二元一次方程组练习题(含答案)
(完整版)二元一次方程组练习题(含答案),推荐文档.doc
![(完整版)二元一次方程组练习题(含答案),推荐文档.doc](https://img.taocdn.com/s3/m/5eef2b989ec3d5bbfc0a744c.png)
二元一次方程组练习题一.解答题(共16 小题)x 2 y 11.解下列方程组 3 2( 9)( 10) 2x 2 1 y ( 1)( 2) 3 12( 3)5x2 y11a(a为已知数 ) ( 4)4 x 4 y 6a2.求适合的x,y的值.(5)(6).3.已知关于x, y 的二元一次方程y=kx+b 的解有和.( 1)求 k, b 的值.( 2)当 x=2 时, y 的值.( 3)当 x 为何值时, y=3?( 7)x( y 1) y(1 x) 2 ( 8)1) y x 2 0x(x..1.解下列方程组(1)(2);(9)(10);(3);(4)2.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错(5).(6)了方程组中的b,而得解为.( 1)甲把 a 看成了什么,乙把 b 看成了什么?(2)求出原方程组的正确解.( 7)(8). .二元一次方程组解法练习题参精考选答案与试题解析故原方程组的解为.一.解答题(共 16 小题)( 2)①× 3﹣②×2得,﹣ 13y=﹣39,1.求适合的 x, y 的值.解得, y=3,把 y=3 代入①得,2x﹣3×3=﹣ 5,解得 x=2.考点:解二元一次方程组.故原方程组的解为.分析:先把两方程变形(去分母),得到一组新的方程,然后在用加减消元法消去未知数x,求出 y 的值,继而求出x 的值.( 3)原方程组可化为,解答:解:由题意得:,①+②得, 6x=36,x=6,①﹣②得, 8y=﹣ 4,由( 1)×2 得: 3x﹣ 2y=2( 3),由( 2)×3 得: 6x+y=3 ( 4),y=﹣.所以原方程组的解为.(3)×2得: 6x﹣ 4y=4( 5),(5)﹣( 4)得: y=﹣,( 4)原方程组可化为:,把 y 的值代入( 3)得: x= ,①× 2+②得, x= ,∴.把 x= 代入②得, 3×﹣ 4y=6 ,点评:本题考查了二元一次方程组的解法,主要运用了加减消元法和代入法.y=﹣.2.解下列方程组所以原方程组的解为.( 1)( 2)( 3)( 4).点评:利用消元法解方程组,要根据未知数的系数特点选择代入法还是加减法:①相同未知数的系数相同或互为相反数时,宜用加减法;考点:解二元一次方程组.②其中一个未知数的系数为 1 时,宜用代入法.分析:( 1)(2)用代入消元法或加减消元法均可;( 3)(4)应先去分母、去括号化简方程组,再进一步采用适宜的方法求解.解答:解:(1)①﹣②得,﹣ x=﹣ 2,3.解方程组:解得 x=2,把 x=2 代入①得, 2+y=1,解得 y=﹣ 1.考解二元一次方程组.. 点:专计算题.题:分先化简方程组,再进一步根据方程组的特点选用相应的方法:用加减法.析:解答:解:原方程组可化为,①× 4﹣②× 3,得7x=42,解得 x=6.把 x=6 代入①,得y=4.所以方程组的解为.点;评:二元一次方程组无论多复杂,解二元一次方程组的基本思想都是消元.消元的方法有代入法和加减法..考点:解二元一次方程组.专题:计算题;换元法.分析:本题用加减消元法即可或运用换元法求解.解答:解:,①﹣②,得s+t=4 ,①+②,得 s﹣t=6 ,即,解得.所以方程组的解为.点评:此题较简单,要熟练解方程组的基本方法:代入消元法和加减消元法.6.已知关于x, y 的二元一次方程y=kx+b 的解有和.4.解方程组:( 1)求 k, b 的值.( 2)当 x=2 时, y 的值.( 3)当 x 为何值时, y=3?考点:解二元一次方程组.专题:计算题.考点:解二元一次方程组.分析:把原方程组化简后,观察形式,选用合适的解法,此题用加减法求解比较简单.专题:计算题.解答:分析:的值代入方程得出关于k、 b 的二元一次方程组,再运用加减消元解:(1)原方程组化为,( 1)将两组 x, y法求出 k、 b 的值.①+②得: 6x=18,∴x=3.代入①得: y=.所以原方程组的解为.点评:要注意:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法.本题适合用此法.( 2)将( 1)中的 k、b 代入,再把x=2 代入化简即可得出y 的值.( 3)将( 1)中的 k、b 和 y=3 代入方程化简即可得出x 的值.解答:解:( 1)依题意得:①﹣②得: 2=4k,所以 k=,所以 b=.5.解方程组:( 2)由 y= x+,word 版本.把 x=2 代入,得 y= .(3)由 y= x+把 y=3 代入,得 x=1.点评:本题考查的是二元一次方程的代入消元法和加减消元法,通过已知条件的代入,可得出要求的数.7.解方程组:(1);(2).考点:解二元一次方程组.分析:根据各方程组的特点选用相应的方法:(1)先去分母再用加减法,( 2)先去括号,再转化为整式方程解答.解答:解:(1)原方程组可化为,①× 2﹣②得:y=﹣ 1,将 y=﹣ 1 代入①得:x=1.∴方程组的解为;( 2)原方程可化为,即,①× 2+②得:17x=51,x=3,将 x=3 代入 x﹣4y=3 中得:y=0.∴方程组的解为..点评:这类题目的解题关键是理解解方程组的基本思想是消元,掌握消元的方法有:加减消元法和代入消元法.根据未知数系数的特点,选择合适的方法.8.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题应把方程组化简后,观察方程的形式,选用合适的方法求解.解答:解:原方程组可化为,①+②,得 10x=30,x=3,代入①,得15+3y=15,y=0.则原方程组的解为.点评:解答此题应根据各方程组的特点,有括号的去括号,有分母的去分母,然后再用代入法或加减消元法解方程组.9.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.解答:解:原方程变形为:,两个方程相加,得4x=12,x=3.把 x=3 代入第一个方程,得4y=11,y=...化和运用.解之得.11.解方程组:点评:本题考查的是二元一次方程组的解法,方程中含有分母的要先化去分母,再对方程进行化简、消元,即可解出此类题目.10.解下列方程组:(1)(2)考点:解二元一次方程组.专题:计算题.分析:此题根据观察可知:( 1)运用代入法,把①代入②,可得出x, y 的值;( 2)先将方程组化为整系数方程组,再利用加减消元法求解.解答:解:(1),由①,得x=4+y③,代入②,得4(4+y) +2y=﹣ 1,所以 y=﹣,把 y=﹣代入③,得 x=4﹣ = .所以原方程组的解为.(1)(2)考点:解二元一次方程组.专题:计算题;换元法.分析:方程组( 1)需要先化简,再根据方程组的特点选择解法;方程组( 2)采用换元法较简单,设x+y=a, x﹣ y=b,然后解新方程组即可求解.解答:解:(1)原方程组可化简为,解得.(2)设 x+y=a, x﹣ y=b,∴原方程组可化为,解得,∴∴原方程组的解为.( 2)原方程组整理为,点评:此题考查了学生的计算能力,解题时要细心.③× 2﹣④× 3,得 y= ﹣24,把 y=﹣ 24 代入④,得 x=60,12.解二元一次方程组:所以原方程组的解为( 1);.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强.(2).考点:解二元一次方程组.专题:计算题.分析:( 1)运用加减消元的方法,可求出x、 y 的值;( 2)先将方程组化简,然后运用加减消元的方法可求出x、 y 的值.解答:解:(1)将①× 2﹣②,得15x=30,x=2,把 x=2 代入第一个方程,得y=1.则方程组的解是;( 2)此方程组通过化简可得:,①﹣②得: y=7,把 y=7 代入第一个方程,得x=5.则方程组的解是.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把 a 看成了什么,乙把 b 看成了什么?(2)求出原方程组的正确解.考点:解二元一次方程组.专题:计算题.分析:( 1)把甲乙求得方程组的解分别代入原方程组即可;( 2)把甲乙所求的解分别代入方程②和①,求出正确的a、 b,然后用适当的方法解方程组.解答:解:(1)把代入方程组,.得,解得:.把代入方程组,得,解得:.∴甲把 a 看成﹣ 5;乙把 b 看成 6;( 2)∵正确的 a 是﹣ 2, b 是 8,∴方程组为,解得: x=15,y=8.则原方程组的解是.点评:此题难度较大,需同学们仔细阅读,弄清题意再解答.14.考点:解二元一次方程组.分析:先将原方程组中的两个方程分别去掉分母,然后用加减消元法求解即可.解答:解:由原方程组,得,由( 1) +( 2),并解得x=(3),把( 3)代入( 1),解得y=.∴原方程组的解为.点评:用加减法解二元一次方程组的一般步骤:1.方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等;2.把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;3.解这个一元一次方程;4.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解.15.解下列方程组:(1);(2).考点:解二元一次方程组.分析:将两个方程先化简,再选择正确的方法进行消元.解答:解:(1)化简整理为,①× 3,得 3x+3y=1500③,②﹣③,得x=350.把 x=350 代入①,得 350+y=500,∴y=150.故原方程组的解为.( 2)化简整理为,①× 5,得 10x+15y=75③,②× 2,得 10x﹣14y=46④,③﹣④,得29y=29,∴y=1.把 y=1 代入①,得 2x+3×1=15,∴x=6.故原方程组的解为.点评:方程组中的方程不是最简方程的,最好先化成最简方程,再选择合适的方法解方程..16.解下列方程组:( 1)( 2)考点:解二元一次方程组.分析:观察方程组中各方程的特点,用相应的方法求解.解答:解:(1)①× 2﹣②得: x=1,将 x=1 代入①得:2+y=4,y=2.∴原方程组的解为;( 2)原方程组可化为,①× 2﹣②得:﹣y=﹣ 3,y=3.将 y=3 代入①得:x=﹣2.∴原方程组的解为.点评:解此类题目要注意观察方程组中各方程的特点,采用加减法或代入法求解.。
初中数学二元一次方程组经典练习题(含答案)
![初中数学二元一次方程组经典练习题(含答案)](https://img.taocdn.com/s3/m/76bac8282a160b4e767f5acfa1c7aa00b42a9d1a.png)
