数据结构-图.ppt

合集下载

(2024年)《数据结构》全套课件

(2024年)《数据结构》全套课件

30
树形数据结构的查找算法
二叉排序树的查找
从根节点开始,若查找值小于当前节点 值,则在左子树中查找;若大于当前节 点值,则在右子树中查找。
VS
平衡二叉树的查找
在保持二叉排序树特性的基础上,通过旋 转操作使树保持平衡,提高查找效率。
2024/3/26
31
散列表的查找算法
散列函数的设计
将关键字映射为散列表中位置的函数。
过指针来表示。
链式存储的特点
逻辑上相邻的元素在物理位置上 不一定相邻;每个元素都包含数
据域和指针域。
链式存储的优缺点
优点是插入和删除操作不需要移 动元素,只需修改指针;缺点是
存储密度小、空间利用率低。
2024/3/26
11
线性表的基本操作与实现
插入元素
在线性表的指定位 置插入一个元素。
查找元素
在线性表中查找指 定元素并返回其位 置。
自然语言处理的应用
在自然语言处理中,需要处理大量的文本数据,数据结构中的字符 串、链表、树等可以很好地支持文本的处理和分析。
41
数据结构在计算机网络中的应用
2024/3/26
路由算法的实现
计算机网络中的路由算法需要大量的数据结构支持,如最短路径 树、距离向量等。
网络流量的控制
在计算机网络中,需要对网络流量进行控制和管理,数据结构中的 队列、缓冲区等可以很好地支持流量的控制。
37
06
数据结构的应用与拓展
2024/3/26
38
数据结构在算法设计中的应用
01
作为算法设计的基 础
数据结构为算法提供了基本操作 和存储方式,是算法实现的重要 基础。
02
提高算法效率

数据结构ppt课件

数据结构ppt课件

数据结构的定义数据结构是计算机中存储、组织数据的方式,它定义了数据元素之间的逻辑关系以及如何在计算机中表示这些关系。

提高算法效率合适的数据结构可以显著提高算法的执行效率,降低时间复杂度和空间复杂度。

简化程序设计数据结构为程序设计提供了统一的抽象层,使得程序员可以更加专注于问题本身,而不是底层的数据表示和访问细节。

便于数据管理和维护良好的数据结构设计可以使得数据的管理和维护变得更加方便和高效。

数据结构的定义与重要性线性数据结构中的元素之间存在一对一的关系,如数组、链表、栈和队列等。

线性数据结构非线性数据结构中的元素之间存在一对多或多对多的关系,如树、图等。

非线性数据结构静态数据结构在程序运行期间不会发生改变,如数组、静态链表等。

静态数据结构动态数据结构在程序运行期间可以动态地添加或删除元素,如链表、动态数组等。

动态数据结构数据结构的分类01020304在计算机科学中,数据结构是算法设计和分析的基础,广泛应用于操作系统、编译原理、数据库等领域。

计算机科学在软件工程中,数据结构是软件设计和开发的重要组成部分,用于实现各种软件功能和性能优化。

软件工程在人工智能中,数据结构用于表示和处理各种复杂的数据和知识,如神经网络、决策树等。

人工智能在大数据处理中,数据结构用于高效地存储、管理和分析海量数据,如分布式文件系统、NoSQL 数据库等。

大数据处理数据结构的应用领域0102线性表是具有n个数据元素的有限序列创建、销毁、清空、判空、求长度、获取元素、修改元素、插入元素、删除元素等线性表的定义线性表的基本操作线性表的定义与基本操作03用一段地址连续的存储单元依次存储线性表的数据元素顺序存储结构的定义可以随机存取,即可以直接通过下标访问任意元素;存储密度高,每个节点只存储数据元素顺序存储结构的优点插入和删除操作需要移动大量元素;空间利用率不高,需要提前分配存储空间顺序存储结构的缺点链式存储结构的定义01用一组任意的存储单元存储线性表的数据元素,这组存储单元可以是连续的,也可以是不连续的链式存储结构的优点02插入和删除操作不需要移动大量元素,只需要修改指针;空间利用率高,不需要提前分配存储空间链式存储结构的缺点03不能随机存取,只能通过从头节点开始遍历的方式访问元素;存储密度低,每个节点除了存储数据元素外,还需要存储指向下一个节点的指针0102定义栈(Stack)是一种特殊的线性数据结构,其操作只能在一端(称为栈顶)进行,遵循后进先出(LIFO)的原则。

