物理材料力学弯曲剪应力

合集下载

材料力学弯曲应力_图文

材料力学弯曲应力_图文

§5-3 横力弯曲时的正应力
例题6-1
q=60kN/m
A
1m
FAY
C
l = 3m
FS 90kN
120
1.C 截面上K点正应力 2.C 截面上最大正应力
B
x
180
K
30 3.全梁上最大正应力 z 4.已知E=200GPa,
FBY
C 截面的曲率半径ρ y
解:1. 求支反力
x 90kN M
x
(压应力)
目录
目录
§5-2 纯弯曲时的正应力
正应力分布
z
M
C
zzy
x
dA σ
y
目录
§5-2 纯弯曲时的正应力
常见截面的 IZ 和 WZ
圆截面 空心圆截面
矩形截面 空心矩形截面
目录
§5-3 横力弯曲时的正应力
横力弯曲
6-2
目录
§5-3 横力弯曲时的正应力
横力弯曲正应力公式
弹性力学精确分析表明 ,当跨度 l 与横截面高度 h 之比 l / h > 5 (细长梁)时 ,纯弯曲正应力公式对于横 力弯曲近似成立。 横力弯曲最大正应力
§5-3 横力弯曲时的正应力
q=60kN/m
A
1m
FAY
C
l = 3m
FS 90kN
120
2. C 截面最大正应力
B
x
180
K
30 C 截面弯矩 z
FBY
y
C 截面惯性矩
x 90kN M
x
目录
§5-3 横力弯曲时的正应力
q=60kN/m
A
1m
FAY
C
l = 3m

材料力学弯曲剪应力

材料力学弯曲剪应力

,max
S
* z ,max
Izd
FS,max
Iz S*
z ,max
d
75103 N 47.73 102m 12.5 103m
12.6 106 Pa 12.6 MPa
第15页/共68页
例题 4-13
2. 求ta ta
其中:
FS
,max
S
* za
Izd
S
* za
166
mm
21
mm
560 mm 2
思考题: 试通过分析说明,图a中
所示上、下翼缘左半部分 和右半部分横截面上与腹 板横截面上的切应力指向 是正确的,即它们构成了 “切应力流”。
第12页/共68页
例题 4-13
由56a号工字钢制成的简支梁如图a所示,试求
梁的横截面上的最大切应力tmax和同一横截面上腹 板上a点处(图b)的切应力t a 。不计梁的自重。
3 2
FS bh
第4页/共68页
2. 工字形截面梁 (1) 腹板上的切应力
t
FS
S
* z
Izd
其中
Sz*
b
h 2
2
h 2
y d
h 2
y
y
2
b
2
h
d 2
h 2
2
y
2
第5页/共68页
可见腹板上的切应力在与中性轴z垂直的方向 按二次抛物线规律变化。
第6页/共68页
(2) 在腹板与翼缘交界处:
第10页/共68页
F* N2
自由边 t1 t1
A* F* dx
N1
u
根据 d FS t可1 得d x出

材料力学第五章弯曲应力

材料力学第五章弯曲应力

式中 : M 横截面上的弯矩
Iz
横截面对中性轴的惯性矩
y
求应力的点到中性轴的距离
I z A y2dA
m 惯性矩是面积与距离平方的乘积,恒为正值,单位为 4
My
IZ
讨论
应用公式时,一般将 M,y 以绝对值代入。根据梁变 形的情况直接判断 的正,负号。 以中性轴为界,梁 变形后凸出边的应力为拉应力( 为正号)。凹入边 的应力为压应力,( 为负号)。
max M (x) WZ
RA
P
A
C
5m 10m
RB B
a
12.5
z
166
例题1 :图示简支梁由 56 a 工字钢制成 ,其横截面见图 p = 150kN。求 (1) 梁上的最大正应力 max
(2) 同一截面上翼缘与腹板交界处 a 点的应力
解:
C 截面为危险截面。最大弯矩
+
M max 375KN.m
查型钢表,56 a 工字钢
I z 65586 cm6
W z 2342cm2
(1) 梁的最大正应力 +
σ max
M max WZ
160MPa
(2) a点的正应力
a点到中性轴的距离为
ya

560 2

21
所以 a 点的正应力为
σ a M max ya 145MPa IZ
12.5
My
IZ
最大正应力发生在横截面上离中性轴最远的点处 当 中性轴为对称轴时 ,ymax 表示最大应力点到中性轴 的距离,横截面上的最大正应力为
max M ymax Iz
WZ

