阶矩阵与平面列向量的乘法
第一单元 矩阵的概念及二阶矩阵与列向量的乘法
第1单元 矩阵的概念及二阶矩阵与平面列向量的乘法【教学目标】1. 了解矩阵的相关知识,如行、列、元素,零矩阵的意义和表示; 2. 掌握二阶矩阵与平面列向量的乘法规则; 3. 理解矩阵对应着向量集合到向量集合的映射.【教学过程】1 矩阵的概念1.1 从表到矩阵向量OP =(1,3),将坐标写入表 1中,可简记为13⎡⎤⎢⎥⎣⎦.表 2表示甲、乙两名选手成绩,可表示成一张矩形数表,记为80908688⎡⎤⎢⎥⎣⎦.将方程组{231,3242x y mz x y z ++=-+=中未知数x ,y ,z 的系数按原来的次序排列可得到表 3,可记为23324m ⎡⎤⎢⎥-⎣⎦. 1.2 矩阵的概念我们把形如[]10,13⎡⎤⎢⎥⎣⎦,80908688⎡⎤⎢⎥⎣⎦,23324m ⎡⎤⎢⎥-⎣⎦这样的矩形数字(或字母)阵列称作矩阵.1.3 矩阵的表示一般地,用黑体大写字母A ,B ,…或者()ij a 来表示矩阵,其中i ,j 分别表示元素ij a 所在的行与列.1×2矩阵:[]10(只有一行的矩阵叫做行矩阵,也叫做行向量);2×1矩阵:13⎡⎤⎢⎥⎣⎦(只有一列的矩阵叫做列矩阵,也叫做列向量,并用希腊字母α,β,…来表示.通常用来表示向量、坐标系内的点…);{231,3242x y mz x y z ++=-+=2×2矩阵:80908688⎡⎤⎢⎥⎣⎦(叫做二阶矩阵,n 阶矩阵即n ×n 矩阵).2×3矩阵:23324m ⎡⎤⎢⎥-⎣⎦(注意矩阵的表示:n ×m 矩阵表示有n 行,m 列).1.4 特殊的矩阵零矩阵——所有元素都为0的矩阵叫做零矩阵,记为0.例如[]00,0000⎡⎤⎢⎥⎣⎦等.单位矩阵——今后学习.1.5 矩阵相等的充要条件两个矩阵A ,B ,则A =B 当且仅当它们的行数与列数分别相等,且对应位置的元素也分别相等.1.6 数学运用例1 用矩阵表示△ABC ,其中()1,0A -,(0,2)B ,()2,0C .变式:矩阵M =01340220⎡⎤⎢⎥⎣⎦表示怎样的平面图形?例2 将方程组{2313242x y mz x y z ++=-+=的系数表示为矩阵.例3 已知342x ⎡⎤=⎢⎥-⎣⎦A ,12y z ⎡⎤=⎢⎥-⎣⎦B ,若=A B ,求x ,y ,z 的值.1.7 行向量与列向量一般地,我们把像[]1112a a 这样只有一行的矩阵称为行矩阵,而把像1121aa ⎡⎤⎢⎥⎣⎦这样只有一列的矩阵称为列矩阵,并用希腊字母α,β,…来表示.根据上述定义,平面上的向量(),x y =a 和平面上的点(),P x y 都可以看做是行矩阵[]xy ,也可以看做是列矩阵xy ⎡⎤⎢⎥⎣⎦.因此我们常将[]xy 称为行向量,而将xy ⎡⎤⎢⎥⎣⎦称为列向量.习惯上,我们把平面向量(),x y 坐标写成列向量xy ⎡⎤⎢⎥⎣⎦的形式,又因为(),P x y OP ←−−−−→ 一一对应平面向量,因此,x y ⎡⎤⎢⎥⎣⎦既可以表示点(),x y ,也可以表示以()0,0O 为起点、以(),P x y 为终点的向量xy ⎡⎤⎢⎥⎣⎦.故在不引起混淆的情况下,对它们不加以区别.2 二阶矩阵与平面列向量的乘法2.1 行向量与列向量的乘法怎样的两个矩阵可以做乘法? 一个n ×1行向量可以与一个1×n 列向量相乘,得到的结果是一个1×1矩阵(即一个数).我们规定行矩阵[]1112a a 与列矩阵1121bb ⎡⎤⎢⎥⎣⎦的乘法规则为[][]1111121111122121ba a ab a b b ⎡⎤=⨯+⨯⎢⎥⎣⎦;2.2 二阶矩阵与平面列向量的乘法二阶矩阵11122122a a a a ⎡⎤⎢⎥⎣⎦与平面列向量00xy ⎡⎤⎢⎥⎣⎦的乘法规则为1112011012021220210220a a x a x a y a a y a x a y ⨯+⨯⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⨯+⨯⎣⎦⎣⎦⎣⎦.例4 计算2001x y ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦.解:20202010x x y x y x y y +⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦⎣⎦. 2.3 平面变换的定义一般地,对于平面上的任意一点(向量)(),x y ,按照对应法则T ,总能对应惟一的一个平面点(向量)()','x y ,则称T 为一个变换,简记为()() ,','T x y x y →:或''x x T y y ⎡⎤⎡⎤→⎢⎥⎢⎥⎣⎦⎣⎦:2.4 二阶矩阵与平面列向量的乘法的几何解释——平面变换一般地,对于平面向量的变换T ,如果变换规则为' 'x x ax by T y y cx dy +⎡⎤⎡⎤⎡⎤→=⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦:,也可记为矩阵形式' 'x x a b x T y y c d y ⎡⎤⎡⎤⎡⎤⎡⎤→=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦: 由矩阵M 确定的变换T ,通常记作T M .根据变换的定义,它是平面内点集到其自身的映射.当α=xy ⎡⎤⎢⎥⎣⎦表示某个平面图形F 上的任意一点时,这些点就组成了图形F ;它在T M 的作用下,将得到一个新的图形F ′——原象集F 的象集F ′.例5 计算:(1)1020530406⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦;(2)103014-⎡⎤⎡⎤⎢⎥⎢⎥-⎣⎦⎣⎦.(教材P11题6)例6 设点(),P a b 在矩阵1000⎡⎤⎢⎥⎣⎦对应的变换作用下得到点P ′,求P ′点的坐标.(教材P11题7)例7 已知点P 在矩阵3123⎡⎤⎢⎥-⎣⎦对应的变换作用下得到点()'2,5P -,求点P 的坐标.(教材P11题10)例8 (1)已知'10'02x x x y y y ⎡⎤⎡⎤⎡⎤⎡⎤→=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦,试将它写成坐标变换的形式;(2)已知'3'x x x y y y y +⎡⎤⎡⎤⎡⎤→=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,试将它写成矩阵乘法的形式.(教材P11题11)例9 已知变换T 把平面上的点()2,0,(分别变换成点(,(1-,试求变换T 所对应的矩阵.解:设变换T 所对应矩阵为M =a b c d ⎡⎤⎢⎥⎣⎦,则22020202a b a b a c d c d c +⎡⎤⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦⎣⎦,a b a c d c ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦.所以:1,2a c ==112=-=1,2a c ==b =,12d =. 所以M=112⎡⎢⎥⎥⎦.(相当于绕原点逆时针方向旋转60︒).例10 直线l :x -y +1=0在矩阵M =1203⎡⎤⎢⎥⎣⎦对应的变换作用下得到直线l ′,求直线l ′的方程.解:(法1)直线l 过点(-1,0),(0,1),因为1012101201030103---⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦M ,故点(-1,0),(2,3)在直线l ′上.则直线l ′的方程为x -y +1=0.(法2)设点(x 0,y 0)为直线l 上一点,它在矩阵M 对应的变换下得到点(x ,y ),则001203x x y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,得{0002,3.x x y y y =+=解得002,31.3x x y y y ⎧=-⎪⎨⎪=⎩ 因为(x 0,y 0)为直线l 上一点,故x 0-y 0+1=0,故有211033x y y --+=,即x -y +1=0. 所以,直线l ′的方程为x -y +1=0.【课后作业】姓名:____________________1. 设M 是一个2×2的矩阵,规定其元素23,,{1,2}ij a i j i j =-∈,求M .2. 设矩阵M =31x y ⎡⎤⎢⎥⎣⎦,N =52y m n m n ++⎡⎤⎢⎥-⎣⎦,若M =N ,求x ,y ,m ,n 的值.(类教材P10题5)3. (1)已知'32'0.54x x x y y y -⎡⎤⎡⎤⎡⎤⎡⎤→=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦,试将它写成坐标变换的形式;(2) 已知'5'6x x yy y x ⎡⎤⎡⎤⎡⎤→=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,试将它写成矩阵乘法的形式.4. 计算(1)2581062-⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦;(2)1213⎡⎢⎢⎥-⎣⎦.5. (1)求点(2,3)在矩阵1234-⎡⎤⎢⎥-⎣⎦对应变换的作用下所得点的坐标;(2)已知点P 在矩阵1012⎡⎤⎢⎥⎣⎦对应的变换作用下变为点()1,1-,求点P 的坐标.6. 已知变换T 把平面上的点()()2,1,0,1-分别变换为点()()0,1,2,1--,试求变换T 所对应的矩阵M .7. 直线l :y =2x 在矩阵M =1012-⎡⎤⎢⎥⎣⎦对应的变换作用下得到直线l ′,求直线l ′的方程.8. 求三角形121032-⎡⎤⎢⎥⎣⎦在矩阵M =1301-⎡⎤⎢⎥⎣⎦对应变换的作用下所得的象,并求该象的面积.。
矩阵与向量乘法
矩阵与向量乘法:从数学到实际应用
矩阵与向量乘法是线性代数中的重要部分,应用广泛,涉及到人工智能、图像处理、音视频处理、网络通信等领域。
下面我们将从数学和实际应用两个角度来解析矩阵与向量乘法的原理和应用。
从数学角度看,矩阵与向量乘法是指将一个矩阵的每一行乘以一个向量得到另一个向量。
例如,假设有一个矩阵A和一个向量x,它们的乘积可以写成Ax。
其中,A是m行n列的矩阵,x是n行1列的向量,那么Ax就是m行1列的向量。
在计算机中,可以通过嵌套循环的方式来计算矩阵与向量的乘积。
具体来说,可以先用一个循环来遍历矩阵的每一行,再用另一个循环来遍历向量的每一行。
在循环中,可以将矩阵和向量对应位置的元素相乘,并将它们相加得到向量的结果。
从实际应用角度看,矩阵与向量乘法可以用于实现一些常见的算法。
例如,可以用矩阵与向量乘法来实现神经网络的训练过程。
在神经网络中,每个节点都对应着一个向量。
可以通过调整每个向量中的权重来使神经网络对输入数据做出正确的分类。
另外,在图像处理中,也常常需要用到矩阵与向量乘法。
例如,可以用一个矩阵来表示一张图片的像素点,然后用一个向量来表示一个图形的形状。
通过将这两个对象相乘得到的结果,可以将图形拼接到图片上。
总之,矩阵与向量乘法是一项重要的数学技能,对于计算机科学和人工智能等领域的从业人员来说都是必备的知识点。
在实践中,也需要结合具体应用来综合运用。
矩阵-向量并行乘法算法
矩阵-向量乘并行算法: 矩阵 向量乘并行算法: 向量乘并行算法
行带状划分的矩阵-向量乘并行算法 算法 行带状划分的矩阵 向量乘并行算法 输入: 输入 An*n,Bn*1 输出: 输出 Cn*1 Begin 对所有处理器同时执行如下的算法: 对所有处理器同时执行如下的算法: for i=0 to m-1 do c[i]=0.0 for j=0 to n-1 do c[i]=c[i]+a[i,j]*b[j] end for end for End
矩阵-向量乘法的并行算法: 矩阵 向量乘法的并行算法: 向量乘法的并行算法
矩阵-向量乘法同样可以有带状划分和棋盘划分两种并行算法, 矩阵 向量乘法同样可以有带状划分和棋盘划分两种并行算法, 向量乘法同样可以有带状划分和棋盘划分两种并行算法 这里仅讨论行带划分矩阵-向量乘法 列带划分矩阵-向量乘法 向量乘法, 这里仅讨论行带划分矩阵 向量乘法,列带划分矩阵 向量乘法 是类似的。设处理器,个数为,对矩阵按行划分为块, 是类似的。设处理器,个数为,对矩阵按行划分为块,每块含 有连续的行向量,这些行块依次记为, 有连续的行向量,这些行块依次记为,分别存放在标号为的处 理器中,同时将向量广播给所有处理器。 理器中,同时将向量广播给所有处理器。个处理器并行地对存 于局部数组中的行块和向量做乘积操作, 于局部数组中的行块和向量做乘积操作,具体并行算法框架描 述如下: 述如下:
矩阵-向量乘法的串行算法: 矩阵 向量乘法的串行算法: 向量乘法的串行算法
单处理器上矩阵-向量乘算法 算法 单处理器上矩阵 向量乘算法 输入: 输入 An*n,Bn*1 输出: 输出 Cn*1 Begin for i=0 to n-1 do c[i]=0 for j=0 to n-1 do c[i]=c[i]+a[i,j]*b[j] end for end for End
矩阵复习学案
《矩阵与变换》复习【知识梳理】1.二阶矩阵与平面向量:(1)矩阵的概念与表示:矩阵的行、列、元素;零矩阵、单位矩阵;行矩阵、列矩阵. (2)二阶矩阵与平面列向量的乘法:⎥⎦⎤⎢⎣⎡22211211a a a a ⎥⎦⎤⎢⎣⎡00y x = . (3)二阶矩阵M =⎥⎦⎤⎢⎣⎡d c b a 确定的变换T M 为:⎥⎦⎤⎢⎣⎡y x →⎥⎦⎤⎢⎣⎡''y x = = . 2.几种常见的平面变换:变换 恒等变换伸压变换反射变换旋转变换投影变换切变变换变换矩阵3.变换的复合与矩阵的乘法: (1)矩阵的乘法:⎥⎦⎤⎢⎣⎡22211211a a a a ⎥⎦⎤⎢⎣⎡22211211b b b b = . 4.逆变换与逆矩阵:(1)逆矩阵的概念:对于二阶矩阵A ,B ,若有 ,则称A 是可逆的,B 称为A 的逆矩阵,A 的逆矩阵记为 . (2)逆矩阵的几何意义: (3)二阶可逆矩阵A =⎥⎦⎤⎢⎣⎡d c b a的逆矩阵公式: . (4)若二阶矩阵A ,B 可逆,则(AB )-1= . 5.特征值与特征向量:(1)概念:设A 为二阶矩阵,若对于实数λ,存在一个非零向量α,使得 ,则称λ是A 的一个特征值,α是A 的属于特征值λ的一个特征向量. (2)特征多项式:f (λ) = . (3)特征值与特征向量的求解步骤:【典型例题】例1.已知变换T 把点(2,1),(-3,2)分别变换成点(7,0),(0,-7),(1)求变换T 对应的矩阵M ;(2)求直线l :x +5y -7=0在变换T 下所得的曲线方程.例2.在直角坐标系中,已知△ABC 的顶点坐标分别为A (0,0),B (1,1),C (0,2),M =⎥⎦⎤⎢⎣⎡1201,N =⎥⎦⎤⎢⎣⎡-0110求△ABC 在矩阵MN 作用下变换所得图形的面积.例3.已知矩阵A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a 212222111211,定义其转置矩阵如下:A ′=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a 212221212111.(1)若A =⎥⎦⎤⎢⎣⎡d c b a ,写出A 的转置矩阵A ′,并求行列式|A |和|A ′|,两者有何关系? (2)若A ⎥⎦⎤⎢⎣⎡y x =⎥⎦⎤⎢⎣⎡43表示的方程组为⎩⎨⎧=+=-43352y x y x ,试求解A ′⎥⎦⎤⎢⎣⎡y x =⎥⎦⎤⎢⎣⎡-295表示的方程组.例4.已知矩阵A =⎥⎦⎤⎢⎣⎡d c 33,若矩阵A 属于特征值6的一个特征向量为⎥⎦⎤⎢⎣⎡=111α,属于特征值1的一个特征向量为⎥⎦⎤⎢⎣⎡-=232α. (1)求矩阵A 及其逆矩阵;(2)若向量α=⎥⎦⎤⎢⎣⎡-91,试计算A n α.【反馈练习】1.下列说法中正确的是 .①反射变换,伸压变换,切变变换都是初等变换; ②任何矩阵都有逆矩阵;③若M ,N 互为逆矩阵,则MN =E ; ④反射变换矩阵都是自己的逆矩阵. 2.已知A =⎥⎦⎤⎢⎣⎡--+y yx 2002,B =⎥⎦⎤⎢⎣⎡-y x x200,若A =B ,则xy = . 3.将平面内的图形绕原点逆时针旋转045的变换矩阵记为M ,曲线C :1=xy 在M 确定的变换T M 作用下变为了曲线C ',则C '的方程为 . 4.若⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-13913214M ,则M = ;若⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-13913214M ,则M = . 5.已知矩阵⎥⎦⎤⎢⎣⎡=2001M ,⎥⎥⎦⎤⎢⎢⎣⎡=10021N ,试求曲线C :y =sin x 在矩阵MN 变换下所得曲线的解析式.6.已知矩阵M =2313⎡⎢⎢⎢-⎢⎣ 1323⎤-⎥⎥⎥⎥⎦,N =2112⎡⎤⎢⎥⎣⎦及向量σ1=11⎡⎤⎢⎥⎣⎦,σ2=11⎡⎤⎢⎥-⎣⎦. (1)证明M 和N 互为逆矩阵;(2)证明σ1和σ2同时是M 和N 的特征向量.7.矩阵A =1102⎡⎤⎢⎥⎣⎦有特征向量α1=11⎡⎤⎢⎥⎣⎦,α2=10⎡⎤⎢⎥⎣⎦. (1)求出α1,α2对应的特征值;(2)对向量α=31⎡⎤⎢⎥⎣⎦,计算A n α.高三数学(理)《矩阵与变换》专题练习1、用矩阵与向量的乘法的形式表示方程组⎩⎨⎧-=-=+1y 2x 2y 3x 2其中正确的是( )A 、⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-122132y x B 、⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-122312y x C 、⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-122132y x D 、⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-121223y x2、已知四边形ABCD 的顶点分别为A (-1,0),B (1,0),C (1,1),D (-1,1),四边形ABCD 在矩阵⎥⎦⎤⎢⎣⎡100a 变换作用下变成正方形,则a =( ) A 、21 B 、2 C 、3 D 、313、若矩阵M 1=⎥⎦⎤⎢⎣⎡1001,M 2=⎥⎦⎤⎢⎣⎡-1001,M 3=⎥⎦⎤⎢⎣⎡0101,则由M 1,M 2,M 3确定的变换分别是( )A 、恒等变换、反射变换、投影变换B 、恒等变换、投影变换、反射变换C 、投影变换、反射变换、恒等变换D 、反射变换、恒等变换、投影变换4、在直角坐标系xOy 内,将每个点的横坐标与纵坐标都变为原来的3倍,则该变换的矩阵是( )A 、1003⎛⎫⎪⎝⎭B 、0330⎛⎫⎪⎝⎭ C 、3003⎛⎫ ⎪⎝⎭ D 、3001⎛⎫⎪⎝⎭5、已知矩阵A =1111⎛⎫⎪-⎝⎭,B =2111-⎛⎫ ⎪-⎝⎭,则AB 等于( )A 、3120⎛⎫⎪-⎝⎭ B 、1032⎛⎫ ⎪-⎝⎭ C 、1302-⎛⎫ ⎪⎝⎭ D 、1320-⎛⎫ ⎪⎝⎭6、已知矩阵A = 1101-⎛⎫⎪⎝⎭,则矩阵A 的逆矩阵A -1等于( )A 、11221122⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭B 、11221122⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭C 、11221122⎛⎫ ⎪⎪ ⎪- ⎪⎝⎭ D 、11221122⎛⎫⎪ ⎪ ⎪- ⎪⎝⎭7、点(-1,k )在伸压变换矩阵⎥⎦⎤⎢⎣⎡100m 之下的对应点的坐标为(-2,-4),则m 、k 的值分别为( )A 、2,4B 、-2,4C 、2,-4D 、-2,-48、设T 是以 ox 轴为轴的反射变换,则变换T 的矩阵为( )A 、⎥⎦⎤⎢⎣⎡-1001 B、 ⎥⎦⎤⎢⎣⎡-1001 C、 ⎥⎦⎤⎢⎣⎡--1001 D、⎥⎦⎤⎢⎣⎡01109、设A 是到ox 轴的正投影变换,A 把点P (x ,y )变成点P ′(x ,0),B 是到oy 轴的正投影变换B 把点P (x ,y )变成点P ″(0,y ),则变换A 和B 的矩阵分别为( ).A、⎥⎦⎤⎢⎣⎡0001,⎥⎦⎤⎢⎣⎡1000 B、⎥⎦⎤⎢⎣⎡1000,⎥⎦⎤⎢⎣⎡0001 C、⎥⎦⎤⎢⎣⎡0101,⎥⎦⎤⎢⎣⎡0001 D、⎥⎦⎤⎢⎣⎡0001,⎥⎦⎤⎢⎣⎡010110、计算:⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡321110=__________ 11、点A (1,2)在矩阵⎥⎦⎤⎢⎣⎡-1022对应的变换作用下得到的点的坐标是___________12、若点A 在矩阵1222-⎡⎤⎢⎥-⎣⎦对应的变换作用下下得到的点为(2,4),则点A 的坐标为_________ 13、将向量⎥⎦⎤⎢⎣⎡=12a 绕原点按逆时针方向旋转4π得到向量b ,则向量b 的坐标为___________14、在某个旋转变换中,顺时针旋转3π所对应的变换矩阵为______ 15、曲线y x =在矩阵0110⎡⎤⎢⎥⎣⎦作用下变换所得的图形对应的曲线方程为______ 16、曲线xy=1绕坐标原点逆时针旋转90°后得到的曲线方程是 ,变换对应的矩阵是__ 17、若曲线x 3cos 21y =经过伸压变换T 作用后变为新的曲线cos y x =,试求变换T 对应的矩阵M =___. 18、求矩阵3221A ⎡⎤=⎢⎥⎣⎦的逆矩阵.19、已知△ABO 的顶点坐标分别是A (4,2),B (2,4),O (0,0),计算在变换T M =1111⎡⎤⎢⎥-⎣⎦之下三个顶点ABO 的对应点的坐标.20、在平面直角坐标系xOy 中,设椭圆2241x y +=在矩阵⎣⎡⎦⎤2 00 1对应的变换作用下得到曲线F ,求F 的方程.21、求曲线C :1xy =在矩阵1111M ⎛⎫= ⎪-⎝⎭对应的变换作用下得到的曲线C 1的方程.22、求将曲线2y x =绕原点逆时针旋转90︒后所得的曲线方程.23、直角坐标系xOy 中,点(2,-2)在矩阵010M a ⎛⎫=⎪⎝⎭对应变换作用下得到点(-2,4),曲线22:1C x y +=在矩阵M 对应变换作用下得到曲线C ',求曲线C '的方程.24、设点P 的坐标为(1,-2),T 是绕原点逆时针方向旋转3π的旋转变换,求旋转变换T 对应的矩阵,并求点P 在T 作用下的象点P ′的坐标.25、在平面直角坐标系xOy 中,A(0,0),B(-3,),C(-2,1),设k ≠0,k ∈R ,M=⎥⎦⎤⎢⎣⎡100k ,N=⎥⎦⎤⎢⎣⎡0110,点A 、B 、C 在矩阵MN 对应的变换下得到点A 1,B 1,C 1,△A 1B 1C 1的面积是△ABC 面积的2倍,求实数k 的值.26、若点(2,2)A 在矩阵=M ⎝⎛ααsin cos ⎪⎪⎭⎫-ααcos sin 对应变换的作用下得到的点为B (2,2)-,求矩阵M 的逆矩阵.27、已知矩阵M=⎥⎦⎤⎢⎣⎡x 221的一个特征值为3,求其另一个特征值.28、设矩阵A =⎣⎡⎦⎤1 a 0 1(a ≠0)、(1)求A 2 ,A 3;(2)猜想A n (n ∈N *);(3)证明:A n (n ∈N *)的特征值是与n 无关的常数,并求出此常数.29、已知△ABC ,A(-1,0),B(3,0),C(2,1),对它先作关于x 轴的反射变换,再将所得图形绕原点逆时针旋转90°.(1)分别求两次变换所对应的矩阵M 1,M 2;(2)求点C 在两次连续的变换作用下所得到的点的坐标.30、已知矩阵A =⎣⎢⎡⎦⎥⎤ 3 3 c d ,若矩阵A 属于特征值6的一个特征向量为α1=⎣⎢⎡⎦⎥⎤11,属于特征值1的一个特征向量为α2=⎣⎢⎡⎦⎥⎤3-2、求矩阵A ,并写出A 的逆矩阵.31、已知矩阵11A ⎡=⎢-⎣ 24⎤⎥⎦,向量74α⎡⎤=⎢⎥⎣⎦. (1)求A 的特征值1λ、2λ和特征向量1α、2α; (2)计算5A α的值.32、已知矩阵11A ⎡=⎢-⎣ a b ⎤⎥⎦,A 的一个特征值2λ=,其对应的特征向是是121α⎡⎤=⎢⎥⎣⎦.(1)求矩阵A ;(2)若向量74β⎡⎤=⎢⎥⎣⎦,计算5A β的值.。
平面向量的向量积和矩阵运算
平面向量的向量积和矩阵运算平面向量是数学中的一个重要概念,在许多数学和物理问题中都得到了广泛应用。
在平面向量的运算中,向量积和矩阵运算是两个重要的操作。
一、向量积向量积,也称为叉乘或叉积,可以用来计算两个向量之间的乘积。
向量积的结果是一个新的向量,该向量垂直于原来的两个向量。
向量积的定义如下:设有向量A(x1, y1)和向量B(x2, y2),则向量A和向量B的向量积为C(x3, y3),且有:x3 = y1 * z2 - y2 * z1y3 = z1 * x2 - x1 * z2z3 = x1 * y2 - x2 * y1其中,z1 = z2 = 0,因为向量积只能在三维空间中使用。
向量积的计算可以用来求解许多几何和物理问题,例如计算两个向量之间的夹角、判断两个向量是否平行、计算三角形的面积等等。
