聚酯纤维的改性_图文

合集下载

聚酯纤维的改性技术及其在海洋领域的应用

聚酯纤维的改性技术及其在海洋领域的应用

综述与专论合成纤维工业,2023,46(4):52CHINA㊀SYNTHETIC㊀FIBER㊀INDUSTRY㊀㊀收稿日期:2023-03-22;修改稿收到日期:2023-07-12㊂作者简介:宇平(1989 ),男,讲师,博士,主要研究方向为高性能树脂及纤维增强复合材料㊂E-mail:yup @㊂基金项目:江苏省先进材料功能调控技术重点实验室开放基金(jsklfctam202109)㊂㊀∗通信联系人㊂E-mail:hzm@㊂聚酯纤维的改性技术及其在海洋领域的应用宇㊀平1,孙钦超2,王㊀彦3,胡祖明3∗(1.江苏海洋大学环境与化学工程学院,江苏连云港222005;2.山东华纶新材料有限公司,山东临沂276600;3.东华大学纤维材料改性国家重点实验室,上海201620)摘㊀要:介绍了聚酯纤维的抗菌㊁阻燃㊁导电㊁超疏水㊁黏附力改性技术进展,指出添加无机抗菌剂共混熔融改性,添加磷系等无卤阻燃剂共混熔融改性,采用碳纳米管㊁石墨烯等导电材料填充改性,采用硅氧烷㊁含氟化合物等低表面能物质修饰改性,采用等离子体㊁紫外光表面改性等是当前赋予聚酯纤维抗菌㊁阻燃㊁导电㊁超疏水㊁黏附力的主要手段㊂阐述了聚酯纤维在深海缆绳㊁海洋混凝土㊁油污收集网㊁大型远洋渔具等海洋工程领域的应用及发展前景,指出研发高性价比㊁高可靠性及差别化的高性能聚酯纤维具有重要意义,市场前景巨大㊂关键词:聚酯纤维㊀表面改性㊀海洋领域㊀应用㊀发展前景中图分类号:TQ342㊀㊀文献标识码:A㊀㊀文章编号:1001-0041(2023)04-0052-05㊀㊀聚酯通常是以二元酸和二元醇缩聚得到,其中聚对苯二甲酸乙二醇酯(PET)是一种通用的热塑性聚酯材料,其重复单元含有柔性链段和刚性苯环,可广泛应用于纺织纤维领域㊂由于聚酯纤维具有强度高㊁模量高㊁耐化学试剂性好,以及较高的性价比,自1947年英国帝国化学工业集团实现聚酯纤维的工业化试验和1951年杜邦公司将其命名涤纶以来,其在世界范围内获得了极大的发展,已占世界纺织品市场的40%[1-2]㊂2020年,国内聚酯纤维产量49227kt,约占化学纤维总产量的82%,在化学纤维中占有举足轻重的地位㊂然而,与天然纤维和部分化学纤维相比,聚酯纤维存在具有亲水性㊁染色效果差及阻燃性能不佳等缺陷,这在一定程度上制约了其发展,亟待进一步扩大其应用领域㊂作者综述了聚酯纤维的改性技术及其在海洋工程领域的应用情况,旨在为高性能聚酯纤维的研发和生产提供借鉴㊂1㊀聚酯纤维的物理化学改性和功能化1.1㊀抗菌改性织物由于本身具有微孔结构,被认为是最适合真菌和细菌等微生物滋生和繁殖的温床,因此,聚酯纤维及其织物的抗菌改性逐渐受到重视㊂为提高聚酯材料的抗菌效果,许多科研工作者开展了大量研究㊂WANG S H 等[3]将PET 与抗菌材料混合,使用双螺杆挤出抗菌母料,再将抗菌母料和纯PET 树脂通过高速熔纺设备制得抗菌率达90%且具有良好力学性能的复合抗菌PET 纤维㊂DAI S H 等[4]通过 种子 和 后期生长 两步化学溶液法在PET 纤维表面合成氧化锌纳米结构(ZnO@PET),该纤维对大肠杆菌的抗菌率为99%,洗涤20次后,虽部分纳米ZnO 脱落,但抗菌率仍保持在62%㊂LIN Y X 等[5]将光敏剂四羧基酞菁锌接枝到聚酯纤维上,然后在其纤维表面涂覆壳聚糖开发了一种双接枝抗菌纤维材料,可杀灭高达99.99%的革兰氏阳性菌和阴性菌,同时表现出比未经处理的PET 纤维更好的细菌捕获效率(95.68%),为开发能够高效杀灭空气中病原体并具有良好生物安全性的空气过滤材料提供了新思路㊂ZHOU J L 等[6]将质量分数为0.2%的纳米片材氧化铜@磷酸锆整合到原位聚合的PET纤维中,该纤维表现出高效的抗菌性能(抗菌率大于92%)㊂K.OPWIS 等[7]利用超临界二氧化碳将有机金属化合物引入PET 纤维,赋予了改性PET 纤维纺织品电学㊁抗菌及催化性能㊂田梅香[8]利用二碳酸二叔丁酯作为丝氨醇分子中氨基的保护基合成第三单体并参与PET 共聚,对大肠杆菌和金黄色葡萄球菌的抑菌率分别可达93%和95%㊂中国石油辽阳石化公司成功实现纤维级抗菌聚酯试生产,生产出合格产品超过1kt[9]㊂袁凯等[10]制备了一种载银海藻酸盐/ PET复合纤维,其亲水性㊁抗静电性能及抗菌性能较PET纤维具有明显的提升㊂目前,无机抗菌剂以添加灵活㊁效果显著等优势成为新型抗菌聚酯纤维的研究热点㊂1.2㊀阻燃改性PET纤维织物属于易燃材料,如果发生火灾,会剧烈燃烧,熔体滴落会对皮肤造成很大伤害,因此,开发阻燃性能优异且能自熄的聚酯织物具有重要意义㊂J.FABIA等[11]基于商用的有机蒙脱石,提出了降低聚酯纤维可燃性的替代方法,改性聚酯纤维极限氧指数(LOI)值为24.0%,同时氧化降解产物毒性没有明显增加㊂ZHU S