北京理工大学数据结构图课件

北京理工大学数据结构图课件
A
B C D
第 5 页
E
7.1 图的定义与术语
3、无向图——无向图G是由两个集合V(G)和 E(G)组成的。 其中:V(G)是顶点的非空有限集。 E(G)是边的有限集合,边是顶点的 无序对,记为 (v,w) 或 (w,v),并且 (v,w)=(w,v)。
第 6 页
7.1 图的定义与术语

例如:
G2 = <V2,E2> V2 = { v0 ,v1,v2,v3,v4 } E2 = { (v0,v1), (v0,v3), (v1,v2), (v1,v4), (v2,v3), (v2,v4) }
V5
第 15 页
7.1 图的定义与术语
非 连 通 图
V0
V1
V2
V3
V0
V1 V3
V2
强连通分量
第 16 页
7.1 图的定义与术语
7、生成树
包含无向图 G 所有顶点的极小连通子图称为G生 成树。 极小连通子图意思是:该子图是G的连通子图, 在该子图中删除任何一条边,子图不再连通。
V0 V2 V3 V4 V3 连通图G1 V1 V0 V1 连通 所有顶点 V4 无回路
第 22 页
7.2 图的存储结构 3、有向图的逆邻接表 顶点:用一维数组存储(按编号顺序) 以同一顶点为终点的弧:用线性链表存储。
vexdata V0 V1 0 1 v0 v1 v2
v3
firstarc 3 0 0 ^ ^
V2
V3
2 3
^
^
2
章 类似于有向图的邻接表,所不同的是: 以同一顶点为终点弧:用线性链表存储
Boolean visited[MAX]; // 访问标志数组

《数据结构》课件

《数据结构》课件

第二章 线性表
1
线性表的顺序存储结构
2
线性表的顺序存储结构使用数组来存储元素,
可以快速随机访问元素。
3
线性表的常见操作
4
线性表支持常见的操作,包括插入、删除、 查找等,可以灵活地操作其中的元素。
线性表的定义和实现
线性表是一种数据结构,它包含一组有序的 元素,可以通过数组和链表来实现。
线性表的链式存储结构
线性表的链式存储结构使用链表来存储元素, 支持动态扩展和插入删除操作。
第三章 栈与队列
栈的定义和实现
栈是一种特殊的线性表,只能在一 端进行插入和删除操作,遵循后进 先出的原则。
队列的定义和实现
队列是一种特殊的线性表,只能在 一端进行插入操作,在另一端进行 删除操作,遵循先进先出的原则。
栈和队列的应用场景和操作
哈希表是一种高效的查找数据结构, 通过哈希函数将关键字映射到数组 中,实现快速查找。
排序算法包括冒泡排序、插入排序 和快速排序等,可以根据数据规模 和性能要求选择合适的算法。
结语
数据结构的学习心得 总结
学习数据结构需要掌握基本概念 和常见操作,通过实践和练习加 深理解和熟练度。
下一步学习计划的安 排
在掌握基本数据结构的基础上, 可以进一步学习高级数据结构和 算法,提升编程技能。
相关学习资源推荐
推荐一些经典的数据结构教材和 在线学习资源,如《算法导论》 和LeetCode等。
栈和队列在计算机科学中有许多应 用,如函数调用、表达式求值和作 业调度等。
第四章 树与二叉树
树的定义和性质
树是由节点和边组成的一种非线性数据结构,每个 节点可以有多个子节点。
二叉树的遍历方式
二叉树的遍历方式包括前序遍历、中序遍历和后序 遍历,可以按不同顺序输出节点的值。

