配方法(1)课件

合集下载

21-2 解一元二次方程 课件(共33张PPT)

21-2 解一元二次方程 课件(共33张PPT)
2×2 2
小练习
用公式法解下列一元二次方程:
(3)5x2-3x=x+1
(4)x2+17x=8x
解:方程化为5x2-4x-1=0
解:方程化为x2-8x+17=0
a=5,b=-4,c=-1.
a=1,b=-8,c=17.
Δ=b2-4ac=(-4)2-4×5×(-1)=36>0. Δ=b2-4ac=(-8)2-4×1×17=-4<0.
因式分解,可以考虑配方法;
(4)三项都有,且二次项系数不为1时的,一般可以用公式法。
小练习
例 3:解方程:x2-6x-16=0。
解:原方程变形为(x-8)(x+2)=0。
于是,得x-8=0或x+2=0
∴x1=8,x2=-2
解析:一元二次方程的解法有:配方法,公式法和因式分解法,解题时要
注意选择合适的解题方法。解此一元二次方程选择因式分解法最简单,因
(3)求解b2-4ac的值,如果b2-4ac≥0;
−± 2−4
(4)代入公式x=
,即可求出一元二次方程的根。
2
知识梳理
例 2:用公式法解方程x2-3x-1=0正确的解为( D )
−3± 13
A. x1,2=
2
3± 5
C.x1,2=
2
B.
D.
−3± 5
x1,2=
2
3± 13
x1,2=
2
解析:x2-3x-1=0。这里a=1,b=-3,c=-1。
Δ=b2-4ac=(-4)2-4×1×(-7)=44>0. Δ=b2-4ac=(-2 2)2-4×2×1=0.
−± 2−4
方程有两个不等的实数根x=
2

配方法_1-课件

配方法_1-课件
1.化1:把二次项系数化为1(方程两边都除以二次项系 数); 2.移项:把常数项移到方程的右边; 3.配方:方程两边都加上一次项系数绝对值一半的平方; 4.变形:方程左边分解因式,右边合并同类; 5.开方:根据平方根意义,方程两边开平方; 6.求解:解一元一次方程; 7.定解:写出原方程的解.
=
在下列横线上填上适当的数
3 3
x 4 5.
5.开方:根据平方根意义, 方程两边开平方;
33
x 4 5.
6.求解:解一元一次方程;
33
x1
1 3
,
x2 3.
7.定解:写出原方程的解.
概括总结
1.对于二次项系数不为1的一元二次方程, 用配方法求解时首先要怎样做 ?
首先要把二次项系数化为1
2.用配方法解一元二次方程的一般步骤:
填上适当的数或式,使下列各等式成立.
(1) x2 6x3 2 =( x+ 3)2 (2) x2 8x4 2 =( x4)2
观察(1)(2)看所填的 常数与一次项系数之
间有什么关系?
(3) x2 4x2 2 =( x2 )2
(1)(2)的结论 适合于(3)吗?
x (4) x2
共同点:
px(
p 2
)2=(

15、最具挑战性的挑战莫过于提升自 我。。2021年3月2021/3/52021/3/52021/3/53/5/2021

16、业余生活要有意义,不要越轨。2021/3/52021/3/5Marc h 5, 2021

17、一个人即使已登上顶峰,也仍要 自强不 息。2021/3/52021/3/52021/3/52021/3/5
谢谢观赏
You made my day!

《配方法》第一课时参考课件

《配方法》第一课时参考课件

可以验证,5和-5是方程 ① 的两根, 但是棱长不能是负值,所以正方体 的棱长为5 dm.
用方程解决实 际问题时,要考虑 所得结果是否符合 实际意义.
探究
( x 3) 2 5, 解 : 由 方 程 ( x 3) 2 5,


x 3 5,
即 x 3 5,或 x 3 5.

