高等数学 空间解析几何与向量代数练习题与答案
北大版高等数学第五章 向量代数与空间解析几何答案 习题5.1
习题5.11.,,,,,().11,,().22ABCDAB AD AC DB MA M AC DB MA AM AC ===+=-=-=-=-+ 设为一平行四边形试用表示为平行四边形对角线的交点解a b.a b a b a b a b()2.,1().211221().2M AB O OM OA OB OM OA AM OA AB OA OB OA OA OB =+=+=+=+-=+设为线段的中点,为空间中的任意一点证明证3.,,1().3221()3321(),31(),3M ABC O OM OA OB OC OM OA AM OA AD OA AB AC OA AB AC OM OB BA BC OM OC =++=+=+=+⨯+=++=++=设为三角形的重心为空间中任意一点证明证1().313,().3CA CB OM OA OB OC OM OA OB OC ++=++=++4.,1,().41(),211(),(),221().24ABCD M O OM OA OB OC OD OM OA AM OA AB AD OM OB BA AD OM OC BA DA OM OD AB DA OM OA OB OC OD =+++=+=++=++=++=++=+++ 设平行四边形的对角线交点为为空间中的任意一点证明证1,().4OM OA OB OC OD =+++2222225.?(1)()();(2)();(3)()().(1).:()().(2).:()0, 1.(3),6.==⨯=⨯======0 对于任意三个向量与判断下列各式是否成立不成立例如,不成立例如,成立都是与组成的平行六面体的有向体积利用向量证明三角形两边中点的连线平行解a,b c,a b c b c a a b a b a b c c a b a b i c =j.a b c =j,b c a =a i b j,a b a b a,b c .,112211().22DE DA AE BA ACBA AC BC =+=+=+=于第三边并且等于第三边长度之半.证2227.:(1),;(2).(1)()()()()||||0.()cos |||||||||||||AC BD AB BC BC CD AB BC BC CD BC CD AB AC AB AB AD AB AB AB AD a AB ADAB AC AB AC AB AC α=++=+-=-=+++===利用向量证明菱形的对角线互相垂直且平分顶角勾股弦定理证2,||()cos cos .|||||||||||,.a AC AD AB AD AD AB AD AD a AB ADAB AC AB AC a AC βααβαβ+++===== 与都是锐角故 22222(2)||()()||||2||||.ACAC AC AB BC AB BC AB BC AB BC AB BC ==++=++=+2222222222222222228.()()||||.()()||||cos ||||sin ||||(cos sin )||||.9..||.AB AC ABC ABC ABDC AB AC αααα⨯+=⨯+=+=+=∆=⨯证明恒等式试用向量与表示三角形的面积11的面积=的面积22证解a b a b a b a b a b a b a b a b a b222222222210.,,,()()2().()()()()()()222().=++-=+++-=+++--=-+ 给定向量记为即现设为任意向量证明证a a a a a a a.a b , :a b a b a b a b a b a b a b a b a b a a +b b +a b +a a +b b a b =a b2222222222211.,,:().:()||(||sin )||sin ||.,αα⨯≤⨯=⨯==≤=对于任意向量证明问等号成立的充分必要条件是什么?等号成立的充分必要条件是正交证22a b a b a b a b a b a ||b a ||b a ||b a b a b .。
[整理]7空间解析几何与向量代数习题与答案
第七章 空间解析几何与向量代数A一、1、 平行于向量)6,7,6(-=a 的单位向量为______________.2、 设已知两点)2,0,3()1,2,4(21M M 和,计算向量21M M 的模,方向余弦和方向角.3、 设k j i p k j i n k j i m 45,742,853-+=--=++=,求向量p n m a -+=34在x 轴上的投影,及在y 轴上的分向量. 二、1、设k j i b k j i a -+=--=2,23,求(1)b a b a b a b a 23)2)(2(⨯⋅-⨯⋅及;及(3)a 、b 的夹角的余弦.2、知)3,1,3(),1,3,3(),2,1,1(321M M M -,求与3221,M M M M 同时垂直的单位向量.3、设)4,1,2(),2,5,3(=-=b a ,问μλ与满足_________时,轴z b a ⊥+μλ.三、1、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________.2、方程0242222=++-++z y x z y x 表示______________曲面.3、1)将xOy 坐标面上的x y 22=绕x 轴旋转一周,生成的曲面方程为 _______________,曲面名称为___________________.2)将xOy 坐标面上的x y x 222=+绕x 轴旋转一周,生成的曲面方程 _____________,曲面名称为___________________.3)将xOy 坐标面上的369422=-y x 绕x 轴及y 轴旋转一周,生成的曲面方 程为_____________,曲面名称为_____________________.4)在平面解析几何中2x y =表示____________图形。
在空间解析几何中2x y =表示______________图形.5)画出下列方程所表示的曲面 (1))(4222y x z +=(2))(422y x z += 四、1、指出方程组⎪⎩⎪⎨⎧==+319y 4x 22y 在平面解析几何中表示____________图形,在空间解 析几何中表示______________图形.2、求球面9222=++z y x 与平面1=+z x 的交线在xOy 面上的投影方程.3、求上半球2220y x a z --≤≤与圆柱体)0(22>≤+a ax y x 的公共部分在xOy 面及xOz 面上的投影.五、1、求过点(3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程.2、求过点(1,1,-1),且平行于向量a =(2,1,1)和b =(1,-1,0)的平面方程.3、求平行于xOz 面且过点(2,-5,3)的平面方程.4、求平行于x 轴且过两点(4,0,-2)和(5,1,7)的平面方程. 六、1、求过点(1,2,3)且平行于直线51132-=-=z y x 的直线方程.2、求过点(0,2,4)且与两平面12=+z x ,23=-z y 平行的直线方程.3、求过点(2,0,-3)且与直线⎩⎨⎧=+-+=-+-012530742z y x z y x 垂直的平面方程.4、求过点(3,1,-2)且通过直线12354zy x =+=-的平面方程.5、求直线⎩⎨⎧=--=++03z y x z y x 与平面01=+--z y x 的夹角.6、求下列直线与直线、直线与平面的位置关系 1)直线⎩⎨⎧=++-=-+7272z y x z y x 与直线11321-=--=-zy x ; 2)直线431232--=+=-z y x 和平面x+y+z=3.7、求点(3,-1,2)到直线⎩⎨⎧=-+-=+-+04201z y x z y x 的距离.B1、已知0=++c b a (c b a ,,为非零矢量),试证:a c c b b a ⨯=⨯=⨯.2、),(},1,1,1{,3b a b a b a ∠=⨯=⋅求.3、已知a 和b 为两非零向量,问t 取何值时,向量模||tb a +最小?并证明此时)(tb a b +⊥.4、求单位向量n ,使a n ⊥且x n ⊥轴,其中)8,6,3(=a .5、求过z 轴,且与平面052=-+z y x 的夹角为3π的平面方程.6、求过点)2,1,4(1M ,)1,5,3(2--M ,且垂直于07326=++-z y x 的平面.7、求过直线⎩⎨⎧=--+=-+-022012z y x z y x ,且与直线2l :211zy x =-=平行的平面.8、求在平面π:1=++z y x 上,且与直线⎩⎨⎧-==11z y L :垂直相交的直线方程.9、设质量为kg 100的物体从空间点)8,1,3(1M ,移动到点)2,4,1(2M ,计算重力所做的功(长度单位为m ).10、求曲线⎩⎨⎧==-+30222z x z y 在xoy 坐标面上的投影曲线的方程,并指出原曲线是什么曲线?11、已知k j OB k i OA 3,3+=+=,求OAB ∆的面积12、.