F等[12]利用辐照剂量为200kGy㊁剂量率为12kGy/s的电子束对聚酯纤维进行辐照处理,发现辐照后的纤维断裂伸长率增加,断裂强度降低,这主要是因为辐照过程交联度会降低,同时不可避免地造成了纤维的损伤;另外,燃烧时,由于交联密度不够高,该体系不能有效地防止燃烧熔体的滴漏㊂XUE B X等[13]以碳微球为碳源,磷酸三聚氰胺为酸源和气源制备PET复合纤维,纤维LOI值和垂直燃烧等级分别为27.4%和B-1级,纤维的阻燃性能提高㊂何秀泽[14]通过添加含磷的阻燃剂进行改性,阻燃共聚酯纤维的LOI值约为29%,垂直燃烧UL-94级别为V-2级㊂许卓等[15]将新型环保阻燃剂2-羧乙基苯基次磷酸与乙二醇进行预酯化制得酯化液,再与精对苯二甲酸的酯化液混合,经聚合反应后得到阻燃聚酯,其LOI值为32%,达到FV-0级㊂总之,基于共混技术的阻燃物理改性相对化学改性,具有成本低㊁制备简单㊁易于市场推广等显著优势,同时由于卤系阻燃剂的环境影响,磷系等无卤阻燃剂改性聚酯纤维逐渐受到关注㊂1.3㊀导电改性静电会对聚酯纤维的生产过程造成影响,同时使得衣服纠缠人体,产生不舒服感,更为严重的是静电会引发火灾等危险[16]㊂导电纤维具有导电㊁导热㊁抗电磁屏蔽等特点,作为一种重要的功能纤维,近年来广泛受到研究者的关注㊂马良玉[17]研究了碳纳米/石墨烯复合导电液与聚酯纤维相互作用,改性纤维电阻稳定在100Ω/cm以下㊂W.K.CHOI等[18]对超细PET纤维表面进行化学镀镍使得纤维导电性能增强㊂S.MAZINANI等[19]采用多壁碳纳米管对PET熔纺纤维进行改性,获得高导电性能(电导率为0.01S/cm),最大断裂拉伸应变值是纯PET纤维的3倍㊂目前主要采用填充法制备聚酯导电纤维,赋予材料抗静电和导电等功能㊂1.4㊀超疏水改性像荷叶一样的超疏水材料具有自清洁㊁油水分离㊁防污㊁防腐蚀㊁减阻等功能,为满足复杂环境的需求,具有优异耐久性和自修复性能的超疏水织物越来越受到人们的关注㊂周存等[20]为制备兼具疏水和导电功能织物,先对PET织物进行导电整理,再采用溶剂诱导结晶的方法在导电织物的表面构造微观粗糙结构,然后用甲基三氯硅烷修饰,制备出水接触角不低于158.6ʎ的导电织物㊂ZHOU F等[21]利用十二烷基三甲氧基硅烷改性二氧化钛作为涂层材料,使得PET织物的水接触角达到158.6ʎʃ0.6ʎ,经过50次洗涤循环后仍能保持在150ʎ以上㊂H.J.KIM等[22]基于聚二甲基硅氧烷涂层改性PET织物的吸水和吸油行为,织物表层水接触角高达155ʎʃ4.9ʎ,对水分的吸收率由25.1%降至0.1%,具有比聚丙烯织物更为优异的吸油性能,是一种潜在的石油吸附剂,可用于清理石油泄漏㊂周旋[23]利用有机硅氧烷甲基三甲氧基硅烷㊁正辛基三乙氧基硅烷和三甲基氯硅烷㊁含氟改性剂1H,1H,2H,2H-全氟癸基三乙氧基硅烷及含氟树脂聚偏氟乙烯在PET织物表面构造超双疏表面,其在紫外光持续照射35h的情况下仍保持着超疏水和疏油性能(油接触角大于140ʎ)㊂朱宝顺[24]采用聚二甲基硅氧烷母粒和季戊四纯硬脂酸酯改性PET纤维,使得体系的水接触角由68.6ʎ提高到110.3ʎ,提升了织物的拒水性能㊂聚酯纤维的超疏水改性手段包括纳米颗粒沉积,以及硅氧烷㊁含氟化合物等低表面能物质修饰改性等,在实验室中已相对比较成熟,相关文献研究也较多㊂1.5㊀黏附力改性聚酯纤维材料的黏附力会影响其与其他材料的复合效果㊂J.TREJBAL等[25]探究离子体处理对水泥复合材料中PET纤维的表面性能影响,通过显微镜观察和润湿角测量,证明等离子体处理能有效改变PET纤维表面,离子轰击使纤维表面粗糙化,同时激活纤维表面极性基团,使纤维与胶35第4期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀宇㊀平等.聚酯纤维的改性技术及其在海洋领域的应用凝基质的附着力更好㊂LIU X D等[26]提出一种通过在甲苯溶液中用异氰酸酯处理,高效提高PET织物黏合力方法,与未改性PET织物相比,其最大剥离强度达到2.27kN/m,提高了3倍㊂M.RAZAVIZADEH等[27]采用紫外线照射将PET 羧基化,增强了其与丁腈橡胶的附着力㊂聚酯纤维功能化改性方法包括熔融共混改性㊁接枝改性㊁复合纺丝改性㊁化学溶液改性㊁原位聚合改性㊁后处理改性等㊂其中,熔融共混改性对原料的粒度要求不严格,但在制备过程中要考虑共混料的分散效果㊁相容情况及热稳定性;复合纺丝改性改性剂用量少,对聚酯纤维力学性能影响小,但存在喷丝板加工难度大㊁生产成本高的缺点;采用接枝改性制备出来的改性聚酯性能比较稳定㊁成分通常不易析出㊁耐久性好,但制备过程复杂㊁反应条件严格,不利于工业化生产;后处理改性操作简单㊁易实施,但往往会出现纤维耐久性㊁耐水洗牢度较差及环境污染等问题[28]㊂2㊀聚酯纤维在海洋领域中的应用当前,我国正在加快建设海洋强国并且海洋工程正在向深海