。
人教版九年级上册数学第二次月考试卷含答案
人教版九年级上册数学第二次月考试题一、单选题1.下列标志既是轴对称图形又是中心对称图形的是( )A .B .C .D . 2.将一元二次方程2220x x --=通过配方后所得的方程是( )A .()222x -=B .()212x -=C .()213x -=D .()223x -= 3.二次函数2(1)3y x =-+图象的顶点坐标是( )A .(1,3)B .(1,3)-C .(1,3)-D .(1,3)-- 4.把抛物线23y x =先向上平移2个单位,再向右平移3个单位,所得抛物线的解析式是( )A .23(3)2y x =+-B .23(3)2y x =++C .23(3)2y x =-+D .23(3)2y x =-- 5.下列图形中,旋转60后可以和原图形重合的是 ( )A .正三角形B .正方形C .正五边形D .正六边形 6.某厂一月份的总产量为500吨,三月份的总产量达到为720吨,若平均每月增长率是x ,则可以列方程( )A .500(12)720x +=B .2720(1)500x +=C .()25001720x += D .2500(1)720x += 7.如图,ABC 内接于O ,若O 的半径为6,60A ∠=,则BC 的长为( )A .B .C .D8.直线y x a =+不经过第二象限,则关于x 的方程2210ax x ++=实数解的个数是( ). A .0个 B .1个 C .2个 D .1个或2个 9.已知二次函数2()y x h =-+,当2x <-时,y 随着x 的增大而增大,当2x >-时,y 随x 的增大而减小,当0x =时,y 的值为( )A .2B .2-C .4D .4-10.如图,直线y y 轴交于点P ,将该直线绕着点P 逆时针旋转90所得的直线对应的函数解析式为( )A .13y x =+B .13y x =-+C .y x =+D .=y x二、填空题11.方程2160x -=的解为___________.12.二次函数22()1y x =-+的最小值为___________.13.已知点(,2)A a -和(3,)B b 关于原点对称,则2020()a b +的值为___________.14.如图,在O 中,直径AB CD ⊥于点M ,10,2AB BM ==,则CM 的长为___________.15.已知关于x 的方程的20x px q ++=两根为123,1x x =-=-,则p =___________,q = ___________.16.如图,AB 是O 的直径,78AOE ∠=,点C 、D 是弧BE 的三等分点,则AOD ∠= ___________.17.如图,二次函数2(0)y ax bx c b =++≠的图象的左半部分与x 轴交于A 点,与y 轴交于点C ,点A 坐标(1,0)-,对称轴为直线1x =,下面的四个结论:①0ab <②0a b c ++<③ 420a b c ++>④当0y >时,13x ,其中正确的结论的有___________.三、解答题18.解方程:(1)21x -=-(2)2(53)106x x +=+19.已知二次函数242y x x =++,求这个函数图象的顶点坐标、对称轴以及函数的最小值.20.如图,某教室矩形地面的长为8m ,宽为6m ,现准备在地面正中间铺设一块面积为224m的地毯,四周未铺地毯的条形区域的宽度都相同,求地毯长和宽分别是多少米?21.如图,ABC 的顶点坐标分别为(2,5),(4,1)A B --,和(1,3)C -.(1)请在直角坐标系中作出ABC 关于原点对称的A B C '''并写出点A 、B 、C 的对称点A B C '''、、的坐标.(2)请在直角坐标系中作出将ABC 绕着点B 顺时针旋转90的111A B C △.22.已知:如图,O 是APC ∠的角平分线PB 上的一点,O 与PA 相交于E ,F 点,PC 相交于G ,H 点,试确定线段EF 与GH 之间的大小关系,并证明你的结论.23.如图,在OAB 中,OB AB =,将OAB 绕点O 逆时针旋转得到OCD ,使点C 落在直线AB 的延长线上.(1)求证://OD AC ;(2)连接BD ,判断四边形OABD 的形状,并说明理由.24.如图,O 的内接四边形ABCD 两组对边的延长线分别交于点M ,N .(1)当M N ∠=∠时,求证ADC ABC ∠=∠;(2)当42M N ∠=∠=时,求A ∠的度数;(3)若,DMC BNC αβ∠=∠=且αβ≠,请你用含有α、β的代数式表示A ∠的度数.25.如图,抛物线2y x bx c =++与x 轴交于(1,0),(3,0)A B -两点.(1)求该抛物线的解析式;△的周长最小?若存在,请求出D点的(2)抛物线的对称轴上是否存在一点D,使ACD坐标,若不存在请说明理由;S ,并求出(3)设抛物线上有一个动点E,当点E在抛物线上滑动到什么位置满足8EAB此时E点的坐标.