求直线⎩⎨⎧=---=+-0923042z y x z y x 在平面14=+-z y x 上的投影直线方程.C1、设向量c b a ,,有相同起点,且0=++c b a γβα,其中0=++γβα,γβα,,不全为零,证明:c b a ,,终点共线.2、求过点)1,2,1(0-M ,且与直线L :121122=--=+y x 相交成3π角的直线方程. 3、过)4,0,1(-且平行于平面01043=-+-z y x 又与直线21311zy x =-=+相交的直线方程.4、求两直线1L :1101-=-=-z y x 与直线2L :0236+=-=z y x 的最短距离. 5、柱面的准线是xoy 面上的圆周(中心在原点,半径为1),母线平行于向量}1,1,1{=g ,求此柱面方程.6、设向量a,b 非零,3),(,2π==b a b ,求xaxb a x -+→0lim.7、求直线⎪⎩⎪⎨⎧--==)1(212:y z y x L 绕y 轴旋转一周所围成曲面方程. 第七章 空间解析几何与向量代数习 题 答 案A一、1、⎩⎨⎧⎭⎬⎫-±116,117,116 2、21M M =2,21cos ,22cos ,21cos ==-=γβα,3,43,32πγπβπα=== 3、a 在x 轴上的投影为13,在y 轴上的分量为7j 二、1、1)3)1()2(2)1(13=-⋅-+⋅-+⋅=⋅b ak j i k j ib a 75121213++=---=⨯(2)18)(63)2(-=⋅-=⋅-b a b a ,k j i b a b a 14210)(22++=⨯=⨯ (3)2123),cos(^=⋅⋅=b a b a b a 2、}2,2,0{},1,4,2{3221-=-=M M M Mk j i kj iM M M M a 4462201423221--=--=⨯= }1724,1724,1726{--±=±a a 即为所求单位向量。
空间解析几何与向量代数习题与答案
第七章 空间解析几何与向量代数A一、1、平行于向量)6,7,6(-=a 的单位向量为______________.2、设已知两点)2,0,3()1,2,4(21M M 和,计算向量21M M 的模,方向余弦和方向角.3、设k j i p k j i n k j i m 45,742,853-+=--=++=,求向量p n m a -+=34在x 轴上的投影,及在y 轴上的分向量. 二、1、设k j i b k j i a -+=--=2,23,求(1)b a b a b a b a 23)2)(2(⨯⋅-⨯⋅及;及(3)a 、b 的夹角的余弦.2、知)3,1,3(),1,3,3(),2,1,1(321M M M -,求与3221,M M M M 同时垂直的单位向量.3、设)4,1,2(),2,5,3(=-=b a ,问μλ与满足_________时,轴z b a ⊥+μλ. 三、1、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________.2、方程0242222=++-++z y x z y x 表示______________曲面. 3、1)将xOy 坐标面上的x y 22=绕x 轴旋转一周,生成的曲面方程为_______________,曲面名称为___________________.2)将xOy 坐标面上的x y x 222=+绕x 轴旋转一周,生成的曲面方程 _____________,曲面名称为___________________.3)将xOy 坐标面上的369422=-y x 绕x 轴及y 轴旋转一周,生成的曲面方 程为_____________,曲面名称为_____________________.4)在平面解析几何中2x y =表示____________图形。
在空间解析几何中2x y =表示______________图形.5)画出下列方程所表示的曲面 (1))(4222y x z += (2))(422y x z += 四、1、指出方程组⎪⎩⎪⎨⎧==+319y 4x 22y 在平面解析几何中表示____________图形,在空间解 析几何中表示______________图形.2、求球面9222=++z y x 与平面1=+z x 的交线在xOy 面上的投影方程. 3、求上半球2220y x a z --≤≤与圆柱体)0(22>≤+a ax y x 的公共部分在xOy 面及xOz 面上的投影. 五、1、求过点(3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程.2、求过点(1,1,-1),且平行于向量a =(2,1,1)和b =(1,-1,0)的平面方程.3、求平行于xOz 面且过点(2,-5,3)的平面方程.4、求平行于x 轴且过两点(4,0,-2)和(5,1,7)的平面方程. 六、1、求过点(1,2,3)且平行于直线51132-=-=z y x 的直线方程. 2、求过点(0,2,4)且与两平面12=+z x ,23=-z y 平行的直线方程.3、求过点(2,0,-3)且与直线⎩⎨⎧=+-+=-+-012530742z y x z y x 垂直的平面方程.4、求过点(3,1,-2)且通过直线12354zy x =+=-的平面方程. 5、求直线⎩⎨⎧=--=++003z y x z y x 与平面01=+--z y x 的夹角.6、求下列直线与直线、直线与平面的位置关系 1)直线⎩⎨⎧=++-=-+7272z y x z y x 与直线11321-=--=-zy x ; 2)直线431232--=+=-z y x 和平面x+y+z=3. 7、求点(3,-1,2)到直线⎩⎨⎧=-+-=+-+04201z y x z y x 的距离.B1、已知0=++c b a (c b a ,,为非零矢量),试证:a c c b b a ⨯=⨯=⨯.2、),(},1,1,1{,3b a b a b a ∠=⨯=⋅求.3、已知和为两非零向量,问取何值时,向量模||tb a +最小?并证明此时)(tb a b +⊥.4、求单位向量,使a n ⊥且x n ⊥轴,其中)8,6,3(=a .5、求过轴,且与平面052=-+z y x 的夹角为3π的平面方程. 6、求过点)2,1,4(1M ,)1,5,3(2--M ,且垂直于07326=++-z y x 的平面.7、求过直线⎩⎨⎧=--+=-+-022012z y x z y x ,且与直线:211zy x =-=平行的平面.8、求在平面:1=++z y x 上,且与直线⎩⎨⎧-==11z y L :垂直相交的直线方程.9、设质量为kg 100的物体从空间点)8,1,3(1M ,移动到点)2,4,1(2M ,计算重力所做的功(长度单位为).10、求曲线⎩⎨⎧==-+30222z x z y 在xoy 坐标面上的投影曲线的方程,并指出原曲线是什么曲线?11、已知k j OB k i OA 3,3+=+=,求OAB ∆的面积 12、.求直线⎩⎨⎧=---=+-0923042z y x z y x 在平面14=+-z y x 上的投影直线方程.C1、设向量c b a ,,有相同起点,且0=++c b a γβα,其中0=++γβα,γβα,,不全为零,证明:c b a ,,终点共线.2、求过点)1,2,1(0-M ,且与直线:121122=--=+y x 相交成3π角的直线方程. 3、过)4,0,1(-且平行于平面01043=-+-z y x 又与直线21311zy x =-=+相交的直线方程. 4、求两直线:1101-=-=-z y x 与直线:0236+=-=z y x 的最短距离. 5、柱面的准线是xoy 面上的圆周(中心在原点,半径为1),母线平行于向量}1,1,1{=g ,求此柱面方程.6、设向量a,b 非零,3),(,2π==b a b ,求xaxb a x -+→0lim.7、求直线⎪⎩⎪⎨⎧--==)1(212:y z y x L 绕y 轴旋转一周所围成曲面方程. 第七章 空间解析几何与向量代数习 题 答 案A一、1、⎩⎨⎧⎭⎬⎫-±116,117,116 2、21M M =2,21cos ,22cos ,21cos ==-=γβα,3,43,32πγπβπα=== 3、在x 轴上的投影为13,在y 轴上的分量为7j 二、1、1)3)1()2(2)1(13=-⋅-+⋅-+⋅=⋅b ak j i k j i b a 75121213++=---=⨯(2)18)(63)2(-=⋅-=⋅-b a b a ,k j i b a b a 14210)(22++=⨯=⨯ (3)2123),cos(^=⋅⋅=b a b a b a 2、}2,2,0{},1,4,2{3221-=-=M M M Mk j i kj iM M M M a 4462201423221--=--=⨯= }1724,1724,1726{--±=±a a 即为所求单位向量。
高等数学 空间解析几何与向量代数练习题与答案(优选.)