和远海发展㊂面对海上复杂的极端环境及海洋工程向深水区域发展的未知风险,开发具备耐海水侵蚀㊁耐老化㊁高强度及抗蠕变等特性的高性能纤维对推进海洋生态保护㊁海洋经济发展和海防建设,培育壮大海洋战略性新兴产业,建设现代海洋产业体系,具有十分重大的意义和作用㊂目前,聚酯纤维已在深海缆绳㊁海洋混凝土㊁油污收集网㊁大型远洋渔具等海洋工程领域取得一定进展,极大地提高了材料的安全服役寿命,并拓展了聚酯纤维在深海远海等高端领域的应用㊂2.1㊀深海缆绳传统的钢缆绳难以在水下保持紧绷状态,同时由于其密度大,安装过程比较复杂性,且减弱了船舶的有效载荷能力㊂早在20世纪60年代,纤维绳就被建议作为主要的系泊绳索,以避免链条和钢丝绳的缺点[29]㊂纤维绳密度小㊁质量轻,且力学性能㊁耐磨性及拒海水性好,不仅可以提高船舶的载荷能力,而且拥有钢缆绳优良的力学性能㊂聚酯纤维具有高强㊁耐磨㊁耐疲劳等特点,且耐海水腐蚀性较好,可以提高系泊系统的耐磨性和耐久性,已成为深远海系泊系统首选材料[30]㊂国外深海系泊聚酯纤维缆绳生产商主要在欧美国家,代表性的缆绳制造商有Bexco公司㊁Lankhorst Ropes公司㊁Bridon公司等㊂2001年,巴西国家石油公司将聚酯纤维绳索成功应用于钻井平台㊁浮式生产及储存和卸载系统[31]㊂国内海洋工程用聚酯纤维缆绳生产㊁应用起步较晚㊂2020年,在南海陵水17-2气田上,聚酯纤维缆绳首次被应用于深海油气田作业平台的系泊系统㊂目前该聚酯纤维缆绳已应用于国际多个深海系泊平台项目,为国产聚酯缆绳的自主研发生产提供坚强保障[32]㊂2021年,我国自主勘探开发的首个1500m超深水大气田 深海一号 在海南岛东南陵水海域正式投产,标志我国海洋工程中油气田开采进入 超深水 时代,不断增加的水深和风㊁浪㊁流的影响,对工作平台的系泊系统提出了更高的要求,亟待开发性能更优的聚酯纤维缆绳以满足新的㊁更高的应用需求㊂浙江金汇特材料有限公司采用特殊结构喷丝板纺得的海洋缆绳用高强低伸涤纶工业丝涂覆拒海水型功能油剂后,耐磨次数对数值最高达4.21且上油均匀性好,油剂添加量明显减少[33]㊂该纺丝工艺可有效降低海洋缆绳用高耐磨高强低伸涤纶工业丝的生产成本,提高产品附加值㊂山东华纶新材料有限公司通过共混反应先得到侧基含蒽官能团的增黏聚酯,再与双马来酰亚胺进行熔融共混纺丝,可在不影响熔体可纺性以及废旧聚酯纤维回收利用的前提下提高纤维的强度及抗蠕变性,在海洋用绳索及其他工业领域具有广阔的应用前景[34]㊂2.2㊀海洋混凝土海洋环境下的强腐蚀性和海洋微生物的破坏对混凝土的耐久性和耐腐蚀性提出了更高的要求,普通水泥混凝土由于易膨胀开裂㊁脆性大㊁表面起层剥落等缺陷,很难适应海水中的氯离子渗透腐蚀和海洋微生物的破坏㊂聚酯纤维具有抗拉强度和弹性模量高㊁耐碱性好等优势,在混凝土中掺杂聚酯纤维可大大改善抗裂性和抗渗性,提升强度和韧性[35]㊂2.3㊀油污收集网溢油已成为海水的重要污染来源,严重危害人类生存健康,清除泄漏到海洋㊁河流和陆地的石油一直备受关注㊂为了有效地分离油与水,研究者对各种吸收剂结构进行了大量研究,研究表明,聚酯纤维织物是一种潜在的用于去除泄漏石油的吸收剂,具有很好的成本效益,且吸油性能优异㊂王洪杰等[36]以正硅酸乙酯为硅源,以氟硅烷为疏45㊀合㊀成㊀纤㊀维㊀工㊀业㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2023年第46卷水改性剂,采用一步法制备了负载硅纳米粒子的超疏水聚酯纤维织物,水接触角可达156.2ʎ,对水和柴油混合物的分离效率达到98.32%㊂2.4㊀大型远洋渔具聚酯纤维由于具有性价比高㊁耐腐蚀性好及强度高等优势已取代天然纤维,应用于捕捞和渔业工程方面㊂20世纪90年代,日本东丽公司推出一种聚芳酯(Vectran)纤维,具有耐磨性㊁耐切割性㊁耐冲击性及耐酸碱性好等优势,已用于钓鱼线㊁绳索等的生产[37]㊂2017年11月,江苏恒力化纤股份有限公司联合多家科研院所攻克了聚酯纤维材料抗蠕变和抗水解的关键技术难题,具有抗海水腐蚀㊁拒紫外线照射等特殊功能,大大提升了聚酯纤维在海洋环境下的应用韧性㊂2022年9月,江苏德力化纤有限公司的 高均匀性超柔软聚酯纤维 ㊁ 微细聚酯纤维 ㊁ 亲水速干涤纶 ㊁ 亲水阻燃功能性聚酯纤维 及 亲水抗菌功能性聚酯纤维 五款产品通过省级新产品鉴定,有望助推聚酯纤维在海洋领域的拓展应用[38]㊂3㊀展望近10年来,虽然我国聚酯纤维改性技术取得了很大进展,不少改性品种已投入工业化生产,但与国外先进技术相比,仍存在较大差距,尤其是在海洋工程领域,如水下防护网㊁隔离网㊁过滤网及防污网用高强高模聚酯纤维,高性能经编格栅及土工布用聚酯纤维,抗芯吸轻量化耐磨聚酯纤维,悬浮式海洋油污拦截网和处理收集网用聚酯纤维,以及基于海洋风电和海上制氢的海洋清洁能源装备用聚酯纤维等,开发应用还有很大提升空间㊂同时,我国海洋工程用聚酯纤维在设备㊁自动化控制,以及专业测试手段方面还相对比较薄弱,亟待加强㊂绿色化㊁清洁化㊁差别化㊁功能化是实现聚酯纤维可持续发展的必由之路㊂未来,在实现聚酯纤维绿色㊁清洁生产的基础上,应进一步加强以PET为基材的差别化新型聚酯及其纤维的研发,进一步拓宽聚酯纤维在海洋工程领域的应用,同时赋予聚酯纤维功能化,提高产品综合性能和附加值㊂参㊀考㊀文㊀献[1]㊀CHU