于是,方程 ( x 3) 2 5 的两个根为
x1 3 2 ,
x2 3 2
上面的解法中,由方程②和③, 实质上是把一元二次方程“降 次”,转化为两个一元一次方程, 这样就把方程②转化为我们会解 的方程了.
练习
解下列方程:
2 x 8 0; 2 9 x 5 3; 3 1 x 6 9 0; 2 2 2 4 3 x 1 6 0 ; 5 x 4 x 4 5; 6 9 x +6 x+ 1 4.
2 2 2
解:
1 2x
2
2
8 0
9 x2 5 3 2
移项 x 4,
移项 9 x2 8,
得 x 2,
方程的两根为:
8 得 x 2 , 9
x
2 2 , 3
方程的两根为:
x1 2 2 3
x1 2 x2 2.
x2
2 2 . 3
x2 1 2 .
方程两根为
x1 1 2
5 x2 4x 4 5
解:
x 2
2
5,
x 2 5,
x 2 5, x 2 5, x 2 2 5. 方程的两根为 x 1 2 5

《配方法》第一课时参考课件

《配方法》第一课时参考课件

8.(x + 3)2 = 2; 9.(x+3)²=6 ; 10.16x²-49=0 ; 11. (2x+3)²=5 ; 12. 2x²=128 ; 13. (x+1)² -12= 0 ; 14. x2 - 10x +25 = 0 15. x2 +6x =1;
小结Βιβλιοθήκη 拓展本节课复习了哪些旧知识呢? 本节课复习了哪些旧知识呢? 会见了两个“老朋友” 会见了两个“老朋友”: 平方根的意义: 平方根的意义 如果x2=a,那么x= ± a . 完全平方式:式子 式子a 叫完全平方式,且 完全平方式 式子 2±2ab+b2叫完全平方式 且 a2±2ab+b2 =(a±b)2. ± 本节课你又学会了哪些新知识呢? 本节课你又学会了哪些新知识呢? 学习了用配方法解一元二次方程: 学习了用配方法解一元二次方程: 1.移项 把常数项移到方程的左边; 移项: 1.移项:把常数项移到方程的左边; 2.配方 方程两边都加上一次项系数绝对值一半的平方; 配方: 2.配方:方程两边都加上一次项系数绝对值一半的平方; 3.变形 方程左分解因式,右边合并同类; 变形: 3.变形:方程左分解因式,右边合并同类; 4.开方 方程左分解因式,右边合并同类; 开方: 4.开方:方程左分解因式,右边合并同类; 5.求解 解一元一次方程; 求解: 5.求解:解一元一次方程; 6.定解 写出原方程的解. 定解: 6.定解:写出原方程的解.
2.2 配方法(一) 配方法(
如何求一元二次方程的精确解
我们利用“先确定大致范围;再取值计算, 我们利用“先确定大致范围;再取值计算,逐步逼近 的方法求得了一元二次方程的近似解. ”的方法求得了一元二次方程的近似解. 如方程2x 13x+11=0的解为x=1;即花边宽为 的解为x=1;即花边宽为1m. 如方程2x2-13x+11=0的解为x=1;即花边宽为1m. 如方程x =0的解约为1.2;即梯子底端滑动 如方程 2+12x-15=0的解约为1.2;即梯子底端滑动 =0的解约为1.2; 的踯约为1.2m. 的踯约为1.2m. 如方程x 8x-20=0的解为x=10或x=-2;即五个连续 的解为x=10 如方程x2-8x-20=0的解为x=10或x=-2;即五个连续 整数为-2,-1,0,1,2;或 整数为-2,-1,0,1,2;或10,11,12,13,14,15.

配方法(课件1)

配方法(课件1)
02 方程求解
配方法可以用于求解一元二次方程和某些一元高 次方程,将其转化为容易求解的形式。
03 函数极值
配方法可以用于求函数的极值,通过将函数转化 为完全平方的形式,可以更容易地找到极值点。
配方法的基本步骤
步骤1
步骤3
将多项式转化为完全平方的形式,可 以通过加上或减去适当的常数来实现。
利用直接开平方法求解,得到原多项 式的解。
01
02
03
解的求解过程
通过对方程进行配方,将 其转化为完全平方形式, 然后利用直接开平方法求 解。
解的表示
解可以表示为 $x=hpmsqrt{k}$的形式, 其中$h$和$k$是常数, $sqrt{k}$是方程的解。
解的验证
解出方程后,需要验证解 的正确性,确保解满足原 方程。
03
多元一次方程组的配方法
开方得到:$x - 2 = pm 1$
解得:$x_1 = 3, x_2 = 1$
THANKS
感谢观看
步骤2
对完全平方进行因式分解,得到两个 相同的因式。
02
一元二次方程的配方法
方程的转化
转化形式
将一元二次方程转化为$a(xh)^2+k$的形式,其中$h$和$k$ 是常数,$a$是方程的二次项系数。
配方过程
通过移项、配方等步骤,将一元二 次方程转化为完全平方的形式。
配方技巧
利用完全平方公式,将方程中的项 进行组合,使其成为完全平方项。
02
01
03
将方程两边同时除以二次项 系数,使二次项系数为1。
将方程两边同时加上一次项 系数一半的平方。
04
05
化简得到一个完全平方项。
配方法的应用实例