参考答案1.A2.C3.A4.C5.D6.D7.B8.D9.D10.D11.4±12.1.13.114.415.4 316.112°.17.①③④18.(1)11x =,21x ;(2)135x =-,215x =-19.对称轴2x =-;顶点坐标为(-2,-2);最小值2y =-20.长为6米,宽为4米.21.(1)作图见解析;()2,5A '-,()4,1B '-,()1,3C '-;(2)作图见解析.22.EF=GH ,证明见解析23.(1)证明过程见解析;(2)四边形ABDO 是平行四边形;证明见解析. 24.(1)证明见详解;(2)48°;(3)90°-2αβ+.25.(1)y =x 2-2x -3;(2)(1,-2);(3)(4)或(4)或(1,-4)。
人教版九年级上期数学第二次月考试题用.doc
D| P I-H人教版九年级(上)数学月考试题—*、选择题(每题3分,共30分)1.A.2.A.3.A.一元二次方程x2 + px-2 = 0的一个根为2,则〃的值是()1 B.2 C. —1 D. —2关于x的一元二次方程(Z:-l)x2 + 2x-2 = 0有两个实数根,则£的取值范围是()k^-B. k>LC. 丄且k知D. k>-且PHI2 2 2 2 兀],£是一元二次方程2x2 -7% + 6 = 0的两个根,则兀]+兀2的值是(7 7-7 B. 7 C. -- D. —2 2如图1,将/?rAABC绕直角顶点C顺时针旋转90。
,得到8饥,连接)4.AA〔若Z1 二20。
,则ZB二( A.5.是A.6.)A'C 70° B. 65° C. 55° D. 60°抛物线y = F向右平移2个单位,再向上平移3个单位后得到的解析式()^=(X +2)2+3 B. y = (x —2尸+3 C. y = (x + 2)2-3 D. y = (x-2)2-3 如图2,小明在一次推铅球的过程中发现:铅球行进高度y(m)与水平距离x(m)Z间的关系为), = _右(兀_4)2+3,由此可知铅球推出的距离是(A. 10B. 12C. 8D. 97. 已知点(兀],牙),(兀2,旳)均在抛物线);=x2-2±,下列说法正确的是()A.若X 二%,则x\ = x2B.若 %! =- x2,则y{ =~ y2C.若x2>Xj >0,则y, > y2D.若x l<x2<0,则y l > y28.A.B.C.下列说法正确的是()顶点在圆周上的角是圆周角圆心角的度数等于圆周角度数的2倍等弧所对的圆周角相等D. 平分弦的肓径垂盲于弦,并且平分弦所对的两条弧9. 如图3,在OO中,直径AB=8, ZA0D=120° , C为弧BD的中点,在ABA. 4A/210. 如图4,OC±一点,上找一点P,使PC+PD最知],其最短距离是()B. 4^3C. 4D. 8OC经过原点O,并与处标轴交于A、D两点,B为)已知Z0BA=30° , D(0, 2),则圆心C的坐标是(A. (■半,1)B・ (y,D C.(」¥)D. (-y,1)m.AAVPB二、11.填空题(每题3分,共18分)写出两个根为・2, 5的一元二次方程12.二次函数y = ax2+(a2-3a-4)x-12a的图像关于y轴对称,并有最大值,则沪13. 如图5, /?rAABC 中,ZACB=90° , ZA=a,将AABC 绕顶点C顺时针旋转后得AEDC,点D在AB边上,则旋转角的大小为 ________________ ・(用a表示)14. 若点(a,n)> (b,n)在函数y =十-3尤+加的图像上(aHb),则a+b= _________ .15. ____________________________________________________________________ 已知鬪内接等腰AABC中,底边BC=8,鬪的半径为5,则BC边上的高为 __________________ 16. 二次函数『=ax2 +bx + c(aHO)图像如图6,下列结论小,正确的是 _________ (填番号).①abc>0 @2a+b=0 ③当mH 1 时,a + b> am2 +hm④若avj+方兀]2 =妙2? +厉「,且兀|工兀2,则兀|+兀2=2⑤a~b+c>0①用配方法解:X2-5X-4=0 ②选择适当方法求解:3x(x-2) = 4-2x18. 在正方形网格中,AABC三个顶点都在格点上,(6分)(1)画岀AABC绕点0逆时针旋转90°后的△AEG;(2)画出△ 4也关于点0的中心对称图形厶A2B2C219. 关于x的一元二次方程F _ 2兀+ 2£ +1 = 0的两个根若2召+乞2=£2,求k的值.(8分)20. 某工厂今年1刀份收入为100万元,1至3刀生产收入以相同的百分率逐刀增长,累计达364万元,求2,3月牛产收入的月增长率.