J W,HU X Y,KONG L H,et al.Dynamic flow andpollution of antimony from polyethylene terephthalate(PET)fi-bers in China[J].Science of The Total Environment,2021, 71:144643.[2]㊀金联创网络科技有限公司.2020年聚酯新产能持续增长增速放缓[EB/OL].(2020-12-25)[2023-07-10].http:///a/440405934_120066020.[3]㊀WANG S H,HOU W S,WEI L Q,et al.Structure and prop-erties of composite antibacterial PET fibers[J].Journal of Ap-plied Polymer Science,2009,112(4):1927-1932. [4]㊀DAI S H,ZHANG J P,WENG L,et al.Synthesis and proper-ties of ZnO on nonwoven PET fiber[J].Chemical Physics, 2021,551:111335.[5]㊀LIN Y X,CHEN J Y,MAI Y H,et al.Double-grafted PET fi-ber material to remove airborne bacteria with high efficiency [J].ACS Applied Materials Interfaces,2022,14(41): 47003-47013.[6]㊀ZHOU J L,FEI X,LI C,et al.Integrating nano-Cu2O@ZrPinto in situ polymerized polyethylene terephthalate(PET)fi-bers with enhanced mechanical properties and antibacterial ac-tivities[J].Polymers,2019,11(1):113.[7]㊀OPWIS K,PLOHL D,SCHNEIDER J,et al.Metallization ofPET fibers in supercritical carbon dioxide and potential applica-tions in the textile sector[J].The Journal of Supercritical Flu-ids,2022,191:105722.[8]㊀田梅香.PET-co-PST共聚酯的合成表征及抗菌性能研究[D].上海:东华大学,2018.[9]㊀钱伯章.辽阳石化公司试产纤维级抗菌聚酯[J].合成纤维工业,2020,43(5):47.[10]袁凯,胡祖明,于俊荣,等.载银海藻酸盐/PET纤维的制备及性能研究[J].合成纤维工业,2017,40(1):37-41.[11]FABIA J,GAWLOWSKI A,ROM M,et al.PET fibers modi-fied with cloisite nanoclay[J].Polymers,2020,12(4):774.[12]ZHU S F,SHI M W,TIAN M W,et al.Effects of irradiationon polyethyleneterephthalate(PET)fibers impregnated with sensitizer[J].The Journal of The Textile Institute,2018,109(3):294-299.[13]XUE B X,QIN R H,SHAO M Q,et al.Improving the flameretardancy of PET fiber by constructing the carbon micro-spheres based melamine polyphosphate powder[J].The Jour-nal of The Textile Institute,2020,111(4):597-603.[14]何泽秀.含磷阻燃共聚酯耐水解改性及纤维应用研究[D].上海:东华大学,2022.[15]许卓,支海萍,张顺花.阻燃改性聚酯的合成及性能分析[J].