IZ ymax

材料力学第五章 弯曲应力分析

材料力学第五章 弯曲应力分析

B
D
1m
1m
1m
y2
20
120
FRA
F1=9kN FRB F2=4kN
A C
BD
1m
1m
1m
2.5 Fs
+
+
4 kN
-
6.5 2.5
M
kNm
-
+
4
解: FRA 2.5kN FRB 10.5kN
88
52
-
+
C 2.5
4 B 80
z
20
120
20
B截面
σ t max
M B y1 Iz
4 • 52 763
20
+
-
+
10
Fs
kN
10
20
30
30
25
25
M
kNm
max
M max W
[ ]
W Mmax 30 187.5cm3
[ ] 160
1)圆 W d 3 187.5
32
d 12.4cm
A d 2 121cm2
4
2)正方形
a3 W 187.5
6
3)矩形
a 10.4cm
A a2 108cm2
压,只受单向拉压. (c)同一层纤维的变形相同。 (d)不同层纤维的变形不相同。
推论:必有一层变形前后长度不变的纤维—中性层
中性轴
中性轴⊥横截面对称轴
中性层
横截面对称轴
二、变形几何关系
dx
dx
图(a)
O
O
zb
O yx b
y
图(b)

材料力学:弯曲切应力

材料力学:弯曲切应力
B
n
F
* N2
m
F F dFs 0
* N2 * N1
1 dA
dA
m
n
dM * dFs F F Sz Iz
* N2 * N1
dM * dFs F F Sz Iz
* N2 * N1
z
y x
3
求纵截面 AB1 上的切应力 ’

dFs 1 dM * Sz b dx bI z dx
B
A
h/2
b
y
m
n
dA bdy
1

Fs S z
*
I
z
b
2 b h 2 * SZ ( y ) 2 4
Fs h 2 τ ( y2 ) 2I z 4
可见 ,切应力沿 截面高度按抛物线规律变化。
Fs h 2 τ ( y2 ) 2I z 4
h y 处,(即在横截面上距中性轴最远处),切应力等于零 2
z
* z
上式为 矩形截面梁 对称弯曲时横截面上任一点处的
切应力计算公式。
Fs S bI
z
* z
A
*
Z
Iz — 整个横截面对中性轴的惯性矩 b— 矩型截面的宽度 Sz* — 过求切应力的点做与中性轴平 行的直线,该线任一边的横截面面积 对中性轴的静矩
y
A
*
y
b
— 其方向与剪力 Fs 的方向一致
τ 0
y = 0 处,( 即在中性轴上各点处) ,切应力达到最大值

max
Fs h 2 Fs h 2 3 Fs 3 Fs 3 bh 8I z 2 bh 2 A 8 12

材料力学——弯曲应力

材料力学——弯曲应力

公式推导
线应变的变化规律 与纤维到中性层的距离成正比。
从横截面上看: 点离开中性轴越远,该点的线应变越大。
2、物理关系
当σ<σP时 虎克定律
E
E
y
y
弯曲正应力的分布规律 a、与点到中性轴的距离成正比; 沿截面高度 线性分布; b、沿截面宽度 均匀分布; c、正弯矩作用下, 上压下拉; d、危险点的位置, 离开中性轴最远处.
M max ymax IZ
x
67.5 103 90 103 5.832 105
104.17MPa
6、已知E=200GPa,C 截面的曲率半径ρ q=60KN/m A FAY B 1m C 3m FBY
M C 60kN m
I z 5.832 105 m 4
M EI
4 103 88 103 46.1MPa 6 7.64 10
9KN
4KN
C截面应力计算
A FA
M 1m
C 1m
B
1m FB
C截面应力分布 应用公式
t ,max
My Iz
2.5KNm
2.5 103 88 103 28.8MPa 6 7.64 10
Fb Fa
C截面: max M C Fb3 62.5 160 32 46.4MPa d W 3
zC
2
0.13
32
(5)结论 轮轴满足强度条件
一简支梁受力如图所示。已知 [ ] 12MPa ,空心圆截面 的内外径之比 一倍,比值不变,则载荷 q 可增加到多大? q=0.5KN/m A B
反映了截面的几何形状、尺寸对强度的影响
最大弯曲正应力计算公式

《材料力学》 第五章 弯曲内力与弯曲应力

《材料力学》 第五章 弯曲内力与弯曲应力

第五章 弯曲内力与应力 §5—1 工程实例、基本概念一、实例工厂厂房的天车大梁,火车的轮轴,楼房的横梁,阳台的挑梁等。

二、弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线。

变形特点——杆轴线由直线变为一条平面的曲线。

三、梁的概念:主要产生弯曲变形的杆。

四、平面弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线,且都在梁的纵向对称平面内(通过或平行形心主轴且过弯曲中心)。