(6分)(参考量:V164 M.9 J11.56=3.4)21. 边长为1的正方形ABCD绕点A逆时针旋转30°得到正方形ABQD,并与CD交于点H,D1三、解答题(共72分)17. 解方程(8分)如图8, (8分)(1)求证:B、H = DH(2)求阴影部分的面积22. 如图9是抛物线的拱桥,当拱顶离水面2m时,水面宽4m,当水面下降1m,水面宽度增加多少?(8分)23. 如图10, AB是的直径,弦CD丄AB于点E,点M在OO±, MD恰好经过圆心O,连接MB, (8分)(1)若CD=16, BE=4,求00 的直径;(2)若ZM=ZD,求ZD的度数.24. 水果店王阿姨到水果批发市场打算购进一种水果销售,经过还价,实际价格每千克比原來少2元,发现原来买这种水果80千克的钱现在可买88千克,(8分)(1)求现在实际购进这种水果每千克多少元?(2)王阿姨准备购进这种水果销售,若这种水果的销售量y (千克)与销售x (元/千克)满足如图11 所示的一次函数关系,请你帮王阿姨拿个主意,将这种水果的销售价定为多少时,所获利润故多?是多少?25. 如图12,抛物线q:y = mx2~2mx—3m (m<0)的顶点为M, A/x轴交于A、B两点,与3y轴交于点D,已知C(0, 一一), (12分)2(1)求经过A, B, C三点的抛物线c2的解析式.(2)在第四象限内能否在抛物线c?上找一点P,使得APBC的而积最大?若存在,求出APBC的最大面积;若不存在,请说明理由.(3) 当△BDM为&△时,求m的值.InSE。
人教版九年级数学上第二次月考数学试卷含答案解析
-河南省商丘市虞城县九年级(上)第二次月考数学试卷一、选择题:(每小题3分,共30分)1.下列图形中,既是中心对称又是轴对称图形的是()A.等边三角形B.平行四边形C.梯形D.矩形2.下列事件中,为必然事件的是()A.购买一张彩票,中奖B.打开电视机,正在播放广告C.抛一牧捌币,正面向上D.一个袋中装有5个黑球,从中摸出一个球是黑球3.下列抛物线的顶点坐标为(3,﹣4)的是()A.y=(x﹣3)2﹣4B.y=(x﹣3)2+4C.y=(x+3)2﹣4D.y=(x+3)2+4 4.下列计算正确的是()A.=±5B.4﹣=1C.÷=9D.×=65.⊙O1与⊙O2的半径分别是6和4,若O1O2=3,则⊙O1与⊙O2的位置关系是()A.相交B.相离C.内切D.外切6.一枚质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6六个数字,投掷这个骰子一次,则向上一面的数字小于3的概率是()A.B.C.D.7.如图,⊙O的半径为1,A、B、C是圆周上的三点,∠BAC=36°,则劣弧BC的长是()A.B.C.D.8.如图,正方形ABCD内接于⊙O,⊙O的直径为分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD内的概率是()A.B.C.D.9.一圆锥的侧面展开图是半径为2的半圆,则该圆锥的全面积是()A.5πB.4πC.3πD.2π10.如图,⊙O的弦AB垂直平分半径OC,若AB=,则⊙O的半径为()A.B.C.D.二、填空题:(每小题3分,共24分)11.已知扇形的半径为3,面积为3π,则扇形的弧长为_______(结果保留π).12. +=_______.13.如果关于x的方程x2﹣2x+m=0(m为常数)有两个相等实数根,那么m=_______.14.如图,PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=50°,则∠BAC=_______.15.现有两个不透明的袋子,其中一个装有标号分别为1、2的两个小球,另一个装有标号分别为2、3、4的三个小球,小球除标号外其它均相同,从两个袋子中各随机摸出1个小球,两球标号恰好相同的概率是_______.16.已知a,b是一元二次方程x2﹣2x﹣1=0的两个实数根,则+=_______.17.点A(2,y1),B(3,y2)是二次函数y=(x﹣1)2+3的图象上两点,则y1_______y2(填“>”、“<”或“=”)18.如图,点O是△ABC的内心,若∠BAC=80°,则∠BOC=_______.三、解答题:(8个大题,共66分)19.计算下列各式:(1)3(﹣π)0﹣+(﹣1)(2)|﹣3|﹣0﹣()﹣1+﹣(﹣)20.解下列方程(1)x2﹣4x+1=0(2)2x2+5x+3=0.21.九年级1班在课外活动时,甲、乙、丙三位同学进行乒乓球练习,为确定哪两位同学先打球,甲、乙、丙三位同学用“手心、手背”游戏(游戏时,“手心向上”简称手心;“手背向上”简称手背)来决定.游戏规则是:每人每次同时随机伸出一只手,出手心或手背.