最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改空间解析几何与矢量代数小练习一 填空题 5’x9=45分1、 平行于向量)6,7,6(-=a 的单位向量为______________.2、 设已知两点)2,0,3()1,2,4(21M M 和,计算向量21M M 的模_________________, 方向余弦_________________和方向角_________________3、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________.4、方程0242222=++-++z y x z y x 表示______________曲面.5、方程22x y z +=表示______________曲面.6、222x y z +=表示______________曲面.7、 在空间解析几何中2x y =表示______________图形.二 计算题 11’x5=55分1、求过点(3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程.2、求平行于x 轴且过两点(4,0,-2)和(5,1,7)的平面方程.3、求过点(1,2,3)且平行于直线51132-=-=z y x 的直线方程.4、求过点(2,0,-3)且与直线⎩⎨⎧=+-+=-+-012530742z y x z y x 垂直的平面方5、已知:k i OA 3+=,k j OB 3+=,求OAB ∆的面积。
参考答案一 填空题1、⎩⎨⎧⎭⎬⎫-±116,117,1162、21M M =2,21cos ,22cos ,21cos ==-=γβα,3,43,32πγπβπα=== 3、14)2()3()1(222=++-+-z y x4、以(1,-2,-1)为球心,半径为6的球面5、旋转抛物面6、 圆锥面7、 抛物柱面二 计算题1、04573=-+-z y x2、029=--z y3、531221-=-=-z y x 4、065111416=---z y x5 219==∆S最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改赠人玫瑰,手留余香。
(完整版)高数A1空间解析几何与向量代数(答案)
第八章 空间解析几何与向量代数1.自点()0000,,z y x P 分别作各坐标面和各坐标轴的垂线,写出各垂足的坐标。
解:按作图规则作出空间直角坐标系,作出如图平行六面体。
xoy D P ⊥0平面,垂足D 的坐标为()0,,00y x ;yoz E P ⊥0平面,垂足E 的坐标为()00,,0z y ;zox F P ⊥0平面,垂足F 的坐标为()00,0,z x ;x A P ⊥0轴,垂足A 的坐标为()0,0,0x ;y B P ⊥0轴,垂足B 的坐标为()0,,00y ; z C P ⊥0轴,垂足C 的坐标为()0,0,0z 。
2.在yoz 平面上,求与三点()2,1,3A 、()2,2,4--B 和()1,5,0C 等距离的点。
解:设所求点为(),,,0z y P 则()()2222213||-+-+=z y PA , ()()2222224||++++=z y PB ,()()22215||-+-=z y PC 。
由于P 与A 、B 、C 三点等距,故222||||||PC PB PA ==,于是有:()()()()()()()()⎪⎩⎪⎨⎧-+-=++++-+-=-+-+22222222221522415213z y z y z y z y , 解此方程组,得1=y ,2-=z ,故所求的点为()2,1,0-P 。
3.已知()2,2,21M ,()0,3,12M ,求21M M 的模、方向余弦与方向角。
解:由题设知:{}{},2,1,120,23,2121--=---=M M 则()(),2211222=-++-=21cos -=α,21cos =β,22cos -=γ,于是,32πα=,3πβ=,43πγ=。
4.已知{}1,5,3-=,{}3,2,2=,{}3,1,4--=,求下列各向量的坐标: (1)2;(2)-+;(3)432+-;(4).n m +解:(1) {}2,10,62-=;(2){}5,8,1=-+;(3){}23,0,16432-=+-; (4){}.3,25,23n m n m n m b n a m +-++=+5.设向量的方向余弦分别满足(1)0cos =α;(2)1cos =β;(3)0cos cos ==βα,问这些向量与坐标轴或坐标面的关系如何?解:(1)0cos =α,向量与x 轴的夹角为2π,则向量与x 轴垂直或平行于yoz 平面;(2)1cos =β,向量与y 轴的夹角为0,则向量与y 轴同向;(3)0cos cos ==βα,则向量既垂直于x 轴,又垂直于y 轴,即向量垂直于xoy 面。
(完整版)空间解析几何与向量代数习题与答案
第七章 空间解析几何与向量代数A一、1、平行于向量)6,7,6(-=a 的单位向量为______________.2、设已知两点)2,0,3()1,2,4(21M M 和,计算向量21M M 的模,方向余弦和方向角.3、设k j i p k j i n k j i m 45,742,853-+=--=++=,求向量p n m a -+=34在x 轴上的投影,及在y 轴上的分向量. 二、1、设k j i b k j i a -+=--=2,23,求(1)b a b a b a b a 23)2)(2(⨯⋅-⨯⋅及;及(3)a 、b 的夹角的余弦.2、知)3,1,3(),1,3,3(),2,1,1(321M M M -,求与3221,M M M M 同时垂直的单位向量.3、设)4,1,2(),2,5,3(=-=b a ,问μλ与满足_________时,轴z b a ⊥+μλ. 三、1、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________.2、方程0242222=++-++z y x z y x 表示______________曲面. 3、1)将xOy 坐标面上的x y 22=绕x 轴旋转一周,生成的曲面方程为_______________,曲面名称为___________________.2)将xOy 坐标面上的x y x 222=+绕x 轴旋转一周,生成的曲面方程 _____________,曲面名称为___________________.3)将xOy 坐标面上的369422=-y x 绕x 轴及y 轴旋转一周,生成的曲面方 程为_____________,曲面名称为_____________________.4)在平面解析几何中2x y =表示____________图形。