此外,向量积还可用于计算力的矢量合成等问题。
二、矩阵运算矩阵是一种方阵,也可以看作是向量的扩展。
矩阵运算是对矩阵进行各种运算操作的过程,包括加法、减法、乘法等。
1. 加法:两个矩阵相加时,要求两个矩阵的行数和列数相等,然后将对应位置上的元素相加得到新的矩阵。
2. 减法:两个矩阵相减时,要求两个矩阵的行数和列数相等,然后将对应位置上的元素相减得到新的矩阵。
3. 乘法:两个矩阵相乘时,要求第一个矩阵的列数与第二个矩阵的行数相等,然后按照一定的规则计算得到新的矩阵。
具体的计算规则可以参考矩阵乘法的定义。
矩阵运算在线性代数和线性方程组的求解中起着重要的作用。
矩阵运算还可以用于处理图像、信号处理等领域。
总结:通过向量积和矩阵运算,我们可以对平面向量进行一系列的操作和运算。
向量积可以用来计算两个向量之间的乘积,而矩阵运算则可以用来对矩阵进行加法、减法和乘法等操作。
这些操作在数学和物理问题中都具有广泛的应用,对于深入理解和解决相关问题具有重要的作用。
通过本文的介绍,我们对平面向量的向量积和矩阵运算有了初步的了解,希望可以为读者提供一定的帮助和指导。
高考数学一轮复习 第13章《二阶矩阵与变换》名师首选学案 新人教A版
学案71 矩阵与变换 (一)二阶矩阵与变换导学目标: 1.了解矩阵的有关概念,理解二阶矩阵与平面列向量的乘法.2.了解几种常见的平面变换,理解矩阵对应的变换把平面上的直线变成直线(或者点).3.理解二阶矩阵的乘法及简单性质.自主梳理1.线性变换与二阶矩阵在平面直角坐标系xOy 中,由⎩⎪⎨⎪⎧x ′=ax +by ,y ′=cx +dy ,(其中a ,b ,c ,d 是常数)构成的变换称为线性变换.由四个数a ,b ,c ,d 排成的正方形数表⎣⎢⎡⎦⎥⎤a b c d 称为________,其中a ,b ,c ,d 称为矩阵的________,矩阵通常用大写字母A ,B ,C ,…或(a ij )表示(其中i ,j 分别为元素a ij 所在的行和列).2.矩阵的乘法行矩阵[a 11a 12]与列矩阵⎣⎢⎡⎦⎥⎤b 11b 21的乘法规则为[a 11a 12]⎣⎢⎡⎦⎥⎤b 11b 21=[a 11b 11+a 12b 21],二阶矩阵⎣⎢⎡⎦⎥⎤a b c d 与列矩阵⎣⎢⎡⎦⎥⎤x y 的乘法规则为⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤ax +by cx +dy .矩阵乘法满足结合律,不满足交换律和消去律.3.几种常见的线性变换(1)恒等变换矩阵M =⎣⎢⎡⎦⎥⎤1 00 1;(2)旋转变换R θ对应的矩阵是M =_____________________________________________; (3)反射变换要看关于哪条直线对称.例如若关于x 轴对称,则变换对应矩阵为M 1=⎣⎢⎡⎦⎥⎤1 00 -1;若关于y 轴对称,则变换对应矩阵为M 2=__________;若关于坐标原点对称,则变换对应矩阵M 3=____________;(4)伸压变换对应的二阶矩阵M =⎣⎢⎡⎦⎥⎤k 1 00 k 2,表示将每个点的横坐标变为原来的________倍,纵坐标变为原来的________倍,k 1,k 2均为非零常数;(5)投影变换要看投影在什么直线上,例如关于x 轴的投影变换的矩阵为M =__________;(6)切变变换要看沿什么方向平移,若沿x 轴平移|ky |个单位,则对应矩阵M =__________,若沿y 轴平移|kx |个单位,则对应矩阵M =⎣⎢⎡⎦⎥⎤1 0k 1.(其中k 为非零常数).4.线性变换的基本性质设向量α=⎣⎢⎡⎦⎥⎤x y ,规定实数λ与向量α的乘积λα=__________;设向量α=⎣⎢⎡⎦⎥⎤x 1y 1,β=⎣⎢⎡⎦⎥⎤x 2y 2,规定向量α与β的和α+β=__________.(1)设M 是一个二阶矩阵,α、β是平面上的任意两个向量,λ是一个任意实数,则①M (λα)=__________,②M (α+β)=______________________________.(2)二阶矩阵对应的变换(线性变换)把平面上的直线变成直线(或一点).自我检测1.点A (3,-6)在矩阵⎣⎢⎢⎡⎦⎥⎥⎤1 -10 12对应的变换作用下得到的点的坐标是________. 2.设⎣⎢⎡⎦⎥⎤4 -20 3⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤ 0-1,则它表示的方程组为______________.3.设矩阵A =⎣⎢⎡⎦⎥⎤1 -10 1,矩阵A 所确定的变换将点P (x ,y )变换成点Q ,则Q 点的坐标为________.4.设△OAB 的三个点坐标为O (0,0),A (A 1,A 2),B (B 1,B 2),在矩阵M =⎣⎢⎡⎦⎥⎤1k 01对应的变换下作用后形成△OA ′B ′,则△OAB 与△OA ′B ′的面积之比为____________________.5.二阶矩阵M 对应的变换将点(1,-1)与(-2,1)分别变为点(-1,-1)与(0,-2). (1)求矩阵M ;(2)设直线l 在矩阵M 对应的变换作用下得到直线m :x -y -4=0,求l 的方程.探究点一 几种常见的变换例1 试讨论下列矩阵将所给图形变成了什么图形,并指出该变换是什么变换. (1)⎣⎢⎡⎦⎥⎤1 00 1,方程为y =2x +2; (2)⎣⎢⎡⎦⎥⎤-1 0 0 1,点A (2,5); (3)⎣⎢⎡⎦⎥⎤2 00 1,曲线方程为x 2+y 2=4.变式迁移1 将点(2,4)先经过矩阵⎣⎢⎡⎦⎥⎤1002变换后,再绕原点逆时针旋转90°角所得的点坐标为________.探究点二 矩阵的乘法及几何意义例2 验证下列等式,并从几何变换的角度给予解释: ⎣⎢⎡⎦⎥⎤1 11 3=⎣⎢⎡⎦⎥⎤1 01 1⎣⎢⎡⎦⎥⎤1 00 2⎣⎢⎡⎦⎥⎤1 10 1.变式迁移2 已知矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤12 -3232 12和N =⎣⎢⎢⎡⎦⎥⎥⎤ 22 22-22 22,求证:MN =NM .探究点三 矩阵与变换的综合应用例 3 已知两个城市甲与乙间的交通有陆路和航空两种,其陆路可用矩阵表示为M =错误!,航空可用矩阵表示为N =错误!.(1)试从NM 的结果中说明在这个网络里可以进行怎样的旅行?(2)请计算M 2,并据此矩阵说明网络里可以进行怎样的旅行? (3)请计算MNM ,并据此说明网络里可以做怎样的旅行?变式迁移3 已知A =⎣⎢⎡⎦⎥⎤cos α -sin αsin α cos α,B =⎣⎢⎡⎦⎥⎤cos β -sin βsin β cos β,试求AB ,并对其几何意义给予解释.1.常见的变换矩阵(1)恒等变换矩阵为M =⎣⎢⎡⎦⎥⎤1 00 1;(2)伸压变换矩阵为M =⎣⎢⎡⎦⎥⎤k 00 1或M =⎣⎢⎡⎦⎥⎤1 00 k ;(3)反射变换矩阵为M 1=⎣⎢⎡⎦⎥⎤1 00 -1,M 2=⎣⎢⎡⎦⎥⎤-1 00 1,M 3=⎣⎢⎡⎦⎥⎤-1 0 0 -1;(4)旋转变换矩阵为M =⎣⎢⎡⎦⎥⎤cos θ -sin θsin θ cos θ;(5)投影变换矩阵为M 1=⎣⎢⎡⎦⎥⎤1 00 0,M 2=⎣⎢⎡⎦⎥⎤1 01 0,M 3=⎣⎢⎡⎦⎥⎤0 00 1;(6)切变变换矩阵为M =⎣⎢⎡⎦⎥⎤1 k 0 1或M =⎣⎢⎡⎦⎥⎤1 0k 1.2.矩阵的乘法不满足交换律,不满足消去律,但满足结合律. 设A =⎣⎢⎡⎦⎥⎤a b c d ,B =⎣⎢⎡⎦⎥⎤u v s t ,则AB =⎣⎢⎡⎦⎥⎤au +bs av +bt cu +ds cv +dt .课后练习(满分:90分)一、填空题(每小题6分,共48分)1.矩阵⎣⎢⎡⎦⎥⎤a b c d (左)乘向量⎣⎢⎡⎦⎥⎤p q 的法则是________.2.在某个旋转变换中,顺时针旋转π3所对应的变换矩阵为________.3.直线2x +y -1=0经矩阵M =⎣⎢⎡⎦⎥⎤-1 00 -1的变换后得到的直线方程为________.4.设a ,b ∈R ,若矩阵A =⎣⎢⎡⎦⎥⎤a 10b 将直线l :x +y -1=0变为直线x -y -2=0,则a=________,b =________.5.已知A =⎣⎢⎡⎦⎥⎤ 2 -3-4 6,B =⎣⎢⎡⎦⎥⎤8 45 5,C =⎣⎢⎡⎦⎥⎤5 -23 1.则AB =________,AC =________.6.曲线y =sin x 在矩阵MN 变换下的函数解析式为________.(其中M =⎣⎢⎡⎦⎥⎤1 00 2,N =⎣⎢⎢⎡⎦⎥⎥⎤12 00 1.)7.在直角坐标系中,△OAB 的顶点坐标O (0,0),A (2,0),B (1,2),△OAB 在矩阵MN的作用下变换所得的图形的面积为________(其中矩阵M =⎣⎢⎡⎦⎥⎤1 00 -1,N =⎣⎢⎢⎡⎦⎥⎥⎤122022). 8.已知二阶矩阵M 满足M ⎣⎢⎡⎦⎥⎤10=⎣⎢⎡⎦⎥⎤10,M ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤22,则M 2⎣⎢⎡⎦⎥⎤1-1=________.二、解答题(共42分)9.(14分)已知矩阵A =⎝ ⎛⎭⎪⎫1 12 1,向量β=⎝ ⎛⎭⎪⎫12.求向量α,使得A 2α=β.10.(14分)(2010·江苏)在平面直角坐标系xOy 中,已知点A (0,0),B (-2,0),C (-2,1).设k 为非零实数,矩阵M =⎣⎡⎦⎤k 00 1,N =⎣⎡⎦⎤0 11 0,点A 、B 、C 在矩阵MN 对应的变换下得到的点分别为A 1、B 1、C 1,△A 1B 1C 1的面积是△ABC 的面积的2倍,求k 的值.11.(14分)已知矩阵M =⎣⎡⎦⎤1b a 1,N =⎣⎡⎦⎤c 0 2d ,且MN =⎣⎡⎦⎤2-2 00.①求实数a ,b ,c ,d 的值;②求直线y =3x 在矩阵M 所对应的线性变换作用下的象的方程.学案71 矩阵与变换 (一)二阶矩阵与变换答案自主梳理1.二阶矩阵 元素 3.(2)⎣⎢⎡⎦⎥⎤cos θ -sin θsin θ cos θ(3)⎣⎢⎡⎦⎥⎤-1 0 0 1 ⎣⎢⎡⎦⎥⎤-1 0 0 -1 (4)k 1 k 2 (5)⎣⎢⎡⎦⎥⎤1 00 0 (6)⎣⎢⎡⎦⎥⎤1 k 0 1 4.⎣⎢⎡⎦⎥⎤λx λy ⎣⎢⎡⎦⎥⎤x 1+x 2y 1+y 2(1)λM α M α+M β 自我检测1.(9,-3) 2.⎩⎪⎨⎪⎧4x -2y =03y =-1 3.(x -y ,y )4.1∶1解析 由题意知T M 为切变变换,故变换前后图形面积大小不变.5.(1)⎣⎢⎡⎦⎥⎤1 23 4 (2)x +y +2=0解析 (1)设M =⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤-1-1,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-2 1=⎣⎢⎡⎦⎥⎤ 0-2.∴⎩⎪⎨⎪⎧a -b =-1c -d =-1.①⎩⎪⎨⎪⎧-2a +b =0-2c +d =-2.②由①②联立得a =1,b =2,c =3,d =4,故M =⎣⎢⎡⎦⎥⎤1 23 4.(2)设(x ′,y ′)为l 上任意一点,在经矩阵M 变换下对应的点为(x ,y ),则⎣⎢⎡⎦⎥⎤1 23 4⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤x y ∴⎩⎪⎨⎪⎧x =x ′+2y ′y =3x ′+4y ′, 代入x -y -4=0得x ′+y ′+2=0, 即x +y +2=0.课堂活动区例1 解题导引 对于已知变换前后的象和原象,要求变换矩阵这类问题,我们显然无法对所有的变换进行一一尝试,用待定系数法解题可起到事半功倍的效果.通过具体的矩阵对平面上给定图形(如正方形、三角形)的变换,应充分地认识到矩阵可表示如下的线性变换:恒等、反射、伸压、旋转、切变、投影.解 (1)所给方程表示的是一条直线.设A (x ,y )为直线上的任意一点,经过变换后的点为A ′(x ′,y ′). ∵⎣⎢⎡⎦⎥⎤1 00 1⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′, ∴x =x ′,y =y ′.变换后的方程仍为y =2x +2. ∴该变换是恒等变换.(2)经过变化后变为(-2,5),它们关于y 轴对称,故该变换为关于y 轴的反射变换. (3)所给方程是以原点为圆心,2为半径的圆,设A (x ,y )为曲线上的任意一点,经过变换后的点为A 1(x 1,y 1),则⎣⎢⎡⎦⎥⎤2 00 1⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤2x y =⎣⎢⎡⎦⎥⎤x 1y 1,∴2x =x 1,y =y 1. 