人教版初中九年级上册数学《配方法》精品课件

人教版初中九年级上册数学《配方法》精品课件
解:移项,得 2x2-3x=-1, 二次项系数化为1,得
配方,得 即
由此可得
移项和二次项系数 化为1这两个步骤能 不能交换一下呢?
方程的二次项系 数不是1时,为便于 配方,可以将方程 各项的系数除以二 次项系数.
3 3x2 6x 4 0.
解:移项,得
二次项系数化为1,得
为什么方程两 边都加12?
即a=0,b=2.
当堂练习
1.解下列方程: (1)x2+4x-9=2x-11;(2)x(x+4)=8x+12;
解:x2+2x+2=0,
解:x2-4x-12=0,
(x+1)2=-1.
(x-2)2=16.
此方程无解;
x1=6,x2=-2;
(3)4x2-6x-3=0;
解:x2 3 x 3 0, 24
如:已知x2-2mx+16是一个完全平方式,所以
一次项系数一半的平方等于16,即m2=16,
m对=于±含4.有多个未知数的二次式的等式,求未知数
的值,解题突破口往往是配方成多个完全平方式
构成非负数 和的形式
得其和为0,再根据非负数的和为0,各项均为0,
从而求解.如:a2+b2-4b+4=0,则a2+(b-2)2=0,
(x 3)2 21. 4 16
(4) 3x2+6x-9=0. 解:x2+2x-3=0, (x+1)2=4.
x1 3 4 21 ,
x2
3 4
21 ;
x1=-3,x2=1.
2.如图,在一块长35m、宽26m的矩形地面上,修建同样宽 的两条互相垂直的道路,剩余部分栽种花草,要使剩余部 分的面积为850m2,道路的宽应为多少?

3.2.1配方法(1)课件

3.2.1配方法(1)课件
35m
(35-x)2 =1089.
解这个方程,得 x1 =2
35m
x2 =68 (不合题意,舍去)
列方程:

(1). (x-1)2=4 (2). 4-(x-1)2=0 (3). (x-1)2-4 =0 (4). x2 -2x-1 = 4.
你能解: x2 –2x - 3= 0
结束寄语
下课了!
• 配方法是一种重要的数学方 法——配方法,它可以帮助你 到达希望的顶点. • 一元二次方程也是刻画现实 世界的一个有效数学模型.
九年级数学(上)第三章 一元二次方程
1.配方法(1)一元二次方程的解法
回顾与复习
平方根的意义:
旧意新释:
2
你还认识“老朋友” 吗
x2=5
老师提示: 这里是解一元二次方程的 基本格式,要按要求去做.
1. 解方程 (1)
解 : 1.x 5. x 5,
x1 5
x2 5
随堂练习 1
你能行吗
6. 7. 8. 9. 12(2 - x)2 - 9 = 0 (2x+3)² ; =5 2x² =128 ; (x + 1)2 – 4 = 0
解下列方程:

1. 2. 3. 4. 5.
2 = 0; 16x2 – 25 = 0; y2-7=0 x2-144=0 x2+5=0
x2 –
小结
• • • •
拓展
回味无穷
本节课复习了哪些旧知识呢? 会见了个“老朋友”: 如果x2=a,那么x= a . 平方根的意义: 本节课你又学会了哪些新知识呢? 学习了用开平方法解一元二次方程:
(x+a)2=b

配方法(1)

配方法(1)