在空间解析几何中2x y =表示______________图形.5)画出下列方程所表示的曲面 (1))(4222y x z += (2))(422y x z += 四、1、指出方程组⎪⎩⎪⎨⎧==+319y 4x 22y 在平面解析几何中表示____________图形,在空间解 析几何中表示______________图形.2、求球面9222=++z y x 与平面1=+z x 的交线在xOy 面上的投影方程. 3、求上半球2220y x a z --≤≤与圆柱体)0(22>≤+a ax y x 的公共部分在xOy 面及xOz 面上的投影. 五、1、求过点(3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程.2、求过点(1,1,-1),且平行于向量a =(2,1,1)和b =(1,-1,0)的平面方程.3、求平行于xOz 面且过点(2,-5,3)的平面方程.4、求平行于x 轴且过两点(4,0,-2)和(5,1,7)的平面方程. 六、1、求过点(1,2,3)且平行于直线51132-=-=z y x 的直线方程. 2、求过点(0,2,4)且与两平面12=+z x ,23=-z y 平行的直线方程.3、求过点(2,0,-3)且与直线⎩⎨⎧=+-+=-+-012530742z y x z y x 垂直的平面方程.4、求过点(3,1,-2)且通过直线12354zy x =+=-的平面方程. 5、求直线⎩⎨⎧=--=++003z y x z y x 与平面01=+--z y x 的夹角.6、求下列直线与直线、直线与平面的位置关系 1)直线⎩⎨⎧=++-=-+7272z y x z y x 与直线11321-=--=-zy x ; 2)直线431232--=+=-z y x 和平面x+y+z=3. 7、求点(3,-1,2)到直线⎩⎨⎧=-+-=+-+04201z y x z y x 的距离.B1、已知0=++c b a (c b a ,,为非零矢量),试证:a c c b b a ⨯=⨯=⨯.2、),(},1,1,1{,3b a b a b a ∠=⨯=⋅求.3、已知和为两非零向量,问取何值时,向量模||tb a +最小?并证明此时)(tb a b +⊥.4、求单位向量,使a n ⊥且x n ⊥轴,其中)8,6,3(=a .5、求过轴,且与平面052=-+z y x 的夹角为3π的平面方程. 6、求过点)2,1,4(1M ,)1,5,3(2--M ,且垂直于07326=++-z y x 的平面.7、求过直线⎩⎨⎧=--+=-+-022012z y x z y x ,且与直线:211zy x =-=平行的平面.8、求在平面:1=++z y x 上,且与直线⎩⎨⎧-==11z y L :垂直相交的直线方程.9、设质量为kg 100的物体从空间点)8,1,3(1M ,移动到点)2,4,1(2M ,计算重力所做的功(长度单位为).10、求曲线⎩⎨⎧==-+30222z x z y 在xoy 坐标面上的投影曲线的方程,并指出原曲线是什么曲线?11、已知k j OB k i OA 3,3+=+=,求OAB ∆的面积 12、.求直线⎩⎨⎧=---=+-0923042z y x z y x 在平面14=+-z y x 上的投影直线方程.C1、设向量c b a ,,有相同起点,且0=++c b a γβα,其中0=++γβα,γβα,,不全为零,证明:c b a ,,终点共线.2、求过点)1,2,1(0-M ,且与直线:121122=--=+y x 相交成3π角的直线方程. 3、过)4,0,1(-且平行于平面01043=-+-z y x 又与直线21311zy x =-=+相交的直线方程. 4、求两直线:1101-=-=-z y x 与直线:0236+=-=z y x 的最短距离. 5、柱面的准线是xoy 面上的圆周(中心在原点,半径为1),母线平行于向量}1,1,1{=g ,求此柱面方程.6、设向量a,b 非零,3),(,2π==b a b ,求xaxb a x -+→0lim.7、求直线⎪⎩⎪⎨⎧--==)1(212:y z y x L 绕y 轴旋转一周所围成曲面方程. 第七章 空间解析几何与向量代数习 题 答 案A一、1、⎩⎨⎧⎭⎬⎫-±116,117,116 2、21M M =2,21cos ,22cos ,21cos ==-=γβα,3,43,32πγπβπα=== 3、在x 轴上的投影为13,在y 轴上的分量为7j 二、1、1)3)1()2(2)1(13=-⋅-+⋅-+⋅=⋅b ak j i k j i b a 75121213++=---=⨯(2)18)(63)2(-=⋅-=⋅-b a b a ,k j i b a b a 14210)(22++=⨯=⨯ (3)2123),cos(^=⋅⋅=b a b a b a 2、}2,2,0{},1,4,2{3221-=-=M M M Mk j i kj iM M M M a 4462201423221--=--=⨯= }1724,1724,1726{--±=±a a 即为所求单位向量。
(完整版)高等数学空间解析几何与向量代数练习题与答案.doc
空间解析几何与矢量代数小练习一填空题 5 ’x9=45 分1、平行于向量a(6,7, 6) 的单位向量为______________.2、设已知两点M1( 4, 2 ,1)和 M 2 (3,0,2) ,计算向量M1M2的模_________________,方向余弦 _________________和方向角 _________________3、以点 (1,3,-2) 为球心,且通过坐标原点的球面方程为__________________.4、方程x2 y 2 z 2 2x 4 y 2z 0 表示______________曲面.5、方程x2 y2 z 表示______________曲面.6、x2 y2 z2 表示 ______________曲面 .7、在空间解析几何中y x2 表示 ______________图形 .二计算题11 ’x5=55 分1、求过点 (3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程.2、求平行于x 轴且过两点 (4,0,-2)和(5,1,7)的平面方程.3、求过点 (1,2,3) 且平行于直线xy 3z 1的直线方程 .2 1 54、求过点 (2,0,-3)x 2 y 4z 7 0且与直线5 y 2z 1垂直的平面方3x 05、已知:OA i 3k ,OB j 3k ,求OAB 的面积。
1参考答案一 填空题1、6 ,7 ,611 11 112、 M 1 M 2 =2, cos1,cos2,cos1 ,2 ,3 ,2223433、 ( x 1) 2( y3) 2 ( z2) 2144、以 (1,-2,-1) 为球心 , 半径为6 的球面5、旋转抛物面6、 圆锥面7、 抛物柱面二 计算题1、 3x 7y 5 z 4 0 2 、 9 y z 2 0 3、x 1y 2 z34、 16x 14y 11z 65 02155 S1OA OB 19222。
(完整版)高等数学空间解析几何与向量代数练习题与答案
空间解析几何与矢量代数小练习一填空题 5’x9=45分1、平行于向量a=(6,7,-6)的单位向量为______________.2、设已知两点M1(4,2,1)和M2(3,0,2),计算向量M1M2的模_________________,方向余弦_________________和方向角_________________3、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________.4、方程x2+y2+z2-2x+4y+2z=0表示______________曲面.5、方程x2+y2=z表示______________曲面.6、x2+y2=z2表示______________曲面.7、在空间解析几何中y=x2表示______________图形.二计算题 11’x5=55分1、求过点(3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程.2、求平行于x轴且过两点(4,0,-2)和(5,1,7)的平面方程.3、求过点(1,2,3)且平行于直线x y-3z-12=1=5的直线方程.4、求过点(2,0,-3)且与直线⎧⎨x-2y+4z-7=0⎩3x+5y-2z+1=0垂直的平面方5、已知:OA=ϖi+3kϖ,OB=ϖj+3kϖ,求∆OAB的面积。
参考答案一填空题1、±⎨⎧67-6⎫⎩11,11,11⎬⎭2、M 11M 2=2,cos α=-2,cos β=22,cos γ=12,α=2π3,β=3ππ4,γ=33、(x -1)2+(y -3)2+(z +2)2=144、以(1,-2,-1)为球心,半径为6的球面5、旋转抛物面6、圆锥面7、抛物柱面二计算题1、3x -7y +5z -4=02、9y -z -2=03、x -1y -2z -32=1=5 4、16x -14y -11z -65=05S ∆=12OA ⨯OB =192。