将之代入到x 2+y 2=4可得方程x 214+y 124=4,此方程表示椭圆,所给方程表示的是圆,该变换是伸压变换.变式迁移1 (-8,2)解析 由题意知⎣⎢⎡⎦⎥⎤cos 90° -sin 90°sin 90° cos 90°⎣⎢⎡⎦⎥⎤1 00 2⎣⎢⎡⎦⎥⎤24 =⎣⎢⎡⎦⎥⎤0 -11 0⎣⎢⎡⎦⎥⎤1 00 2⎣⎢⎡⎦⎥⎤24=⎣⎢⎡⎦⎥⎤0 -21 0⎣⎢⎡⎦⎥⎤24=⎣⎢⎡⎦⎥⎤-8 2 例2 解题导引 ①熟悉六种线性变换,方可理解矩阵乘法的几何意义.矩阵乘法MN 的几何意义为对向量连续依次实施的两次几何变换(先T N 后T M )的复合变换.②因为矩阵的乘法运算不满足变换律,对应地,对一个向量a 先实施变换f ,再实施变换g 与先实施变换g ,再实施变换f ,其结果通常也是不一样的.因而做题时必须认真审题.弄清题意,不能混淆f (g (a ))和g (f (a )).解 等式右边表示的是对点(x ,y )先作沿x 轴的切变变换得(x +y ,y ),再将所得的点进行保持横坐标不变,纵坐标变为原来的2倍的伸压变换得(x +y,2y ),最后将得到的点作沿y 轴的切变变换得(x +y ,x +3y ).等式左边表示的是将点(x ,y )作如下变换:⎣⎢⎡⎦⎥⎤1 11 3⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤x +y x +3y ,即它也是将点(x ,y )变成了点(x +y ,x +3y ),因此,等式两边表示的变换相同,所以有⎣⎢⎡⎦⎥⎤1 11 3=⎣⎢⎡⎦⎥⎤1 01 1⎣⎢⎡⎦⎥⎤1 00 2⎣⎢⎡⎦⎥⎤1 10 1变式迁移2 解 MN =⎣⎢⎢⎡⎦⎥⎥⎤12 -3232 12⎣⎢⎢⎡⎦⎥⎥⎤ 22 22-22 22=⎣⎢⎢⎡⎦⎥⎥⎤2+642-646-24 6+24,NM =⎣⎢⎢⎡⎦⎥⎥⎤ 22 22-22 22⎣⎢⎢⎡⎦⎥⎥⎤12 -3232 12=⎣⎢⎢⎡⎦⎥⎥⎤2+642-646-24 6+24, 故MN =NM .例3 解题导引 M 的意义表示陆路的网络图为甲→乙;N 的意义表示航空的网络图为甲→乙.解 (1)NM =⎣⎢⎡⎦⎥⎤1 11 0⎣⎢⎡⎦⎥⎤0 11 0=⎣⎢⎡⎦⎥⎤1 10 1,这说明,在此网络中可以选择先陆路后航空的旅行.(2)M 2=⎣⎢⎡⎦⎥⎤0 11 0⎣⎢⎡⎦⎥⎤0 11 0=⎣⎢⎡⎦⎥⎤1 00 1,这说明,在此网络中可以选择先陆路后再陆路的旅行.(3)MNM =⎣⎢⎡⎦⎥⎤0 11 0⎣⎢⎡⎦⎥⎤1 11 0⎣⎢⎡⎦⎥⎤0 11 0=⎣⎢⎡⎦⎥⎤0 11 1,这说明,在此网络中可以选择先陆路,再航空,然后再陆路的旅行.变式迁移3 解 AB =⎣⎢⎡⎦⎥⎤cos α-sin αsin α cos α⎣⎢⎡⎦⎥⎤cos β -sin βsin β cos β=⎣⎢⎡⎦⎥⎤cos αcos β-sin αsin β -cos αsin β-sin αcos βsin αcos β+cos αsin β -sin αsin β+cos αcos β =⎣⎢⎡⎦⎥⎤α+β -α+βα+β α+βAB 表示的变换为逆时针旋转α+β.A 表示逆时针旋转α,B 表示逆时针旋转β. 课后练习区1.⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤p q =⎣⎢⎡⎦⎥⎤ap +bq cp +dq2.⎣⎢⎢⎡⎦⎥⎥⎤ 12 32-32 12解析 顺时针旋转π3即逆时针旋转53π,变换矩阵为⎣⎢⎢⎡⎦⎥⎥⎤cos 5π3 -sin 53πsin 5π3 cos5π3=⎣⎢⎢⎡⎦⎥⎥⎤ cos π3 sin π3-sin π3 cos π3=⎣⎢⎢⎡⎦⎥⎥⎤ 12 32-32 12.3.2x +y +1=0解析 由变换矩阵M 知坐标变换公式为⎩⎪⎨⎪⎧x ′=-x y ′=-y ,即⎩⎪⎨⎪⎧x =-x ′y =-y ′,代入直线方程2x +y -1=0得2x ′+y ′+1=0.即2x +y +1=0. 4.2 -1解析 在直线l 上任取一点P (x ,y ),经矩阵变换后为点P ′(x ′,y ′),则由⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤a 10 b ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤ax +y by ,得⎩⎪⎨⎪⎧x ′=ax +y ,y ′=by . 所以ax +y -by -2=0,即ax +(1-b )y -2=0,于是由a 1=1-b 1=-2-1,解得a =2,b =-1.5.⎣⎢⎡⎦⎥⎤ 1 -7-2 14,⎣⎢⎡⎦⎥⎤ 1 -7-2 14 解析 AB =⎣⎢⎡⎦⎥⎤ 2 -3-4 6⎣⎢⎡⎦⎥⎤8 45 5=⎣⎢⎡⎦⎥⎤1 -7-2 14,AC =⎣⎢⎡⎦⎥⎤ 2 -3-4 6⎣⎢⎡⎦⎥⎤5 -23 1=⎣⎢⎡⎦⎥⎤ 1 -7-2 14.6.y =2sin 2x解析 MN =⎣⎢⎡⎦⎥⎤1 00 2⎣⎢⎢⎡⎦⎥⎥⎤12 0 0 1=⎣⎢⎢⎡⎦⎥⎥⎤12 0 0 2, 即在矩阵MN 变换下⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎢⎡⎦⎥⎥⎤12x 2y ,则12y ′=sin 2x ′,即曲线y =sin x 在矩阵MN 变换下的函数解析式为y =2sin 2x . 7.1解析 MN =⎣⎢⎢⎡⎦⎥⎥⎤1 220 -22,⎣⎢⎢⎡⎦⎥⎥⎤1220 -22⎣⎢⎡⎦⎥⎤00=⎣⎢⎡⎦⎥⎤00,⎣⎢⎢⎡⎦⎥⎥⎤1 220 -22⎣⎢⎡⎦⎥⎤20=⎣⎢⎡⎦⎥⎤20,⎣⎢⎢⎡⎦⎥⎥⎤1 220 -22⎣⎢⎡⎦⎥⎤12=⎣⎢⎡⎦⎥⎤ 2-1.可知O ,A ,B 三点在矩阵MN 作用下变换所得的点分别为O ′(0,0),A ′(2,0),B ′(2,-1).可知△O ′A ′B ′的面积为1.8.⎣⎢⎡⎦⎥⎤-2-4 解析 设M =⎣⎢⎡⎦⎥⎤a b c d ,由M ⎣⎢⎡⎦⎥⎤10=⎣⎢⎡⎦⎥⎤10得,⎣⎢⎡⎦⎥⎤a c =⎣⎢⎡⎦⎥⎤10,所以a =1,c =0.由M ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤22得,⎣⎢⎡⎦⎥⎤a +b c +d =⎣⎢⎡⎦⎥⎤22,所以b =1,d =2.所以M =⎣⎢⎡⎦⎥⎤1 10 2.所以M 2=⎣⎢⎡⎦⎥⎤1 10 2⎣⎢⎡⎦⎥⎤1 10 2=⎣⎢⎡⎦⎥⎤1 30 4.所以M 2⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤1 30 4⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤-2-4. 9.解 A 2=⎝ ⎛⎭⎪⎫1 12 1⎝ ⎛⎭⎪⎫1 12 1=⎝ ⎛⎭⎪⎫3 24 3.(4分)设α=⎝ ⎛⎭⎪⎫x y ,由A 2α=β,得⎝ ⎛⎭⎪⎫3 24 3⎝ ⎛⎭⎪⎫x y =⎝ ⎛⎭⎪⎫12,(7分)从而⎩⎪⎨⎪⎧ 3x +2y =1,4x +3y =2,解得⎩⎪⎨⎪⎧x =-1,y =2.所以α=⎝ ⎛⎭⎪⎫-12.(14分) 10.解 由题设得MN =⎣⎡⎦⎤k 00 1 ⎣⎡⎦⎤0 11 0=⎣⎡⎦⎤0 k 1 0.(4分) 由⎣⎡⎦⎤0 k 1 0⎣⎡⎦⎤00=⎣⎡⎦⎤00,⎣⎡⎦⎤0 k 1 0⎣⎡⎦⎤-20=⎣⎡⎦⎤ 0-2,⎣⎡⎦⎤0 k 1 0⎣⎡⎦⎤-21=⎣⎡⎦⎤k -2,可知A 1(0,0),B 1(0,-2),C 1(k ,-2).(10分) 计算得△ABC 的面积是1,△A 1B 1C 1的面积是|k |,由题设知|k |=2×1=2,所以k 的值为-2或2.(14分)11.解 方法一 ①由题设得⎩⎪⎨⎪⎧c +0=2,2+ad =0,bc +0=-2,2b +d =0,解得⎩⎪⎨⎪⎧a =-1,b =-1,c =2,d =2.(6分)②因为矩阵M 对应的线性变换将直线变成直线(或点),所以可取直线y =3x 上的两点(0,0),(1,3).由⎣⎡⎦⎤1-1 -11⎣⎡⎦⎤00=⎣⎡⎦⎤00, ⎣⎡⎦⎤1-1 -11⎣⎡⎦⎤13=⎣⎡⎦⎤-22得 点(0,0),(1,3)在矩阵M 所对应的线性变换作用下的象分别是点(0,0),(-2,2).(12分)从而直线y =3x 在矩阵M 所对应的线性变换作用下的象的方程为y =-x .(14分) 方法二 ①同方法一.②设直线y =3x 上的任意点(x ,y )在矩阵M 所对应的线性变换作用下的象是点(x ′,y ′),由⎣⎡⎦⎤x ′y ′=⎣⎡⎦⎤1-1 -11⎣⎡⎦⎤x y =⎣⎡⎦⎤ x -y -x +y =⎣⎡⎦⎤-2x 2x得y ′=-x ′,即点(x ′,y ′)必在直线y =-x 上.由(x ,y )的任意性可知,直线y =3x 在矩阵M 所对应的线性变换作用下的象的方程为y =-x .。
2.1.2二阶矩阵与平面列向量的乘法
§2.1.2二阶矩阵与平面列向量的乘法教学目标:1、知识与技能:⑴通过具体的例子,理解并掌握二阶方阵左乘二维列向量的运算;理解二阶方阵左乘二维列向量就是把该向量变成另外一个向量.⑵理解矩阵对应着向量集合到向量集合的映射2、过程与方法:通过校运动会总分的计算,来归纳法则,进一步利用法则进行计算3、情感态度与价值观:以已有知识为平台,结合实例,创设良好情境,调动学生学习的积极性,发挥学生的主动性.重点难点:1、教学重点:掌握二阶方阵左乘二维列向量的运算及其变换作用。
2、教学难点:二阶方阵左乘二维列向量的变换作用。
教学方法:自主合作探究教具准备:多媒体设备教学过程:问题探究、引入概念【情境】下表是本次校运会高二年级部分班级获得名次的统计(单位:人次)。
⑴你能计算出各班团体总分吗?(第一到第六名的分值依次为7、5、4、3、2、1)⑵你能将以上的表格及运算过程用矩形的数表来表达吗? ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡142323214232325541143113=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡58536948⑶你能分别算出高二(3)、(4)班第一名、第二名共为本班得多少分吗? ⎥⎦⎤⎢⎣⎡2332⎥⎦⎤⎢⎣⎡57=⎥⎦⎤⎢⎣⎡3129 ⑷如果已知高二(3)、(4)班第一名、第二名的人次,即⎥⎦⎤⎢⎣⎡2332,为本班得分⎥⎦⎤⎢⎣⎡2322,你能算出第一、二名分别记分多少吗?设第一、二名的得分分别为x 、y ,则⎩⎨⎧=+=+23232232y x y x (*),得⎩⎨⎧==45y x 。
这个过程可以表示为:⎥⎦⎤⎢⎣⎡2332⎥⎦⎤⎢⎣⎡y x =⎥⎦⎤⎢⎣⎡2322 ⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡123457合作学习、形成概念一般地,我们规定行矩阵[]1211a a 与列矩阵⎥⎦⎤⎢⎣⎡1211b b 的乘法法则为 [][]2112111121111211b a b a b b a a ⨯+⨯=⎥⎦⎤⎢⎣⎡二阶矩阵⎥⎦⎤⎢⎣⎡22211211a a a a 与列向量⎥⎦⎤⎢⎣⎡00y x 的乘法法则为 ⎥⎦⎤⎢⎣⎡⨯+⨯⨯+⨯=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡0220210120110022211211y a x a y a x a y x a a a a 。
矩阵与变换
对应的矩阵叫做切变变换矩阵。
2.3 变换的复合与矩阵的乘法
2.3.1 矩阵乘法的概念 2.3.2 矩阵乘法的的简单性质
建构数学
规定:矩阵乘法的法则是:
a c
b e g d
f ae + bg af + bh ce + dg cf + dh h
一般地,对于平面上的任意一点(向量) ( x, y ), 若按照对应法则T,总能对应唯一的一个 平面点(向量) x, y ), 则称T 为一个变换,简记 ( 为 T: , y ) x, y ), (x ( 或 x x T: . y y
一般地,对于平面向量的变换T,如果变换 规则为 x x ax + by T: y , 坐标变换的形式 y cx + dy 那么,根据二阶矩阵与向量的乘法规则可以改写为 x x a b x T: y y 矩阵乘法的形式 y c d 的矩阵形式,反之亦然(a, b, c, d R ).