初中数学二元一次方程组经典练习题(含答案)解下列二元一次方程组:1. {x +y = 2 3x +7y =10;2.{x +3y = 810x −y =18;3.{3x +2y =1364x −3y =1;4.{ x+52+y−43=2x+20.3−y+70.4= −10 ;5.{ 4x −3y =−1 x 5=y 7 ;6. {3(x +2)=2(y +3)4(x −2)=3(y −3);7.{ x 5+y 7=10 x 3−y 4=3;8.{x 2+y 3=42x +7y =50 ;9.{12(x +3)+13(y −4)=52(x −3)+5(y +4)=70 ;10.{0.2x +0.5y =9x+22+y+105=15 ;11.{4(x −1) +3(y +1) =320%(x +1)+80%(y −1)=−3;12.{x+2y 2 +x−2y 3 = 113(x +2y )−4(x −2y )=30 ;参考答案1. {x +y = 23x +7y =10 ;解: {x +y = 2−−−−−−①3x +7y =10−−−−②①×3,得3x+3y=6-------③②-③,得4y=4,即y=1将y=1代入①,解得x=1故原方程组的解是: {x =1y =12.{x +3y = 810x −y =18; 解:{x +3y = 8−−−−−−−①10x −y =18−−−−−−②②×3,得 30x-3y=54----③①+③,得31x=62,即x=2将x=2代入①,得2+3y=8,y=2故原方程组的解是: {x =2y =23.{3x +2y =1364x −3y =1; 解:{3x +2y =136−−−−−−①4x −3y =1−−−−−−② ①×3,得9x+6y= 132------③ ②×2,得8x-6y=2-----④③+④,得17x= 172 ,x= 12 将x= 12代入②,2-3y=1,y= 13 故原方程组的解是: {x = 12y = 134.{ x+52+y−43=2 x+20.3−y+70.4= −10; 解:{ x+52+y−43=2 −−−−−−−① x+20.3−y+70.4= −10−−−−−−②①等号两边同时乘以6,得3(x+5)+2(y-4)=123x+15+2y-8=12整理,得3x+2y=5----------③②等号两边同时乘以0.3×0.4,得0.4(x+2)-0.3(y+7)=-1.2两边同时乘以10,得4(x+2)-3(y+7)=-124x+8-3y-21=-12整理,得4x-3y=1--------④③×3,得9x+6y=15------⑤④×2,得8x-6y=2-------⑥⑤+⑥,得17x=17,即x=1将x=1代入③,得3+2y=5,y=1故原方程组的解是: {x =1y =15.{ 4x −3y =−1 x 5=y 7 ; 解:{ 4x −3y =−1 −−−−−−−−−−−① x 5=y 7−−−−−−−−−−−−−−−② ②变化为x= 57 y--------------③ 将③代入①,得4×57y -3y=-1 20−217 y =-1,整理得y=7将y=7代入③,得x= 57 ×7,x=5 故原方程组的解是: {x =5y =76. {3(x +2)=2(y +3)4(x −2)=3(y −3); 解:{3(x +2)=2(y +3)4(x −2)=3(y −3)方程组去括号,得{3x +6=2y +64x −8=3y −9整理得{3x −2y =0−−−−①4x −3y +1=0−−②①×3,得9x-6y=0--------③②×2, 得8x-6y+2=0------④③-④,得x-2=0,即x=2将x=2代入①,得6-2y=0,y=3故原方程组的解是: {x =2y =37.{ x 5+y 7=10 x 3−y 4=3; 解:{ x 5+y 7=10 x 3−y 4=3 方程组去分母,得{ 7x +5y =350−−−−−−①4x −3y =36−−−−−−−②①×3,得21x+15y=1050---③②×5,得20x-15y=180----④③+④,得41x=1230,即x=30将x=30代入①,得210+5y=350,y=28故原方程组的解是: {x =30y =288.{x 2+y 3=4 2x +7y =50; 解:{x 2+y 3=4 2x +7y =50方程组去分母,得{3x +2y =24−−−−−−−① 2x +7y =50−−−−−−−②①×2,得6x+4y=48-----③②×3,得6x+21y=150---④④-③,得17y=102,即y=6将y=6代入① ,得3x+12=24,x=4故原方程组的解是: {x =4y =69.{12(x +3)+13(y −4)=52(x −3)+5(y +4)=70 ; 解:{12(x +3)+13(y −4)=5−−−−① 2(x −3)+5(y +4)=70−−−②①去分母,得3(x+3)+2(y-4)=30去括号,得3x+9+2y-8=30整理,得3x+2y-29=0-----------③②去括号,得2x-6+5y+20=70整理,得2x+5y-56=0-----------④③×2,得6x+4y-58=0------------⑤④×3,得6x+15y-168=0----------⑥⑥-⑤,得11y-110=0,即y=10将y=10代入③,得3x+20-29=0,x=3故原方程组的解是:{x=3 y=1010.{0.2x+0.5y=9x+2 2+y+105=15 ;解:{0.2x+0.5y=9−−−−−①x+22+y+105=15−−−−−−②①等号两边同时乘以10,得2x+5y=90------------------③②去分母,得5(x+2)+2(y+10)=150去括号,整理得5x+2y=120---④③×5,得10x+25y=450------⑤④×2,得10x+4y=240-------⑥⑤-⑥,得21y=210,即y=10将y=10代入③,得2x+50=90,x=20故原方程组的解是:{x=20 y=1011.{4(x −1) +3(y +1) =320%(x +1)+80%(y −1)=−3; 解:{4(x −1) +3(y +1) =3−−−−−−−−−①20%(x +1)+80%(y −1)=−3−−−−−−② ①去括号,得4x-4+3y+3=3,整理得4x+3y=4-----③ ②去百分号,得0.2(x+1)+0.8(y-1)=-3等号两边同时乘以10,得2(x+1)+8(y-1)=-30 去括号,得2x+2+8y-8=-30,整理得x+4y=-12----④ ④×4,得4x+16y=-48------------------------⑤ ⑤-③,得13y=-52,即y=-4将y=-4代入④,得x-16=-12,x=4故原方程组的解是: {x =4y =−412.{x+2y 2 +x−2y 3 = 11 3(x +2y )−4(x −2y )=30; 解:{x+2y 2 +x−2y 3 = 11 −−−−−−−−−−−−−−① 3(x +2y )−4(x −2y )=30−−−−−−② ①×6,得3(x+2y )+2(x-2y )=66----------------③③-②,得6(x-2y )=36,即x-2y= 6 -------④①×12,得6(x+2y )+4(x-2y )=132---------------⑤⑤+②,得9(x+2y)=162,即x+2y=18---⑥④+⑥,得2x=24,即x=12④-⑥,得-4y=-12,即y=3故原方程组的解是:{x=12 y=3。
二元一次方程组解法练习题精选(含答案)
![二元一次方程组解法练习题精选(含答案)](https://img.taocdn.com/s3/m/a8c889673b3567ec102d8ab8.png)
二元一次方程组解法练习题一.解答题 1.解下列方程组 (1) (2)(3))(6441125为已知数a a y x ay x ⎩⎨⎧=-=+ (4)(5)(6).(7) (8)⎩⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x(9) (10)⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x2.求适合的x ,y 的值.3.已知关于x ,y 的二元一次方程y=kx+b 的解有和.(1)求k ,b 的值. (2)当x=2时,y 的值. (3)当x 为何值时,y=3?1.解下列方程组 (1)(2);(3); (4)(5).(6)(7)(8)(9)(10);2.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b ,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.二元一次方程组解法练习题精选参考答案与试题解析一.解答题(共16小题)1.求适合的x,y的值.考点:解二元一次方程组.分析:先把两方程变形(去分母),得到一组新的方程,然后在用加减消元法消去未知数x,求出y的值,继而求出x的值.解答:解:由题意得:,由(1)×2得:3x﹣2y=2(3),由(2)×3得:6x+y=3(4),(3)×2得:6x﹣4y=4(5),(5)﹣(4)得:y=﹣,把y的值代入(3)得:x=,∴.点评:本题考查了二元一次方程组的解法,主要运用了加减消元法和代入法.2.解下列方程组(1)(2)(3)(4).考点:解二元一次方程组.分析:(1)(2)用代入消元法或加减消元法均可;(3)(4)应先去分母、去括号化简方程组,再进一步采用适宜的方法求解.解答:解:(1)①﹣②得,﹣x=﹣2,解得x=2,把x=2代入①得,2+y=1,解得y=﹣1.故原方程组的解为.(2)①×3﹣②×2得,﹣13y=﹣39,解得,y=3,把y=3代入①得,2x﹣3×3=﹣5,解得x=2.故原方程组的解为.(3)原方程组可化为,①+②得,6x=36,x=6,①﹣②得,8y=﹣4,y=﹣.所以原方程组的解为.(4)原方程组可化为:,①×2+②得,x=,把x=代入②得,3×﹣4y=6,y=﹣.所以原方程组的解为.点评:利用消元法解方程组,要根据未知数的系数特点选择代入法还是加减法:①相同未知数的系数相同或互为相反数时,宜用加减法;②其中一个未知数的系数为1时,宜用代入法.3.解方程组:考点:解二元一次方程组.专题:计算题.分析:先化简方程组,再进一步根据方程组的特点选用相应的方法:用加减法.解答:解:原方程组可化为,①×4﹣②×3,得7x=42,解得x=6.把x=6代入①,得y=4.所以方程组的解为.点;二元一次方程组无论多复杂,解二元一次方程组的基本思想都是消元.消元的方法有代入法和加减法.评:4.解方程组:考点:解二元一次方程组.专题:计算题.分析:把原方程组化简后,观察形式,选用合适的解法,此题用加减法求解比较简单.解答:解:(1)原方程组化为,①+②得:6x=18,∴x=3.代入①得:y=.所以原方程组的解为.点评:要注意:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法.本题适合用此法.5.解方程组:考点:解二元一次方程组.专题:计算题;换元法.分析:本题用加减消元法即可或运用换元法求解.解答:解:,①﹣②,得s+t=4,①+②,得s﹣t=6,即,解得.所以方程组的解为.点评:此题较简单,要熟练解方程组的基本方法:代入消元法和加减消元法.6.已知关于x,y的二元一次方程y=kx+b 的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?考点:解二元一次方程组.专题:计算题.分析:(1)将两组x,y的值代入方程得出关于k、b的二元一次方程组,再运用加减消元法求出k、b的值.(2)将(1)中的k、b代入,再把x=2代入化简即可得出y 的值.(3)将(1)中的k、b和y=3代入方程化简即可得出x的值.解答:解:(1)依题意得:①﹣②得:2=4k,所以k=,所以b=.(2)由y=x+,把x=2代入,得y=.(3)由y=x+把y=3代入,得x=1.点评:本题考查的是二元一次方程的代入消元法和加减消元法,通过已知条件的代入,可得出要求的数.7.解方程组:(1);(2).考点:解二元一次方程组.分析:根据各方程组的特点选用相应的方法:(1)先去分母再用加减法,(2)先去括号,再转化为整式方程解答.解答:解:(1)原方程组可化为,①×2﹣②得:y=﹣1,将y=﹣1代入①得:x=1.∴方程组的解为;(2)原方程可化为,即,①×2+②得:17x=51,x=3,将x=3代入x﹣4y=3中得:y=0.∴方程组的解为.点评:这类题目的解题关键是理解解方程组的基本思想是消元,掌握消元的方法有:加减消元法和代入消元法.根据未知数系数的特点,选择合适的方法.8.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题应把方程组化简后,观察方程的形式,选用合适的方法求解.解解:原方程组可化为,答:①+②,得10x=30,x=3,代入①,得15+3y=15,y=0.则原方程组的解为.点评:解答此题应根据各方程组的特点,有括号的去括号,有分母的去分母,然后再用代入法或加减消元法解方程组.9.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.解答:解:原方程变形为:,两个方程相加,得4x=12,x=3.把x=3代入第一个方程,得4y=11,y=.解之得.点本题考查的是二元一次方程组的解法,方程中含有分母的要先评:化去分母,再对方程进行化简、消元,即可解出此类题目.10.解下列方程组:(1)(2)考点:解二元一次方程组.专题:计算题.分析:此题根据观察可知:(1)运用代入法,把①代入②,可得出x,y的值;(2)先将方程组化为整系数方程组,再利用加减消元法求解.解答:解:(1),由①,得x=4+y③,代入②,得4(4+y)+2y=﹣1,所以y=﹣,把y=﹣代入③,得x=4﹣=.所以原方程组的解为.(2)原方程组整理为,③×2﹣④×3,得y=﹣24,把y=﹣24代入④,得x=60,所以原方程组的解为.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.11.解方程组:(1)(2)考点:解二元一次方程组.专题:计算题;换元法.分析:方程组(1)需要先化简,再根据方程组的特点选择解法;方程组(2)采用换元法较简单,设x+y=a,x﹣y=b,然后解新方程组即可求解.