向量代数与空间解析几何试题B答案及解析
向量代数与空间解析几何试题答案一.选择题1. 设a ={1,-1,3}, b ={2,-1,2},求c =3a -2b 是:( B )(A ){-1,1,5}. ( B ) {-1,-1,5}. ( C ) {1,-1,5}. (D ){-1,-1,6}.2. 设234,5=+-=-+a i j k b i j k ,则向量2=-c a b 在x 轴上的分向量是(B ).(A )7 ( B ) i 1- ( C ) –1; ( D ) -9k3.直线37423 :z y x L =-+=-+与平面3224 :=--πz y x 的关系为( A ) (A )平行,但直线不在平面上; (B )直线在平面上;(C )垂直相交; (D )相交但不垂直。
4. 求两平面032=--+z y x 和052=+++z y x 的夹角是:( C )(A )2π (B )4π (C )3π (D )π 5. 方程组2222491x y z x ⎧++=⎪⎨=⎪⎩ 表示 ( B ). (A ) 椭球面; ( B) 1=x 平面上的椭圆;(C ) 椭圆柱面; ( D) 空间曲线在1=x 平面上的投影.6. 已知)1,1,0(),0,2,1(-==→→b a ,则=+→→b a ( B )A. ;3B. ;3 C. 0; D. 1.二.填空题1. 设向量2a i j k =-+,42b i j k λ=-+,当=λ___2___时,a 与b 平行;2.4=2=,24=⋅b a=3. 通过原点且垂直于直线228:325x y z l -+-==-的平面方程为 . 4.曲线L :⎩⎨⎧-==+ 1222x z z y x ,在平面xoz 上的投影曲线的方程为2210z x z x y ⎧=⎪=-⎨⎪=⎩。
5.平面xoz 上的抛物线x z 52=绕x 轴旋转而成的旋转曲面的方程为x z y 522=+。
三.判断1、若a b a c +=+,则b c = 。
空间解析几何与向量代数复习题(答案).doc
第八章空间解析几何与向量代数答案一、选择题1. 已知 A(1,0,2), B(1,2,1)是空间两点,向量 AB 的模是( A )A 5B 3C 6D 92. 设 a=( 1,-1,3), b=(2,-1,2),求 c=3a-2b 是( B )A (-1,1,5) .B (-1,-1,5).C (1,-1,5) .D (-1,-1,6) .3. 设 a=( 1,-1,3), b=(2, 1,-2),求用标准基 i, j, k 表示向量 c=a-b 为( A )A -i -2j+5kB -i-j+3kC -i-j+5kD -2i-j+5k4. 求两平面x2 y z3 0 和 2x y z 5的夹角是( C )A2 B4C D35. 已知空间三点 M(1,1,1)、A(2,2,1)和 B(2,1,2),求∠ AMB 是( C)A2 B4C3D x y 1 z 26. 求点 M (2, 1,10)到直线 L:3 2 1 的距离是:(A )A 138B 118C 158D 17.r r r r r r r r rD )设 a i k , b 2i 3 j k , 求 a b 是:(A -i-2j+5kB -i-j+3kC -i-j+5kD 3i-3j+3k8. 设⊿ ABC 的顶点为A(3,0,2), B(5,3,1), C (0, 1,3) ,求三角形的面积是:(A )3 6B 4 6 2D 3A2 3 C39.求平行于 z 轴,且过点M1(1,0,1)和M2(2, 1,1)的平面方程是:(D)A 2x+3y=5=0B x-y+1=0C x+y+1=0D x y 1 0 .10、若非零向量a,b满足关系式 a b a b ,则必有( C );A a b = a b ;B a b ;C a b = 0 ;D a b = 0 .11、设a, b为非零向量,且a b ,则必有( C )A a b a bB a b a bC a b a bD a b a b12、已知 a = 2, 1,2 ,b = 1, 3,2 ,则 Pr j b a = ( D );A 5 ;B 5;C 3;D5 .314、直线 x 1 y 1 z 1 与平面 2x y z4 0 的夹角为(B )1310 1A;B3 ;C4 ;D.6214、点 (1,1,1)在平面 x 2y z 10 的投影为 (A )(A ) 1 ,0,3; ( B )1,0,3; ( C ) 1, 1,0 ;(D ) 1 , 1, 1.2 222 2215、向量 a 与 b 的数量积 a b =( C ).A arj b a ;Barj a b ; C a rj a b ; Dbrj a b .16、非零向量 a, b 满足 a b 0 ,则有( C ).Aa ∥b ;Bab ( 为实数 ); Ca b ; Da b0 .17、设 a 与 b 为非零向量,则 a b0是( A ).Aa ∥b 的充要条件;B a ⊥ b 的充要条件 ;Ca b 的充要条件;D a ∥ b 的必要但不充分的条件.18、设 a 2i 3 j 4k , b 5i j k ,则向量 c2a b 在 y 轴上的分向量是( B ).A 7B 7 jC –1;D -9k19、方程组2x 2 y 2 4 z 2 9 x 1表示 (B) .A 椭球面;B x 1 平面上的椭圆;C 椭圆柱面;D 空间曲线在 x 1平面上的投影 .20、方程 x 2y 20 在空间直角坐标系下表示 ( C) .A 坐标原点 (0,0,0) ;B xoy 坐标面的原点 (0,0) ;C z 轴;D xoy 坐标面 .21、设空间直线的对称式方程为x y z则该直线必( A).1 2A 过原点且垂直于 x 轴;B 过原点且垂直于 y 轴;C 过原点且垂直于 z 轴;D 过原点且平行于 x 轴.22、设空间三直线的方程分别为: x 3 y 4 z; x 3tx 2 y z 1 0L1 L2 : y 1 3t ; L3 : ,则必有( D ) .2 53 z 2 7t 2x y z 0A L1∥L2;B L1∥L3;C L2 L3;D L1 L2.、直线x 3 y 4 z 与平面的关系为 ( A ).232 734 x 2 y 2z 3A 平行但直线不在平面上;B 直线在平面上;C 垂直相交;D 相交但不垂直.24、已知a 1, b 2 ,且 (a, b) , 则 a b = ( D ).4A 1;B 1 2 ;C 2;D 5 .25、下列等式中正确的是 ( C ).A i j k ;B i j k ;C i i j j ;D i i i i .26、曲面x2 y 2 z 在xoz 平面上的截线方程为(D).A x2 z ;B y2 z ;C x2 y2 0;D x2 z .x 0 z 0 y 0 二、计算题1.已知M12,2, 2 , M 2 1,3,0 ,求 M 1M 2 的模、方向余弦与方向角。
1_第五章_空间解析几何与向量代数习题与答案
解法 2.
在平面上任取一点 M (x, y, z) ,则 MM1
M1M
2
和
n1
{6,2,3} 共面,由三
x 4 y 1 z 2 向量共面的充要条件得 6 2 3 0 ,整理得所求平面方程
7 4 3
5、思路:用平面束。设过直线 l1 的平面束方程为 x 2y z 1 (2x y z 2) 0
二、1、1) a b 31 (1) 2 (2) (1) 3
2
ij k a b 3 1 2 5i j 7k
1 2 1
(2) (2a) 3b 6(a b) 18 , a 2b 2(a b) 10i 2 j 14k
即为所求单位向量。 3、 2
三、1、 (x 1)2 (y 3)2 (z 2)2 14
2、以(1,-2,-1)为球心,半径为 6 的球面
四、1、 3x 7 y 5z 4 0
2、1 (x 1) 1 ( y 1) 3(z 1) 0
3、 y 5 0
5
21
5、求直线
x x
y y
3z 0 z0
与平面
x
y
z
1
0
的夹角.