建构数学
设矩阵A=
f (l )
a b R,我们把行列式 c d ,l
l a
c
b
l d 称为A的特征多项式。
l 2 (a + d )l + ad bc
分析表明,如果l是矩阵A的特征值,则f (l)0 x0 此时,将l代入方程组(*),得到一组非零解 y0 x0 即 为矩阵A的属于l的一个特征向量. y0
切变变换
矩阵
1 k 0 1 把平面上的点P(x,
y)沿x轴方向
平移|ky|个单位: 当ky>0时,沿x轴正方向移动; 当ky<0时,沿x轴负方向移动; 当ky=0时,原地不动. 在此变换作用下,图形在x轴上的点是不动点。
矩阵与向量的乘法运算
矩阵与向量的乘法运算1. 引言:矩阵与向量的相遇大家好,今天咱们要聊聊一个在数学中非常重要,但又经常让人摸不着头脑的概念——矩阵与向量的乘法运算。
别急,听我细细讲解,这其实没那么复杂,就像学会了骑自行车一样,一旦明白了,就觉得无比轻松。
2. 矩阵与向量基本概念2.1 矩阵是什么?矩阵其实就是一张数字的表格,里头的数字排成了行和列。
可以把它想象成一个由很多小格子组成的表格,每个小格子里都藏着一个数字。
举个例子,一个2x3的矩阵就有2行3列,像个小方阵子。
2.2 向量是什么?向量呢,简单来说就是一个单行或者单列的矩阵。
你可以把它看作是一个“数字串”,它要么是横着的(行向量),要么是竖着的(列向量)。
比如说一个3维的向量就是三个数字排成一行或者一列。
3. 矩阵与向量的乘法运算3.1 乘法运算的步骤矩阵与向量相乘,其实就像在玩拼图。
先看矩阵的每一行,然后用这行的数字分别乘上向量里对应的数字。
最后,把这些乘积加在一起,就得到结果了。
这里有个小窍门:矩阵的列数要跟向量的行数一致,才能进行乘法运算。
就像要拼对了才行,拼错了是没办法完成的。
3.2 举个例子比如说我们有一个2x3的矩阵A和一个3维的列向量B。
矩阵A的第一行是[1, 2, 3],第二行是[4, 5, 6],向量B是[7, 8, 9]。
那怎么乘呢?我们先用矩阵A的第一行[1, 2, 3]乘向量B的每一个元素,然后把结果加起来。
计算就是:1*7 + 2*8 + 3*9 = 7 + 16 + 27 = 50。
同样的方式,我们对第二行[4, 5, 6]做一次,得到:4*7 + 5*8 + 6*9 = 28 + 40 + 54 = 122。
所以最后的结果是一个2维的向量[50, 122]。
4. 实际应用中的矩阵与向量乘法4.1 在计算机图形中的应用你可能会问,这些运算和实际生活有什么关系?其实,矩阵与向量的乘法在计算机图形中非常重要。
比如说,你玩游戏时屏幕上的角色移动,就是通过矩阵变换来实现的。
苏教版高中数学高二选修4-2二阶矩阵与平面列向量的乘法
选修4-2矩阵与变换 2.1.2 二阶矩阵与平面列向量的乘法编写人: 编号:002学习目标1、 掌握二阶矩阵与平面列向量的乘法规则。
2、 理解矩阵对应着向量集合到向量集合的映射。
学习过程:一、预习:(一)阅读教材,解决下列问题:规定比赛的最后成绩由初赛和复赛综合裁定,其中初赛占40%,复赛占60%.则甲和乙的综合成绩分别是多少?(二)一般地,我们规定行矩阵[a 11 a 12]与列矩阵⎥⎦⎤⎢⎣⎡2111b b 的乘法规则为:二阶矩阵⎥⎦⎤⎢⎣⎡22211211a a a a 与列向量⎥⎦⎤⎢⎣⎡00y x 的乘法规则为:(三)一般地,对于 则称T 为一个变换。
简记为:或练习1、计算:(1)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡121011 (2)⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡1201102、已知平面上一个正方形ABCD (顺时针)的四个顶点用矩阵表示为⎥⎦⎤⎢⎣⎡d c b a 4000,求a ,b ,c ,d 的值及正方形ABCD 的面积.3、已知变换⎥⎦⎤⎢⎣⎡-+=⎥⎦⎤⎢⎣⎡''→⎥⎦⎤⎢⎣⎡y x y x y x y x 252,试将它写成矩阵的乘法形式.二、课堂训练:例1.计算⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡y x 1002思考:二阶矩阵M 与列向量的乘法⎥⎦⎤⎢⎣⎡→⎥⎦⎤⎢⎣⎡y x M y x 和函数)(x f x →的定义有什么异同?例2.(1)已知变换⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡→⎥⎦⎤⎢⎣⎡y x y x y x 2341'',试将它写成坐标变换的形式; (2)已知变换⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡→⎥⎦⎤⎢⎣⎡y y x y x y x 3'',试将它写成矩阵乘法的形式;例3.已知变换⎥⎦⎤⎢⎣⎡-+=⎥⎦⎤⎢⎣⎡''→⎥⎦⎤⎢⎣⎡y x y x y x y x 252,试将它写成矩阵的乘法形式.例4. 已知矩阵[])(x f A =,[]x x B -=1,⎥⎦⎤⎢⎣⎡=a 2x C ,若A=BC ,求函数)x (f 在[1,2] 上的最小值.三、课后巩固:1、用矩阵与向量的乘法的形式表示方程组⎩⎨⎧-=-=+1y 2x 2y 3x 2其中正确的是( )A 、⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-122132y xB 、⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-122312y x C 、⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-122132y x D 、⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-121223y x 2、计算:⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡321110=__________ 3、点A (1,2)在矩阵⎥⎦⎤⎢⎣⎡-1022对应的变换作用下得到的点的坐标是___________ 4、设矩阵A 为二阶矩阵,且规定其元素,0=+ji ij a a i=1,2,j=1,2,且2a a 2112=-,试求A.5. 若点A 在矩阵1222-⎡⎤⎢⎥-⎣⎦对应的变换作用下下得到的点为(2,4),求点A 的坐标.6、已知△ABO 的顶点坐标分别是A (4,2),B (2,4),O (0,0),计算在变换T M =1111⎡⎤⎢⎥-⎣⎦之下三个顶点ABO 的对应点的坐标.。
《1.2.1 二阶矩阵与平面向量的乘法》教案新部编本2
教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校《1.2.1 二阶矩阵与平面向量的乘法》教案2教学目标知识与技能目标⑴在教师引导下,从特殊到一般,通过观察、验证、推理与交流等数学活动,掌握二阶矩阵与平面向量的乘法法则进一步培养学生“用数学”的意识;⑵能利用二阶矩阵与平面向量的乘法解决有关的简单问题,提升学生的逻辑思维能力和分析问题、解决问题的能力.过程与方法目标⑴经历理论与实际的联系,提升学生的数学建模能力,培养学生运用数学的意识;⑵经历推导二阶矩阵与平面向量的乘法的过程,使学生参与教学实践.⑶通过多媒体动画演示,培养学生用运动变化观点来分析问题、解决问题的能力.情感目标⑴让学生主动参与探求二阶矩阵与平面向量的乘法的过程,使学生感受成功的喜悦;⑵培养学生应用信息技术研究数学问题的意识和主动学习的良好习惯;教学重点掌握二阶矩阵与平面向量的乘法。
进一步体会从特殊到一般这一重要数学思想.教学难点矩阵对应着向量集合到向量集合的映射的理解。
教学过程出示幻灯片1问题1:某电视台举办歌唱比赛,甲乙两名选手初、复赛成绩如下表,如果规定歌唱比赛最后成绩由初赛和复赛综合裁定,其中初赛占40℅,复赛占60℅,则甲、乙的最后成绩是多少?能否用矩阵来表示?理解问题,利用已有的知识计算问题的结果.同时带着一个问题“如何用矩阵来表示?”听课。
设计意图:通过实际问题引入,让学生体会生活中的数学,突出研究二阶矩阵与平面向量的乘法的重要意义,激发学生的学习兴趣.出示幻灯片2让学生回顾平面几何中与本节课有关的线性变换及其对应的二阶矩阵,并填写下左边的表格。
首先复习平面向量与有序实数对是一一对应的,引入列向量与行向量的概念出示幻灯片3旋转300角的旋转变换公式⎪⎪⎩⎪⎪⎨⎧+='-='y x y y x x 23212123 对应的二阶矩阵是⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-23212123 新的向量是⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+-y x y x 23212123 即 ⎪⎪⎭⎫ ⎝⎛''y x = ⎪⎪⎪⎪⎭⎫⎝⎛-23212123⎪⎪⎭⎫ ⎝⎛y x =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+-y x y x 23212123幻灯片4:设=A ⎪⎪⎭⎫ ⎝⎛d c b a ,α=⎪⎪⎭⎫ ⎝⎛y x ,规定二阶矩阵A 与向量α的乘积为向量⎪⎪⎭⎫ ⎝⎛++dy cx by ax ,记为 A α 或⎪⎪⎭⎫ ⎝⎛d c b a ⎪⎪⎭⎫ ⎝⎛y x ,即 A α=⎪⎪⎭⎫ ⎝⎛d c b a ⎪⎪⎭⎫ ⎝⎛y x =⎪⎪⎭⎫ ⎝⎛++dy cx by ax。
1.二阶矩阵、二阶矩阵与平面向量的乘法、二阶矩阵与线性变换
第一讲二阶矩阵、二阶矩阵与平面向量的乘法、二阶矩阵与线性变换。
一、二阶矩阵1.矩阵的概念① =OP → →[23][23]初赛复赛甲8090乙8688③概念一:象 的矩形数字(或字母)阵列称为矩[23]80908688⎡⎤⎢⎥⎣⎦23324m ⎡⎤⎢⎥-⎣⎦阵.通常用大写的拉丁字母A 、B 、C…表示, 横排叫做矩阵的行,竖排叫做矩阵的列.名称介绍:①上述三个矩阵分别是2×1矩阵,2×2矩阵(二阶矩阵),2×3矩阵,注意行的个数在前。
②矩阵相等:行数、列数相等,对应的元素也相等的两个矩阵,称为A =B 。
③行矩阵:[a 11,a 12](仅有一行)④列矩阵:(仅有一列)[a11a21]⑤向量=(x,y ),平面上的点P (x,y )都可以看成行矩阵或a →[,]x y 列矩阵,在本书中规定所有的平面向量均写成列向量的形式。
x y ⎡⎤⎢⎥⎣⎦x y ⎡⎤⎢⎥⎣⎦练习1:1.已知,,若A=B ,试求⎥⎦⎤⎢⎣⎡-=243x A ⎥⎦⎤⎢⎣⎡-=21z y B z y x ,,2.设,,若A=B ,求x,y,m,n 的值。
23x A y ⎡⎤=⎢⎥⎣⎦2m n x y B x y m n ++⎡⎤=⎢⎥--⎣⎦概念二:由4个数a,b,c,d 排成的正方形数表称为二阶矩阵。
a,b,c,d a b c d ⎡⎤⎢⎥⎣⎦称为矩阵的元素。
①零矩阵:所有元素均为0,即,记为0。
0000⎡⎤⎢⎥⎣⎦②二阶单位矩阵:,记为E 2.1001⎡⎤⎢⎥⎣⎦二、二阶矩阵与平面向量的乘法定义:规定二阶矩阵A=,与向量的乘积为a b c d ⎡⎤⎢⎥⎣⎦x y α→⎡⎤=⎢⎥⎣⎦23m 3-24—2—3—[80 9086 88]23324x y mz x y z ++=⎧⎨-+=⎩23324m ⎡⎤⎢⎥-⎣⎦,即==ax by A cx dy α→+⎡⎤=⎢⎥+⎣⎦A α→a b c d ⎡⎤⎢⎥⎣⎦x y ⎡⎤⎢⎥⎣⎦ax by cx dy +⎡⎤⎢⎥+⎣⎦练习2:1.(1)=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-131021(2) =⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-3110212.=,求⎥⎦⎤⎢⎣⎡2101⎥⎦⎤⎢⎣⎡y x ⎥⎦⎤⎢⎣⎡-11⎥⎦⎤⎢⎣⎡y x 三、二阶矩阵与线性变换1.旋转变换问题1:P (x,y )绕原点逆时针旋转180o 得到P ’(x ’,y ’),称P ’为P在此旋转变换作用下的象。
二阶矩阵与平面向量的乘法
两个二阶矩阵相乘时,需要满足一定的代数关 系,例如$ac = ca$,$bd = db$等。
02
平面向量的基本概念
向量的表示
01
02
03
实数域上的向量
在平面直角坐标系中,一 个向量可以用一个有方向 的线段来表示,其长度即 为向量的模。
向量的坐标
一个向量可以由其起点和 终点的坐标来确定,记作 $overrightarrow{AB}$。
向量的线性变换
线性变换
二阶矩阵与平面向量的乘法可以实现向量的线性变换。给定一个向量$mathbf{v} = (v_1, v_2)$和一个线性变换 矩阵$A = begin{pmatrix} a & b c & d end{pmatrix}$,则$mathbf{v} cdot A = (av_1 + cv_2, bv_1 + dv_2)$,实现了向量$mathbf{v}$的线性变换。
通过点乘和模长计算得到。
向量射影
与向量投影类似,向量射影也是将一个向量映射到另一个向量或平面上的操作。通过二 阶矩阵与平面向量的乘法,可以得到向量在另一个向量或平面上的射影向量。具体来说,
射影向量可以通过点乘和模长计算得到。
05
二阶矩阵与平面向量乘 法的计算方法
计算矩阵与向量乘法的步骤
01
确定矩阵的行数和列数,以及向量的维数。
二阶矩阵与平面向量 的乘法
目 录
• 二阶矩阵的定义与性质 • 平面向量的基本概念 • 二阶矩阵与平面向量的乘法规则 • 二阶矩阵在平面向量中的应用 • 二阶矩阵与平面向量乘法的计算方法
01
二阶矩阵的定义与性质
二阶矩阵的表示
二阶矩阵可以用2x2的方阵表示,其中包含四个元素,通常表示为$A = begin{bmatrix} a & b c & d end{bmatrix}$。
二阶矩阵与平面列向量的乘法 说课稿 教案 教学设计
二阶矩阵与二元一次方程组
学习目标
1、 了解二阶行列式的定义,会用二阶行列式求逆矩阵和解方程组。
2、 能用变换与映射的观点认识解线性方程组解的意义。
3、 会用系数矩阵的逆矩阵求解方程组。
4、 会通过具体的系数矩阵,从几何上说明线性方程组解的存在性、惟一性。
学习过程:
一、预习:
(一)阅读教材,解答下列问题:
问题1、方程⎩⎨⎧=+=+n dy cx
m
by ax 的解是:
问题2、定义:det(A) =a b
c d =
因此方程组的解为⎩⎪⎪⎨⎪⎪⎧x =m b
n d
a b
c d
y =a
m c n a b
c d
记:D =a b c d ,D x =m b n d ,D y =a m c n ,所以,方程组的解为⎩⎨⎧x =D x
D
y =D y D
思考:二阶矩阵⎥⎦⎤⎢⎣⎡d c b a 与二阶行列式d
c b
a 有什么异同?