若出现“两同一异”(即两手心、一手背或两手背、一手心)的情况,则同出手心或手背的两个人先打球,另一人做裁判;否则继续进行,直到出现“两同一异”为止.(1)请你列出甲、乙、丙三位同学运用“手心、手背”游戏,出手一次出现的所有等可能情况(用A表示手心,用B表示手背);(2)求甲、乙、丙三位同学运用“手心、手背”游戏,出手一次出现“两同一异”的概率.22.如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(﹣1,2),B(﹣3,4),C(﹣2,9).(1)画出△ABC绕点A顺时针方向旋转90°后得到的△A1B1C1,并写出A1,B1,C1三点的坐标;(2)求出△ABC在上述旋转过程中扫过的面积.23.某市为争创全国文明卫生城,市政府对市区绿化工程投入的资金是万元,投入的资金是2420万元,且从到,两年间每年投入资金的年平均增长率相同.(1)求该市对市区绿化工程投入资金的年平均增长率;(2)若投入资金的年平均增长率不变,那么该市在需投入多少万元?24.抛物线与y轴交于点(0,1),且当x=﹣2时,函数取得最大值3.(1)求抛物线的解析式;(2)写出抛物线的开口方向,对称轴和顶点坐标.25.如图,在△ABC中,∠B=60°,⊙O是△ABC外接圆,过点A作⊙O的切线,交CO 的延长线于P点,CP交⊙O于D;(1)求证:AP=AC;(2)若AC=3,求PC的长.26.在▱ABCD中,AB=10,∠ABC=60°,以AB为直径作⊙O,边CD切⊙O于点E.(1)圆心O到CD的距离是_______.(2)求由弧AE、线段AD、DE所围成的阴影部分的面积.(结果保留π和根号)-学年河南省商丘市虞城县九年级(上)第二次月考数学试卷参考答案与试题解析一、选择题:(每小题3分,共30分)1.下列图形中,既是中心对称又是轴对称图形的是()A.等边三角形B.平行四边形C.梯形D.矩形【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解,四个选项中,只有D选项既为中心对称图形又是轴对称图形【解答】解:A、是轴对称图形,不是中心对称图形.故本选项错误;B、不是轴对称图形,是中心对称图形.故本选项错误;C、是轴对称图形,不是中心对称图形.故本选项错误;D、既是轴对称图形,又是中心对称图形.故本选项正确.故选D.2.下列事件中,为必然事件的是()A.购买一张彩票,中奖B.打开电视机,正在播放广告C.抛一牧捌币,正面向上D.一个袋中装有5个黑球,从中摸出一个球是黑球【考点】随机事件.【分析】必然事件就是一定会发生的事件,即发生概率是1的事件,依据定义即可作出判断.【解答】解:A、可能发生,也可能不发生,属于随机事件,不一定会中奖,不符合题意;B、可能发生,也可能不发生,属于随机事件,不符合题意;C、可能发生,也可能不发生,属于随机发生,不符合题意.D、是必然事件,符合题意;故选D.3.下列抛物线的顶点坐标为(3,﹣4)的是()A.y=(x﹣3)2﹣4B.y=(x﹣3)2+4C.y=(x+3)2﹣4D.y=(x+3)2+4【考点】二次函数的性质.【分析】直接利用顶点式的特点写出顶点坐标后即可做出正确的判断.【解答】解:A、顶点坐标为(3,﹣4),正确;B、顶点坐标为(3,4),错误;C、顶点坐标为(﹣3,﹣4),错误;D、顶点坐标为(﹣3,4),错误;故选A.4.下列计算正确的是()A.=±5B.4﹣=1C.÷=9D.×=6【考点】二次根式的混合运算.【分析】根据二次根式的性质、二次根式的混合运算法则进行计算,判断即可.【解答】解:=5,A错误;4﹣=4﹣3=,B错误;÷=3,C错误;×==6,D正确,故选:D.5.⊙O1与⊙O2的半径分别是6和4,若O1O2=3,则⊙O1与⊙O2的位置关系是()A.相交B.相离C.内切D.外切【考点】圆与圆的位置关系.【分析】根据当R﹣r<P<R+r时,两圆相交解得即可.【解答】解:∵6﹣4<3<6+4,∴⊙O1与⊙O2相交,故选:A.6.一枚质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6六个数字,投掷这个骰子一次,则向上一面的数字小于3的概率是()A.B.C.D.【考点】概率公式.【分析】根据概率公式知,骰子共有六个面,其中向上一面的数字小于3的面有1,2,故掷该骰子一次,则向上一面的数字是1的概率是,向上一面的数字是2的概率是,从而得出答案.【解答】解:骰子的六个面上分别刻有数字1,2,3,4,5,6,其中向上一面的数字小于3的面有1,2,∴6个结果中有2个结果小于3,故概率为=,∴向上一面的数字小于3的概率是,故选C.7.如图,⊙O的半径为1,A、B、C是圆周上的三点,∠BAC=36°,则劣弧BC的长是()A.B.C.D.【考点】弧长的计算;圆周角定理.【分析】连接OB,OC,依据同弧所对的圆周角等于圆心角的一半,即可求得劣弧BC的圆心角的度数,然后利用弧长计算公式求解即可.