变形特点——杆的轴线在梁的纵向对称面内由直线变为一条平面曲线。

五、弯曲的分类:1、按杆的形状分——直杆的弯曲;曲杆的弯曲。

2、按杆的长短分——细长杆的弯曲;短粗杆的弯曲。

3、按杆的横截面有无对称轴分——有对称轴的弯曲;无对称轴的弯曲。

4、按杆的变形分——平面弯曲;斜弯曲;弹性弯曲;塑性弯曲。

5、按杆的横截面上的应力分——纯弯曲;横力弯曲。

六、梁、荷载及支座的简化(一)、简化的原则:便于计算,且符合实际要求。

(二)、梁的简化:以梁的轴线代替梁本身。

(三)、荷载的简化:1、集中力——荷载作用的范围与整个杆的长度相比非常小时。

2、分布力——荷载作用的范围与整个杆的长度相比不很小时。

3、集中力偶(分布力偶)——作用于杆的纵向对称面内的力偶。

(四)、支座的简化:1、固定端——有三个约束反力。

2、固定铰支座——有二个约束反力。

3、可动铰支座——有一个约束反力。

(五)、梁的三种基本形式:1、悬臂梁:2、简支梁:3、外伸梁:(L 称为梁的跨长) (六)、静定梁与超静定梁静定梁:由静力学方程可求出支反力,如上述三种基本形式的静定梁。

超静定梁:由静力学方程不可求出支反力或不能求出全部支反力。

§5—2 弯曲内力与内力图一、内力的确定(截面法):[举例]已知:如图,F ,a ,l 。

求:距A 端x 处截面上内力。

解:①求外力la l F Y l FaF m F X AYBY A AX)(F, 0 , 00 , 0-=∴==∴==∴=∑∑∑ F AX =0 以后可省略不求 ②求内力xF M m l a l F F F Y AY C AY s ⋅=∴=-==∴=∑∑ , 0)( , 0∴ 弯曲构件内力:剪力和弯矩1. 弯矩:M ;构件受弯时,横截面上存在垂直于截面的内力偶矩。

材料力学第七章弯曲剪应力

材料力学第七章弯曲剪应力
腹板负担了截面上的绝大部分剪力,翼缘负担了 截面上的大部分弯矩。
对于标准工字钢梁:
t max
*
F SS zmax Izb
FS
b
Iz
/
S* Z max
在翼板上:
FN I
A* sⅠdA
My dA
I A* z
FN
M Iz
ydA
A*
M Iz
Sz*
FN II
A* (s Ⅱ)dA
(M dM )
即:M
dM Iz
S
* z
M Iz
S
* z
tbdx
t
S
* z
dM
Izb dx
结论:
t
FS
S
* z
Izb
§5.7 梁的切应力
3.切应力分布规律
t
FS
S
* z
FS
h2 (
y2)
I zb 2I z 4
6FS bh3
h 2 4
y2
S* z
A*
y* C
b
h
y
y
h 2
y
2
2
b 2
h2 4
y2
用剪应力为[τ],求螺栓的最小直径?
解:叠梁承载时,每
F
梁都有自己的中性层
L
FS
F
-FL
M
h 2
1.梁的最大正应力:
h 2
b
s max
1 2
M
max
W
其中:
W
b( h )2 2
bh2
6 24
s max
M max 2W
12FL bh2