数据结构ppt课件完整版

数据结构ppt课件完整版
数据结构是计算机中存储、组织 数据的方式,它定义了数据元素 之间的逻辑关系以及如何在计算 机中表示这些关系。
数据结构分类
根据数据元素之间关系的不同, 数据结构可分为线性结构、树形 结构、图形结构等。
4
数据结构重要性
01
02
03
提高算法效率
合理的数据结构可以大大 提高算法的执行效率,减 少时间和空间复杂度。
33
案例三:最小生成树在通信网络优化中应用
Kruskal算法
基于并查集实现,按照边的权值从小到大依次添加边,直到生成 最小生成树。
Prim算法
从某一顶点开始,每次选择与当前生成树最近的顶点加入,直到 所有顶点都加入生成树。
通信网络优化
最小生成树算法可用于通信网络优化,通过选择最优的通信线路 和节点,降低网络建设和维护成本。
2024/1/28
简化程序设计
数据结构的设计和实现可 以简化程序设计过程,提 高代码的可读性和可维护 性。
解决实际问题
数据结构是解决实际问题 的基础,如排序、查找、 图论等问题都需要依赖于 特定的数据结构。
5
相关术语解析
数据元素
数据元素是数据的基本 单位,通常作为一个整
体进行考虑和处理。
2024/1/28
02
队列的基本操作包括入队(enqueue)、出队( dequeue)、查看队首和队尾元素等。
03
队列的特点
2024/1/28
04
数据从队尾入队,从队首出队。
05
队列中元素的插入和删除操作分别在两端进行,因此也称 为双端操作。
06
队列中没有明显的头尾标记,通常通过计数器或循环数组 等方式实现。
15
栈和队列应用举例

数据结构严蔚敏(全部章节814张PPT)-(课件)

数据结构严蔚敏(全部章节814张PPT)-(课件)
① 集合:结构中的数据元素除了“同属于一个集合” 外,没有其它关系。
② 线性结构:结构中的数据元素之间存在一对一的 关系。
③ 树型结构:结构中的数据元素之间存在一对多的 关系。
④ 图状结构或网状结构:结构中的数据元素之间存 在多对多的关系。
图1-3 四类基本结构图
1.1.3 数据结构的形式定义
数据结构的形式定义是一个二元组: Data-Structure=(D,S)
计算机求解问题的一般步骤
编写解决实际问题的程序的一般过程:
– 如何用数据形式描述问题?—即由问题抽象出一个 适当的数学模型; – 问题所涉及的数据量大小及数据之间的关系; – 如何在计算机中存储数据及体现数据之间的关系? – 处理问题时需要对数据作何种运算? – 所编写的程序的性能是否良好? 上面所列举的问题基本上由数据结构这门课程来回答。
其中:D是数据元素的有限集,S是D上关系的有限集。 例2:设数据逻辑结构B=(K,R)
K={k1, k2, …, k9} R={ <k1, k3>,<k1, k8>,<k2, k3>,<k2, k4>,<k2, k5>,<k3, k9>, <k5, k6>,<k8, k9>,<k9, k7>,<k4, k7>,<k4, k6> } 画出这逻辑结构的图示,并确定那些是起点,那些是终点
<基本操作名>(<参数表>) 初始条件: <初始条件描述> 操作结果: <操作结果描述>
– 初始条件:描述操作执行之前数据结构和参数应 满足的条件;若不满足,则操作失败,返回相应的出 错信息。

数据结构严蔚敏PPT(完整版)

数据结构严蔚敏PPT(完整版)
排序算法的时间复杂度
时间复杂度是衡量算法效率的重要指标,常见的 排序算法的时间复杂度有O(n^2)、O(nlogn)、 O(n)等。
查找的基本概念和算法
查找的基本概念
查找是指在一个已经有序或部分 有序的数据集合中,找到一个特 定的元素或一组元素的过程。
常见查找算法
常见的查找算法包括顺序查找 、二分查找、哈希查找等。
先进先出(FIFO)的数据 处理。
并行计算中的任务调度。
打印机的打印任务管理。
二叉树的层序遍历(宽度 优先搜索,BFS)。
04
树和图
树的基本概念和性质
树的基本概念
树是一种非线性数据结构,由节 点和边组成,其中节点表示实体 ,边表示实体之间的关系。
树的性质
树具有层次结构,节点按照层次 进行排列,每个节点最多只能有 一个父节点,除了根节点外。
isEmpty:判断队列是否为空。
enqueue:向队尾添加一个元素。
front 或 peek:查看队首元素。
dequeue:删除队首的元素。
栈和队列的应用
栈的应用 后进先出(LIFO)的数据处理。
括号匹配问题。
栈和队列的应用
队列的应用
深度优先搜索(DFS)。 表达式求值。
01
03 02
栈和队列的应用
数据结构严蔚敏ppt( 完整版)
contents
目录
• 绪论 • 线性表 • 栈和队列 • 树和图 • 排序和查找 • 数据结构的应用案例分析
01
绪论
数据结构的基本概念
总结词
数据结构是计算机存储和组织数据的方式,是算法和数据操 作的基础。
详细描述
数据结构是计算机科学中研究数据的组织和存储方式的学科 ,它决定了数据在计算机中的表示和关系。数据结构不仅包 括数据的逻辑结构,还涉及到数据的物理存储方式以及数据 的操作方式。