浙江理工大学学报(自然科学版),2022,47(3): 323-328.[16]李珊珊,乔辉,胡蝶,等.聚酯纤维抗静电改性的研究进展[J].现代化工,2017,37(9):17-20.[17]马良玉.碳纳米导电液与聚酯纤维相互作用研究[D].开封:河南大学,2018.[18]CHOI W K,KIM B K,PARK S J.Fiber surface and electricalconductivity of electroless Ni-plated PET ultra-fine fibers[J].Carbon Letters,2013,14(4):243-246.[19]MAZINANI S,AJJI A,DUBOIS C.Structure and properties ofmelt-spun PET/MWCNT nanocomposite fibers[J].Polymer Engineering and Science,2010,50(10):1956-1968.55第4期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀宇㊀平等.聚酯纤维的改性技术及其在海洋领域的应用[20]周存,何雅僖.超疏水导电聚酯织物的制备及其性能[J].纺织学报,2018,39(8):88-94.[21]ZHOU F,ZHANG Y F,ZHANG D S,et al.Fabrication of ro-bust and self-healing superhydrophobic PET fabrics based on profiled fiber structure[J].Colloids and Surfaces A,2021, 609(1):125686.[22]KIM H J,HAN S W,KIM J H,et al.Oil absorption capacityof bare and PDMS-coated PET non-woven fabric;dependency of fiber strand thickness and oil viscosity[J].Current Applied Physics,2018,18(4):369-376.[23]周旋.聚酯纤维的超疏水改性研究[D].南京:东南大学,2019.[24]朱宝顺.基于共混方法制备拒水PET聚酯纤维及其性能研究[D].上海:东华大学,2019.[25]TREJBAL J,KOPECK L,TESÁREK P,et al.Impact of sur-face plasma treatment on the performance of PET fiber rein-forcement in cementitious composites[J].Cement and Con-crete Research,2016,89:276-287.[26]LIU X D,SHENG D K,GAO X M,et al.UV-assisted surfacemodification of PET fiber for adhesion improvement[J].Ap-plied Surface Science,2013,264:61-69.[27]RAZAVIZADEH M,JAMSHIDI M.Adhesion of nitrile rubberto UV-assisted surface chemical modified PET fabric,part II: Interfacial characterization of MDI grafted PET[J].Applied Surface Science,2016,379:114-123.[28]章瑞,李院院,周潘飞,等.氧化锌抗菌聚酯的制备及其性能[J].现代纺织技术,2023,31(3):113-120. [29]连宇顺,刘海笑.海洋系泊工程中合成纤维系缆研究述评[J].海洋工程,2019,37(1):142-154.[30]UMANA E C,TAMUNODUKODIPI D T,INEGIYEMIEMAparative analysis of fibre rope(polyester)and steel (wire)rope for a Floating Production Storage and Offloading (FPSO)terminal[J].Ocean Engineering,2022,243: 110081.[31]PETRUSKA D,GEYER J,MACON R,et al.Polyester moor-ing for the Mad Dog spar-design issues and other considera-tions[J].Ocean Engineering,2005,32(7):767-782. [32]王宇骅,李航宇,董海磊,等.