李家永
练一练: 2、解下列方程
(3)(x 5) 25
2
(4) x 2 2 x 1 4
解: ( x 1) 4
2
解:x 5 25
x 5 25
x 1 4
x 1 4
x 5 5
即x1 0, x2 10
x 1 2
x 5 3
x1 5 3, x2 5 3
广东省怀集县洽水镇初级中学
李家永
三、研学教材
归纳 1、解一元二次方程的基本思路是: 把一个一元二次方程“降次”,转化为两个 一元一次方程 _________________ 2、(1)由应用直接开平方法解形如: p x2=p(p≥0),那么x=_________ (2)由应用直接开平方法解形如:
2
(4)9x 2 6x 1 4
2 解:(3x 1 ) 4
( x 1) 2
2
x 1 2
3x 1 4 3x 1 2
1 2 x 3
1 即x1 , x2 1 3
李家永
x 1 2
即x1 1 2, x2 1 2
广东省怀集县洽水镇初级中学
2 x p (1)当p>0时,根据平方根的意义,方程
p p 不相等 的实数根:x1=_____,x2=_____ 有两个________
2 相等 的实数根 x p有两个_______ (2)当p=0时,方程
0 x1=x2=__________
(3)当p<0时,因为对任意实数x,都有 x 0 , 2 没有 实数根 所以方程 x p __________
解:移项得: 9 x2 4

人教版初中九年级上册数学《配方法》精品课件

人教版初中九年级上册数学《配方法》精品课件

如:已知x2-2mx+16是一个完全平方式,所以
一次项系数一半的平方等于16,即m2=16,
m对=于±含4.有多个未知数的二次式的等式,求未知数
的值,解题突破口往往是配方成多个完全平方式
构成非负数 和的形式
得其和为0,再根据非负数的和为0,各项均为0,
从而求解.如:a2+b2-4b+4=0,则a2+(b-2)2=0,
(1) x2+6x+9 =5; (2)x2+6x+4=0.
把两题转化成 (x+n)2=p(p≥0)的 形式,再利用开平方
一、配方的方法
探究交流
问题1.你还记得吗?填一填下列完全平方公式. (1) a2+2ab+b2=( a+b )2; (2) a2-2ab+b2=( a-b )2.
探究交流
问题2.填上适当的数或式,使下列各等式成立. (1)x2+4x+ 22 = ( x + 2 )2
(x 3)2 21. 4 16
(4) 3x2+6x-9=0. 解:x2+2x-3=0, (x+1)2=4.
x1 3 4 21 ,
x2
3 4
21 ;
x1=-3,x2=1.
2.如图,在一块长35m、宽26m的矩形地面上,修建同样宽 的两条互相垂直的道路,剩余部分栽种花草,要使剩余部 分的面积为850m2,道路的宽应为多少?
所以k2-4k+5的值必定大于零.
归纳总结
配方法的应用
类别
1.求最值或 证明代数式 的值为恒正 (或负)
解题策略 对于一个关于x的二次多项式通过配方成a(x+m)2 +n的形式后,(x+m)2≥0,n为常数,当a>0时, 可知其最小值;当a<0时,可知其最大值.

《配方法》ppt课件1人教版

《配方法》ppt课件1人教版

化简,⑥ 得 y2 2
3y 3 0.
配方,得 能转化为

(1)移项,常数项移到方程右边.
配方,得
形式的方程.
2
y 3 0.
※更为简捷的办法
(1)
;
由此可得 y y 配方法解二次项系数为1的一元二次方程的一般步骤:
填空:将下列二次三项式写成完全平方的形式.
配方法解二次项系数为1的一元二次方程的一般步骤:
4.完全平方公式: (a b)2 a2 2ab b2.
复习回顾
填空:将下列二次三项式写成完全平方的形式.
x2 2x (1)2 (x 11 )2 ;
5 2
5
x2 5x 2 (x 2 )2 .
复习回顾
写成
的形式.
5.解方程: (即:转化为我们会解的方程)
能转化为

形式的方程.
不能直接开方解 一元二次方程
转化 关键是“配方”
可以开方解 一元二次方程
归纳总结
配能方转法 化解为二次项系3数或为.配1的一方元二法次形方式解程的的方一二程般. 步次骤:项系数为1的一元二次方程的一般步骤:
能转化为

形式的方程.
(1)移项,常数项移到方程右边. 解一元二次方程的基本思路:
根据需要,先化成一般式;
来确定第三项,
x 1, x 0 × 观察上面的(1)(2)题的解题过程,1我们可以通过“配方”,转化为用已学过的直接开平方法进行求解.
x2 1.
③ x2 1; 解:此方程无实根.
④ x 12 2
解:x+1 2.
x 1 2. x1 1 2,
x2 1 2.
复习回顾
⑤ x 12 0