解答:解:(1)原方程组可化简为,解得.(2)设x+y=a,x﹣y=b,∴原方程组可化为,解得,∴∴原方程组的解为.点此题考查了学生的计算能力,解题时要细心.评:12.解二元一次方程组:(1);(2).考点:解二元一次方程组.专题:计算题.分析:(1)运用加减消元的方法,可求出x、y的值;(2)先将方程组化简,然后运用加减消元的方法可求出x、y 的值.解答:解:(1)将①×2﹣②,得15x=30,x=2,把x=2代入第一个方程,得y=1.则方程组的解是;(2)此方程组通过化简可得:,①﹣②得:y=7,把y=7代入第一个方程,得x=5.则方程组的解是.点此题考查的是对二元一次方程组的解法的运用和理解,学生可评:以通过题目的训练达到对知识的强化和运用.13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b ,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.考点:解二元一次方程组.专题:计算题.分析:(1)把甲乙求得方程组的解分别代入原方程组即可;(2)把甲乙所求的解分别代入方程②和①,求出正确的a、b,然后用适当的方法解方程组.解答:解:(1)把代入方程组,得,解得:.把代入方程组,得,解得:.∴甲把a看成﹣5;乙把b看成6;(2)∵正确的a是﹣2,b是8,∴方程组为,解得:x=15,y=8.则原方程组的解是.点评:此题难度较大,需同学们仔细阅读,弄清题意再解答.14.考点:解二元一次方程组.分析:先将原方程组中的两个方程分别去掉分母,然后用加减消元法求解即可.解答:解:由原方程组,得,由(1)+(2),并解得x=(3),把(3)代入(1),解得y=∴原方程组的解为.点评:用加减法解二元一次方程组的一般步骤:1.方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等;2.把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;3.解这个一元一次方程;4.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解.15.解下列方程组:(1);(2).考点:解二元一次方程组.分析:将两个方程先化简,再选择正确的方法进行消元.解答:解:(1)化简整理为,①×3,得3x+3y=1500③,②﹣③,得x=350.把x=350代入①,得350+y=500,∴y=150.故原方程组的解为.(2)化简整理为,①×5,得10x+15y=75③,②×2,得10x﹣14y=46 ④,③﹣④,得29y=29,∴y=1.把y=1代入①,得2x+3×1=15,∴x=6.故原方程组的解为.点方程组中的方程不是最简方程的,最好先化成最简方程,再选评:择合适的方法解方程.16.解下列方程组:(1)(2)考点:解二元一次方程组.分析:观察方程组中各方程的特点,用相应的方法求解.解答:解:(1)①×2﹣②得:x=1,将x=1代入①得:2+y=4,y=2.∴原方程组的解为;(2)原方程组可化为,①×2﹣②得:﹣y=﹣3,y=3.将y=3代入①得:x=﹣2.∴原方程组的解为.。
七年级数学二元一次方程组练习题及答案
![七年级数学二元一次方程组练习题及答案](https://img.taocdn.com/s3/m/d6e9d8b6690203d8ce2f0066f5335a8102d2661c.png)
题目一:解方程组1.3x+2y=72.x-y=3解答:将第二个方程两边同时乘以2,得到2x-2y=6然后将第一个方程与新得到的方程相加,得到(3x+2y)+(2x-2y)=7+65x=13x=13/5将x的值代入第二个方程,求得y的值:x-y=313/5-y=3y=-2/5所以方程组的解为x=13/5,y=-2/5题目二:解方程组1.5x-2y=92.3x+4y=12解答:将第一个方程乘以2,得到10x-4y=18然后将第二个方程与新得到的方程相加,得到(3x+4y)+(10x-4y)=12+1813x=30x=30/13将x的值代入第一个方程,求得y的值:5x-2y=95(30/13)-2y=9-10/13-2y=9-2y=9+10/13-2y=127/13y=-127/26所以方程组的解为x=30/13,y=-127/26题目三:解方程组1.2x-3y=82.x+4y=7解答:将第一个方程乘以4,得到8x-12y=32然后将第二个方程与新得到的方程相加,得到(x+4y)+(8x-12y)=7+329x-8y=39将第一个方程乘以3,得到6x-9y=24然后将上式与新得到的方程相加,得到(6x-9y)+(9x-8y)=24+3915x-17y=63解得15x-17y=639x-8y=39联立解得x=207/103,y=-255/103题目四:解方程组1.4x-y=72.2x+3y=1解答:将第一个方程乘以3,得到12x-3y=21然后将第二个方程与新得到的方程相加,得到(2x+3y)+(12x-3y)=1+2114x=22x=22/14将x的值代入第一个方程,求得y的值:4x-y=74(22/14)-y=788/14-y=7-y=7-88/14-y=-38/14y=38/14所以方程组的解为x=11/7,y=19/7题目五:解方程组1.3x+2y=82.4x-3y=2解答:将第一个方程乘以4,得到12x+8y=32然后将第二个方程与新得到的方程相加,得到(4x-3y)+(12x+8y)=2+3216x+5y=34将第一个方程乘以5,得到15x+10y=40然后将上式与新得到的方程相加,得到(15x+10y)+(16x+5y)=40+3431x+15y=74解得31x+15y=7416x+5y=34联立解得x=16/11,y=58/33题目六:解方程组1.2x+y=52.3x-y=7解答:将第一个方程乘以3,得到6x+3y=15然后将第二个方程与新得到的方程相加,得到(3x-y)+(6x+3y)=7+159x=22x=22/9将x的值代入第一个方程,求得y的值:2x+y=52(22/9)+y=544/9+y=5y=5-44/9y=1/9所以方程组的解为x=22/9,y=1/9题目七:解方程组1.5x-2y=72.x+6y=3解答:将第一个方程乘以6,得到30x-12y=42然后将第二个方程与新得到的方程相加,得到(x+6y)+(30x-12y)=3+4231x-6y=45将第一个方程乘以3,得到15x-6y=21然后将上式与新得到的方程相加,得到(15x-6y)+(31x-6y)=21+4546x-12y=66解得46x-12y=6631x-6y=45联立解得x=21/17,y=-15/17题目八:解方程组1.2x-3y=52.x+2y=4解答:将第一个方程乘以2,得到4x-6y=10然后将第二个方程与新得到的方程相加,得到(x+2y)+(4x-6y)=4+105x-4y=14将第一个方程乘以4,得到8x-12y=20然后将上式与新得到的方程相加,得到(8x-12y)+(5x-4y)=20+1413x-16y=34解得13x-16y=345x-4y=14联立解得x=82/89,y=-79/89题目九:解方程组1.3x-4y=62.2x+5y=1解答:将第一个方程乘以2,得到6x-8y=12然后将第二个方程与新得到的方程相加,得到(2x+5y)+(6x-8y)=1+128x-3y=13将第一个方程乘以3,得到9x-12y=18然后将上式与新得到的方程相加,得到(9x-12y)+(8x-3y)=18+1317x-15y=31解得17x-15y=318x-3y=13联立解得x=218/229,y=-125/229题目十:解方程组1.4x-y=62.x+3y=4解答:将第一个方程乘以3,得到12x-3y=18然后将第二个方程与新得到的方程相加,得到(x+3y)+(12x-3y)=4+1813x=22x=22/13将x的值代入第一个方程,求得y的值:4x-y=64(22/13)-y=688/13-y=6-y=6-88/13-y=-70/13y=70/13所以方程组的解为x=22/13,y=70/13。
二元一次方程组解法练习题精选(含答案)
![二元一次方程组解法练习题精选(含答案)](https://img.taocdn.com/s3/m/b73ac97c7fd5360cba1adbac.png)
二元一次方程组解法练习题一.解答题(共16小题) 1.解下列方程组 (1)(2)(3))(6441125为已知数a a y x ay x ⎩⎨⎧=-=+ (4)(5)(6).(7)(8) ⎩⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x(9) (10) ⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x2.求适合的x,y的值.3.已知关于x,y的二元一次方程y=kx+b 的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?1.解下列方程组(1)(2);(3);(4)(5).(6)(7)(8)(9)(10)2.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b ,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.二元一次方程组解法练习题精选参考答案与试题解析一.解答题(共16小题) 1.求适合的x ,y 的值.得到一组新的方程解:由题意得:,∴.(1)(2)(3)(4).故原方程组的解为故原方程组的解为)原方程组可化为,.所以原方程组的解为,代入②×﹣所以原方程组的解为:原方程组可化为,所以方程组的解为.解方程组:)原方程组化为.所以原方程组的解为.解方程组:解:即解得所以方程组的解为.6.已知关于x ,y 的二元一次方程y=kx+b 的解有和.(1)求k ,b 的值.(2)当x=2时,y 的值. (3)当x 为何值时,y=3? 的二元一次方程组,再运用加减消元)依题意得:k=,b=x+,.x+7.解方程组: (1);(2).)原方程组可化为方程组的解为,即方程组的解为解:原方程组可化为则原方程组的解为.解方程组:解:原方程变形为:,.解之得(1)(2),,代入③=.所以原方程组的解为)原方程组整理为所以原方程组的解为.11.解方程组:))解得.原方程组可化为解得∴原方程组的解为.12.解二元一次方程组: (1);(2).则方程组的解是)此方程组通过化简可得:则方程组的解是.在解方程组时,由于粗心,甲看错了方程组中的,乙看错了方程组中的b ,而得解为.(1)甲把a 看成了什么,乙把b 看成了什么? (2)求出原方程组的正确解. 代入方程组得,解得:.代入方程组得,解得:方程组为,则原方程组的解是.14.,x=y=原方程组的解为(1);(2).,故原方程组的解为)化简整理为故原方程组的解为.16.解下列方程组:(1)(2)原方程组的解为;)原方程组可化为原方程组的解为.11。
二元一次方程组经典练习题+答案解析100道
![二元一次方程组经典练习题+答案解析100道](https://img.taocdn.com/s3/m/e56a37d659eef8c75fbfb3d6.png)
53、m取什么整数值时,方程组/x +my=4的解:
、x -2y=0
(1)是正数;
(2)是正整数?并求它的所有正整数解。
54、试求方程组”―2|=7Ty—5|的解。
Qx —2| = y -6
六、列方程(组)解应用题
55、汽车从甲地到乙地,若每小时行驶45千米,就要延误30分钟到达;若每小时行驶50千米,那
21、若5x-6y=0,且xyz0,则5x~4y的值等于(
5x -3y
3
(A)-(B)-
32
22、若x、y均为非负数,则方程
(A)
(C)
23、
(A)
无解
有无数多个解
14
24、已知<■
(A)k
x =4—
与d ly =-2
1
,b=-4
2
(C)1
(D)
-1
6x=-7 y的解的情况是(
(B)有唯一一个解
(D)不能确定
x y =6
x+y=5且x,y的绝对值都小于5的整数解共有5组
10、方程组/x-y=
7、
8、
9、
方程组
x十5y=3
( )
11、若|a+5|=5,a+b=1则旦的值为一-b-
的解是方程x+5y=3的解,反过来方程
x+5y=3的解也是方程组
3x — y=1砧y的
x十5y=3
12、在方程4x-3 y=7里,如果用
60、有两个比50大的两位数,它们的差是 且也是一个两位数,求原来的这两个两位数。
2秒钟,那么甲跑4秒钟就能追上乙,求两人每秒钟各跑多少米?