【解答】解:连接OB,OC.∠BOC=2∠BAC=2×36°=72°,则劣弧BC的长是:=π.故选B.8.如图,正方形ABCD内接于⊙O,⊙O的直径为分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD内的概率是()A.B.C.D.【考点】几何概率.【分析】在这个圆面上随意抛一粒豆子,落在圆内每一个地方是均等的,因此计算出正方形和圆的面积,利用几何概率的计算方法解答即可.【解答】解:因为⊙O的直径为分米,则半径为分米,⊙O的面积为π()2=平方分米;正方形的边长为=1分米,面积为1平方分米;因为豆子落在圆内每一个地方是均等的,所以P(豆子落在正方形ABCD内)==.故选A.9.一圆锥的侧面展开图是半径为2的半圆,则该圆锥的全面积是()A.5πB.4πC.3πD.2π【考点】圆锥的计算.【分析】半圆的面积就是圆锥的侧面积,根据半圆的弧长等于圆锥底面圆的周长,即可求得圆锥底面圆的半径,进而求得面积,从而求解.【解答】解:侧面积是:×π×22=2π.底面的周长是2π.则底面圆半径是1,面积是π.则该圆锥的全面积是:2π+π=3π.故选C.10.如图,⊙O的弦AB垂直平分半径OC,若AB=,则⊙O的半径为()A.B.C.D.【考点】垂径定理;勾股定理.【分析】连接OA,设⊙O的半径为r,由于AB垂直平分半径OC,AB=,则AD==,OD=,再利用勾股定理即可得出结论.【解答】解:连接OA,设⊙O的半径为r,∵AB垂直平分半径OC,AB=,∴AD==,OD=,在Rt△AOD中,OA2=OD2+AD2,即r2=()2+()2,解得r=.故选A.二、填空题:(每小题3分,共24分)11.已知扇形的半径为3,面积为3π,则扇形的弧长为2π(结果保留π).【考点】扇形面积的计算;弧长的计算.【分析】根据弧长公式S=rl进行解答.【解答】;解:设该扇形的弧长为l,则3π=×3l,解得l=2π.故答案是:2π.12. +=0.【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式求出x的值,然后计算即可得解.【解答】解:由题意得,1﹣x≥0且x﹣1≥0,解得x≤1且x≥1,所以,x=1,所以, +=0+0=0.故答案为:0.13.如果关于x的方程x2﹣2x+m=0(m为常数)有两个相等实数根,那么m=1.【考点】根的判别式.【分析】本题需先根据已知条件列出关于m的等式,即可求出m的值.【解答】解:∵x的方程x2﹣2x+m=0(m为常数)有两个相等实数根∴△=b2﹣4ac=(﹣2)2﹣4×1•m=04﹣4m=0m=1故答案为:114.如图,PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=50°,则∠BAC=25°.【考点】切线的性质.【分析】连接OB,根据切线的性质定理以及四边形的内角和定理得到∠AOB=180°﹣∠P=130°,再根据等边对等角以及三角形的内角和定理求得∠BAC的度数.【解答】解:连接OB,∵PA、PB是⊙O的切线,A、B为切点,∴∠PAO=∠PBO=90°,∴∠AOB=360°﹣∠P﹣∠PAO﹣∠PBO=130°,∵OA=OB,∴∠BAC=25°.15.现有两个不透明的袋子,其中一个装有标号分别为1、2的两个小球,另一个装有标号分别为2、3、4的三个小球,小球除标号外其它均相同,从两个袋子中各随机摸出1个小球,两球标号恰好相同的概率是.【考点】列表法与树状图法.【分析】首先根据题意画树状图,然后由树状图求得所有等可能的结果与两球标号恰好相同的情况,即可根据概率公式求解.【解答】解:画树状图得:∴一共有6种等可能的结果,两球标号恰好相同的有1种情况,∴两球标号恰好相同的概率是.16.已知a,b是一元二次方程x2﹣2x﹣1=0的两个实数根,则+=﹣2.【考点】根与系数的关系.【分析】由根与系数的关系可得出a+b=2,ab=﹣1,将通分后得到,代入数据即可得出结论.【解答】解:∵a,b是一元二次方程x2﹣2x﹣1=0的两个实数根,∴a+b=2,ab=﹣1,∴==﹣2.故答案为:﹣2.17.点A(2,y1),B(3,y2)是二次函数y=(x﹣1)2+3的图象上两点,则y1<y2(填“>”、“<”或“=”)【考点】二次函数图象上点的坐标特征.【分析】根据二次函数的增减性进行判断即可.【解答】解:∵y=(x﹣1)2+3,∴二次函数开口向上,对称轴为x=1,∴当x>1时,y随x的增大而增大,∵1<2<3,∴y1<y2,故答案为:<.18.如图,点O是△ABC的内心,若∠BAC=80°,则∠BOC=130°.【考点】三角形的内切圆与内心.【分析】根据三角形内角和定理求出∠ACB+∠ABC,求出∠OBC+∠OCB=(∠ABC+∠ACB),求出∠OBC+∠OCB的度数,根据三角形的内角和定理求出即可.