海洋工程中国产深海聚酯缆绳述评[J].合成纤维,2022,51(10):36-40. [33]马建平,严剑波,林启松,等.海洋缆绳用高耐磨高强低伸涤纶工业丝的开发[J].产业用纺织品,2019,37(3):10-16. [34]胡祖明,孙钦超,王彦,等.一种海洋用抗蠕变高强聚酯纤维及其制备方法与应用:202210862789.6[P].2022-11-08.[35]朱丹.海洋环境下改性聚酯纤维混凝土耐久性研究[J].建材与装饰,2019,13:42-43.[36]王洪杰,赵娜,潘显苗,等.超疏水聚酯织物的制备及其油水分离性能研究[J].高分子通报,2022(6):46-53. [37]石建高,王鲁民,陈晓蕾,等.渔用合成纤维新材料研究进展[J].现代渔业信息,2008,23(5):7-10. [38]钱伯章.恒力石化超细纤维再填国内技术空白[J].合成纤维,2022,51(10):32.Modification technology and application of polyester fibers in marine fieldYU Ping1,SUN Qinchao2,WANG Yan3,HU Zuming3(1.School of Environmental and Chemical Engineering,Jiangsu Ocean University,Lianyungang222005;2.ShandongHualun Advanced Materials Co.,Ltd.,Linyi276600;3.State Key Laboratory for Modification ofChemical Fibers and Polymer Materials,Donghua University,Shanghai201620) Abstract:The technological progress of polyester fiber modification in antibacterial,flame retardant,conductive,superhydro-phobic properties and adhesive force was introduced.The techniques to endow polyester fibers with antibacterial properties,flame retardance,conductivity,superhydrophobicity and adhesive force mainly involve blend melting modification by adding inorganic antibacterial agents or halogen-free phosphorus flame retardants,filling modification using carbon nanotubes,graphene and other charged materials,modification using siloxane,fluorine compounds and other low-surface energy materials,plasma and ultraviolet light surface modification and so on.The application and development prospects of polyester fibers in marine engineering fields, such as deep-sea cables,marine concrete,oil spill collection nets and large ocean fishing gear,were described.It was pointed out that the development of high-performance polyester fibers with high cost-effectiveness,high reliability and differentiation be of great significance and the market prospects be enormous.Key words:polyester fiber;surface modification;marine field;application;development prospect65㊀合㊀成㊀纤㊀维㊀工㊀业㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2023年第46卷。