58、甲桶装水49升,乙桶装水56升,如果把乙桶的水倒入甲桶,甲桶装满后,乙桶剩下的水,恰
二元一次方程组练习题及答案
![二元一次方程组练习题及答案](https://img.taocdn.com/s3/m/f727ac1eec630b1c59eef8c75fbfc77da3699751.png)
二元一次方程组练习题及答案1、二元一次方程4x-3y=12,当x=0,1,2,3时,y=____。
答案:y= -4,1,6,11.2、在x+3y=3中,若用x表示y,则y=,用y表示x,则x=。
答案:y= (3-x)/3,x= 3-3y。
3、已知方程(k^2-1)x^2+(k+1)x+(k-7)y=k+2,当k=______时,方程为一元一次方程;当k=______时,方程为二元一次方程。
答案:k=2或k=-2时为一元一次方程,k不等于2或-2时为二元一次方程。
4、对二元一次方程2(5-x)-3(y-2)=10,当x=0时,则y=____;当y=0时,则x=____。
答案:当x=0时,y= -4;当y=0时,x= 9/2.5、方程2x+y=5的正整数解是______。
答案:(1,3)。
6、若(4x-3)^2+|2y+1|=0,则x+2=______。
答案:x=-5/4.7、方程组x+y=ax=2的一个解为(2,3),那么这个方程组的另一个解是(1,a-1)。
8、若x=2时,关于x、y的二元一次方程组ax-2y=11x-by=2的解互为倒数,则a-2b=-15/2.二、选择题1、方程2x-3y=5,xy=3,x+y的值有(2个)。
答案:B、2.2、方程2x+y=9在正整数范围内的解有(3个)。
答案:C、3.3、与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是(10x+2y=4)。
答案:A、10x+2y=4.4、若是5x^2y^m与4x^n+m+1y^2n-2同类项,则m-2n的值为(1)。
答案:A、1.5、在方程(k^2-4)x^2+(2-3k)x+(k+1)y+3k=0中,若此方程为二元一次方程,则k值为(2或-2)。
答案:C、2或-2.6、若x=2y=-1是二元一次方程组的解,则这个方程组是x-3y=52x-y=5的解。
答案:A、{x=2,y=-1}。
7、在方程2(x+y)-3(y-x)=3中,用含x的代数式表示y,则(y=5x-3)。
二元一次方程组练习题(含答案)
![二元一次方程组练习题(含答案)](https://img.taocdn.com/s3/m/f90358a8b9f3f90f76c61b85.png)
二元一次方程组练习题一.解答题(共16 小题)x 2 y 11.解下列方程组 3 2( 9)( 10) 2x 2 1 y( 1)( 2) 31 2( 3)5x 2 y 11a(a为已知数 ) ( 4)4 x 4 y 6a2.求适合的 x, y 的值.(5)(6).3.已知关于x, y 的二元一次方程y=kx+b 的解有和.( 1)求 k, b 的值.( 2)当 x=2 时, y 的值.( 3)当 x 为何值时, y=3?x( y 1) y(1 x) 2(7)(8)x(x 1) y x 20. .1.解下列方程组(1)(2);(9)(10);(3);(4)2.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错(5).(6)了方程组中的 b,而得解为.( 1)甲把 a 看成了什么,乙把 b 看成了什么?(2)求出原方程组的正确解.( 7)(8)word 版本. .二元一次方程组解法练习题参精考选答案与试题解析故原方程组的解为.一.解答题(共 16 小题)( 2)①× 3﹣②×2得,﹣ 13y=﹣39,1.求适合的 x, y 的值.解得, y=3,把 y=3 代入①得,2x﹣3×3=﹣ 5,解得 x=2.考点:解二元一次方程组.故原方程组的解为.分析:先把两方程变形(去分母),得到一组新的方程,然后在用加减消元法消去未知数x,求出 y 的值,继而求出x 的值.( 3)原方程组可化为,解答:解:由题意得:,①+②得,6x=36,x=6,①﹣②得, 8y=﹣ 4,由( 1)×2 得: 3x﹣ 2y=2( 3),由( 2)×3 得: 6x+y=3 ( 4),y=﹣.所以原方程组的解为.(3)×2得: 6x﹣ 4y=4( 5),(5)﹣( 4)得: y=﹣,( 4)原方程组可化为:,把 y 的值代入( 3)得: x= ,①× 2+②得, x= ,∴.把 x= 代入②得, 3×﹣ 4y=6 ,y=﹣.点评:本题考查了二元一次方程组的解法,主要运用了加减消元法和代入法.2.解下列方程组所以原方程组的解为.(1)(2)(3)(4).考点:解二元一次方程组.分析:( 1)(2)用代入消元法或加减消元法均可;( 3)(4)应先去分母、去括号化简方程组,再进一步采用适宜的方法求解.解答:解:(1)①﹣②得,﹣x=﹣ 2,解得 x=2,把x=2 代入①得, 2+y=1,解得 y=﹣ 1.3.解方程组:点评:利用消元法解方程组,要根据未知数的系数特点选择代入法还是加减法:①相同未知数的系数相同或互为相反数时,宜用加减法;②其中一个未知数的系数为 1 时,宜用代入法.考解二元一次方程组.word 版本. .点:专计算题.题:分先化简方程组,再进一步根据方程组的特点选用相应的方法:用加减法.析:解答:解:原方程组可化为,考点:解二元一次方程组.专题:计算题;换元法.分析:本题用加减消元法即可或运用换元法求解.解答:解:,①﹣②,得 s+t=4 ,①+②,得 s﹣t=6 ,①× 4﹣②× 3,得7x=42,解得 x=6.把 x=6 代入①,得y=4.所以方程组的解为.点;评:二元一次方程组无论多复杂,解二元一次方程组的基本思想都是消元.消元的方法有代入法和加减法.即,解得.所以方程组的解为.点评:此题较简单,要熟练解方程组的基本方法:代入消元法和加减消元法.6.已知关于 x, y 的二元一次方程y=kx+b 的解有和.4.解方程组:( 1)求 k, b 的值.( 2)当 x=2 时, y 的值.( 3)当 x 为何值时, y=3?考点:解二元一次方程组.专题:计算题.考点:解二元一次方程组.分析:把原方程组化简后,观察形式,选用合适的解法,此题用加减法求解比较简单.专题:计算题.解答:分析:( 1)将两组x, y 的值代入方程得出关于k、 b 的二元一次方程组,再运用加减消元解:(1)原方程组化为,法求出 k、 b 的值.①+②得:6x=18,∴x=3.代入①得: y= .所以原方程组的解为.点评:要注意:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法.本题适合用此法.( 2)将( 1)中的 k、b 代入,再把x=2 代入化简即可得出y 的值.( 3)将( 1)中的 k、b 和 y=3 代入方程化简即可得出x 的值.解答:解:( 1)依题意得:①﹣②得: 2=4k,所以 k= ,所以 b= .5.解方程组:( 2)由 y= x+ ,word 版本.把x=2 代入,得 y= .(3)由 y= x+把y=3 代入,得 x=1.点评:本题考查的是二元一次方程的代入消元法和加减消元法,通过已知条件的代入,可得出要求的数.7.解方程组:(1);(2).考点:解二元一次方程组.分析:根据各方程组的特点选用相应的方法:(1)先去分母再用加减法,( 2)先去括号,再转化为整式方程解答.解答:解:(1)原方程组可化为,①× 2﹣②得:y=﹣ 1,将 y=﹣ 1 代入①得:x=1.∴方程组的解为;( 2)原方程可化为,即,①× 2+②得:17x=51,x=3,将x=3 代入 x﹣4y=3 中得:y=0.∴方程组的解为..点评:这类题目的解题关键是理解解方程组的基本思想是消元,掌握消元的方法有:加减消元法和代入消元法.根据未知数系数的特点,选择合适的方法.8.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题应把方程组化简后,观察方程的形式,选用合适的方法求解.解答:解:原方程组可化为,①+②,得 10x=30,x=3,代入①,得15+3y=15,y=0.则原方程组的解为.点评:解答此题应根据各方程组的特点,有括号的去括号,有分母的去分母,然后再用代入法或加减消元法解方程组.9.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题为了计算方便,可先把( 2)去分母,然后运用加减消元法解本题.解答:解:原方程变形为:,两个方程相加,得4x=12,x=3.把 x=3 代入第一个方程,得4y=11,y= .word 版本. .化和运用.解之得.11.解方程组:点评:本题考查的是二元一次方程组的解法,方程中含有分母的要先化去分母,再对方程进行化简、消元,即可解出此类题目.10.解下列方程组:(1)(2)考点:解二元一次方程组.专题:计算题.分析:此题根据观察可知:( 1)运用代入法,把①代入②,可得出x, y 的值;( 2)先将方程组化为整系数方程组,再利用加减消元法求解.解答:解:(1),由①,得 x=4+y③,代入②,得 4(4+y) +2y=﹣ 1,所以 y=﹣,把y=﹣代入③,得 x=4﹣ = .所以原方程组的解为.(1)(2)考点:解二元一次方程组.专题:计算题;换元法.分析:方程组( 1)需要先化简,再根据方程组的特点选择解法;方程组( 2)采用换元法较简单,设 x+y=a, x﹣ y=b,然后解新方程组即可求解.解答:解:(1)原方程组可化简为,解得.(2)设 x+y=a, x﹣ y=b,∴原方程组可化为,解得,∴∴原方程组的解为.( 2)原方程组整理为,点评:此题考查了学生的计算能力,解题时要细心.③× 2﹣④× 3,得 y= ﹣24,把 y=﹣ 24 代入④,得x=60,12.解二元一次方程组:所以原方程组的解为( 1);.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强word 版本.(2).考点:解二元一次方程组.专题:计算题.分析:( 1)运用加减消元的方法,可求出x、 y 的值;( 2)先将方程组化简,然后运用加减消元的方法可求出x、 y 的值.解答:解:(1)将①× 2﹣②,得15x=30,x=2,把 x=2 代入第一个方程,得y=1.则方程组的解是;( 2)此方程组通过化简可得:,①﹣②得: y=7,把 y=7 代入第一个方程,得x=5.则方程组的解是.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的 b,而得解为.(1)甲把 a 看成了什么,乙把 b 看成了什么?(2)求出原方程组的正确解.考点:解二元一次方程组.专题:计算题.分析:( 1)把甲乙求得方程组的解分别代入原方程组即可;( 2)把甲乙所求的解分别代入方程②和①,求出正确的a、 b,然后用适当的方法解方程组.解答:解:(1)把代入方程组,.得,解得:.把代入方程组,得,解得:.∴甲把 a 看成﹣ 5;乙把 b 看成 6;( 2)∵正确的 a 是﹣ 2, b 是 8,∴方程组为,解得: x=15,y=8.则原方程组的解是.点评:此题难度较大,需同学们仔细阅读,弄清题意再解答.14.考点:解二元一次方程组.分析:先将原方程组中的两个方程分别去掉分母,然后用加减消元法求解即可.解答:解:由原方程组,得,由( 1) +( 2),并解得x= ( 3),把( 3)代入( 1),解得y=word 版本.∴原方程组的解为.点评:用加减法解二元一次方程组的一般步骤:1.方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等;2.把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;3.解这个一元一次方程;4.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解.15.解下列方程组:(1);(2).考点:解二元一次方程组.分析:将两个方程先化简,再选择正确的方法进行消元.解答:解:(1)化简整理为,①× 3,得 3x+3y=1500③,②﹣③,得x=350.把x=350 代入①,得 350+y=500,∴y=150.故原方程组的解为.( 2)化简整理为,①× 5,得 10x+15y=75③,②× 2,得 10x﹣14y=46④,③﹣④,得29y=29,∴y=1.把y=1 代入①,得 2x+3×1=15,∴x=6.故原方程组的解为.点评:方程组中的方程不是最简方程的,最好先化成最简方程,再选择合适的方法解方程..16.解下列方程组:( 1)( 2)考点:解二元一次方程组.分析:观察方程组中各方程的特点,用相应的方法求解.解答:解:(1)①× 2﹣②得: x=1,将 x=1 代入①得:2+y=4,y=2.∴原方程组的解为;( 2)原方程组可化为,①× 2﹣②得:﹣y=﹣ 3,y=3.将 y=3 代入①得:x=﹣2.∴原方程组的解为.点评:解此类题目要注意观察方程组中各方程的特点,采用加减法或代入法求解.word 版本。