6、求下列直线与直线、直线与平面的位置关系
1)直线
x
2y 2x
y
z
z
7
7
与直线
x 1 2
y3 1
z; 1
2)直线 x 2 y 2 z 3 和平面 x+y+z=3.
专转本高等数学向量代数和空间解析几何随堂练习题含答案
D 、两个点。
⎧ 2 y2 z2
⎪ 19、⎨
x
4
9
1在空间直角坐标系里表示(
);
⎪⎩ x 1
A、一个点;
B 、平面 x 1 ; C 、椭圆 y2 z2 1 49
D 、椭圆面。
⎧ F (x, y, z) 0
20、空间曲线 ⎨ ⎩
其方程表示式(
G(x, y, z)
);
A、是惟一的; B 、不是惟一的; C 、很难判断双方惟一; D 、应该有两种。
为
;半径 R 为
;
25、 yoz 平面上曲线 y z2 绕 z 轴旋转一周的旋转曲面方程为
;绕 y 轴
旋转一周的旋转曲面方程为
;
26、 x2 0, x2 y2 0, x2 y2 z2 0 和 xyz 0 在空间直角坐标系里分别表示
为
;
;
;
;
5
三、计算题
1、 设向量 a 3i k b 2i 4 j k
17、求过原点且垂直于平面1 : x y z 7 0 及 2 : x 2 y 12z 5 0
的平面方程。
18、求过点(1, 3, 4)且垂直于平面1 : z 0 及 2 : 2x 3y z 1的平面方
程。
19、在通过直线 L :
x 1 y 1 z 3 的所有平面中找出一个平面,使它与
2
C 、 ax 1bx, ay 2by , az 3bz (1 2 3 );
D 、 1axbx 2ayby 3azbz 0;
15、单位向量的坐标在数值上就是(
);
A、向量的方向角;
B 、向量的方向余弦;
C 、下向量所在直线的方向数;
D 、向量的模。
第四章 解析几何与向量代数(厦门理工作业答案)
高等数学练习题 第四章 空间解析几何与向量代数 系 专业 班 姓名 学号4.1 向量及其线性运算(1)一.选择题1.定点)1,3,2(--A 与)1,3,2(-B 对称的坐标面为 [ C ] (A )xOy 坐标面 (B )yOz 坐标面 (C )zOx 坐标面 (D )y 轴对称 2.两点)2,2,1(A 与)1,0,1(-B 的距离为 [ B ] (A )1 (B )3 (C )13 (D )4 3.非零向量 a 和b ,若满足| a –b |=| a | + |b | ,则 [ C ] (A )a , b 方向相同 (B )a , b 互相垂直 (C )a , b 方向相反 (D )a , b 平行4.已知向量 a = }1,5,3{-, b ={2 ,2 ,3 },则2a –3b 为 [ C ] (A ){0,12,11} (B ){16,12,3} (C ){11,4,0-} (D ){11,14,4} 二.填空题:1.求出点)5,3,4(-A 到坐标y 2.一个向量的终点在点)7,1,2(-B 它在坐标轴上的投影顺次是4, 4- 和 7,这个向量的起点A 三.解下列各题:1.求向量a =21M M 的模、方向余弦和方向角。
已知M 1(1,2,4 ) , M 2(3 ,0 ,2 )。
解:)1,2,1(1221--=-==OM OM M M a 2121=++=∴cos x a α==-12,cos y a β==-22,cos z a γ==12 所以方向角为 3,43,32πγπβπα===2.求向量a =→→→+-k j i 532的模,并用单位向量 a o 表达向量a 。
解: (=+=22a ∴=038a a3.设向量r 的模是4,它与轴u 的夹角是60o , 求r 在轴u 上的投影。
解: ()cos u r r •ϕ=⋅=⨯=1422所以r 在轴u 上的投影为2。
4.证明以三点A(4 ,1 ,9) , B(10 ,1- ,6) ,C(2 ,4 ,3) 为顶点的三角形是等腰直角三角形 解: )3,2,6(--=-=OA OB AB )6,3,2(--=-=OA OC AC )3,5,8(--=-=OB OC BC2792564,79436==++==++==∴所以以三点A(4 ,1 ,9) , B(10 ,1- ,6) ,C(2 ,4 ,3) 为顶点的三角形是等腰直角三角形高等数学练习题 第四章 空间解析几何与向量代数 系 专业 班 姓名 学号4.1 数量积 向量积 (2)一.选择题1.判断向量→a =→→→++k j i 23和→b =→→-j i 32位置是 [ B ] (A )平行 (B )垂直 (C ) 相交 (D )以上都不是。
试题集:向量代数与空间解析几何
1.在三维空间中,向量a⃗=(1,2,3)与向量b⃗⃗=(4,5,6)的点积是多少?o A. 32o B. 24o C. 35o D. 30参考答案: A解析: 向量a⃗与向量b⃗⃗的点积计算为1∗4+2∗5+3∗6=32。
2.向量v⃗=(3,4)的模长是多少?o A. 5o B. 7o C. 12o D. 25参考答案: A解析: 向量v⃗的模长计算为√32+42=5。
3.向量a⃗=(1,2,3)与向量b⃗⃗=(4,5,6)的叉积结果是什么?o A. (3,−6,3)o B. (−3,6,−3)o C. (3,−6,−3)o D. (−3,6,3)参考答案: B解析: 向量a⃗与向量b⃗⃗的叉积计算为(2∗6−3∗5,3∗4−1∗6,1∗5−2∗4)=(−3,6,−3)。
4.向量a⃗=(1,2,3)与向量b⃗⃗=(4,5,6)的向量积的模长是多少?o A. 7o B. 14o C. 21o D. 42参考答案: A解析: 向量a⃗与向量b⃗⃗的叉积模长计算为√(−3)2+62+(−3)2=7。
5.向量a⃗=(1,2,3)与向量b⃗⃗=(4,5,6)的夹角余弦值是多少?o A. 0.9746o B. 0.9971o C. 0.9899o D. 0.9659参考答案: A解析: 向量a⃗与向量b⃗⃗的夹角余弦值计算为a⃗⃗⋅b⃗⃗|a⃗⃗||b⃗⃗|=√14√77≈0.9746。
6.向量a⃗=(1,2,3)与向量b⃗⃗=(4,5,6)是否共线?o A. 是o B. 不是o C. 无法确定o D. 以上都不对参考答案: B解析: 向量a⃗与向量b⃗⃗的分量不成比例,因此它们不共线。
7.向量a⃗=(1,2,3)与向量b⃗⃗=(4,5,6)是否正交?o A. 是o B. 不是o C. 无法确定o D. 以上都不对参考答案: B解析: 向量a⃗与向量b⃗⃗的点积不为0,因此它们不正交。
8.向量a⃗=(1,2,3)与向量b⃗⃗=(4,5,6)的向量积是否垂直于这两个向量?o A. 是o B. 不是o C. 无法确定o D. 以上都不对参考答案: A解析: 向量积的结果向量总是垂直于构成叉积的两个向量。
高等数学第八章练习题及答案