练习:
1、求下列行列式的值 ⑴ 21 43 ⑵21 43- ⑶21 - 40 ⑷ 2b a d c
2、若x= θθsin con θθcon sin (θ∈R ) 试求f(x)=x 2+2x-3 的最值。
二、课堂训练:
例1.利用行列式求解二元一次方程组⎩⎨⎧=+=-7y 3x 4
2y 3x
例2、利用行列式求解A =⎢⎣⎡33 ⎥⎦⎤
12-的逆矩阵
例3、用逆矩阵方法求二元一次方程组⎩⎨⎧=+=-7
y 3x 42y 3x 的解。
最新人教版高中数学选修4-2二阶矩阵与平面向量的乘法
解析:∵ A=
又 Aα= 答案:3
章末整合提升
自主探究 自我检测 重难点拨 思悟升华
知识网络构建 预习导引
YUXI DAOYIN
专题归纳整合 互动课堂
HUDONG KETANG
1
2
3
4
5
3.设矩阵 A= -1 1 ,则点 P(3,1)在 A 所对应的线性变换的作用下的像 2 0 P'为 解析:∵ A . 3 = 1 -1 1 2 0 3 = 1 -2 , 6
二 二阶矩阵与平面向量的乘法
章末整合提升
激趣诱思 新知预习 知识结构
知识网络构建 预习导引
YUXI DAOYIN
专题归纳整合 互动课堂
HUDONG KETANG
相传在远古的伏羲时代,有一神奇的龙马背负着一张神秘的图,出现在 黄河水面;到了大禹治水的年代,又有一只神奇的龟背负着另一张神秘 的图浮出洛水.这龙马载河图、神龟背洛书一出现就带有浓厚的神秘色 彩,被当作圣人出世的预兆和安邦治世的奇书,其实这河图、 洛书只不过 是将 1 到 9 这九个数字排成一个 3×3 的立方阵.那么对于矩阵与向量之 间有怎样的运算?与前面学习的实数与向量的数乘运算有什么联系?
章末整合提升
激趣诱思 新知预习 知识结构
知识网络构建 预习导引
YUXI DAOYIN
专题归纳整合 互动课堂
HUDONG KETANG
1.列向量、行向量 向量(x,y)是一对有序数组,x,y 叫做它的两个分量.我们把这两个分 ������ 量按照 x 在上,y 在下的次序写成一列 ������ ,这种形式的向量称为列向量. 相应的,形如(x,y)的向量称为行向量. 2.矩阵与向量的乘法 ������ ������ ������ (1)设 A= ,α= ������ ,规定二阶矩阵 A 与向量 α 的乘积为向量 ������ ������ ������������ + ������������ ������ ������ ,记为 Aα 或 ������������ + ������������ ������ ������ ������ ������ ������ , 即 A α = ������ ������ ������ ������ ������������ + ������������ = . ������ ������������ + ������������
1.二阶矩阵、二阶矩阵与平面向量的乘法、二阶矩阵与线性变换
第一讲二阶矩阵、二阶矩阵与平面向量的乘法、二阶矩阵与线性变换。
一、二阶矩阵 1.矩阵的概念①OP → =→的坐标排成一列,并简记为⎣⎢⎡⎦⎥⎤2 3⎣⎢⎡⎦⎥⎤2 3③概念一: 象⎣⎢⎡⎦⎥⎤2 3 80908688⎡⎤⎢⎥⎣⎦23324m ⎡⎤⎢⎥-⎣⎦的矩形数字(或字母)阵列称为矩阵.通常用大写的拉丁字母A 、B 、C…表示, 横排叫做矩阵的行,竖排叫做矩阵的列. 名称介绍:①上述三个矩阵分别是2×1矩阵,2×2矩阵(二阶矩阵),2×3矩阵,注意行的个数在前。
②矩阵相等:行数、列数相等,对应的元素也相等的两个矩阵,称为A =B 。
③行矩阵:[a 11,a 12](仅有一行)④列矩阵:⎣⎢⎡⎦⎥⎤a 11 a 21 (仅有一列)⑤向量a →=(x,y ),平面上的点P (x,y )都可以看成行矩阵[,]x y 或列矩阵x y ⎡⎤⎢⎥⎣⎦,在本书中规定所有的平面向量均写成列向量x y ⎡⎤⎢⎥⎣⎦的形式。
练习1: 1.已知⎥⎦⎤⎢⎣⎡-=243x A ,⎥⎦⎤⎢⎣⎡-=21zy B ,若A=B ,试求z y x ,, 2.设23x A y ⎡⎤=⎢⎥⎣⎦,2m n x y B x y m n ++⎡⎤=⎢⎥--⎣⎦,若A=B ,求x,y,m,n 的值。
概念二: 由4个数a,b,c,d 排成的正方形数表a b c d ⎡⎤⎢⎥⎣⎦称为二阶矩阵。
a,b,c,d 称为矩阵的元素。
①零矩阵:所有元素均为0,即0000⎡⎤⎢⎥⎣⎦,记为0。
②二阶单位矩阵:1001⎡⎤⎢⎥⎣⎦,记为E 2. 二、二阶矩阵与平面向量的乘法定义:规定二阶矩阵A=a b c d ⎡⎤⎢⎥⎣⎦,与向量x y α→⎡⎤=⎢⎥⎣⎦的乘积为— 2 — 3— ⎣⎡⎦⎤80 9086 88 231,3242x y m z x y z ++=⎧⎨-+=⎩简记为23324m ⎡⎤⎢⎥-⎣⎦ax by A cx dy α→+⎡⎤=⎢⎥+⎣⎦,即A α→=a b c d ⎡⎤⎢⎥⎣⎦x y ⎡⎤⎢⎥⎣⎦=ax by cx dy +⎡⎤⎢⎥+⎣⎦练习2: 1.(1)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-131021= (2) ⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-311021= 2.⎥⎦⎤⎢⎣⎡2101⎥⎦⎤⎢⎣⎡y x =⎥⎦⎤⎢⎣⎡-11,求⎥⎦⎤⎢⎣⎡y x三、二阶矩阵与线性变换 1.旋转变换问题1:P (x,y )绕原点逆时针旋转180o 得到P ’(x ’,y ’),称P ’为P 在此旋转变换作用下的象。
选修4-2矩阵与变换.docx
第 1 页共 21 页选修 4- 2矩阵与变换第一节平面变换、变换的复合与矩阵的乘法1.二阶矩阵与平面向量(1) 矩阵的概念在数学中,把形如123134,1,20这样的矩形数字 (或字母 )阵列称为矩阵,其35- 1中,同一横排中按原来次序排列的一行数(或字母 )叫做矩阵的行,同一竖排中按原来次序排列的一列数 (或字母 )叫做矩阵的列,而组成矩阵的每一个数(或字母 )称为矩阵的元素.(2)二阶矩阵与平面列向量的乘法① [a 11a12 ]b11= [ a11×b11+ a 12×b 21 ] ;b21②a11a12x0=a11× x0+ a12× y0.a21a22 y0a21× x0+ a22× y02.几种常见的平面变换10(1) 当 M =时,则对应的变换是恒等变换.01(2)k010由矩阵 M =或 M =(k>0) 确定的变换 T M称为 (垂直 )伸压变换.01k(3)反射变换是轴对称变换、中心对称变换的总称.cos θ - sin θ(4) 当 M =时,对应的变换叫旋转变换,即把平面图形(或点 )逆时针旋转sin θcos θθ角度.(5)将一个平面图投影到某条直线 (或某个点 )的变换称为投影变换.1k10 (6) 由矩阵 M =或 M =k 确定的变换称为切变变换.011 3.矩阵的乘法一般地,对于矩阵a11a12b11b12M =a22, N=,规定乘法法则如下:a21b21b2211 12 11 12a bbb ba ab b11 11+ a 12 21a 11 12+ a 12 22MN =a 22b 21=a 21b 11+ a 22b 21.a 21 b22a 21b 12+ a 22b 224.矩 乘法的几何意(1) 的复合:在数学中,一一 的平面几何 常可以看做是伸 、反射、旋 、切 的一次或多次复合,而伸 、反射、切 等 通常叫做初等 ; 的矩 叫做初等 矩 .(2)MN 的几何意 : 向量x 矩 乘法α= 施的两次几何 (先 T N 后 T M )y的复合 .·(3) 当 向量 施 n ( n > 1 且 n ∈ N * )次 T M , 地我M n = M ·M ·⋯ ·M .5.矩 乘法的运算性(1) 矩 乘法不 足交 律于二 矩A ,B 来 ,尽管 AB , BA 均有意 ,但可能 AB ≠BA .(2) 矩 乘法 足 合律A ,B ,C 二 矩 , 一定有(AB)C = A(BC).(3) 矩 乘法不 足消去律.A ,B ,C 二 矩 ,当 AB = AC ,可能 B ≠C. [ 小 体 ]1 8 1 x1.已知矩 A =3,矩 B =.若 A =B , x + y = ________.2y 3解析: 因 A = B ,x = 8, + =10.所以y = 2,x y答案: 102.已知x x ′2x + 3y , 它所 的 矩 ________.y→=y ′x + yxx ′ 2 3 x解析: 将它写成矩 的乘法形式→′ =1 ,所以它所 的 矩y1yy2 3 1 .12 3答案:111.矩 的乘法 着 的复合,而两个 的复合仍是一个 ,且两个 的复合 程是有序的,易 倒.2.矩阵乘法不满足交换律和消去律,但满足结合律.[ 小题纠偏 ]1 2 , B =4 2 1.设 A =4k ,若 AB = BA ,则实数 k 的值为 ________.37解析: AB =1 24 2 =4+ 2k163 4k 7,12+ 4k 3442 1 21016BA = k7 34 = ++ 28,k 21 2k 因为 AB = BA ,故 k = 3.答案: 32.已知 A =1 0 , B =- 1 0- 1 00 0 0 1, C =,计算 AB , AC.0 - 1解: AB =1 0 - 1 0- 1 00 1 =,1 0 - 10 - 1 0 . AC =0 0- 1= 0 0 0考点一二阶矩阵的运算 基础送分型考点 —— 自主练透[ 题组练透 ]1 11 11.已知 A =2 2,计算 A 2, B 2.1 , B = - 1- 1 1221 1 11 1 1 解: A 2=2 2 2 2 2 2 . 1 1 1 =1 1 12 2222 21111B 2=- 1 - 1 - 1 =.- 12.(2014 江·苏高考 )已知矩阵 A =- 1 211 21 ,B =,向量 α= ,x ,y 为实数. 若x2- 1 yA α=B α,求 x + y 的值.解: 由已知,得 A α= - 12 2 = - 2+ 2y , α= 11 2 = 2+ y y2 - 1 y1 x 2+ xy4- y第 4 页共 21 页因为 A α= B α,所以 - 2+ 2y2+ y=,2+ xy 4- y- 2+ 2y = 2+ y ,故2+ xy =4- y.x =- 12,所以 x + y = 7 解得2.y = 4.3.已知矩阵 A =1 0 - 4 3 31 , B = 4 - 2且 α= ,试判断 (AB)α与 A(B α)的关系.2 4解: 因为 AB =1 0- 43 -4 31 2= ,4 - 2 4 - 1- 43 3所以 (AB)α=- 1 4= ,48 因为 B α=-433 =0 ,4 - 2441 0 0 0A(B α)=24=. 18所以 (AB)α= A(B α).[ 谨记通法 ]1.矩阵的乘法规则两矩阵 M , N 的乘积 C = MN 是这样一个矩阵;(1) C 的行数与 M 的相同,列数与 N 的相同;(2) C 的第 i 行第 j 列的元素C ij 由 M 的第 i 行与 N 的第 j 列元素对应相乘求和得到. [ 提醒 ] 只有 M 的行数与 N 的列数相同时,才可以求MN ,否则无意义.2.矩阵的运算律(1) 结合律 (AB)C = A(BC);(2) 分配律 A(B ±C)= AB ±AC , (B ±C)A = BA ±CA ;(3) λ(AB)= (λA )B = A( λB ).考点二平面变换的应用重点保分型考点 —— 师生共研[ 典例引领 ]2 - 2 2 2已知曲线 C :xy = 1,若矩阵 M =对应的变换将曲线C 变为曲线 C ′,求2 222曲线 C ′的方程.解: 设曲线 C 上一点 (x ′ , y ′ )对应于曲线 C ′ 上一点 (x ,y),2 - 222x ′x所以=y,22 ′y222 222′=所以x + y y - x所以 ′ - ′ = , ′ +′ = ,y ′ = ,所以 x ′ y ′=2 x2 yx2x2 yy.x22x + y y - x = 1,×2 2所以曲线 C ′ 的方程为 y 2- x 2= 2.[ 由题悟法 ]利用平面变换解决问题的类型及方法:(1) 已知曲线 C 与变换矩阵,求曲线C 在变换矩阵对应的变换作用下得到的曲线C ′的表达式,常先转化为点的对应变换再用代入法(相关点法 )求解.(2) 已知曲线 C ′是曲线 C 在平面变换作用下得到的,求与平面变换对应的变换矩阵, 常根据变换前后曲线方程的特点设出变换矩阵,构建方程(组 )求解.[ 即时应用 ]a 022x + y已知圆 C :x 2+ y 2= 1 在矩阵 A =(a>0,b>0) 对应的变换作用下变为椭圆=0 b9 41,求 a , b 的值.解:设 P(x ,y)为圆 C 上的任意一点, 在矩阵 A 对应的变换下变为另一个点 P ′ (x ′ ,y ′ ),x ′ a 0x x ′= ax , 则 =,即y ′0 byy ′ = by.2 2 2222xya xb y又因为点 P ′ (x ′ , y ′ )在椭圆 9 + 4 = 1 上,所以 9 + 4 = 1. 由已知条件可知,x 2+ y 2=1,所以 a 2 = 9, b 2= 4.