材料力学第6章弯曲应力

材料力学第6章弯曲应力

图6.5
页 退出
材料力学
出版社 理工分社
例6.1如图6.6所示,矩形截面悬臂梁受集中力和集中力偶作用。试求Ⅰ—Ⅰ 截面和固定端Ⅱ—Ⅱ截面上A,B,C,D 4点处的正应力。
图6.6
页 退出
材料力学
出版社 理工分社
解矩形截面对中性轴的惯性矩为 对于Ⅰ—Ⅰ截面,弯矩MⅠ=20 kN·m,根据式(6.2),各点正应力分别为
页 退出
材料力学
出版社 理工分社
(1)变形几何关系 弯曲变形前和变形后的梁段分别表示于图6.4(a)和(b)。以梁横截面的对称 轴为y轴且向下为正(见图6.4(c))。以中性轴为z轴,但中性轴的位置尚待确 定。在中性轴尚未确定之前,x轴只能暂时认为是通过原点的横截面的法 线。根据弯曲平面假设,变形前相距为dx的两个横截面,变形后各自绕中性 轴相对旋转了一个角度dθ ,且仍然保持为平面。这就使得距中性层为y的纵 向纤维bb的长度变为
式中积分
是横截面对y轴和z轴的惯性积。由于y轴是横截面的对
称轴,必然有Iyz=0(见附录)。所以式(g)是自然满足的。 将式(b)代入式(e),得
式中积分∫Ay2dA=Iz是横截面对z轴(中性轴)的惯性矩。于是式(h)改写为 式中 ——梁轴线变形后的曲率。
页 退出
材料力学
出版社 理工分社
式(6.1)表明,EIz越大,则曲率 越小,故EIz称为梁的抗弯刚度。从式 (6.1)和式(b)中消去 ,得
而对于变截面梁,虽然是等截面梁但中性轴不是横截面对称轴的梁,在计算 最大弯曲正应力时不能只注意弯矩数值最大的截面,应综合考虑My/Iz的值 (参看例6.5和例6.8)。
页 退出
材料力学
出版社 理工分社
引用记号

材料力学-弯曲应力

材料力学-弯曲应力

对于宽为b高为h的矩形截面:
W
bh3 12
bh2
h
6
2
对于直径为d的圆形截面:
W d 4 64 d 3
d
32
2
限定最大弯曲正应力不得超过许用应力,于是强度条件为:
max
M max W
设σt 表示拉应力,σc 表示压应力,则:
t max t
cmax c
塑性材料, [σt]= [σc]= [σ];
所以由(1)式:
A
d
A
A E
y
d
A
E
A y d
A
E
Sz
0
由(2)式:
说明中性轴过形心
A z
d
A
A zE
y
d
A
E
A
yz d
A
E
I yz
0
由于y轴是对称轴,此 式自然满足。
由(3)式:
A
y
d
A
A
yE
y
d
A
E
A
y2
d
A
E
Iz
M
1 M
EI z
1 为梁轴线变形后的曲率 ;
由变形几何关系得到 y
由物理关系得到
bh2 2b3 W
63
故: b 121.6 mm
h 2b 243.2 mm
选取截面为: 125 250 mm 2
e.g.3 已知:l=1.2m,[σ]=170MPa, 18号工字钢,不计自重。
求:P 的最大许可值。
P A
解:作弯矩图, 由图可得:
M
| M |max Pl 1.2P N m

材料力学第五章

材料力学第五章

y
= ∫ y dA
2 A
1 1 π ⋅ d4 π ⋅ d4 I y = Iz = I ρ = ⋅ = z 2 2 32 64
1 π ⋅ (D4 − d 4 ) 对空心圆截面: 对空心圆截面: I = I = I = y z ρ 2 64
第五章 弯曲应力
§5-2 对称弯曲正应力 对称弯曲正应力
M⋅ y 二、弯曲正应力一般公式: 弯曲正应力一般公式: σ= Iz
Ip
弯曲 剪力Q 剪力

第五章 弯曲应力
§5-1 引言 y
梁段
M τ Q
z
σ
横截面上剪应力 横截面上正应力
横截面上内力
Q = ∫τdA
剪应力造成剪力
M = ∫σydA
正应力造成弯矩
剪应力和正应力的分布规律是什么? 剪应力和正应力的分布规律是什么?
超静定问题
第五章 弯曲应力
§5-1 引言
§5-2 对称弯曲正应力 对称弯曲正应力 §5-3 对称弯曲切应力 对称弯曲切应力 弯曲 §5-4 梁的强度条件与合理强度设计 梁的强度条件与合理强度设计 §5-5 双对称截面梁的非对称弯曲 双对称截面梁的非对称弯曲 §5-6 弯拉(压)组合 弯拉( 对称弯曲(平面弯曲): 对称弯曲(平面弯曲): 外力作用在纵向对称面内, 外力作用在纵向对称面内,梁轴线变形 后为一平面曲线,也在此纵向对称面内。 后为一平面曲线,也在此纵向对称面内。
(3)
Mz = ∫ σ ⋅ y ⋅ dA = M (5) A E 2 E 2 E (5) M z = ∫ ρ y dA = ∫ y dA = ρ I z = M
A
ρ
A
1 M = ρ EIz
第五章 弯曲应力