(2024年)数据结构严蔚敏PPT完整版

(2024年)数据结构严蔚敏PPT完整版

选择排序的基本思想
在未排序序列中找到最小(或最大)元素,存放到排序 序列的起始位置,然后,再从剩余未排序元素中继续寻 找最小(或最大)元素,然后放到已排序序列的末尾。 以此类推,直到所有元素均排序完毕。
2024/3/26
33
交换排序和归并排序
交换排序的基本思想
通过不断地交换相邻的两个元素(如果它们的顺序错 误)来把最小的元素“浮”到数列的一端。具体实现 时,从第一个元素开始,比较相邻的两个元素,如果 前一个比后一个大,则交换它们的位置;每一对相邻 元素做同样的工作,从开始第一对到结尾的最后一对 ;这步做完后,最后的元素会是最大的数;针对所有 的元素重复以上的步骤,除了最后一个;持续每次对 越来越少的元素重复上面的步骤,直到没有任何一对 数字需要比较。
图的基本操作
创建图、添加顶点、添加边、删除顶点、删除边 等
2024/3/26
27
图的存储结构
01
邻接矩阵表示法
用一个二维数组表示图中顶点间的 关系,适用于稠密图
十字链表表示法
用于有向图,可以方便地找到任一 顶点的入边和出边
03
2024/3/26
02
邻接表表示法
用链表表示图中顶点间的关系,适 用于稀疏图
入栈操作将元素添加到栈顶,出栈操作将栈顶元素删 除,取栈顶元素操作返回栈顶元素但不删除,判断栈
是否为空操作检查栈中是否有元素。
2024/3/26
12
栈的表示和实现
栈可以用数组或链表来实现。
用数组实现时,需要预先分配一块连续的内存空间,用一个变量指示栈顶位置。入栈和出栈操作都可以 通过移动栈顶位置来实现。
22
二叉树的定义和基本操作
二叉树的定义
二叉树是一种特殊的树,每个节点最 多有两个子节点,分别称为左子节点 和右子节点。

数据结构课件

数据结构课件

while (i>0)
{
/*读入顶点对号,建立边表*/
e++;
/*合计边数 */
p = (pointer)malloc(size(struct node));/*生成新旳邻接点序号为j旳表结点*/
p-> vertex = j;
p->next = ga->adlist[i].first;
ga->adlist[i].first = p;
三个强连通分量
第七章 图
权:图旳边具有与它有关旳数, 称之为权。这种带 权图叫做网络。
10
1
6
15
27 5
12
3 76
9
8
6 3
4
16
7
有向权图
60
AB 40 80 C源自307535
D
E
45
无向权图
第七章 图
生成树:连通图G旳一种子图假如是一棵包 括G旳全部顶点旳树,则该子图称为G旳生成
树;显然,n个顶点旳生成树具有n-1条边
scanf (“%d”, &(ga->n));
for (i =1; i<= ga->n; i++)
{
/*读入顶点信息,建立顶点表*/
scanf (“ \n %c”, &( ga->adlist[i].data) )

ga->adlist[i].first = NULL; }
e = 0; /*开始建邻接表时,边数为0*/
ga->edges[i][j] = 0;
for (k = 0;k<ga->e;k++) /*读入边旳顶点编号和权值,建立邻接矩阵*/