因为 a>0 , b>0 ,所以 a = 3, b = 2.考点三 变换的复合与矩阵的乘法 重点保分型考点 —— 师生共研[ 典例引领 ]在平面直角坐标系xOy 中,已知点 A(0,0),B(- 2,0),C(- 2,1).设 k 为非零实数,矩阵k 0 0 1A 1,B 1,C 1,M =1 , N =,点 A , B , C 在矩阵 MN 对应的变换下得到点分别为1 0△ A 1B 1C 1 的面积是△ ABC 面积的 2 倍,求 k 的值.k 0 0 1 0 k解: 由题设得 MN =1 1=,1 0 由 0k 0 0 0 k - 2,=,=1 00 01- 20 k -2k,可知 A 1(0,0),B 1(0,- 2), C 1(k ,- 2).1 0=1- 2计算得△ABC 的面积是1,△A 1 1 1 的面积是 |k|,B C则由题设知: |k|= 2× 1= 2.所以 k 的值为 2 或- 2.[ 由题悟法 ]矩阵的乘法对应着变换的复合,而两个变换的复合仍是一个变换,且两个变换的复合过程是有序的,不能颠倒.二阶矩阵的运算关键是记熟运算法则.[ 即时应用 ]1 0已知圆 C :x 2+ y 2= 1,先将圆 C 作关于矩阵 P =的伸压变换,再将所得图形绕原0 2点逆时针旋转 90°,求所得曲线的方程.0 - 1解: 绕原点逆时针旋转 90° 的变换矩阵 Q =,1 0则 M = QP =0 - 11 0 0 - 210 2=.1设 A(x 0, y 0 为圆 C 上的任意一点,在T M 变换下变为另一点 A ′ (x 0′ , y 0′ ),)′-x 0′ =- 2y 0,2则=,即y 0 ′ 10 y 0y 0′ = x 0,x 0= y 0′ ,所以x 0′y 0=- 2 .又因为点 A(x 0, y 0) 在曲线 x 2+ y 2= 1 上,2x 0′ 2所以 (y 0′ ) + -= 1.2故所得曲线的方程为x4+ y 2 =1.0 11, N =1 ,求 MN .1.设 M =00 120 11 0 0 112.解: MN =0 =1211 2 T 把曲2.(2016 南·京三模 )已知曲线 C :x 2+ 2xy + 2y 2= 1,矩阵 A =所对应的变换1 0线 C 变成曲线 C 1,求曲线 C 1 的方程.1 2 解: 设曲线 C 上的任意一点 P(x , y), P 在矩阵 A =对应的变换下得到点 Q(x ′ ,1 0y ′ ).1 2 x x ′ x + 2y = x ′ ,则10 =, 即y′ x = y ′ ,yx ′ -y ′所以 x = y ′ , y = .2x ′ - y ′+2x ′ - y ′2= 1,即 x ′ 2+ y ′ 2= 2,代入 x 2+ 2xy +2y 2= 1,得 y ′ 2 +2y ′ ·22所以曲线 C 1 的方程为 x 2+ y 2= 2.3. (2016 南·通、扬州、泰州、淮安三调 )在平面直角坐标系xOy 中,直线 x + y - 2= 0 在矩阵 A =1 ax + y - b = 0(a , b ∈ R) ,求 a + b 的值.1 对应的变换作用下得到直线2解: 设 P(x , y)是直线 x + y -2= 0 上任意一点,由 1a x =x + ay ,得 (x + ay)+ (x + 2y)- b = 0,即 x + a + 2 - b= 0.12 y x + 2y2 y 2a + 22 = 1, a = 0,所以 a +b = 4.由条件得解得-b=- 2,b = 4,2第 8 页共 21 页4.已知 M =1- 22 - 12 , W =- 3,试求满足 MZ = W 的二阶矩阵 Z .3 1a b解: 设 Z =d ,c则 MZ = 1 - 2 a b a - 2cb -2d=.23 c d 2a + 3c 2b +3d又因为 MZ = W ,且 W =2 - 1,- 31a - 2cb - 2d 2 - 1所以+ = - 3 1 , +3c3d2a 2ba = 0,a - 2c = 2,1b =-b - 2d =- 1,7,所以解得2a + 3c =- 3, c =- 1,2b + 3d = 1.d = 37.0 1 - 7故 Z =.- 1371 15. (2016 苏·锡常镇一调 )设矩阵 M =y = sin x 在矩阵, N = 2,试求曲线21MN 变换下得到的曲线方程.11解: 由题意得 MN = 1 0 2 0= 20 . 0 20 1 0 2设曲线 y = sin x 上任意一点 P(x , y)在矩阵 MN 变换下得到点 P ′ (x ′, y ′ ),x ′1x则2,=yy21x = 2x ′ , 即 x ′ = 2x ,得1y ′ = 2y ,y =2y ′ .因为 y = sin x ,所以 1 ′ =′ ,即 ′ = ′2ysin 2xy2sin 2x .因此所求的曲线方程为 y = 2sin 2x.6.(2017 苏·锡常镇调研 )已知变换 T 把平面上的点 (3,- 4),(5,0)分别变换成 (2,- 1),(-1,2),试求变换 T 对应的矩阵 M .a b a b3 2 a b 5 =- 1解: 设 M =,由题意,得= , ,c dc d- 4 - 1 c d 0 213a - 4b = 2, a =- 5,13,3c - 4d =- 1,b =-20所以解得2 5a =- 1,c =5,5c = 2.11d = 20.113-5-20即 M =.2 11 5207.(2016 ·通、扬州、淮安、宿迁、泰州二调南 )在平面直角坐标系xOy 中,设点 A(- 1,2)- 1 0 在矩阵 M =对应的变换作用下得到点 A ′,将点 B(3,4)绕点 A ′逆时针旋转90°得0 1到点 B ′,求点 B ′的坐标.解: 设 B ′(x , y),- 1 0- 11 依题意,由0 1=,得 A ′ (1,2) .22―→ ―→则 A ′ B = (2,2) , A ′ B = (x - 1, y - 2).0 - 1记旋转矩阵 N =,1 00 - 1 2x - 1 - 2x - 1 则=,即=,10 2- 2- 2y 2y 解得x =- 1,y = 4,所以点 B ′ 的坐标为 (- 1,4).1 0 1 02x 2- 2xy + 1= 0 在矩阵 MN 对应的变换作8.已知 M =, N =,求曲线0 2- 1 1用下得到的曲线方程.1 0 1 01 0解: MN =2 - 11=,- 22设 P(x ′ , y ′ )是曲线 2x 2- 2xy + 1= 0 上任意一点,点 P 在矩阵 MN 对应的变换下变为点 P ′ ( x , y),x1 0 x ′x ′则有=2 ′=,y- 2- ′ + ′y2x 2yx = x ′ ,即y =- 2x ′ + 2y ′ ,x ′ =x ,于是yy ′ =x + 2.代入 2x 2- 2xy + 1= 0 得 xy = 1,所以曲线 2x 2- 2xy + 1=0 在 MN 对应的变换作用下得到的曲线方程为xy = 1.第二节逆变换与逆矩阵、矩阵的特征值与特征向量1.逆变换与逆矩阵(1) 对于二阶矩阵 A , B ,若有 AB = BA = E ,则称 A 是可逆的, B 称为 A 的逆矩阵.(2) 若二阶矩阵 A ,B 均存在逆矩阵,则 - 1- 1 - 1AB 也存在逆矩阵,且 (AB) = B A .(3) 利用行列式解二元一次方程组.2.逆矩阵的求法一般地,对于二阶矩阵a b - 1A =,当 ad - bc ≠ 0 时,矩阵 A 可逆,且它的逆矩阵 Ac dd- b ad - bc ad - bc=.- c aad - bcad - bc3.特征值与特征向量的定义设 A 是一个二阶矩阵,如果对于实数 λ,存在一个非零向量 α,使得 A α= λα,那么 λ称为 A 的一个特征值,而α称为 A 的属于特征值 λ的一个特征向量.4.特征多项式的定义a b是一个二阶矩阵, λ∈ R ,我们把行列式f(λ)=λ- a - b 2设 A =d - c= λ- (a + d)λcλ- d+ ad - bc 称为 A 的特征多项式.5.特征值与特征向量的计算设 λ是二阶矩阵a bλ与 α的步骤为:A =的特征值, α为 λ的特征向量,求c d第一步:令矩阵λ- a - b2A 的特征多项式 f(λ)=λ- d = λ- (a + d)λ+ ad - bc = 0,求出 λ- c的值.第二步: 将 λ的值代入二元一次方程组λ- a x - by = 0,得到一组非零解 x 0 ,于是- cx + λ- d y = 0,y非零向量 x 0即为矩阵 A 的属于特征值 λ的一个特征向量.y 06.A n α(n ∈ N * )的简单表示(1) 设二阶矩阵 A =a b , α是矩阵 A 的属于特征值 λ的任意一个特征向量,则A n α=cdn *).λα(n ∈ N, λ是二阶矩阵 A 的两个不同特征值,α, β是矩阵 A 的分别属于特征值 λ, λ(2) 设 λ1 212的特征向量,对于平面上任意一个非零向量γ,设 γ= t 1 α+ t 2β(其中 t 1, t 2 为实数 ),则 A n γ=n n* .1λ1α+ t 2λ2β(n ∈ N)t[ 小题体验 ]1 61.矩阵 M = - 2- 6 的特征值为 __________ .解析: 矩阵 M 的特征多项式为 f(λ)= λ- 1 - 6λ+2)( λ+ 3) ,令 λ= ,得 M 的特(f( ) 02 λ+ 6征值为 λ=-1 2, λ=-2 3.答案: - 2 或- 32.设2 a 2 a 的值为 ________.3是矩阵 M = 的一个特征向量,则实数322解析: 设是矩阵 M 属于特征值 λ的一个特征向量,3a 2 2 2则2 = λ , 33 32a + 6=2λ, λ= 4,故解得12= 3λ a = 1.答案: 11.不是每个二阶矩阵都可逆, 只有当ab中 ad - bc ≠ 0 时,才可逆, 如当 A =10 , c d0 01 0因为 1× 0- 0× 0= 0,找不到二阶矩阵 B ,使得 BA = AB =E 成立,故 A = 不可逆.0 2.如果向量 α是属于 λ的特征向量,将它乘非零实数t 后所得的新向量t α与向量 α共线,故 t α也是属于 λ的特征向量,因此,一个特征值对应多个特征向量,显然,只要有了特征值的一个特征向量,就可以表示出属于这个特征值的共线的所有特征向量了.[ 小题纠偏 ]1.矩阵 A =2 35的逆矩阵为 ____________. 6x y 解析:法一: 设矩阵 A 的逆矩阵 A-1=,z w2 3 x y1 0 则6 z w= , 512x + 3z 2y + 3w 1 0即=0 1 , 5x + 6z 5y + 6w2x + 3z = 1,x =- 2,2y + 3w = 0,y = 1,所以解得55x + 6z = 0, z = 3,5y + 6w = 1,2w =- 3.A -1=-21故所求的逆矩阵5- 2 .3 3法二: 注意到 2× 6- 3×5=- 3≠0,故 A 存在逆矩阵 A-1,6 - 3- 3- 3- 21且 A -1==52 .- 5 2-3 3- 3 - 3- 2 1 答案:5 - 2331 222.已知矩阵 A =- 4 的一个特征值为 λ,向量 α= 是矩阵 A 的属于 λ的一个特a- 3 征向量,则 a + λ= _____.解析: 因为 A α= λα,所以2- 6= 2λ, 即解得2a + 12=- 3λ,所以 a + λ=- 3- 2=- 5.答案: - 51 2 2 2a- 4 - 3 = λ ,- 3a =- 3,λ=- 2,考点一求逆矩阵与逆变换重点保分型考点 —— 师生共研[ 典例引领 ]- 1 01 2 A -1已知矩阵 A =2, B =,求矩阵 B.6 解: 设矩阵 A 的逆矩阵为a bc,d- 1 0 a b1 0,即 - a - b 1 0则== ,2 c d12c 2d 0 11故 a =- 1, b = 0, c = 0, d =2.所以矩阵 A 的逆矩阵为 A -1=- 11 .2所以 A- 1 0 1 2- 1- 2-1B =1=.0 632[ 由题悟法 ]求一个矩阵 A 的逆矩阵或证明一个矩阵不可逆时,常用两种解法.法一: 待定矩阵法:先设出其逆矩阵,根据逆矩阵的定义 AB = BA = E ,应用矩阵相等的定义列方程组求解,若方程组有解,即可求出其逆矩阵,若方程组无解,则说明此矩阵不可逆,此种方法称为待定矩阵法.a b法二: 利用逆矩阵公式,对矩阵A = :c d①若 ad - bc = 0,则 A 的逆矩阵不存在.d- b ②若 ad - bc ≠ 0,则- 1ad - bc ad - bc.A =- caad - bc ad - bc[ 即时应用 ]11 1已知 A = 1, B =,求矩阵 AB 的逆矩阵.1 021 0 1- = 1≠ 0, 解:法一: 因为 A =1 ,且 1 ×2 02 0212 -111 0所以 A-1=22 =,20 1- 1 12 2 1- 1.同理 B-1=0 1因此 (AB)-1= B-1A -1=1- 1 1 0 1 - 20 2 =.0 1 0 211 1法二: 因为 A =10 , B =,20 1所以1 0 1 1 = 11 ,且× 1- × = 1≠ 0,AB=11 10 0 120 1222第 15 页 共 21 页1 - 1 21 11 - 2所以 (AB)-1=22.