弯曲应力-材料力学

弯曲应力-材料力学

弯曲应力的计算方法
根据材料力学的基本原理,弯曲应力 的计算公式为:σ=M/Wz,其中σ为 弯曲应力,M为弯曲力矩,Wz为截面 对中性轴的抗弯截面系数。
另外,根据不同的弯曲形式和受力情 况,还可以采用其他计算公式来求解 弯曲应力,如均布载荷下的简支梁、 集中载荷下的悬臂梁等。
弯曲应力的计算方法
根据材料力学的基本原理,弯曲应力 的计算公式为:σ=M/Wz,其中σ为 弯曲应力,M为弯曲力矩,Wz为截面 对中性轴的抗弯截面系数。
弯曲应力可能导致材料发生弯曲变形,影响结构的稳定性和精度。
弯曲应力对材料刚度的影响
弯曲应力对材料的刚度有影响,材料的刚度随着弯曲应力的增大而 减小。
弯曲应力与剪切应力的关系
1 2
剪切应力在弯曲应力中的作用
在弯曲过程中,剪切应力会在材料截面的边缘产 生,它与弯曲应力相互作用,影响梁的承载能力 和稳定性。
弯曲应力
材料的韧性和强度都会影响其弯曲应力的大小和分布。韧性好的材料能够更好地分散和 吸收弯曲应力,而高强度的材料则能够承受更大的弯曲应力而不发生断裂。
材料韧性、强度与弯曲应力的关系
韧性
是指材料在受到外力作用时吸收能量的能力。韧性好的材料能够吸收更多的能量,从而 减少因弯曲应力而产生的脆性断裂。
强度
剪切应力的分布
剪切应力在材料截面的边缘最大,向中性轴方向 逐渐减小。
3
剪切应力和弯曲应力的关系
剪切应力和弯曲应力共同作用,影响梁的承载能 力和稳定性,在设计时需要考虑两者的相互作用。
弯曲应力与剪切应力的关系
1 2
剪切应力在弯曲应力中的作用
在弯曲过程中,剪切应力会在材料截面的边缘产 生,它与弯曲应力相互作用,影响梁的承载能力 和稳定性。

材料力学第五章-弯曲应力知识分享

材料力学第五章-弯曲应力知识分享

材料力学第五章-弯曲应力注:由于本书没有标准答案,这些都是我和同学一起做的答案,其中可能会存在一些错误,仅供参考。

习 题6-1厚度mm h 5.1=的钢带,卷成直径 D=3m 的圆环,若钢带的弹性模量E=210GPa ,试求钢带横截面上的最大正应力。

解: 根据弯曲正应力公式的推导: Dy E yE 2..==ρσ MPa D h E 1053105.110210.39max =⨯⨯⨯==-σ 6—2直径为d 的钢丝,弹性模量为E ,现将它弯曲成直径为D 的圆弧。

试求钢丝中的最大应力与d /D 的关系。

并分析钢丝绳为何要用许多高强度的细钢丝组成。

解: ρσyE .= Dd E ED d .22max ==σ max σ与Dd成正比,钢丝绳易存放,而引起的最大引力很小.6—3 截面形状及尺寸完全相同的一根钢梁和一根木梁,如果所受的外力也相同,则内力是否相同?横截面上正应力的变化规律是否相同?对应点处的正应力与纵向线应变是否相同? 解: 面上的内力相同,正应力变化规律相同。

处的正应力相同,线应变不同6—4 图示截面各梁在外载作用下发生平面弯曲,试画出横截面上正应力沿高度的分布图.6—5 一矩形截面梁如图所示,已知F=1.5kN 。

试求(1) I —I 截面上A 、B 、C 、D 各点处的正应力; (2) 梁上的最大正应力,并指明其位置。

解:(1)m N F M .3002.0*10*5.12.0*3===MPa M I y M z A 11110*30*1812*10*15*.1233===--σ A B σσ-= 0=C σMPa M D 1.7410*30*1812*10*)5.15(*1233==--σ MPa W Fl z 5.16610*30*186*10*300*10*5.19233max ===--σ 位置在:固定端截面上下边缘处。

6—6 图示矩形截面简支梁,受均布载荷作用。

已知载荷集度q=20kN /m ,跨长l =3,截面高度=h 24cm ,宽度=b 8cm 。

材料力学第五章 弯曲应力

材料力学第五章  弯曲应力
x
F F d F 0 N 2 N 1 S
将FN2、FN1和dFS′的表达式带入上式,可得
* M M d M * S S b d x 0 z z
I z I z
简化后可得
dM S z* dx I z b
dM F S ,代入上式得 由公式(4-2), dx

