用图像法解追及问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用图像法解追及问题 Prepared on 22 November 2020
用图像法解追及问题
(说明:六种情况下,两物同时、同地、同向出发)
例题:甲、乙两质点同时开始在彼此靠近的两水平轨道上同向运动,甲在前,乙在后,相距为x 。甲的初速度为零,加速度为a ,做匀加速直线运动。关于两质点在相遇前的运动,某同学作如下分析:
设两质点相遇前,它们韹距离为x ∆,则2
012x at x v t ∆=
+-,当0v t a
=时,两质点的的距离x ∆有最小值,也就是两质点速度相等时,两质点间的距离最近。
你觉得他的分析是否正确如果认为是正确的,请求出它们间的最小距离;如果不正确,请说明理由,并作出正确分析。
思维导图:
交点A 表明此时两者的速度相等。(1)若此时 (对应的时刻为0
v a
) 恰好相遇,则阴影面积即为x ,即
202v x a
=
,从图上看,再以后v 甲乙>v ,不
再相遇,相遇前距离一直减小到零;
(2)若 20
2v x a
<时,相遇时v 甲乙 之前距离一直减小,以后乙在前,距离变大直到A 点,A 点后,v 甲乙>v ,距离 又变小直到二次相遇;(3)若20 2v x a >时,两者具有相同速度,甲仍在前,乙在 后,还没有相遇,距离还是20 2v x a -,以后v 甲乙>v ,就更不能相遇了。相同速度 时有最小距离,即20 2v x a -。 注意:弄清追及和被追物体因速度变化而引起两者间距离的变化过程,是解追及和相遇问题的关键,而两者速度相等是相距最远(或最近)的临界条件。 此题也可用解析法: 根据题意:甲、乙相遇的须满足:2012x at v t +=, 即201 02 at v t x -+= (1) 当2 2 1 4402 b a c v ax -=-⨯>,即满足2 02v x a <,方程有两解,即甲、 乙相遇两次; (2) 当2 2 1 4402 b a c v ax -=-⨯=,即202v x a =时,甲、乙相遇一次; (3) 当2 2 1 4402 b a c v ax -=-⨯<,即202v x a >时,方程无解,甲、乙不能 相遇。