第八章 空间解析几何与向量代数自测题A一、填空1. 已知空间三点(1,2,0)A 、(1,3,2)B -、(2,3,1)C ,则cos BAC ∠=AB 在AC上的投影为;三角形的面积ABC S ∆=2;同时垂直于向量AB 与AC的单位向量为1,4,3)±--. 2. xOy 面上的曲线2y x =绕y 轴旋转一周所得旋转曲面方程为22y x z =+.3. 在平面解析几何中2y x =表示抛物线_图形,在空间解析几何中表示_抛物柱面_图形.4. 球面0242222=++-++z y x z y x 的球心坐标为(1,2,1)--.5. 曲线22291x y z x z ⎧++=⎨+=⎩在xOy 面上的投影为22228x x y z ⎧-+=⎨=⎩.6.曲面z =被曲面2220x y x +-=所截下的部分在xOy 面上的投影为22200x x y z ⎧-+≤⎨=⎩.7. 过点A (3,0,1)-且与平面375120x y z -+-=平行的平面方程为37540x y z -+-=.8. 点A (3,0,1)-到平面2230x y z -+-=的距离为23. 9. 直线531123-=++=-z k y k x 与直线22531-+=+=-k z y x 相互垂直,则k =34. 二、解答题1. 求过点)2,1,4(1M ,)1,5,3(2--M ,且垂直于07326=++-z y x 的平面. 解:由已知可知,已知平面的法向量为0(6,2,3)n =-,取所求平面的法向量为120743(6,3,10)623ij kn M M n =⨯=--=--,所以所求平面方程为 6(4)3(1)10(2)0x y z -+---=,即631070x y z +--=.2. 求通过直线13213x y z +-==-与点A (3,0,1)的平面方程. 解:由已知可知,直线过点(0,1,3)P -,方向向量为(2,1,3)s =-,取所求平面的法向量 312(1,13,5)213ij kn PA s =⨯=-=---,所以所求平面方程为3135(1)0x y z ----=,即 13520x y z --+=.3. 求直线2432-=-=-z y x 与平面062=-++z y x 的交点及夹角余弦. 解:直线的参数是方程为2,3,42x t y t z t =+=+=+,代入平面方程得1t =-,所以交点坐标为(1,2,2),5sin |cos(,)|,cos 66s ns n s n ϕϕ⋅====. 4. 求过点A (3,0,1)且与直线13213x y z +-==-垂直相交的直线方程. 解:设垂足坐标为000(,,)P x y z ,则由已知条件得00013213x y z +-==-, 0002(3)3(1)0AP s x y z ⋅=--+-=,解得11339(,,)71414P --,取所求直线方向向量为AP ,所以所求直线的方程为3122132571414x y z --==--,即31441325x y z --==--. B1. 求点A (3,0,1)到直线13213x y z +-==-的距离; 解:由已知可知,直线过点(0,1,3)P -,方向向量为(2,1,3)s =-,所以19514AP s d s ⨯==. 2. 判定直线113:213x y z l +-==-与直线2152:342x y z l -++==-是否相交,如果相交,求出交点,如果异面,求出两条异面直线间的距离;解:由已知可知,直线1l 过点1(0,1,3)P -,方向向量为1(2,1,3)s =-,直线2l 过点1(1,5,2)P--,方向向量为2(3,4,2)s =-,因为1212145[ ]2131170342PP s s --=-=-≠-,所以两直线异面,距离 121212[ ]117390PP s s d s s ==⨯;3. 求点(1,1,3)A 关于平面0x y z ++=对称的点.解:过点(1,1,3)A 且与平面垂直的直线方程为点113x y z -=-=-,所以垂足为224(,,)333P --,设对称点为(,,)M x y z ,则2AM AP =,即555(1,1,3)2(,,)333x y z ---=---,所以771(,,)333M ---.4. 求直线2432-=-=-z y x 在平面062=-++z y x 上的投影直线及直线关于平面对称的直线方程;解:由已知可知,直线0l 的参数式方程为2,3,42x t y t z t =+=+=+,代入平面方程可得1t =-,所以交点为1(1,2,2)P ,过点(2,3,4)P 且与已知平面垂直的直线2l 方程为22,3,4x t y t z t =+=+=+,垂足为211319(,,)366P ,所以已知直线0l 在平面上的投影直线为122217366x y z ---==-,即12247x z y --=-=-, 设点(2,3,4)P 关于已知平面的对称点为3P ,则322PP PP =,解得3447(,,)333P -,所以已知直线关于平面对称的直线方程为122721333x y z ---==--,即12272x y z --==---. 5. 求直线1321x y z +==--绕z 轴旋转一周所得旋转曲面方程.解:设所求曲面上任一点(,,)P x y z 是由直线上的点1111(,,)P x y z 绕z 轴旋转得来,则22221111111,,321x y x y x y z z z ++=+===--,消去111,,x y z 得22252840x y z z +-+=.。
高等数学(同济五版)第七章-空间解析几何与向量代数-练习题册
第七章 空 间 解 析 几 何第 一 节 作 业一、选择题(单选):1. 点M(2,-3,1)关于xoy 平面的对称点是:(A )(-2,3,1); (B )(-2,-3,-1); (C )(2,-3,-1); (D )(-2,-3,1) 答:( ) 2. 点M(4,-3,5)到x 轴距离为:(A ).54)(;54)(;5)3()(;5)3(4222222222+++-+-+D C B答:( ) 二、在yoz 面上求与A (3,1,2),B(4,-2,-2)和C(0,5,1)等距离的点。
第 二 节 作 业设.32,,.2,v u c b a c b a v c b a u ρρρρρρρρρρρρρ-+-=++=表示试用第 三 节 作 业一、选择题(单选):已知两点:),0,3,1()2,2,2(2121的三个方向余弦为则和M M M M.22,21,21)(.22,21,21)(;22,21,21)(;22,21,21)(-------D C B A 答:( ) 二、试解下列各题:1. 一向量的终点为B (2,-1,7),它在x 轴,y 轴,z 轴上的投影依次为4,-4,4,求这向量的起点A 的坐标。
.{}.6,7,6.3.34.45,42,353.2的单位向量求平行于向量轴上的分向量上的投影及在轴在求向量设-=-+=-+=-+=++=a y x p n m a k j i p k j i n k j i m ρρρρρρρρρρρρρρρρρ第 四 节 作 业一、选择题(单选):)()()()(:.1D C B A b a ρρρρρρρρρρ上的投影为在向量 答:( ).//)(;)(;)(;//)(:0,.2的必要但不充分条件的充要条件的充要条件的充要条件是则为非零向量与设b a D b a C b a B b a A b a b a ρρρρρρρρρρρρ=⊥=⋅ 答:( ).6321)(;14321)(;14321)(;6321)(:,321,,.3222222=++=++=++=++++====D C B A c b a s c b a 的长度为则两两垂直向量ρρρρρρρ答:( )二、试解下列各题:{}{}.,),3,1,3()1,3,3(),2,1,1(.4.,,4,1,2,2,5,3.3.,5,4,3,,2,85,3),(.13221321321321同时垂直的单位向量求与和已知的关系与求轴垂直与设求向量的数量积分别为与三向量设设M M M M M M M z b a b a x k j a k i a j i a k x j x i x x b a -+=-=+=+=+=++=-+===μλμλπρρρρρρρρρρρρρρρρρρρρ..,3,3.7.)()()(,2,3,32.6.,0,,.5的面积求已知和求已知求为单位向量且满足已知OAB k j k i c b a c b b a j i c k j i b k j i a a c c b b a c b a c b a ∆+=+=⋅⨯+⨯+-=+-=+-=⋅+⋅+⋅=++ρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρ第 五 节 作 业选择题(单选):1. 在xoy 面上的曲线4x 2-9y 2=36绕x 轴旋转一周,所得曲面方程为:(A )4(x 2+z 2)-9y 2=36; (B) 4(x 2+z 2)-9(y 2+z 2)=36(C)4X2-9(y2+z2)=36; (D) 4x2-9y2=36.答:()2. 方程y2+z2-4x+8=0表示:(A)单叶双曲面;(B)双叶双曲面;(C)锥面;(D)旋转抛物面。