* 式中 S z

A1
y1dA ,是横截面距中性轴为 y 的横线 pq 以下的面积对中性轴的静矩。同理,
可以求得左侧面 rn 上的内力系的合力 FN 1 为
M * FN 1 S z Iz
在顶面rp上,与顶面相切的内力系的合力是
d F b d x S
根据水平方向的静平衡方程
F 0 ,可得
综上所述,对于各横截面剪力相同的梁和剪力不相同的
细长梁(l>5h),在纯弯曲情况下推导的弯曲正应力公式 (5-2)仍然适用。
例5-1
图5-10(a)所示悬臂梁,受集中力F与集中力
偶Me作用,其中F=5kN,Me=7.5kN· m,试求梁上B点左邻 面1-1上的最大弯曲正应力、该截面K点处正应力及全梁的 最大弯曲正应力。
第五章 弯曲应力
5.1 弯曲正应力 5.2 弯曲切应力简介 5.3 弯曲强度条件及其应用 5.4 提高梁弯曲强度的主要措施
5.1 弯曲正应力
上一章研究表明,一般情况下,梁横截面上同时存在
剪力FS和弯矩M。由于只有切向微内力τ dA才可能构成剪力, 也只有法向微内力σdA才可能构成弯矩,如图5-1(a)所示。 因此,在梁的横截面上将同时存在正应力σ和切应力τ(见图 5-1(b))。梁弯曲时横截面上的正应力与切应力分别称为 弯曲正应力与弯曲切应力。

材料力学第8章-弯曲剪应力分析与弯曲中心的概念

材料力学第8章-弯曲剪应力分析与弯曲中心的概念

TSINGHUA UNIVERSITY
第8章 弯曲剪应力分析与弯曲中心的概念
弯曲剪应力以及弯曲中心的概念
前提
1. 基于弯曲正应力的分析结果——承认纯弯 正应力公式在横向弯曲时依然成立。
Mzy
Iz
第8章 弯曲剪应力分析与弯曲中心的概念
弯曲剪应力以及弯曲中心的概念
前提
2. 因为薄壁截面杆的内壁和外壁都没有力作 用,应用剪应力互等定理,横截面上的剪应力作 用线必然沿着横截面周边的切线方向。
薄壁截面梁的弯曲中心
TSINGHUA UNIVERSITY
第8章 弯曲剪应力分析与弯曲中心的概念
薄壁截面梁的弯曲中心
TSINGHUA UNIVERSITY
TSINGHUA UNIVERSITY
第8章 弯曲剪应力分析与弯曲中心的概念
梁弯曲时横截面上的剪应力分析 实心截面梁的弯曲剪应力公式 薄壁截面梁的弯曲中心 结论与讨论
第8章 弯曲剪应力分析与弯曲中心的概念
薄壁截面梁的弯曲中心
薄壁杆件弯曲时为什么会发生扭转现象? 外力的作用线通过哪一点就不会发生扭转? 这一点的位置怎样确定?
第8章 弯曲剪应力分析与弯曲中心的概念
薄壁截面梁的弯曲中心
通过考察微段的局部平衡确定剪应力流的方向
TSINGHUA UNIVERSITY
横向弯曲时,梁的横截面上不仅有弯矩,而 且还有剪力。与剪力相对应的,梁的横截面上将 有剪应力。
分析弯曲剪应力的方法有别于分析弯曲正应 力的方法。
TSINGHUA UNIVERSITY
第8章 弯曲剪应力分析与弯曲中心的概念
弯曲剪应力以及弯曲中心的概念
分析模型-开口薄壁截面梁

材料力学第五章__弯曲应力

材料力学第五章__弯曲应力

矩(中性轴以下或以上面积对中性轴的静矩)
的比值(Iz/S),因此工程中经常采用的最大
剪应力的计算公式为:
max
bIz
FS / Smax
整理课件
3.圆截面梁的剪应力
整理课件
假设
1.假设AB弦上各点的剪 应力作用线都通过k点。
2.假设AB弦上各点剪应 力的垂直分量τy相等, 亦即假设τy沿AB弦均 匀分布。
整理课件
1、矩形截面梁弯曲剪应力
初等剪应力理论是由俄罗斯工程师茹拉夫斯基( 1844-1850)设计木梁时提出。 1856年圣维南提出精确剪应力理论。 1.矩形截面梁的剪应力 分析步骤: 1.提出假设; 2.在假设的基础上推导公式; 3.找出剪应力沿截面高度分布的规律。
整理课件整理课件来自理课件P yz Q
x
整理e课件
h
e Hh R
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
*§5.5 关于弯曲理论 的基本假设
自学
整理课件
§5.6 提高弯曲强度的 措施
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
F
S
S
* z
整理课件
I zb
整理课件
整理课件
工字钢截面:
max
Q Af
min
Af —腹板的面积。
max
结论: 翼缘部分max«腹板上的max,只计算 腹板上的max。
铅垂剪应力主要腹板承受(95~97%),且
max≈ min
故工字钢最大剪应力