浙教版数学八年级下册《开平方法—配方法(1)》课件

浙教版数学八年级下册《开平方法—配方法(1)》课件

.
(x-4)2=20
x-3=1或x-3=-1
x1=4,x2=2
x-4= 20或x-4=- 20
x1=4 + 2
.
5或x2=4-2 5
.
.
(3)x2+x-1=0
解:x2+x=1
1
1
2
x +x+ =1+
4
4
1 2 5
(x+ ) =
2
4
1
x+ =
2
5
4
1
或x+ =−
2
5
4
.
一移、
二配、
.
三开、
四解.
−1+ 5
4.解方程 x2 = p,
(1)当p>0 时,根据平方根的意义,方程x2 = p有两个不等
的实数根 x1=

,x2 = −


(2)当p=0 时,方程x2 = p有两个相等的实数根 x1=x2=0;
(3)当p<0 时,因为任何实数x,都有x2≥0 ,所以方程x2 = p无实数根.
.
5. 用配方法解下列方程:
浙教版八下数学
2.2 一元二次方程的解法 (2)
开平方法+配方法
温故知新:
齐声朗读
如果一个数的平方等于a,那么这个数就叫做a的平方根,
用式子表示为:若 2 = ,那么x就是a的平方根,记作 = ±
一般地,对于形如x2=a(a≥0)的方程,
根据平方根的定义,可解得1 = , 2 = −
(a+b)2
几何验证: 利用图形面积验证完全平方公式
ab
b2

人教版初中数学《配方法》(完整版)课件

人教版初中数学《配方法》(完整版)课件
人教版初中数学《配方法》教学实用 课件(P PT优秀 课件)
人教版初中数学《配方法》教学实用 课件(P PT优秀 课件)
3.应用配方法求最值. (1) 2x2 - 4x+5的最小值; (2) -3x2 + 5x +1的最大值.
解:(1) 2x2 - 4x +5 = 2(x - 1)2 +3 当x =1时有最小值3
2
一移常数项; 二配方[配上 (二次项系数)2 ];
2
三写成(x+n)2=p (p ≥0); 四直接开平方法解方程.
应用
求代数式的最值或证明
特别提醒:
在使用配方法解方程之前先把方程化为x2+px+q=0的形式.
人教版初中数学《配方法》教学实用 课件(P PT优秀 课件)
探究交流
问题2.填上适当的数或式,使下列各等式成立. (1)x2+4x+ 22 = ( x + 2 )2
(2)x2-6x+ 32 = ( x- 3 )2
(3)x2+8x+ 42 = ( x+ 4 )2
(4)x2- 4
3
x+
(
2 3
) 2 = ( x-
2 3
)2
你发现了什么规律?
人教版初中数学《配方法》教学实用 课件(P PT优秀 课件)
人教版初中数学《配方法》教学实用 课件(P PT优秀 课件)
人教版初中数学《配方法》教学实用 课件(P PT优秀 课件)
典例精析
例1 解下列方程:1 x28x10;
解:(1)移项,得 x2-8x=-1,
配方,得 x2-8x+42=-1+42 , 即 ( x-4)2=15

配方法()课件(北师大版年级上) 公开课获奖课件

配方法()课件(北师大版年级上) 公开课获奖课件
x2 =60(不合题意,舍去).
答:道路的宽应为1m.
独立 作业
2. 解下列方程:

(1).x2 +12x+ 25 = 0; (2).x2 +4x =1 0; (3).x 2 –6x =11; (4). x2 –2x-4 = 0.
下课了!