【解答】解:∵∠BAC=80°,∴∠ABC+∠ACB=180°﹣80°=100°,∵点O是△ABC的内心,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=×100°=50°,∴∠BOC=180°﹣50°=130°.故答案为:130°.三、解答题:(8个大题,共66分)19.计算下列各式:(1)3(﹣π)0﹣+(﹣1)2011(2)|﹣3|﹣0﹣()﹣1+﹣(﹣)【考点】二次根式的混合运算;零指数幂;负整数指数幂.【分析】(1)根据零指数幂的性质、二次根式的除法法则计算;(2)根据绝对值的性质、零指数幂的法则、负整数指数幂的性质计算即可.【解答】解:(1)3(﹣π)0﹣+(﹣1)2011=3﹣2+﹣1=;(2)|﹣3|﹣0﹣()﹣1+﹣(﹣)=3﹣1﹣3++=﹣1+.20.解下列方程(1)x2﹣4x+1=0(2)2x2+5x+3=0.【考点】解一元二次方程-因式分解法;解一元二次方程-公式法.【分析】(1)利用公式法解方程;(2)利用因式分解法解方程.【解答】解:(1)△=(﹣4)2﹣4×1×1=12,x==2±,所以x1=2+,x2=2﹣;(4)(2x+1)(x+3)=0,2x+1=0或x+3=0,所以x1=﹣,x2=﹣3.21.九年级1班在课外活动时,甲、乙、丙三位同学进行乒乓球练习,为确定哪两位同学先打球,甲、乙、丙三位同学用“手心、手背”游戏(游戏时,“手心向上”简称手心;“手背向上”简称手背)来决定.游戏规则是:每人每次同时随机伸出一只手,出手心或手背.若出现“两同一异”(即两手心、一手背或两手背、一手心)的情况,则同出手心或手背的两个人先打球,另一人做裁判;否则继续进行,直到出现“两同一异”为止.(1)请你列出甲、乙、丙三位同学运用“手心、手背”游戏,出手一次出现的所有等可能情况(用A表示手心,用B表示手背);(2)求甲、乙、丙三位同学运用“手心、手背”游戏,出手一次出现“两同一异”的概率.【考点】列表法与树状图法.【分析】(1)首先此题需三步完成,所以采用树状图法求解比较简单;然后依据树状图分析所有等可能的出现结果,根据概率公式即可求出该事件的概率;(2)首先求得出手一次出现“两同一异”的所有情况,然后根据概率公式即可求出该事件的概率.【解答】解:(1)画树状图得:∴共有8种等可能的结果:AAA,AAB,ABA,ABB,BAA,BAB,BBA,BBB;(2)∵甲、乙、丙三位同学运用“手心、手背”游戏,出手一次出现“两同一异”的有6种情况,∴出手一次出现“两同一异”的概率为:=.22.如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(﹣1,2),B(﹣3,4),C(﹣2,9).(1)画出△ABC绕点A顺时针方向旋转90°后得到的△A1B1C1,并写出A1,B1,C1三点的坐标;(2)求出△ABC在上述旋转过程中扫过的面积.【考点】作图-旋转变换;扇形面积的计算.【分析】(1)直接利用旋转的性质得出对应点位置进而得出答案;,即可得出答案.(2)利用旋转过程中扫过的面积为:S▱ABC+S扇形CAC1【解答】解:(1)如图所示:△A1B1C1,即为所求,A1(﹣1,2),B1(1,4),C1(6,3);(2)∵AC=2=10,∠CAC1=90°,=π×102=π,则S扇形CAC1S▱ABC=2×7﹣×1×5﹣×7×1﹣×2×2=6,=6+π.故△ABC在上述旋转过程中扫过的面积为:S▱ABC+S扇形CAC123.某市为争创全国文明卫生城,2008年市政府对市区绿化工程投入的资金是2000万元,2010年投入的资金是2420万元,且从2008年到2010年,两年间每年投入资金的年平均增长率相同.(1)求该市对市区绿化工程投入资金的年平均增长率;(2)若投入资金的年平均增长率不变,那么该市在2012年需投入多少万元?【考点】一元二次方程的应用.【分析】(1)等量关系为:2008年市政府对市区绿化工程投入×(1+增长率)2=2010年市政府对市区绿化工程投入,把相关数值代入求解即可;(2)2012年该市政府对市区绿化工程投入=2010年市政府对市区绿化工程投入×(1+增长率)2.【解答】解:(1)设该市对市区绿化工程投入资金的年平均增长率为x,根据题意得,2000(1+x)2=2420,得x1=0.1=10%,x2=﹣2.1(舍去),答:该市对市区绿化工程投入资金的年平均增长率为10%.(2)2012年需投入资金:2420×(1+10%)2=2928.2(万元)答:2012年需投入资金2928.2万元.24.抛物线与y轴交于点(0,1),且当x=﹣2时,函数取得最大值3.(1)求抛物线的解析式;(2)写出抛物线的开口方向,对称轴和顶点坐标.【考点】待定系数法求二次函数解析式;二次函数的性质.