材料力学07弯曲应力ppt课件

材料力学07弯曲应力ppt课件
分离部分 ——平衡分析……
x
y 26
dA1
s
, b s
顶面有 ,存在.
两截面M 不等—— s 不等
(X 0)
左侧面
dx
N1
M
A1 sdA1 I z
A1 ydA1
右侧面
MS
z
Iz
dM
S
* z
, b( dx ) 0
Iz
FS
,
dM dx
S
z
Izb
FS
S
z
Izb
(∵切应力互等 )
2s
h
2 ( bdy )y s
bh2
M
0
4
s
4M bh2
2. 按沿梁高线性分布:
s max
M h2 Iz
s
6M bh2
s1 2 s2 3
(相差三分之一)
13
[例2]:
15KN
6KN
求B截面K点应力
B
1m
1m
解: M
3
6kNm
s
My Iz
90
K 90
60
120 ( 拉? 压应力? )
IZ
bh3 12
第七章 弯曲应力
§1 弯曲正应力 §2 正应力强度条件 §3 弯曲剪应力 §4 剪应力强度条件 梁的合理截面 §5 非对称截面梁弯曲弯曲中心 §6 考虑塑性的极限弯矩
1
概述

-F
Q
Fa

M
CD段:只有弯矩没有剪力- 纯弯曲
AC和BD段:既有弯矩又有剪力- 剪切弯曲
2
剪力FS
弯矩M
切应力τ
正应力s
先分析纯弯梁横截面的正应力s ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如图a所示:认为离中性轴z为
任意距离y的水平直线kk'上各
点处的切应力均汇交于k点和
k'点处切线的交点O ',且这些
切应力沿y方向的分量ty相等。
因此可先利用公式
ty
FS Sz* I z bkk
求出kk'上各点的切应
力竖向分量ty ,然后求出各点处各自的切应力。
圆截面梁横截面上的
最大切应力tmax在中性轴z
处,其计算公式为
t max
FS
S
* z
Izd
FS
1 2
πd 4
2
πd 4 d
2d