二元一次方程组练习题(含答案)
![二元一次方程组练习题(含答案)](https://img.taocdn.com/s3/m/03bb2b5fa55177232f60ddccda38376baf1fe097.png)
二元一次方程组练习题(含答案) 二元一次方程组练题一.解答题(共16小题)1.解下列方程组:1)x+2y-1=23x-2y=52)1-yx+2/3=1/22y+3=3x3)5x+2y=11a4x-4y=6a4)2x+3y=73x-2y=15)2x-3y=75x+4y=176)2x+3y=13x-2y=57)3x-4y=-12x+5y=138)x(y+1)+y(1-x)=2x(x+1)-y-x^2=09)3x+y=72x-3y=-810)x^2+xy=2y-x+2=02.求适合的x,y的值。
已知关于x,y的二元一次方程y=kx+b的解有和。
1)求k,b的值。
2)当x=2时,y的值。
3)当y=3时,x的值为多少?解答:1.1)将第二个方程变形得到y=(3x-5)/2,代入第一个方程中,得到x=3,y=-2.2)将第一个方程变形得到y=(1/2-1+xy)/x,代入第二个方程中,得到x=3,y=-1.3)将第二个方程变形得到y=x-3/2,代入第一个方程中,得到x=2,y=1.4)将第二个方程变形得到y=(3x-1)/2,代入第一个方程中,得到x=2,y=1.5)将第一个方程变形得到y=(2x-7)/3,代入第二个方程中,得到x=1,y=-1.6)将第二个方程变形得到y=(3x-5)/2,代入第一个方程中,得到x=1,y=-1.7)将第二个方程变形得到y=(3x+1)/4,代入第一个方程中,得到x=5,y=2.8)将第一个方程变形得到y=(2-x^2)/(1-x),代入第二个方程中,得到x=1,y=1.9)将第二个方程变形得到y=(2x+8)/3,代入第一个方程中,得到x=1,y=1.10)将第一个方程变形得到y=2/x-x,代入第二个方程中,得到x=1,y=0.2.1)由于y=kx+b,所以当x=1时,y=k+b;当x=2时,y=2k+b。
又因为已知y=3时,x的值为多少,所以将y=kx+b代入得到kx+b=3,解得x=(3-b)/k。
二元一次方程组解法练习题精选(含答案)
![二元一次方程组解法练习题精选(含答案)](https://img.taocdn.com/s3/m/42aef456be23482fb4da4c87.png)
二元一次方程组解法练习题精选(含答案)一.解答题(共16小题)1.求适合的x,y的值.2.解下列方程组(1)(2)(3)(4).3.解方程组:4.解方程组:5.解方程组:6.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?7.解方程组:(1);(2).8.解方程组:9.解方程组:10.解下列方程组:(1)(2)11.解方程组:(1)(2)12.解二元一次方程组:(1);(2).13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.14.15.解下列方程组:(1);(2).16.解下列方程组:(1)(2)第二十六章《二次函数》检测试题1,(2008年芜湖市)函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是 ( )2,在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为s =5t 2+2t ,则当t =4时,该物体所经过的路程为( )3,已知二次函数y =ax 2+bx +c (a ≠0)的图象如图2所示,给出以下结论:① a +b +c <0;② a -b +c <0;③ b +2a <0;④ abc >0 .其中所有正确结论的序号是( )A. ③④B. ②③C. ①④D. ①②③4,二次函数y =ax 2+bx +c 的图象如图3所示,若M =4a +2b +c ,N =a -b +c ,P =4a +2b ,则( )A.M >0,N >0,P >0B. M >0,N <0,P >0C. M <0,N >0,P >0D. M <0,N >0,P <05,如果反比例函数y =k x的图象如图4所示,那么二次函数y =kx 2-k 2x -1的图象大致为( )6y 所对应的函数值依次为:20,56,110,182,274,380,506,650.其中有一个值不正确,这个不正确的值是()A. 506B.380C.274D.18图3图4 A . B . 图5 图1A. y =x 2-2B. y =(x -2)2C. y =x 2+2D. y =(x +2)28如图6,小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数h =3.5t -4.9t 2(t 的单位:s ,h 的单位:m )可以描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间是( )A.0.71sB.0.70sC.0.63sD.0.36s9,如果将二次函数y =2x 2的图象沿y 轴向上平移1个单位,那么所得图象的函数解析式是 .10,平移抛物线y =x 2+2x -8,使它经过原点,写出平移后抛物线的一个解析式______ .11,若二次函数y =x 2-4x +c 的图象与x 轴没有交点,其中c 为整数,则c =12,二次函数y =ax 2+bx +c 的图像如图7所示,则点A (a ,b )在第___象限.13,已知抛物线y =x 2-6x +5的部分图象如图8,则抛物线的对称轴为直线x = ,满足y <0的x 的取值范围是 .14,已知一抛物线与x 轴的交点是)0,2( A 、B (1,0),且经过点C (2,8)。
(完整版)二元一次方程组练习题含标准答案
![(完整版)二元一次方程组练习题含标准答案](https://img.taocdn.com/s3/m/4c7f3dc0e518964bce847c2f.png)
二元一次方程组专题训练1、⎩⎨⎧=-=+33651643y x y x 2、⎩⎨⎧=+=-6251023x y x y 3、 ⎩⎨⎧=-=+1572532y x y x4、⎩⎨⎧=+-=18435276t s t s5、 ⎩⎨⎧=-=+574973p q q p6、⎩⎨⎧=-=+42634y x y x7、⎩⎨⎧-=-=+22223n m n m 8、⎩⎨⎧=--=-495336y x y x 9、⎩⎨⎧=-=+19542023b a b a10、⎩⎨⎧=-=-y x y x 23532 11、⎩⎨⎧=-=+124532n m n m 12、⎩⎨⎧=+=+10232556y x y x13、⎩⎨⎧=+=+2.54.22.35.12y x y x 14、⎪⎩⎪⎨⎧=-+-=+6)(3)1(26132y x x y x 15、⎪⎩⎪⎨⎧=+--=-+-04235130423512y x y x 16、⎪⎩⎪⎨⎧=--=+-4323122y x y x y x 17、⎪⎩⎪⎨⎧-=-++=-+52251230223x y x y x二元一次方程组练习题一、选择题:1.下列方程中,是二元一次方程的是( ) A .3x -2y=4z B .6xy+9=0 C .1x+4y=6 D .4x=2.下列方程组中,是二元一次方程组的是( )A .228423119...23754624x y x y a b x B C D x y b c y x x y +=+=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩3.二元一次方程5a -11b=21 ( )A .有且只有一解B .有无数解C .无解D .有且只有两解 4.方程y=1-x 与3x+2y=5的公共解是( )A .3333...2422x x x x B C D y y y y ==-==-⎧⎧⎧⎧⎨⎨⎨⎨===-=-⎩⎩⎩⎩5.若│x -2│+(3y+2)2=0,则的值是( )A .-1B .-2C .-3D .326.方程组43235x y kx y -=⎧⎨+=⎩的解与x 与y 的值相等,则k 等于( )7.下列各式,属于二元一次方程的个数有( ) ①xy+2x -y=7; ②4x+1=x -y ; ③1x+y=5; ④x=y ; ⑤x 2-y 2=2 ⑥6x -2y ⑦x+y+z=1 ⑧y (y -1)=2y 2-y 2+xA .1B .2C .3D .48.某年级学生共有246人,其中男生人数y 比女生人数x 的2倍少2人,•则下面所列的方程组中符合题意的有( ) A .246246216246 (22222222)x y x y x y x y B C D y x x y y x y x +=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨=-=+=+=+⎩⎩⎩⎩ 二、填空题9.已知方程2x+3y -4=0,用含x 的代数式表示y 为:y=_______;用含y 的代数式表示x 为:x=________. 10.在二元一次方程-12x+3y=2中,当x=4时,y=_______;当y=-1时,x=______. 11.若x 3m -3-2y n -1=5是二元一次方程,则m=_____,n=______.12.已知2,3x y =-⎧⎨=⎩是方程x -ky=1的解,那么k=_______.13.已知│x -1│+(2y+1)2=0,且2x -ky=4,则k=_____.14.二元一次方程x+y=5的正整数解有______________. 15.以57x y =⎧⎨=⎩为解的一个二元一次方程是_________.16.已知2316x mx y y x ny =-=⎧⎧⎨⎨=--=⎩⎩是方程组的解,则m=_______,n=______. 三、解答题17.当y=-3时,二元一次方程3x+5y=-3和3y -2ax=a+2(关于x ,y 的方程)•有相同的解,求a 的值.18.如果(a -2)x+(b+1)y=13是关于x ,y 的二元一次方程,则a ,b 满足什么条件? 19.二元一次方程组437(1)3x y kx k y +=⎧⎨+-=⎩的解x ,y 的值相等,求k .20.已知x ,y 是有理数,且(│x │-1)2+(2y+1)2=0,则x -y 的值是多少? 21.