2024版《数据结构图》ppt课件

2024版《数据结构图》ppt课件
重要性
良好的数据结构可以带来更高的运 行或存储效率,是算法设计的基础, 对程序设计的成败起到关键作用。
常见数据结构类型介绍
线性数据结构
如数组、链表、栈、队 列等,数据元素之间存
在一对一的关系。
树形数据结构
如二叉树、多叉树、森 林等,数据元素之间存
在一对多的关系。
图形数据结构
由顶点和边组成,数据 元素之间存在多对多的
队列定义、特点及应用场景
队列的特点 只能在队尾进行插入操作,队头进行删除操作。
队列是一种双端开口的线性结构。
队列定义、特点及应用场景
应用场景 操作系统的任务调度。 缓冲区的实现,如打印机缓冲区。
队列定义、特点及应用场景
广度优先搜索(BFS)。
消息队列和事件驱动模型。
串定义、基本操作及实现方法
最短路径问题 求解图中两个顶点之间的最短路径,即路径上边 的权值之和最小。
3
算法介绍 Prim算法、Kruskal算法、Dijkstra算法、Floyd 算法等。
拓扑排序和关键路径问题探讨
拓扑排序
对有向无环图(DAG)进行排序, 使得对每一条有向边(u,v),均有
u在v之前。
关键路径问题
求解有向无环图中从源点到汇点 的最长路径,即关键路径,它决
遍历二叉树和线索二叉树
遍历二叉树
先序遍历、中序遍历和后序遍历。遍历算 法可以采用递归或非递归方式实现。
VS
线索二叉树
利用二叉链表中的空指针来存放其前驱结 点和后继结点的信息,使得在遍历二叉树 时可以利用这些线索得到前驱和后继结点, 从而方便地遍历二叉树。
树、森林与二叉树转换技巧
树转换为二叉树
加线、去线、层次调整。将树中的每个结点的所有孩子结点用线连接起来,再去掉与原结点相连的线,最后 将整棵树的层次进行调整,使得每个结点的左子树为其第一个孩子,右子树为其兄弟结点。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章 图
7.2.1 邻接矩阵
1. 图的邻接矩阵表示
在邻接矩阵表示中,除了存放顶点本身信息外,还用 一个矩阵表示各个顶点之间的关系。若(i,j)∈E(G) 或〈i,j〉∈E(G),则矩阵中第i行第j列元素值为1,否则 为0 。
图的邻接矩阵定义为:
1 若(i,j)∈E(G)或〈i,j〉∈E(G)
A[i][j]=
<v3,v4>, <v5,v4>}
无向图G1
有向图G2
第七章 图 7.1.2 图的基本术语
1. 有向图和无向图 2. 完全图、稠密图、稀疏图 3. 度、入度、出度 4. 子图 5. 路径 6. 连通图 7. 权和网
第七章 图
7.2 图的存储结构
图是一种结构复杂的数据结构,表现在不仅各个顶 点的度可以千差万别,而且顶点之间的逻辑关系也错 综复杂。从图的定义可知,一个图的信息包括两部分, 即图中顶点的信息以及描述顶点之间的关系(边或者 弧)的信息。因此无论采用什么方法建立图的存储结 构,都要完整、准确地反映这两方面的信息。 下面介绍几种常用的图的存储结构。
第七章 图
例如:对于下图中的无向图G1,对应顶点集和边集为: V(G1)={v1,v2,v3,v4,v5}; E(G1)={(v1,v2),(v1,v4),(v2,v3),(v3,v4),(v3,v5),(v2,v5)}
对于下图中的有向图G2,对应顶点集和边集为: V(G2)={v1,v2,v3,v4,v5}; E(G2)={<v1,v2>, <v1,v3>, <v2,v3>, <v2,v5>, <v3,v2>,
/ * 图的边(弧)数 */
typedef char vextype;
/ * 顶点的数据类型 * /
typedef float adjtype;
/ * 权值类型 * /
typedef struct
{vextype vexs[n];
adjtype arcs[n][n];
}graph;
第七章 图
4. 建立无向图的邻接矩阵 void creatadj(graph &g)
第七章 图
第7章 图
数据结构(C描述)
第七章 图7.1 图的基本概念 Nhomakorabea目
7.2 图的存储结构
录 7.3 图的遍历