高数B(下册)空间解析几何与向量代数习题精选
=
12 = 4。 3
13、 求与平面 π : x + y − 3 z + 1 = 0 平行且相距为 3 的平面方程。 [解]:设 p ( x, y, z ) 为平面上一点,它与已知平面的距离为 3,由平面外一点到平面的距离公式知:
x + y − 3z + 1
1 + 1 + ( −3 )
2 2 2
= 3 ⇒ x + y − 3 z + 1 = 11 ⇒ x + y − 3 z + 1 = ± 11 ,故所求的平面方程为
1 1 1 sh = × × 6 × −3 × 2 = 6 。 3 3 2
16、 求过点 P (1, 2,3) 且与直线 ⎨
⎧ x − 2 y + 3z − 6 = 0 平行的直线方程。 ⎩3 x + y − 2 z + 4 = 0 �
[解]:设所求的直线为 l ,其方向向量为 s ,已知直线的方向向量取为
34 ⎧ ⎪ x = − 7 + 3t ⎪ 15 ⎪ 参数式方程为 ⎨ y = − + t 其中 t 为参数。 7 ⎪ ⎪ z = −t ⎪ ⎩
18、 求直线 ⎨
⎧ x− y =6 x −1 y − 2 z − 5 与直线 = = 的夹角。 1 −2 1 ⎩2 y − z = 3
( )
9、 求过 y 轴与点 M ( −3,1, 2 ) 的平面方程。 [解]:设所求平面为 π ,法向量为 n ,因为平面过 y 轴,故 n ⊥ j ,又 OM = {−3,1, 2} 在 π 上,
�
�
�
���� �
� � i j � ���� � � � ���� � 所以 n ⊥ OM ⇒ 取 n = j × OM = {0,1, 0} × {−3,1, 2} = 0 1 −3 1
(完整版)向量代数与空间解析几何练习题
第4章 向量代数与空间解析几何练习题习题4.1一、选择题1.将平行于同一平面的所有单位向量的起点移到同一点, 则这些向量的终点构成的图形是( )(A )直线; (B ) 线段; (C ) 圆; (D) 球.2.下列叙述中不是两个向量a 与b 平行的充要条件的是( )(A)a 与b 的内积等于零; (B)a 与b 的外积等于零;(C)对任意向量c 有混合积0)(=abc ; (D )a 与b 的坐标对应成比例.3.设向量a 的坐标为313, 则下列叙述中错误的是( ) (A )向量a 的终点坐标为),,(z y x ; (B )若O 为原点,且a OA =, 则点A 的坐标为),,(z y x ;(C )向量a 的模长为222z y x ++;(D ) 向量)2/,2/,2/(z y x 与a 平行.4.行列式213132321的值为( )(A ) 0 ; (B ) 1 ; (C ) 18 ; (D ) 18-.5.对任意向量a 与b , 下列表达式中错误的是( )(A )||||a a -=; (B )||||||b a b a +>+; (C ) ||||||b a b a ⋅≥⋅; (D ) ||||||b a b a ⨯≥⋅.二、填空题1.设在平行四边形ABCD 中,边BC 和CD 的中点分别为M 和N ,且p AM =,q AN =,则BC =_______________,CD =__________________.2.已知ABC ∆三顶点的坐标分别为A (0,0,2),B(8,0,0),C(0,8,6),则边BC 上的中线长为______________________.3.空间中一动点移动时与点)0,0,2(A 和点)0,0,8(B 的距离相等, 则该点的轨迹方程是_______________________________________.4.设力k j i F 532++=, 则F 将一个质点从)3,1,0(A 移到)1,6,3(,B 所做的功为____________________________.5.已知)2,5,3(A , )4,7,1(B , )0,8,2(C , 则=⋅AC AB _____________________;=⨯BA BC ____________________;ABC ∆的面积为_________________.三、计算题与证明题1.已知1||=a , 4||=b , 5||=c , 并且0=++c b a . 计算a c c b b a ⨯+⨯+⨯.2.已知3||=⋅b a , 4||=⨯b a , 求||||b a ⋅.3.设力k j i F 532++-=作用在点)1,6,3(A , 求力F 对点)2,7,1(,-B 的力矩的大小.4.已知向量x 与)2,5,1(,-a 共线, 且满足3=⋅x a , 求向量x 的坐标.5.用向量方法证明, 若一个四边形的对角线互相平分, 则该四边形为平行四边形.6.已知点)7,8,3(A , )3,2,1(--B 求线段AB 的中垂面的方程.7.向量a , b , c , 具有相同的模, 且两两所成的角相等, 若a , b 的坐标分别为)1,1,0()0,1,1(和,求向量c 的坐标.8.已知点)1,6,3(A , )1,4,2(-B , )3,2,0(-C , )3,0,2(--D ,(1) 求以AB , AC , AD 为邻边组成的平行六面体的体积.(2) 求三棱锥BCD A -的体积.(3) 求BCD ∆的面积.(4) 求点A 到平面BCD 的距离.习题4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间解析几何与矢量代数小练习
一 填空题 5’x9=45分
1、 平行于向量)6,7,6(-=a 的单位向量为______________.
2、 设已知两点)2,0,3()1,2,4(21M M 和,计算向量21M M 的模_________________, 方向余弦_________________和方向角_________________
3、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________.
4、方程0242222=++-++z y x z y x 表示______________曲面.
5、方程22x y z +=表示______________曲面.
6、222x y z +=表示______________曲面.
7、 在空间解析几何中2x y =表示______________图形.
二 计算题 11’x5=55分
1、求过点(3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程.
2、求平行于x 轴且过两点(4,0,-2)和(5,1,7)的平面方程.
3、求过点(1,2,3)且平行于直线51
132-=-=z y x 的直线方程.
4、求过点(2,0,-3)且与直线⎩⎨⎧=+-+=-+-012530
742z y x z y x 垂直的平面方
5、已知:k i OA 3+=,k j OB 3+=,求OAB ∆的面积。
参考答案
一 填空题
1、⎩⎨⎧⎭⎬⎫
-±116,117,116
2、21M M =2,21
cos ,22
cos ,21
cos ==-=γβα,3
,43,32π
γπβπ
α=== 3、14)2()3()1(222=++-+-z y x
4、以(1,-2,-1)为球心,半径为6的球面
5、旋转抛物面
6、 圆锥面
7、 抛物柱面
二 计算题
1、04573=-+-z y x
2、029=--z y
3、53
1221-=-=-z y x 4、065111416=---z y x
5 219
==∆S。