已知方程12x+3y=5,请你写出一个二元一次方程,使它与已知方程所组成的方程组的解为41x y =⎧⎨=⎩. 22.根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,•问明明两种邮票各买了多少枚?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;•若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼? 23.方程组2528x y x y +=⎧⎨-=⎩的解是否满足2x -y=8?满足2x -y=8的一对x ,y 的值是否是方程组2528x y x y +=⎧⎨-=⎩的解? 24.(开放题)是否存在整数m ,使关于x 的方程2x+9=2-(m -2)x 在整数范围内有解,你能找到几个m 的值?你能求出相应的x 的解吗?《二元一次方程组》单元测试题一、选择题(每题3分,共30分)1.下列方程组中,是二元一次方程组的是( ).(A ) 2311089x y x y ⎧+=⎨-=-⎩ (B )426xy x y =⎧⎨+=⎩ (C )21734x y y x -=⎧⎪⎨-=-⎪⎩(D )24795x y x y +=⎧⎨-=⎩ 2.二元一次方程组⎩⎨⎧==+x y y x 2,102的解是( )(A )⎩⎨⎧==;3,4y x (B )⎩⎨⎧==;6,3y x (C )⎩⎨⎧==;4,2y x (D )⎩⎨⎧==.2,4y x 3.根据图1所示的计算程序计算y 的值,若输入2=x , 则输出的y 值是( )(A )0 (B )2- (C )2 (D )44.如果2315a b 与114x x y a b ++-是同类项,则x ,y 的值是( )(A )⎩⎨⎧==31y x (B )⎩⎨⎧==22y x (C )⎩⎨⎧==21y x (D )⎩⎨⎧==32y x 5.已知12x y =⎧⎨=⎩ 是方程组120.ax y x by +=-⎧⎨-=⎩,的解,则a +b = ( ).(A )2 (B )-2 (C )4 (D )-46.如图2,AB ⊥BC ,∠ABD 的度数比∠DBC 的度数的两倍少15°,设∠ABD 和∠DBC 的度数分别为x 、y ,那么下面可以求出这两个角的度数的方程组是( )(A )9015x y x y +=⎧⎨=-⎩ (B )90215x y x y +=⎧⎨=-⎩(C )90152x y x y +=⎧⎨=-⎩ (D )290215x x y =⎧⎨=-⎩7.如果⎩⎨⎧-==23y x 是方程组⎪⎩⎪⎨⎧=+=+53121ny mx ny mx 的解,则一次函数y =mx +n 的解析式为( ) (A )y =-x +2 (B )y =x -2 (C )y =-x -2 (D )y =x +28.已知{21x y ==是二元一次方程组{81mx ny nx my +=-=的解,则2m -n 的算术平方根为( )(A )2± (B 2 (C )2 (D )49.如果二元一次方程组⎩⎨⎧=+=-a y x ay x 3的解是二元一次方程0753=--y x 的一个解,那么a 的值是( )(A )3 (B )5 (C )7 (D )910.如图3,一次函数b ax y +=1和a bx y +=2(a ≠0,b ≠0)在同一坐标系的图象.则ADBC图2y °x °⎩⎨⎧+=+=a bx y b ax y 21的解⎩⎨⎧==n y mx 中( ) o (A ) m >0,n >0 (B )m >0,n <0 (C ) m <0,n >0 (D )m <0,n <0 二、填空题(每小题4分,共20分)11.若关于x ,y 的二元一次方程组23-12-2x y k x y +=⎧⎨+=⎩的解满足x +y =1,则k 的取值范围是 .12.若直线7+=ax y 经过一次函数1234-=-=x y x y 和的交点,则a 的值 是 . 13.已知2x -3y =1,用含x 的代数式表示y ,则y = ,当x =0时,y = .14.一个两位数的十位数字与个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字与个位数字对调后所组成的新两位数,则原来的两位数为_______.15.如图4,点A 的坐标可以看成是方程组 的解. 三、解答题16.解下列方程组(每小题6分,共12分)(1) ⎩⎨⎧-=--=-.2354,42y x y x (2)⎪⎩⎪⎨⎧=-+=+1323241y x x y 17.已知⎩⎨⎧==34y x 是关于x ,y 的二元一次方程组⎩⎨⎧-=--=+21by x y ax 的解,求出a +b 的值.18.(8分)为了净化空气,美化环境,我市青羊区计划投资1.8万元种银杏和芙蓉树共80棵,已知某苗圃负责种活以上两种树苗的价格分别为:300元/棵,200元/棵,问可种银杏树和芙蓉树各多少棵? 19.(10分)已知22012()x y +与20132--y x 的值互为相反数,求:(1)x 、y 的值; (2)20122013y x +的值.20.(本题12分)如图5,成都市某化工厂与A ,B 两地有公路和铁路相连.这家工厂从A 地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B 地.已知公路运价为1.5元/(吨·千米),铁路运价为1.2元/(吨·千米).这两次运输共支出公路运费15000元,铁路运费97200元.请计算这批产品的销售款比原料费和运输费的和多多少元?(1)根据题意,甲、乙两名同学分别列出尚不完整的方程组如下:甲: 1.5(2010)1.2(110120)x y x y ⎧+=⎪⎨+=⎪⎩乙: 1.5(2010)800010001.2(11012080001000x y x y ⎧⋅+⋅=⎪⎪⎨⎪⋅+⋅=⎪⎩根据甲、乙两名同学所列方程组,请你分别指出未知数x 、y 表示的意义,然后在等式右边的方框内补全甲、乙两名同学所列方程组.甲:x 表示_____________________,y 表示________________________ 乙:x 表示_____________________,y 表示________________________ (2)甲同学根据他所列方程组解得x =300.请你帮他解出y 的值,并解决该实际问题. 答案: 一、选择题 1.D 解析:掌握判断二元一次方程的三个必需条件:①含有两个未知数;②含有未知数的项的次数是1;③等式两边都是整式.2.A 解析:二元一次方程组的三个必需条件:①含有两个未知数,②每个含未知数的项次数为1;③每个方程都是整式方程.3.B 解析:不加限制条件时,一个二元一次方程有无数个解. 4.C 解析:用排除法,逐个代入验证. 5.C 解析:利用非负数的性质. 6.B7.C 解析:根据二元一次方程的定义来判定,•含有两个未知数且未知数的次数不超过1次的整式方程叫二元一次方程,注意⑧整理后是二元一次方程. 8.B二、填空题9.424332x y -- 10.43 -10{512+-=-=x y x y 11.43,2 解析:令3m -3=1,n -1=1,∴m=43,n=2.12.-1 解析:把2,3x y =-⎧⎨=⎩代入方程x -ky=1中,得-2-3k=1,∴k=-1. 13.4 解析:由已知得x -1=0,2y+1=0,∴x=1,y=-12,把112x y =⎧⎪⎨=-⎪⎩代入方程2x -ky=4中,2+12k=4,∴k=1. 14.解:12344321x x x x y y y y ====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩解析:∵x+y=5,∴y=5-x ,又∵x ,y 均为正整数,∴x 为小于5的正整数.当x=1时,y=4;当x=2时,y=3; 当x=3,y=2;当x=4时,y=1.∴x+y=5的正整数解为12344321x x x x y y y y ====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩15.x+y=12 解析:以x 与y 的数量关系组建方程,如2x+y=17,2x -y=3等, 此题答案不唯一.16.1 4 解析:将2316x mx y y x ny =-=⎧⎧⎨⎨=--=⎩⎩代入方程组中进行求解. 三、解答题17.解:∵y=-3时,3x+5y=-3,∴3x+5×(-3)=-3,∴x=4, ∵方程3x+5y=•-•3•和3x -2a x=a+2有相同的解,∴3×(-3)-2a ×4=a+2,∴a=-119.18.解:∵(a -2)x+(b+1)y=13是关于x ,y 的二元一次方程,∴a -2≠0,b+1≠0,•∴a ≠2,b ≠-1解析:此题中,若要满足含有两个未知数,需使未知数的系数不为0. (•若系数为0,则该项就是0)19.解:由题意可知x=y ,∴4x+3y=7可化为4x+3x=7,∴x=1,y=1.将x=1,y=•1•代入kx+(k -1)y=3中得k+k -1=3,∴k=2 解析:由两个未知数的特殊关系,可将一个未知数用含另一个未知数的代数式代替,化“二元”为“一元”,从而求得两未知数的值.20.解:由(│x │-1)2+(2y+1)2=0,可得│x │-1=0且2y+1=0,∴x=±1,y=-12.当x=1,y=-12时,x -y=1+12=32; 当x=-1,y=-12时,x -y=-1+12=-12.解析:任何有理数的平方都是非负数,且题中两非负数之和为0,则这两非负数(│x │-1)2与(2y+1)2都等于0,从而得到│x │-1=0,2y+1=0.21.解:经验算41x y =⎧⎨=⎩是方程12x+3y=5的解,再写一个方程,如x -y=3. 22.(1)解:设0.8元的邮票买了x 枚,2元的邮票买了y 枚,根据题意得130.8220x y x y +=⎧⎨+=⎩.(2)解:设有x 只鸡,y 个笼,根据题意得415(1)y x y x +=⎧⎨-=⎩. 23.解:满足,不一定.解析:∵2528x y x y +=⎧⎨-=⎩的解既是方程x+y=25的解,也满足2x -y=8,• ∴方程组的解一定满足其中的任一个方程,但方程2x -y=8的解有无数组,如x=10,y=12,不满足方程组2528x y x y +=⎧⎨-=⎩.24.解:存在,四组.∵原方程可变形为-mx=7,∴当m=1时,x=-7;m=-1时,x=7;m=•7时,x=-1;m=-7时x=1. 参考答案一、1-5、DCDCB 6-10、BDCCA二、11.k=2; 12.-6; 13.213x -,31-; 14. 35; 15.三、16.(1)x=0.5,y=5 (2)x=-3 , y=37-17.a+b=118.设银杏树为x ,芙蓉树为y.由题意可得:80,30020018000.x y x y ==⎧⎨+=⎩ 解得2060x y =⎧⎨=⎩19.21120122013=+⇒⎩⎨⎧-==y x y x20.解:(1)甲:x 表示产品的重量,y 表示原料的重量 乙:x 表示产品销售额,y 表示原料费甲方程组右边方框内的数分别为15000,97200,乙同甲 (2)将x=300代入原方程组解得y=400 ∴产品销售额为300×8000=2400000元 原料费为400×1000=400000元又∵运输费为15000+97200=112200元∴这批产品的销售款比原料费和运输费的和多2400000–(400000+112200)=1887800元。
二元一次方程组练习题(含答案)
![二元一次方程组练习题(含答案)](https://img.taocdn.com/s3/m/73e0ba4030b765ce0508763231126edb6e1a767b.png)