【分析】(1)根据当x=﹣2时,函数取得最大值3,即可确定顶点坐标,利用待定系数法即可求解;(2)利用二次函数的性质即可直接求解.【解答】解:(1)设抛物线为y=a(x+2)2+3,将(0,1)代入得,a=﹣,解析式为y=﹣(x+2)2+3;(2)开口向下,对称轴为x=﹣2,顶点坐标为(﹣2,3).25.如图,在△ABC中,∠B=60°,⊙O是△ABC外接圆,过点A作⊙O的切线,交CO 的延长线于P点,CP交⊙O于D;(1)求证:AP=AC;(2)若AC=3,求PC的长.【考点】切线的性质;圆周角定理;解直角三角形.【分析】(1)连接OA,可得∠AOC=120°,所以,可得∠P=∠C=30°,即可证明;(2)AC=3,所以,PO=,所以PC=3.【解答】(1)证明:连接AO,则AO⊥PA,∠AOC=2∠B=120°,∴∠AOP=60°,∴∠P=30°,又∵OA=OC,∴∠ACP=30°,∴∠P=∠ACP,∴AP=AC.(2)解:在Rt△PAO中,∠P=30°,PA=3,∴AO=,∴PO=2;∵CO=OA=,∴PC=PO+OC=3.26.在▱ABCD中,AB=10,∠ABC=60°,以AB为直径作⊙O,边CD切⊙O于点E.(1)圆心O到CD的距离是5.(2)求由弧AE、线段AD、DE所围成的阴影部分的面积.(结果保留π和根号)【考点】切线的性质;平行四边形的性质;扇形面积的计算.【分析】(1)连接OE,则OE的长就是所求的量;(2)阴影部分的面积等于梯形OADE的面积与扇形OAE的面积的差.【解答】解:(1)连接OE.∵边CD切⊙O于点E.∴OE⊥CD则OE就是圆心O到CD的距离,则圆心O到CD的距离是×AB=5.故答案是:5;(2)∵四边形ABCD是平行四边形.∴∠C=∠DAB=180°﹣∠ABC=120°,∴∠BOE=360°﹣90°﹣60°﹣120°=90°,∴∠AOE=90°,作EF∥CB,∴∠OFE=∠ABC=60°,在直角三角形OEF中,OE=5,∴OF=OE•tan30°=.EC=BF=5﹣.则DE=10﹣5+=5+,则直角梯形OADE的面积是:(OA+DE)×OE=(5+5+)×5=25+.扇形OAE的面积是:=.则阴影部分的面积是:25+﹣.2016年9月15日。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学第二次月考试题初中数学试卷
鼎尚图文**整理制作
九年级数学第二次月考试题
班级:姓名:座号:成绩:
一、选择题(每小题3分,共42分)
1.下列图形中,是中心对称图形的是()
A. B. C. D.
A、-1和1
B、1和1
C、2和1
D、0和1
3.方程x2-2x+3=0的根的情况是()
A.有两个相等的实数根 B.只有一个实数根
C.没有实数根 D.有两个不相等的实数根
4.如图1,A,B,C是⊙O上的三个点,∠ABC=25°,则∠AOC的度数是()
A.25° B.50° C.60° D.90°
5.⊙O的半径为7cm,点P到圆心O的距离OP=10cm,则点P与⊙O的位置关系为()
A.点P在圆上 B.点P在圆内 C.点P在圆外 D.无法确定
6.在平面直角坐标系中,⊙P的圆心坐标为(4,8),半径为5,那么x轴与⊙P的位置关系是()
A.相交 B.相离 C.相切 D.以上都不是
7.对于二次函数y=(x-1)2+2的图象,下列说法正确的是()
A.开口向下 B.对称轴是x=-1
C.顶点坐标是(1,2) D.与x轴有两个交点
8.一个扇形的弧长是20πcm,面积是240πcm2,则这个扇形的圆心角等于()
A.160° B.150° C.120° D.60°
A.15 B.12 C.20 D.30
10.关于x的方程kx2+2x-1=0有实数根,则k的取值范围是()
A.k≥-1 B.k≥-1且k≠0 C.k≤-1 D.k≤1且k≠0
11.已知点A(1,a)、点B(b,2)关于原点对称,则a+b的值为()
A.1 B.3 C.-1 D.-3
12.如图3,AB是⊙O的直径,弦CD⊥AB于点E,已知,CD=8,AE=2,则⊙O的半径长是()
A.10cm B.6cm C.5cm D.3cm
13.二次函数y=ax2+bx+c的图象如图4所示,则下列结论正确的是()
A.a0 D.-=1
14.如图5,在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是的中点,点D在OB上,点E 在OB的延长线上,当正方形CDEF的边长为2时,则阴影部分的面积为()
A.2π-8 B.4π-8 C.2π-4 D.4π-4
二、填空题(每小题4分,共16分)
15.关于x的一元二次方程x2+mx+3=0的一个根是1,则m的值为。
16.如图6,将半径为4cm的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB的长度为_________cm.