7.4 图的生成树和最小生成树
7.5 图的应用
第七章 图
7.1 图的基本概念
图(Graph)是一种比线性表和树结构更复杂的数据结构。
➢在线性表中,数据元素之间仅有线性关系,每 个数据元素只有一个直接前驱和直接后继;
{ int i, j,k ;
for (k=0; k<n; k++)
g.vexs[k]=getchar();
//输入顶点信息
for (i=0; i<n; i++ )
for (j=0; j<n; j++)
g.arcs[i][j]=0;
//初始化邻接矩阵
第七章 图
for (k=1; k<=e; k++) { scanf(“%d%d”,&i,&j);
(1)矩阵是对称的; (2)第i行或第i 列1的个数为顶点i 的度; (3)矩阵中1的个数的一半为图中边的数目; (4)很容易判断顶点i 和顶点j之间是否有边 相连(看矩阵中i行j列值是否为1)。
第七章 图
3. 从有向图的邻接矩阵可以得出如下结论
(1) 矩阵不一定是对称的; (2) 第i 行中1的个数为顶点i 的出度; (3) 第i列中1的个数为顶点 i的入度; (4) 矩阵中1的个数为图中弧的数目; (5) 很容易判断顶点i 和顶点j 是否有弧相连.
➢在树形结构中,数据元素之间有着明显的层次 关系结点间具有分支层次关系,每一层上的结 点只能和上一层中的至多一个结点相关,但可 能和下一层的多个结点相关。
第七章 图
而在图状结构中,任意两个结点之间都可能相 关,即结点之间的邻接关系可以是任意的。因 此,图状结构被用于描述各种复杂的数据对象 ,在自然科学、社会科学和人文科学等许多领 域有着非常广泛的应用。
0
其它情形
第七章 图
例如, 对图7-8所示的无向图和有向图,它们的邻接 矩阵见图7-9。
1
2
4
3
无向图G3
0101 1011 0101 1110
G3的邻接矩阵
图 7-9 邻接矩阵表示
第七章 图
1
2
3
有向图G4
011 001 100
G4 的邻接矩
图 7-9 邻接矩阵表示
第七章 图
2. 从无向图的邻接矩阵可以得出如下结论
第七章 图
7.1.1 图的定义
图(Graph)是由非空的顶点集合和一个描述顶点之 间关系的边(或者弧)的集合组成,其形式化定义 为:
G=(V,E) V={vi| vi∈VertexType} E={( vi,vj)| vi,vj ∈V }
其中,G表示一个图,V是图G中顶点的集合,E是 图G中边的集合,集合E中(vi,vj)表示顶点vi和顶点vj 之间有一条直接连线,即偶对(vi,vj)表示一条边。
//输入一条边(i,j)
g.arcs[i][j]=1;g.arcs[j][i]=1;
}
}
该算法的时间复杂度为O(n2)。
第七章 图
5.建立有向图的邻接矩阵 void creatadj(graph &g) { int i, j,k ;
for (k=0; k<n; k++) g.vexs[k]=getchar(); for (i=0; i<n; i++ ) for (j=0; j<n; j++) g.arcs[i][j]=0;
//输入顶点信息 //初始化邻接矩阵
第七章 图
for (k=1; k<=e; k++) { scanf(“%d%d”,&I,&j); //输入一条弧<i,j> g.arcs[i][j]=1; }
(b)网G5的邻接矩阵
图 7-10 网及邻接矩阵示意图
第七章 图
3. 图的邻接矩阵数据类型描述
用邻接矩阵表示法表示图,除了存储用 于表示顶点间相邻关系的邻接矩阵外, 通常还需要用一个顺序表来存储顶点信 息。其形式说明如下:
第七章 图
# define n 6
/ * 图的顶点数 * /
# define e 8
第七章 图
4. 网的邻接矩阵表示
类似地可以定义网的邻接矩阵为: wij 若(i,j)∈E(G)或〈i,j〉∈E(G)
A[i][j]= 0 若i=j ∞ 其它情形
第七章 图
网及网的邻接矩阵见图7-10。
6
1
2
39
145 7 8
3
4
2
(a)网G5
0 6 13 60 8 9 1 0 2 4 8 20 7 3 9 4 70
相关文档
最新文档