二元一次方程组练习题(含答案)1.解下列方程组:1) 5x + 2y = 11a,-4y = 6a;2) 4x + 3y - 1 = 0,2x + y - 2 = 0;3) x + 2y/3 - 1/3 = 2,x/3 + 1 - y/2 = 1/2;4) x - y/2 = 1,x + y/2 = 3.2.求解以下方程组:1) 2x + 3y = 7,x - y = 1;2) x + 2y = 5,2x + y = 7;3) 3x + 2y = 8,4x - 3y = -11.3.已知二元一次方程y = kx + b的解有(2,5)和(-1,0)。
1) 求k,b的值;2) 当x = 2时,y的值;3) 当y = 3/5时,x的值。
4.在解方程组2x + y = 5,x - y = 1时,甲看错了方程组中的a,而得到解x = 2,y = 1.乙看错了方程组中的b,而得到解x = 3,y = -1.1) 甲把a看成了什么,乙把b看成了什么?2) 求出原方程组的正确解。
参考答案与解析:1.解下列方程组:1) 5x + 2y = 11a,-4y = 6a。
将第二个方程式化简为y = -3/2a,代入第一个方程式中得到5x + 2(-3/2a) = 11a,化简得到x = (23/10)a,y = (-9/5)a。
2) 4x + 3y - 1 = 0,2x + y - 2 = 0.将第二个方程式中的y用第一个方程式中的x表示,得到y = 2 - 2x,代入第一个方程式中得到4x + 3(2 - 2x) - 1 = 0,化简得到x = 1/2,y = 1.3) x + 2y/3 - 1/3 = 2,x/3 + 1 - y/2 = 1/2.将第二个方程式中的x用第一个方程式中的y表示,得到x = 6 - 2y,代入第一个方程式中得到6 - 4y/3 = 2,化简得到y = 3/2,x = 0.4) x - y/2 = 1,x + y/2 = 3.将两个方程式相加得到2x = 4,化简得到x = 2,代入第一个方程式中得到y = 2.2.求解以下方程组:1) 2x + 3y = 7,x - y = 1.将第二个方程式中的x用第一个方程式中的y表示,得到x = y + 1,代入第一个方程式中得到2(y + 1) + 3y = 7,化简得到y = 1,x = 2.2) x + 2y = 5,2x + y = 7.将第一个方程式中的x用第二个方程式中的y表示,得到x = (7 - y)/2,代入第一个方程式中得到(7 - y)/2 + 2y = 5,化简得到y = 1,x = 2.3) 3x + 2y = 8,4x - 3y = -11.将第一个方程式中的x用第二个方程式中的y表示,得到x = (3y - 11)/4,代入第一个方程式中得到3(3y - 11)/4 + 2y = 8,化简得到y = 1,x = 1.3.已知二元一次方程y = kx + b的解有(2,5)和(-1,0)。
二元一次方程组经典练习题+答案解析100道
![二元一次方程组经典练习题+答案解析100道](https://img.taocdn.com/s3/m/04a494d650e2524de5187ec3.png)
1二元一次方程组练习题一、选择:1、任何一个二元一次方程都有 ( )(A )一组解; (B )两组解;(C )三组解; (D )无数多组解;2、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有( )(A )5个 (B )6个 (C )7个 (D )8个3、关于x 、y 的方程组⎩⎨⎧=-=+m y xmy x 932的解是方程3x +2y =34的一组解,那么m 的值是() (A )2; (B )-1; (C )1; (D )-2;4、在下列方程中,只有一个解的是 () (A )⎩⎨⎧=+=+0331y x y x (B )⎩⎨⎧-=+=+2330y x y x(C )⎩⎨⎧=-=+4331y x y x (D )⎩⎨⎧=+=+3331y x y x5、与已知二元一次方程5x -y =2组成的方程组有无数多个解的方程是 () (A )15x -3y =6 (B )4x -y =7 (C )10x +2y =4 (D )20x -4y =36、下列方程组中,是二元一次方程组的是 () (A )⎪⎩⎪⎨⎧=+=+9114y x y x (B )⎩⎨⎧=+=+75z y y x(C )⎩⎨⎧=-=6231y x x (D )⎩⎨⎧=-=-1y x xyy x7、若5x -6y =0,且xy ≠0,则y x yx 3545--的值等于 () (A )32(B )23(C )1 (D )-18、若|3x +y +5|+|2x -2y -2|=0,则2x 2-3xy 的值是 () (A )14 (B )-4 (C )-12 (D )129、已知⎩⎨⎧-==24y x 与⎩⎨⎧-=-=52y x 都是方程y =kx +b 的解,则k 与b 的值为 () (A )21=k ,b =-4 (B )21-=k ,b =4(C )21=k ,b =4 (D )21-=k ,b =-410下列方程中,是二元一次方程的是 () A .3x -2y=4z B .6xy+9=0 C . x+4y=6 D .4x=24 y。
二元一次方程组练习题(含答案)word
![二元一次方程组练习题(含答案)word](https://img.taocdn.com/s3/m/de470bcc6529647d27285296.png)
二元一次方程组练习题一.解答题(共16小题) 1.解下列方程组 (1)(2)(3))(6441125为已知数a a y x a y x ⎩⎨⎧=-=+ (4)(5)(6).(7)(8)⎩⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x(9)(10) ⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x 2.求适合的x ,y 的值.3.已知关于x ,y 的二元一次方程y=kx+b 的解有和.(1)求k ,b 的值.(2)当x=2时,y 的值. (3)当x 为何值时,y=3?1.解下列方程组(1)(2);(3); (4)(5). (6)(7)(8)(9)(10); 2.在解方程组时,由于粗心,甲看错了方程组中的a ,而得解为,乙看错了方程组中的b ,而得解为.(1)甲把a 看成了什么,乙把b 看成了什么?(2)求出原方程组的正确解.二元一次方程组解法练习题精选参考答案与试题解析一.解答题(共16小题)1.求适合的x ,y 的值.考点: 解二元一次方程组. 分析:先把两方程变形(去分母),得到一组新的方程,然后在用加减消元法消去未知数x ,求出y 的值,继而求出x 的值.解答:解:由题意得:,由(1)×2得:3x ﹣2y=2(3),由(2)×3得:6x+y=3(4), (3)×2得:6x ﹣4y=4(5), (5)﹣(4)得:y=﹣, 把y 的值代入(3)得:x=,∴.点评:本题考查了二元一次方程组的解法,主要运用了加减消元法和代入法.2.解下列方程组(1)(2)(3)(4).考点:解二元一次方程组.分析:(1)(2)用代入消元法或加减消元法均可;(3)(4)应先去分母、去括号化简方程组,再进一步采用适宜的方法求解.解答:解:(1)①﹣②得,﹣x=﹣2,解得x=2,把x=2代入①得,2+y=1,解得y=﹣1.故原方程组的解为.(2)①×3﹣②×2得,﹣13y=﹣39,解得,y=3,把y=3代入①得,2x﹣3×3=﹣5,解得x=2.故原方程组的解为.(3)原方程组可化为,①+②得,6x=36,x=6,①﹣②得,8y=﹣4,y=﹣.所以原方程组的解为.(4)原方程组可化为:,①×2+②得,x=,把x=代入②得,3×﹣4y=6,y=﹣.所以原方程组的解为.点评:利用消元法解方程组,要根据未知数的系数特点选择代入法还是加减法:①相同未知数的系数相同或互为相反数时,宜用加减法;②其中一个未知数的系数为1时,宜用代入法.3.解方程组:考点:解二元一次方程组.专题:计算题.分析:先化简方程组,再进一步根据方程组的特点选用相应的方法:用加减法.解答:解:原方程组可化为,①×4﹣②×3,得7x=42,解得x=6.把x=6代入①,得y=4.所以方程组的解为.点评:;二元一次方程组无论多复杂,解二元一次方程组的基本思想都是消元.消元的方法有代入法和加减法.4.解方程组:考点:解二元一次方程组.专题:计算题.分析:把原方程组化简后,观察形式,选用合适的解法,此题用加减法求解比较简单.解答:解:(1)原方程组化为,①+②得:6x=18,∴x=3.代入①得:y=.所以原方程组的解为.点评:要注意:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法.本题适合用此法.5.解方程组:考点:解二元一次方程组.专题:计算题;换元法.分析:本题用加减消元法即可或运用换元法求解.解答:解:,①﹣②,得s+t=4,①+②,得s﹣t=6,即,解得.所以方程组的解为.点评:此题较简单,要熟练解方程组的基本方法:代入消元法和加减消元法.6.已知关于x,y的二元一次方程y=kx+b 的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?考点:解二元一次方程组.专题:计算题.分析:(1)将两组x,y的值代入方程得出关于k、b 的二元一次方程组,再运用加减消元法求出k、b的值.(2)将(1)中的k、b代入,再把x=2代入化简即可得出y的值.(3)将(1)中的k、b和y=3代入方程化简即可得出x的值.解答:解:(1)依题意得:①﹣②得:2=4k,所以k=,所以b=.(2)由y=x+,把x=2代入,得y=.(3)由y=x+把y=3代入,得x=1.点评:本题考查的是二元一次方程的代入消元法和加减消元法,通过已知条件的代入,可得出要求的数.7.解方程组:(1);(2).考点:解二元一次方程组.分析:根据各方程组的特点选用相应的方法:(1)先去分母再用加减法,(2)先去括号,再转化为整式方程解答.解答:解:(1)原方程组可化为,①×2﹣②得:y=﹣1,将y=﹣1代入①得:x=1.∴方程组的解为;(2)原方程可化为,即,①×2+②得:17x=51,x=3,将x=3代入x﹣4y=3中得:y=0.∴方程组的解为.点评:这类题目的解题关键是理解解方程组的基本思想是消元,掌握消元的方法有:加减消元法和代入消元法.根据未知数系数的特点,选择合适的方法.8.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题应把方程组化简后,观察方程的形式,选用合适的方法求解.解答:解:原方程组可化为,①+②,得10x=30,x=3,代入①,得15+3y=15,y=0.则原方程组的解为.点评:解答此题应根据各方程组的特点,有括号的去括号,有分母的去分母,然后再用代入法或加减消元法解方程组.9.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.解答:解:原方程变形为:,两个方程相加,得4x=12,x=3.把x=3代入第一个方程,得4y=11,y=.解之得.点评:本题考查的是二元一次方程组的解法,方程中含有分母的要先化去分母,再对方程进行化简、消元,即可解出此类题目.10.解下列方程组:(1)(2)考点:解二元一次方程组.专题:计算题.分析:此题根据观察可知:(1)运用代入法,把①代入②,可得出x,y的值;(2)先将方程组化为整系数方程组,再利用加减消元法求解.解答:解:(1),由①,得x=4+y③,代入②,得4(4+y)+2y=﹣1,所以y=﹣,把y=﹣代入③,得x=4﹣=.所以原方程组的解为.