=20 1 01 12 2考点二特征值与特征向量的计算及应用重点保分型考点 —— 师生共研[ 典例引领 ]2 a已知矩阵 M =,其中 a ∈ R ,若点 P(1,- 2)在矩阵 M 的变换下得到点 P ′(- 4,0).2 1(1) 求实数 a 的值;(2) 求矩阵 M 的特征值及其对应的特征向量.解: (1) 由 2 a1- 4 ,得 - =-==3.2 1 -22 2a4? a2 3λ- 2 - 3(2) 由 (1)知 M =,则矩阵 M 的特征多项式为 f (λ)= =( λ- 2)( λ- 1)- 621- 2 λ- 12= λ- 3λ-4.令 f(λ)= 0,得矩阵 M 的特征值为- 1 与 4.λ- 2 x - 3y = 0,把 λ=- 1 代入二元一次方程组- 2x + λ- 1 y =0,得 x + y = 0,1所以矩阵 M 的属于特征值- 1 的一个特征向量为;-1λ- 2 x - 3y = 0,把 λ= 4 代入二元一次方程组- 2x + λ- 1 y = 0,得 2x - 3y = 0.所以矩阵 M 的属于特征值4 的一个特征向量为3.2[ 由题悟法 ](1) 求矩阵 A 的特征值与特征向量的一般思路为:先确定其特征多项式 f(λ),再由 f(λ)= 0求 出 该 矩 阵 的 特 征 值 , 然 后 把 特 征 值 代 入 矩 阵 A所 确 定 的 二 元 一 次 方 程 组λ- a x - by = 0, 即可求出特征向量.- cx + λ- d y = 0,(2) 根据矩阵 A 的特征值与特征向量求矩阵A 的一般思路:设 A =a b c ,根据 A α=λαd构建 a , b , c , d 的方程求解.[ 即时应用 ]1x 1 的属于特征值 - 21. (2015 江·苏高考 )已知 x , y ∈ R ,向量 a = 是矩阵 A =y 0 - 1的一个特征向量,求矩阵A 以及它的另一个特征值.解: 由已知,得 Aa =- 2a ,x 11- - 2即=x 1=,y0 - 1y2x - 1=- 2, x =- 1, 则即y = 2,y = 2,-11 所以矩阵 A =2.从而矩阵 A 的特征多项式f (λ)= (λ+ 2)( λ- 1),所以矩阵 A 的另一个特征值为1.1 2.已知二阶矩阵 M 有特征值 λ= 3 及对应的一个特征向量 α1=,并且矩阵 M 对应的1变换将点 (-1,2)变换成 (9,15) ,求矩阵 M .解: 设 M = a b ,则a b 1 1 3 a + b = 3,= 3=,故c dc d 113c +d = 3.a b - 1 9-a + 2b = 9,又= ,故c d215- c + 2d = 15.联立以上两方程组解得a =- 1,b = 4,c =- 3,d = 6,- 1 4故 M =.- 3 6考点三根据 A , α计算 A n αn ∈ N *重点保分型考点 —— 师生共研[ 典例引领 ]1 23给定的矩阵 A = , B = .- 1 4 2 (1) , λ及对应的特征向量 α, α;求 A 的特征值 λ1 2 12(2) 求 A 4B.解: (1) 设 A 的一个特征值为 λ,由题意知:λ- 1 - 2= 0,即 (λ- 2)(λ- 3)= 0,所以 λ1= 2, λ2= 3.1λ- 4当 λ1= 2 时,由1 2 xx2 的特征向量 α1=24 = 2,得 A 属于特征值;- 1 yy1当 λ2= 3 时,由1 2 xx 3 的特征向量 α2=14 = 3,得 A 属于特征值.- 1 y y1(2) 由于 B =32 1= α+ α,= + 2 1 1 1 2故 A 4=4 α+ α = 4α+ 34α= 16α+ 81α= 32 81= 1132 + .16 8197[ 由题悟法 ]已知矩阵 A 和向量 α,求 A n α(n ∈ N * ),其步骤为:(1) 求出矩阵, λ和对应的特征向量 α, αA 的特征值 λ1 2 12. (2) 把 α用特征向量的组合来表示:α= s α1+ t α2.nnn表示 A n(3) 应用 A α= s λα11 + t λα.2α2[ 即时应用 ]已知 M = 1 2 , β= 1 ,计算 M 5β21 7.λ- 1 - 2解: 矩阵 M 的特征多项式为f( λ)=2= λ- 2λ- 3.- 2 λ- 1令 f(λ)= 0,解得 λ=1 3,λ=-2 1,12 xx,得x + 2y = 3x ,令= 32 1 y y2x + y = 3y ,从而求得 λ1=3 的一个特征向量为1α1=,11同理得对应λ2=-1的一个特征向量为α2=- 1.令β= mα1+ nα2,则 m=4, n=- 3.55α- 3α555551- 3× (- 1)51β==α-=-=×=M M (44(M3(Mα4(λα3(λα312)1)2) 1 1)22)41- 1975.9691.(2016 无·锡期末 )已知矩阵 A=1012-1对应的变换把直线 l 0, B=,若矩阵 AB21变为直线 l′: x+ y- 2= 0,求直线 l 的方程.解:由题意得 B-1=1- 2,01101- 21- 2所以 AB-1==,020102设直线 l 上任意一点 (x, y)在矩阵 AB-1对应的变换下为点 (x′, y′ ),则1- 2x=02yx′x′= x- 2y,,所以y′y′= 2y,将 x′, y′代入 l′的方程,得 (x- 2y)+ 2y-2= 0,化简后得 l: x= 2.12- 11-12. (2016 江·苏高考 )已知矩阵 A=0-2,矩阵 B 的逆矩阵 B=2,求矩阵02AB.解:设 B=ab,c d-11-1a b10则 B2=,=B c d010 2即错误 ! =错误 ! ,1a = 1, a - 2c = 1,1,11b = 1b - 2d = 0,4所以 B =4故解得.2c = 0,c = 0,121d =2d = 1,2,1 1 1 51424因此, AB = 0- 2=.1 0-123. (2016 南·京、盐城、连云港、徐州二模)已知 a , b 是实数,如果矩阵 3 aA =所b - 2对应的变换 T 把点 (2,3) 变成 (3,4).(1) 求 a , b 的值;(2) 若矩阵 A 的逆矩阵为 B ,求 B 2.3 a23解: (1) 由题意得=,b - 2 34所以 6+ 3a = 3,2b - 6= 4,所以 a =- 1, b = 5.3 - 1(2) 由 (1)得 A =.5 - 22 - 1由矩阵的逆矩阵公式得B =.5 - 32 - 1 2 - 1- 1 1所以 B 2==. 5 - 3 5 - 3 - 544. (2016 常·州期末 )已知矩阵 M =a 2 8 的一个特征向量是e =14的属于特征值 ,点b1P(- 1,2)在 M 对应的变换作用下得到点Q ,求 Q 的坐标.a 2 1 1 解: 由题意知4 b = 8×,11a + 2= 8,a = 6,故解得4+ b = 8,b = 4,6 2 - 1 =- 2所以42,所以点 Q 的坐标为 (-2,4).4 4- 1 45. (2016 苏·州暑假测试 )求矩阵 M =2 的特征值和特征向量.6λ+ 1 - 42解: 特征多项式f(λ)== λ+1)( λ-6)= λ-7)( λ+ 2) ,- = λ- λ-(85 14(- 2 λ- 6由 f(λ)= 0,解得 λ1= 7,λ2=- 2.8x - 4y = 0,1 将 λ= 7 代入特征方程组,得即 y = 2x ,可取为属于特征值 λ= 7 的11- 2x + y = 0,2一个特征向量.- - = ,4x 4y 0同理, λ=-2 2 时,特征方程组是即 x =- 4y ,所以可取为属于- 2x - 8y = 0,- 1特征值 λ2=- 2 的一个特征向量.M = - 1 4λ1= 7, λ2=- 2.属于 λ1=7 的一个特征向量综上所述,矩阵2 有两个特征值61,属于 λ2=- 2 的一个特征向量为4为- 1. 23 6λ= 8 的一个特征向量e = 6,及属于特征值 λ=- 36.矩阵 M =有属于特征值255的一个特征向量 e =13 ,计算 M3α2- 1 .对向量 α= 8.解: 令 α= me + ne ,将具体数据代入,有m = 1,n =- 3,所以 α=e - 3e 所以M 3α 1212 .3333 3 3 6 1 3 153= M - 3e = - 3M - 3× (-3) 3 =(e 1= λ - 3λ = 8.5- 1 2 479- 1 27. (2016 泰·州期末 )已知矩阵 M =5x 的一个特征值为- 2,求 M 2.2λ+ 1- 22解: 把 λ=- 2 代入-λ- + = ,得= ,= λ-5λ- x(x1)(x 5)x 3-2第 21 页共 21 页- 124所以矩阵 M =65,所以 M 2=.351428.已知二阶矩阵 M 有特征值 λ= 8 及对应的一个特征向量 e 1=1 ,并且矩阵 M 对应的1变换将点 (-1,2)变换成 (- 2,4). 求:(1) 矩阵 M;(2) 矩阵 M 的另一个特征值,及对应的一个特征向量e 2 的坐标之间的关系;(3) 直线 l : x -y + 1= 0 在矩阵 M 的作用下的直线 l ′的方程.a ba b 1 18解: (1) 设 M =,则c d 1 = 8 = ,c d1 8a + = ,b-1-2-a + 2b =- 2,b8a= ,故故c d+ =8.24-c + 2d = 4.c da = 6,b = 2,62 联立以上两方程组,解得故 M =.c = 4,44d = 4,2(2) 由 (1) 知,矩阵 M 的特征多项式为f (λ)= (λ- 6)( λ- 4)- 8=λ- 10λ+ 16,故其另一个特征值为λ= 2.设矩阵 M 的另一个特征向量是e 2=x ,y则 Me 2=6x + 2yx ,解得 2x + y =0.= 2y4x + 4y(3) 设点 (x ,y)是直线 l 上的任意一点, 其在矩阵 M 的变换下对应的点的坐标为 (x ′ ,y ′ ),则 6 2 x =x ′,即 x = 1 ′ -1 ′ , =-1′ +3′ ,代入直线l 的方程后并化简,4 4 y′4x8yy4x8yy得 x ′ - y ′ + 2=0,即 x -y + 2= 0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一个新的图形F — —原象集F的象集.
解决教材上的思考题P.8
例题
(1)已知变换
x y
x y
1 3
4 2
x
y
,
试将它写成坐标变换的形式;
(2)已知变换
x y
x
y
x
3y y
,
试将它写成矩阵乘法的形式.
小结:
(1)二阶矩阵与平面向量的乘法规则;
(2)理解矩阵对应着向量集合到向量 集合的映射;
0.6 0.6
86 75.
规定:
行矩阵 a11
a12
与列矩阵
b11 b21
的乘法法则为
a11
a12
b11 b21
=
a11 b11
a12
b21
,
二阶矩阵
a11 b21
a12 b22
与列向量
x0 y0
的乘法规则为
a11 b21
a12 b22
x0
y0
=ba2111
二阶矩阵与平面列向量 的乘法
某电视台举行的歌唱比赛,甲、 乙两选手初赛、复赛成绩如表:
初赛 复赛
甲
80
90
乙
60
85
规定比赛的最后成绩由初赛和复 赛综合裁定,其中初赛占40%,复赛占60%.
则甲和乙的综合成绩分别是多少?
甲:80 0.4 900.6 86;
记A 80 90,C 00..46,
T: xy
x y
a c
b
d
x
y
矩阵乘法的形式
的矩阵形式,反之亦然(a,b, c, d R).
两种形式形异而质同
由矩阵M 确定的变换T,通常记为TM . 根据变换的定义,它是平面内的点集到其自身 的一个映射.
当
x
y
表示某个平面图形F上的任意点时,
这些点就组成了图形F,它在TM的作用下,将得到
x0 x0
a12 b22
y0 y0
.
计算:
1 2 3 1.0 1 1 ;
2. 02
0 1
x y
.
一般地,对于平面上的任意一点(向量)
(x, y),若按照对应法则T,总能对应唯一的一个 平面点(向量)(x, y),则称T为一个变换,简记 为
T:(x, y) (x, y), 或
T: xy
x y
.
2 0
0 1
就确定了一个变换:
T:(x, y) (x, y) (2x, y)
或
T: xy
x y
2x
y
.
一般地,对于平面向量的变换T,如果变换 规则为
T: xy
x y
ax cx
by dy
,
坐标变换的形式
那么,根据二阶矩阵与向量的乘法规则可以改写为
(3)待定系数法是由原象和象确定矩 阵的常用方法.
感谢下 载
感谢下 载
记AC 80
90
0.4 0.6
=80 0.4+90 0.6 86.
乙:600.4 850.6 75.
请你类比甲的计算方法,计算乙的成绩.
记D
80 60
90
85
,C
00..64,
则甲、乙两人的成绩可计算如下:
D C
80 60
90
85
00..46=8600
0.4 0.4
90 85