17.如图7,在Rt△ABC中,∠BAC=90°.如果将该三角形绕点A按顺时针方向旋转到
△AB1C1的位置,点B1恰好落在边BC的中点处.那么旋转的角度是度.
18.如图8,已知∠APB=300,圆心O在边PB上, ⊙O 的半径为1cm,OP=3cm. 若⊙O 沿射线BP方向平移,当⊙O 与直线PA相切时,圆心O平移的距离为_________cm.
三、解答题(第19--23题每题10分,第24题12分,共62分)
19.解方程(1)x2+x-1=0 (2)(x-2)(x-3)=12
20.已知抛物线y=-x2+4x+5。
(1)求这条抛物线的顶点坐标和对称轴;
(2)求该抛物线在x轴上截得的线段长。
21.如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD,求该矩形草坪BC边的长。
(用方程解)
22.如图,四边形ABCD是正方形,△ADF按顺时针方向旋转一定角度后得到△ABE,
若AF=4,AB=7。
(1)旋转中心为______;旋转角度为______;(2)DE的长度为______;(3)指出BE与DF的位置关系如何?并说明理由。
23.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC于点E。
(1)求证:DE是⊙O的切线。
(2)若∠B=30°,AB=8,求DE的长。
24.如图,已知抛物线经过点A(-1,0),B(3,0),C(0,3)三点。
(1)求抛物线的解析式;
(2)点M是线段BC上的点(不与B、C重合),过M作NM∥y轴交抛物线于N,若点M的横坐标为m,请用含m的代数式表示MN的长;
(3)在(2)的条件下,连接NB,NC,是否存在点m,使△BNC的面积最大?若存在,求m的值
和△BNC的面积;若不存在,说明理由。
九年级数学月考试题答案
一、选择题
BACBC BCBDA DCDC
二、填空题
(15)-4 (16)(17)60 (18)1或5
三、解答题
19.解:(1)△=12-4×1×(-1)=5,
x=,
所以x1=,x2=;
(2)x2-5x-6=0;
(x-6)(x+1)=0,
x-6=0或x+1=0,
所以x1=6,x2=-1.
20.(1)∵y=-x2+4x+5=-(x-2)2+9
∴这条抛物线的顶点坐标为(2,9),对称轴为直线x=2;
(2)令y=-x2+4x+5=0,解得x1=5,x2=-1,
5-(-1)=6
∴该抛物线在x轴上截得的线段长为6。
21. 解:设BC边的长为x米,根据题意得,
解得:x1=12,x2=20
∵20>16,x2=20不合题意,舍去,
22. (1)旋转中心为点A,旋转角度为90°;
(2)DE=AD-AE=7-4=3;
(3)BE⊥DF.理由如下:延长BE与DF交于点M
∵△ADF按顺时针方向旋转一定角度后得到△ABE,∴△ABE≌△ADF,∴∠ABE=∠ADF,∵∠ADF+∠F=180°-90°=90°,∴∠ABE+∠F=90°,
即∠BMF=90°,∴BE⊥DF。
23.解:(1)连接OD,则OD=OB,
∴∠B=ODB.∵AB=AC,
∴∠B=∠C.∴∠ODB=∠C.
∴OD∥AC.∴∠ODE=∠DEC=90°.
∴DE是⊙O的切线.
(2)连接AD,
∵AB是⊙O的直径,
∴∠ADB=90°.∴
∴
又∵AB=AC,
∴CD=BD=,∠C=∠B=30°.
∴.
24.解:(1)y=-x2+2x+3
(2)易求直线BC的解析式为y=-x+3,
∴M(m,-m+3),又∵MN⊥x轴,∴N(m,-m2+2m+3),
∴MN=(-m2+2m+3)-(-m+3)=-m2+3m(0<m<3)
(3)S△BNC=S△CMN+S△MNB=|MN|?|OB|,
∴当|MN|最大时,△BNC的面积最大,MN=-m2+3m=-(m-)2+,所以当m=时,△BNC的面积最大为××3=。