(2)原方程组整理为,③×2﹣④×3,得y=﹣24,把y=﹣24代入④,得x=60,所以原方程组的解为.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.11.解方程组:(1)(2)考点:解二元一次方程组.专题:计算题;换元法.分析:方程组(1)需要先化简,再根据方程组的特点选择解法;方程组(2)采用换元法较简单,设x+y=a,x﹣y=b,然后解新方程组即可求解.解答:解:(1)原方程组可化简为,解得.(2)设x+y=a,x﹣y=b,∴原方程组可化为,解得,∴∴原方程组的解为.点评:此题考查了学生的计算能力,解题时要细心.12.解二元一次方程组:(1);(2).考点:解二元一次方程组.专题:计算题.分析:(1)运用加减消元的方法,可求出x、y的值;(2)先将方程组化简,然后运用加减消元的方法可求出x、y的值.解答:解:(1)将①×2﹣②,得15x=30,x=2,把x=2代入第一个方程,得y=1.则方程组的解是;(2)此方程组通过化简可得:,①﹣②得:y=7,把y=7代入第一个方程,得x=5.则方程组的解是.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.13.在解方程组时,由于粗心,甲看错了方程组中的a ,而得解为,乙看错了方程组中的b ,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.考点:解二元一次方程组.专题:计算题.分析:(1)把甲乙求得方程组的解分别代入原方程组即可;(2)把甲乙所求的解分别代入方程②和①,求出正确的a、b,然后用适当的方法解方程组.解答:解:(1)把代入方程组,得,解得:.把代入方程组,得,解得:.∴甲把a看成﹣5;乙把b看成6;(2)∵正确的a是﹣2,b是8,∴方程组为,解得:x=15,y=8.则原方程组的解是.点评:此题难度较大,需同学们仔细阅读,弄清题意再解答.14.考点:解二元一次方程组.分析:先将原方程组中的两个方程分别去掉分母,然后用加减消元法求解即可.解答:解:由原方程组,得,由(1)+(2),并解得x=(3),把(3)代入(1),解得y=∴原方程组的解为.点评:用加减法解二元一次方程组的一般步骤:1.方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等;2.把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;3.解这个一元一次方程;4.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解.15.解下列方程组:(1);(2).考点:解二元一次方程组.分析:将两个方程先化简,再选择正确的方法进行消元.解答:解:(1)化简整理为,①×3,得3x+3y=1500③,②﹣③,得x=350.把x=350代入①,得350+y=500,∴y=150.故原方程组的解为.(2)化简整理为,①×5,得10x+15y=75③,②×2,得10x﹣14y=46④,③﹣④,得29y=29,∴y=1.把y=1代入①,得2x+3×1=15,∴x=6.故原方程组的解为.点评:方程组中的方程不是最简方程的,最好先化成最简方程,再选择合适的方法解方程.16.解下列方程组:(1)(2)考点:解二元一次方程组.分析:观察方程组中各方程的特点,用相应的方法求解.解答:解:(1)①×2﹣②得:x=1,将x=1代入①得:2+y=4,y=2.∴原方程组的解为;(2)原方程组可化为,①×2﹣②得:﹣y=﹣3,y=3.将y=3代入①得:x=﹣2.∴原方程组的解为.点评:解此类题目要注意观察方程组中各方程的特点,采用加减法或代入法求解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二元一次方程组练习题一、选择题:1.下列方程中,是二元一次方程的是()A.3x-2y=4z B.6xy+9=0 C.1x+4y=6 D.4x=24y-2.下列方程组中,是二元一次方程组的是()A.228 423119 (23754624)x yx y a b xB C Dx y b c y x x y+= +=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩3.二元一次方程5a-11b=21 ()A.有且只有一解B.有无数解C.无解D.有且只有两解4.方程y=1-x与3x+2y=5的公共解是()A.3333...2422 x x x xB C Dy y y y==-==-⎧⎧⎧⎧⎨⎨⎨⎨===-=-⎩⎩⎩⎩5.若│x-2│+(3y+2)2=0,则的值是()A.-1 B.-2 C.-3 D.3 26.方程组43235x y kx y-=⎧⎨+=⎩的解与x与y的值相等,则k等于()7.下列各式,属于二元一次方程的个数有()①xy+2x-y=7;②4x+1=x-y;③1x+y=5;④x=y;⑤x2-y2=2⑥6x-2y ⑦x+y+z=1 ⑧y(y-1)=2y2-y2+xA.1 B.2 C.3 D.48.某年级学生共有246人,其中男生人数y比女生人数x的2倍少2人,•则下面所列的方程组中符合题意的有()A.246246216246... 22222222 x y x y x y x yB C Dy x x y y x y x+=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨=-=+=+=+⎩⎩⎩⎩二、填空题9.已知方程2x+3y-4=0,用含x的代数式表示y为:y=_______;用含y的代数式表示x为:x=________.10.在二元一次方程-12x+3y=2中,当x=4时,y=_______;当y=-1时,x=______.11.若x3m-3-2y n-1=5是二元一次方程,则m=_____,n=______.12.已知2,3xy=-⎧⎨=⎩是方程x-ky=1的解,那么k=_______.13.已知│x-1│+(2y+1)2=0,且2x-ky=4,则k=_____.14.二元一次方程x+y=5的正整数解有______________.15.以57xy=⎧⎨=⎩为解的一个二元一次方程是_________.16.已知2316x mx yy x ny=-=⎧⎧⎨⎨=--=⎩⎩是方程组的解,则m=_______,n=______.三、解答题17.当y=-3时,二元一次方程3x+5y=-3和3y-2ax=a+2(关于x,y的方程)•有相同的解,求a的值.18.如果(a-2)x+(b+1)y=13是关于x,y的二元一次方程,则a,b满足什么条件?19.二元一次方程组437(1)3x ykx k y+=⎧⎨+-=⎩的解x,y的值相等,求k.20.已知x,y是有理数,且(│x│-1)2+(2y+1)2=0,则x-y的值是多少?21.已知方程12x+3y=5,请你写出一个二元一次方程,•使它与已知方程所组成的方程组的解为41xy=⎧⎨=⎩.22.根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,•问明明两种邮票各买了多少枚?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;•若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?23.方程组2528x yx y+=⎧⎨-=⎩的解是否满足2x-y=8?满足2x-y=8的一对x,y的值是否是方程组2528x yx y+=⎧⎨-=⎩的解?24.(开放题)是否存在整数m,使关于x的方程2x+9=2-(m-2)x在整数范围内有解,你能找到几个m的值?你能求出相应的x的解吗?一、选择题1.D 解析:掌握判断二元一次方程的三个必需条件:①含有两个未知数;②含有未知数的项的次数是1;③等式两边都是整式.2.A 解析:二元一次方程组的三个必需条件:①含有两个未知数,②每个含未知数的项次数为1;③每个方程都是整式方程.3.B 解析:不加限制条件时,一个二元一次方程有无数个解.4.C 解析:用排除法,逐个代入验证.5.C 解析:利用非负数的性质.6.B7.C 解析:根据二元一次方程的定义来判定,•含有两个未知数且未知数的次数不超过1次的整式方程叫二元一次方程,注意⑧整理后是二元一次方程.8.B二、填空题9.424332x y--10.43-1011.43,2 解析:令3m-3=1,n-1=1,∴m=43,n=2.12.-1 解析:把2,3xy=-⎧⎨=⎩代入方程x-ky=1中,得-2-3k=1,∴k=-1.13.4 解析:由已知得x-1=0,2y+1=0,∴x=1,y=-12,把112xy=⎧⎪⎨=-⎪⎩代入方程2x-ky=4中,2+12k=4,∴k=1.14.解:12344321 x x x xy y y y====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩解析:∵x+y=5,∴y=5-x,又∵x,y均为正整数,∴x为小于5的正整数.当x=1时,y=4;当x=2时,y=3;当x=3,y=2;当x=4时,y=1.∴x+y=5的正整数解为12344321 x x x xy y y y====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩15.x+y=12 解析:以x与y的数量关系组建方程,如2x+y=17,2x-y=3等,此题答案不唯一.16.1 4 解析:将2316x mx yy x ny=-=⎧⎧⎨⎨=--=⎩⎩代入方程组中进行求解.三、解答题17.解:∵y=-3时,3x+5y=-3,∴3x+5×(-3)=-3,∴x=4,∵方程3x+5y=•-•3•和3x-2ax=a+2有相同的解,∴3×(-3)-2a×4=a+2,∴a=-11 9.18.解:∵(a-2)x+(b+1)y=13是关于x,y的二元一次方程,∴a-2≠0,b+1≠0,•∴a≠2,b≠-1解析:此题中,若要满足含有两个未知数,需使未知数的系数不为0.(•若系数为0,则该项就是0)19.解:由题意可知x=y,∴4x+3y=7可化为4x+3x=7,∴x=1,y=1.将x=1,y=•1•代入kx+(k-1)y=3中得k+k-1=3,∴k=2 解析:由两个未知数的特殊关系,可将一个未知数用含另一个未知数的代数式代替,化“二元”为“一元”,从而求得两未知数的值.20.解:由(│x│-1)2+(2y+1)2=0,可得│x│-1=0且2y+1=0,∴x=±1,y=-12.当x=1,y=-12时,x-y=1+12=32;当x=-1,y=-12时,x-y=-1+12=-12.解析:任何有理数的平方都是非负数,且题中两非负数之和为0,则这两非负数(│x│-1)2与(2y+1)2都等于0,从而得到│x│-1=0,2y+1=0.21.解:经验算41xy=⎧⎨=⎩是方程12x+3y=5的解,再写一个方程,如x-y=3.22.(1)解:设0.8元的邮票买了x枚,2元的邮票买了y枚,根据题意得130.8220x yx y+=⎧⎨+=⎩.(2)解:设有x只鸡,y个笼,根据题意得415(1)y xy x+=⎧⎨-=⎩.23.解:满足,不一定.解析:∵2528x yx y+=⎧⎨-=⎩的解既是方程x+y=25的解,也满足2x-y=8,•∴方程组的解一定满足其中的任一个方程,但方程2x-y=8的解有无数组,如x=10,y=12,不满足方程组25 28x yx y+=⎧⎨-=⎩.24.解:存在,四组.∵原方程可变形为-mx=7,∴当m=1时,x=-7;m=-1时,x=7;m=•7时,x=-1;m=-7时x=1.(注:文档可能无法思考全面,请浏览后下载,供参考。
可复制、编制,期待你的好评与关注)。