配方法是一种重要的数学方法 ——配方法,它可以助你到达希 望的顶点. 一元二次方程也是刻画现实世 界的有效数学模型.
上海 2006 高考 理科 状元-武亦 文
武亦文 格致中学理科班学生 班级职务:学习委员 高考志愿:复旦经济 高考成绩:语文127分 数学142分 英语144分 物理145分 综合27分 总分585分
“一分也不能少”
“我坚持做好每天的预习、复习,每 天放学回家看半小时报纸,晚上10: 30休息,感觉很轻松地度过了三年 高中学习。”当得知自己的高考成 绩后,格致中学的武亦文遗憾地说 道,“平时模拟考试时,自己总有 一门满分,这次高考却没有出现, 有些遗憾。”
你还能规范解下列方程吗?
1.解方程 (1) x2=5.
老师提示: 解方程 (6) x2+12x-15=0. 这里是解一元二次方程的 解方程 (7) x2+8x-9=0. 基本格式,要按要求去做.
解 : 1.x 2 5. x 5, x1 5 , x2 5 .
你能设法求出它的精确解吗?与同伴交流.
你以前解过一元二次方程吗
平方根的意义: 如果x2=a,那么x= a . 如:如果x2=5,那么x= 5. 完全平方式:式子a2±2ab+b2叫完全平方式,且a2±2ab+b2 =(a±b)2. 如:x2+12x+ 旧意新释: =(x+6)2; x2-4x+ =(x)2; x2+8x+ =(x+ )2 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1:用配方法解下列方程: (1) x2+12x =-9 (2) -x2+4x-3=0 2. 用配方法说明:不论k取何实数,多项式 k2-3k+5的值必定大于零.
用配方法解一元二次方 程 x 2 x 24 0
2
配方的过程可以用拼图直观地表示。
1.一般地,对于形如x2=a(a≥0)的方程,
x3 5
x 3 5, x 3 5 得 : x1 3 5 , x2 3 5
以上解法中,为什么在方程 x 6 x 4 两边加9?加其他数行吗? 像上面那样,通过配成完全平方形式来解一 元二次方程的方法, 叫做配方法.
2
X2-4x+1=0
变 形 为
根据平方根的定义,可解得 x a ,x a 1 2 这种解一元二次方程的方法叫做开平方法.
2.把一元二次方程的左边配成一个完全平方 式,然后用开平方法求解,这种解一元二次方程的 方法叫做配方法. 注意:配方时, 等式两边同时加上的是一次项 系数一半的平方.
用配方法解一元二次方程的步骤:
配方法解一元二次方程(1)

羊寨初中
数学组
因式分解的完全平方公式
a a
2
2ab b (a b) ;
2 2
2
完全平方式
2ab b (a b) .
2 2
填一填
1 1 (1) x 2 x _____ ( x ___)
2
2
2
4 (2) x 8 x _____ ( x ___) 4 5 5 2 2 (3) y 5 y (2) ( y ___) _____ 2 2 2 1 (1) 1 (4) y y ____ 1)x2 - 4x +3 =0
(2)x2 + 3x -1=0
把一元二次方程的左边配成一个 完全平方式,然后用开平方法求解,这 种解一元二次方程的方法叫做配方法.
配方时, 等式两边同时加上的是一 次项系数一半的平方
用配方法解一元二次方程的步骤:
移项:把常数项移到方程的右边; 配方:方程两边都加上一次项系数一半的平方; 开方:根据平方根意义,方程两边开平方; 求解:解一元一次方程; 定解:写出原方程的解.
变形为
x2-4x+4=-1+4 (x-2)2=3
这个方程 怎样解?

2
a
的形式.(a为非负常数)
解一元二次方程的基本思路
二次方程 一次方程
把原方程变为(x+h)2=k的形式 (其中h、k是常数)。 当k≥0时,两边同时开平方,这 样原方程就转化为两个一元一次方程。 当k<0时,原方程的解又如何?
移项:把常数项移到方程的右边; 配方:方程两边都加上一次项系数一半的平方; 开方:根据平方根意义,方程两边开平方; 求解:解一元一次方程; 定解:写出原方程的解.
1、书P93习题4.2
2
2、《数学补充习题》P41
思考:先用配方法解下列方程: (1) x2-2x-1=0 (2) x2-2x+4=0 (3) x2-2x+1=0 然后回答下列问题: (1)你在求解过程中遇到什么问题?你是 怎样处理所遇到的问题的? (2)对于形如x2+px+q=0这样的方 程,在什么条件下才有实数根?
2 2
2
2
2
它们之间有什么关系?
2 想一想如何解方程x 6 x 4 0 ? x 6 x 4
x 6x 4 0
2
移项 2
两边加上32,使左边配成 完全平方式
2
x 6 x 3 4 3
2 2
左边写成完全平方的形式
( x 3) 5
2
开平方
变成了(x+h)2=k 的形式
相关文档
最新文档