5.聚酯纤维

5.聚酯纤维

BHET的合成
BHET的合成主要采用以下三种方法: (1)DMT和EG的酯交换法; (2)PTA和EG的直接酯化法; (3)PTA和EO (环氧乙烷)加成法。 在工业上PET的制造采用二种方法:
酯交换法:以DMT为中间体通过酯交换法来制造 直接酯化法:以PTA(高纯度对苯二甲酸)或MTA (中纯度对苯二甲酸)为中间体通过直接酯化法来 制造。
可以达到强化熔体均匀性的目的,同时可以减少 熔体通过弯管时,管壁与管中心温度及停留时间 的差别。
➢ 在较新型的螺杆挤出机中,往往采用特殊设计的 混炼头来代替静态混合器。混炼头的主要作用是 改变螺杆沟槽中挤出的熔体的流线,使熔体进一 步均匀化
聚酯纤维
聚酯短纤
聚酯纤维的分类
• 从应用领域来划分
–服用 –装饰用 –产业用 –2000年的比例68:19:13 –2005年的比例54:33:13
聚酯纤维的生产工艺及技术
❖聚酯纤维原料的生产技术及工艺 ❖聚酯纤维的生产技术及工艺
聚酯纤维原料的生产技术
• PET原料: – 对苯二甲酸 – 乙二醇(或环氧乙烷)
We=KP,式中,K为平衡常数,P为平衡蒸汽压。 升高温度和增加干燥介质的流动有利于干燥过程。
干燥过程
➢干燥分为两个阶段,即预结晶阶段和高温 干燥阶段
➢预结晶温度和时间
– 沸腾床:温度可高至160~180oC,时间8~15min。 – 搅拌式充填:温度120~140oC,时间1~l.5小时。 – 转鼓干燥时,在120℃以下缓慢升温,预结晶时
• PET的制造大致可分为两个阶段 – 第一阶段是由基本原料对二甲苯、甲苯、邻 苯二甲酸酐合成中间体对苯二甲酸二甲酯 (DMT)或对苯二甲酸(PTA)。 – 第二阶段是由DMT或PTA与乙二醇(EG) 进行酯化或酯交换反应,生成聚酯单体对苯 二甲酸双β-羟乙酯(简称BHET或DGT) – 各种工艺路线的区别主要在前一阶段,即单 体的合成阶段。

聚酯纤维的结构和性能_图文

聚酯纤维的结构和性能_图文

7.9
7.9
96.8
44.0
5
8
PEN纤维的性能 PEN纤维的耐化学腐蚀性、抗紫外线辐射、热稳定性和水解稳定性均优
于PET。 PEN的玻璃化温度高达110oC左右,其纤维可以耐200oC左右的温度。
目前纤维级的PEN树脂已由美国Shell公司研制成功并投放市场,其商品名 称为Vituf。美国Amoco公司的PEN纤维也已投放市场。
• 第四节 聚酯纤维的结构性能及改性
重点内容:聚酯纤维的各种改性方法和目的。
1.4.1 聚酯纤维的结构和性能
聚酯纤维的结构 – 分子链结构 – 聚集态结构 结晶结构 取向结构
聚酯纤维的性质 – 聚酯纤维的化学性质 – 聚酯纤维的物理性质
聚酯的分子结构PET
聚酯是指分子链中含有酯基的聚合物的总称 聚酯分子的重复单元结构中由三部分组成,即酯基、
62.0 252.0
1
0.682
61.5 248.5
5
0.677
58.8 237.3
8
0.750
57.0 232.0
10
0.656
55.4 226.5
15
0.712
54.7 217.5
随着间位苯环含量的增加,共聚酯的Tg和Tm下降,而冷结晶温度则上升。当 IPA的含量大于 9 mol % 时,共聚酯已无冷结晶峰存在。美国于1959年实现了 PET—IPA共聚酯工业化生产,该共聚酯的商品名为Vycron,主要用于制备易 染纤维。由于PET—IPA结晶速率慢,我国则更多用其制备高收缩纤维。应该 指出的是这种共聚酯广泛用于瓶用聚酯,IPA的添加量为2%~4%
改变聚酯的刚性结构单元
一、间苯二甲酸代替对苯二甲酸 在PET的直接酯化聚合过程中,用对称性较差的间苯二甲 酸(IPA)取代部分的对苯二甲酸(TPA)

聚酯纤维的改性-PPT精选文档

聚酯纤维的改性-PPT精选文档
Sichuan University
表面改性
Textile Engineering
二、聚酯纤维的氨解处理 氨解--是聚酯纤维又一种表面处理的化学方法。 在氨 解反应中,聚酯与胺发生亲核取代反应,胺作用于缺电子 的羰基碳上,使聚酯的分子链断裂形成酰胺,分子量减少 并溶出。 经过氨解处理,不仅使纤维产生具有较大亲水性的酰 胺基和氨基,而且在纤维的表面产生裂纹和坑洼。因此, 氨解处理可以极大地改善聚酯纤维的手感、亲水性、易去 污性、可染性,同时还可以提高纤维的抗静电性、抗起球 性、悬垂效果等。 如在经过氨解的聚酯纤维上涂敷一层丝素分子膜,可 以使丝素分子膜牢固地附着在聚酯纤维的表面,使其具有 更好地仿真丝效果。
减量效果与碱浓度的关系
Sichuan University
减 重 率
W .
K
L
( % )
表面改性
Textile Engineering
碱减量后纤维性能的改进 碱减量后,聚酯纤维织物的去污性能得到改善, 例如以10%NaOH碱减量后的聚酯织物进行悬浮性污 物去污试验,其效果相当于一般去污后整理,但耐洗 性却比后者好得多。 织物经碱减量后,纤维间抱合力减小,孔隙增大, 透气量增加,这对穿着舒适性有一定改善。 由于强度略有下降,有利于改进织物抗起球性能。 纯涤纶、涤棉或涤毛混纺织物经碱减量后抗起球性能 有所改善,目前国内外部分仿毛织物产品也采用碱减 量处理。
Sichuan University
表面改性
Textile Engineering
三、强氧化剂处理法
强氧化剂氧化法是由于纤维在强氧化剂的作用下,表
面被强氧化剂烧蚀,使聚合物表面发生裂解、交联和氧 化,使纤维和染料及其它材料之间的物理键合力和化学 键合力增强,提高了纤维的表面活化能力和润湿性,从 而改善了纤维的润湿性能。强氧化剂氧化法有酸洗、臭 氧氧化和双氧水浸润等