64
4FS 4FS
3
π 4
d
2
3A
II. 梁的切应力强度条件
图a所示受满布均布荷 载的简支梁,其最大弯矩 所在跨中截面上、下边缘 上的C点和D点处于单轴应 力状态(state of uniaxial stress) (图d及图e),故根 据这些点对该梁进行强度 计算时其强度条件就是按 单轴应力状态建立的正应 力强度条件
A
y2 z2 d A
y2 d A
A
z2 d A
A
Iz Iy 2Iz
得出:
Iz
1 2
Ip
π
r03
从而有
t max
FS
S
* z
Iz 2
FS 2r02 π r03 2
FS 2 FS
r0 π
A
式中, A=2pr0 为整个环形截面的面积。
(4) 圆截面梁 圆截面梁在竖直平面内弯曲
时,其横截面上切应力的特征
§7-3 弯曲剪应力和强度校核
一.矩形截面截面梁的剪应力
b
My
Iz
mn
h
Oz y
zM
y
tt
M+dM
FS
FS
y
1 m dx n
2
假设
在hb的情况下
1.t的方向都与 FS 平行 2.t 沿宽度均布。
t
t
y
FNⅠ
FNII
z
y
A*
y
y A*
dFS
FNⅠ
y A*
FNII
FNI A* ⅠdA
A*
M y1 dA Iz
M Iz
A*
y1 dA
M Iz
Sz*
FNⅡ A* ( Ⅱ)dA
A*
(M
dM ) y1 dA Iz
M
dM Iz
A*
y1 dA
M
dM Iz
S* z
FN II FN I t bdx
即:M
dM Iz
S
* z
M Iz
S
* z
tbdx
t
S
* z
dM
Izb dx
结论:
t
规律变化的。
思考题: 试通过分析说明,图a中
所示上、下翼缘左半部分 和右半部分横截面上与腹 板横截面上的切应力指向 是正确的,即它们构成了 “切应力流”。
例题 4-13
由56a号工字钢制成的简支梁如图a所示,试求
梁的横截面上的最大切应力tmax和同一横截面上腹 板上a点处(图b)的切应力t a 。不计梁的自重。
FS
S
* z
Izb
§5.7 梁的切应力
3.切应力分布规律
t
FS
S
* z
FS ( h 2 y 2 )
I zb 2I z 4
6FS bh3
h 2 4
y2
S* z
A*
y* C
b
h
y
y
h 2
y
2
2
b 2
h2 4
y2
Iz
bh3 12
b
F
S
h y
t
y
z
t max
t
t max
3 2
FS bh
例题 4-13
解: 1. 求tmax
梁的剪力图如图c所示,由图可见FS,max=75kN。 由型钢表查得56a号工字钢截面的尺寸如图b所示,
Iz=65 586 cm4和Iz/S * z,max=47.73cm。d=12.5mm
例题 4-13
tmax
FS
,max
S
* z ,max
Izd
FS,max
FS
S
* z ,max
Izd
FS Izd
b
2
h
d 2
h 2
2
对于轧制的工字钢,上式中的 Iz就是型钢表 中给出的比值 ,此I值x 已把工字钢截S面z*,ma的x 翼缘厚 度变化和圆角等考虑S在x 内。
(3) 翼缘上的切应力
翼缘横截面上平行于 剪力FS的切应力在其上、 下边缘处为零(因为翼缘的 上、下表面无切应力),可 见翼缘横截面上其它各处 平行于FS的切应力不可能 大,故不予考虑。分析表 明,工字形截面梁的腹板 承担了整个横截面上剪力 FS的90%以上。
F* N2
自由边 t1 t1
A* F* dx
N1
u
但是,如果从长为dx的梁段 中用铅垂的纵截面在翼缘上截取如 图所示包含翼缘自由边在内的分离 体就会发现,由于横力弯曲情况下 梁的相邻横截面上的弯矩不相等, 故所示分离体前后两个同样大小的 部分横截面上弯曲正应力构成的合 力FN*1 FN*2
和 不相等,因而铅垂的纵截
面上必有由切d F应S 力 Ft1N*′2构成FN的*1 合力。
F* N2
自由边 t1 t1
A* F* dx
N1
u
根据 d FS t可1 得d x出
t1
FS
S
* z
I z
FS
I z
u
h 2
2
FS uh
2Iz
从而由切应力互等定理可
知,翼缘横截面上距自由边为u
处有平行于翼缘横截面边长的
切应力t1,而且它是随u按线性
力t 的大小和方向沿壁厚 无变
化; (2) 由于梁的内、外壁上无切
应力,故根据切应力互等定理 知,横截面上切应力的方向与 圆周相切;
(3) 根据与y轴的对称关系 可知:
(a) 横截面上与y轴相交的 各点处切应力为零;
(b) y轴两侧各点处的切应 力其大小及指向均与y轴对 称。
薄壁环形截面梁横截面上的最大切应力tmax
Iz S*
z ,max
d
75103 N 47.73 102m 12.5 103m
12.6 106 Pa 12.6 MPa
例题 4-13
2. 求ta ta
其中:
FS
,max
S
* za
Izd
S
* za
166
mm
21
mm
560 mm 2
21
mm 2
940 103 mm3
于是有:
ta
在中性轴z上,半个环形截面的面积A*=pr0,其
形心离中性轴的距离(图b)为2r0 ,故求tmax时有
S
* z
π
r0
2r0 π
π
2r02
整个环形截面对于中性 轴z的惯性矩Iz可利用整个截 面对于圆心O的极惯性矩得 到,如下:
Ip
2
A
d


r0
r02

r03

Ip
2d A
A
75 103 N 940 106 m3 65586 108 m4 12.5 103 m
8.6106 Pa 8.6 MPa
例题 4-13
腹板上切应力沿高度的变化规律如图所示。
tmax
3. 薄壁环形截面梁 薄壁环形截面梁在竖直平面
内弯曲时,其横截面上切应力 的特征如图a所示:
(1) 由于d <<r0,故认为切应
2. 工字形截面梁 (1) 腹板上的切应力
t
FS
S
* z
Izd
其中
Sz*
b
h 2
2
h 2
y d
h 2
y
y
2
b
2
h
d 2
h 2
2
y
2
可见腹板上的切应力在与中性轴z垂直的方向 按二次抛物线规律变化。
(2) 在腹板与翼缘交界处:
t min
FS Izd
b
2
h
在中性轴处:
t max
相关文档
最新文档