聚酯纤维的改性

聚酯纤维的改性

江苏理工学院研究生课程论文(20 -20 学年第学期)题目:研究生:提交日期:年月曰研究生签名:浅谈服装材料中涤纶的性能及改进任慧中摘要:合成纤维是我国服装材料中应用最多的材料之一,而聚酯纤维(涤纶)又是化纤用量最大的一种。

本文分析了涤纶的物理及化学性能,并对吸湿性、耐燃烧性、抗静电性在物理和化学特性方面进行进一步改善, 使涤纶更加舒适, 应用更加广泛。

最后,本文对合成纤维在国内外的发展进行了展望。

关键词:聚酯纤维;吸湿性;耐燃烧性;抗静电性;改性Analysis The Property Of Dacron And Improvement In TheClothing MaterialsREN HuiZhongAbstract: Synthetic fiber is one of the most widely was used materials. However, the polyester (PET) is the largest about fiber. The property of physics and chemistry and was made a further improvement about hygroscopic 、flammabilityand antistatic in this paper, which was became more comfortable and wider in application. Finally, the development of synthetic fiber was expected in domestic and foreign. Keywords: polyester fiber; hygroscopicity; flammability; anti-static electricity; improvement1 前言当前,中国服装、纺织品出口的质量、数量和效益在逐年攀升。

聚酯纤维及织物的阻燃与抗熔滴改性

聚酯纤维及织物的阻燃与抗熔滴改性

聚酯纤维及织物的阻燃与抗熔滴改性聚酯纤维由于良好的机械性能、化学稳定性、可纺性和低成本,在服用和装饰用等领域应用广泛。

但聚酯纤维本身易燃,燃烧容易产生熔滴的特点,限制了在装饰用纺织品领域的应用,尤其是作为高层建筑和密闭环境中使用的装饰用纺织品。

主链型磷系阻燃剂是目前阻燃聚酯纤维应用最为广泛的阻燃剂,通过磷系阻燃剂的氧化燃烧,加速聚酯熔滴的产生,带走燃烧热量实现聚酯的阻燃改性,但无法避免熔滴和有毒烟气的产生,在密闭环境中使用对人体安全性的危害大。

因此,本文从聚酯的阻燃和抗熔滴改性出发,基于聚酯燃烧机制和抗熔滴改性机理,通过选用高成炭的侧链型含磷阻燃剂,并配合无机溶胶的可交联特性,采用原位聚合的方法实现聚酯的阻燃和抗熔滴改性。

针对聚酯表面活性低的问题,结合表面涂覆整理方法具有抗熔滴改性的优势,采用具有柔性链段的聚硅氧烷溶胶和富含磷的植酸阻燃剂为涂覆整理液,以浸渍涂覆整理的工艺,在聚酯织物表面形成柔性聚硅氧烷/植酸/柔性聚硅氧烷的三层功能涂覆结构,实现聚酯织物阻燃和抗熔滴改性。

具体研究内容如下:首先在侧链型含磷阻燃剂[(6-氧代-6H-二苯并[c,e][1,2]氧磷杂己环-6-基)甲基]丁二酸(DDP)高效成炭的阻燃特性基础上,对DDP进行端羟基化改性,进一步提高阻燃剂的耐热稳定性。

傅里叶红外变化光谱(FTIR)和核磁共振光谱(NMR)结果表明,DDP与乙二醇(EG)发生酯化反应生成[(6-氧代-6H-二苯并[c,e][1,2]氧磷杂己环-6-基)甲基]丁二酸二羟基乙酯(DDP-EG)。

热失重分析(TGA)和动态热稳定性分析表明DDP的起始分解温度为269℃,分解温度低于聚酯聚合温度,热稳定性差,难以直接用于聚酯聚合反应。

DDP-EG的起始分解温度为290℃,且在氮气气氛中,经300℃保温处理150 min质量残留为85.3%,热稳定性好,满足聚酯聚合温度要求;但DDP-EG在空气中热稳定性较差,经300℃保温处理150 min质量残留为62.1%。

我国聚酯纤维改性的技术进展

我国聚酯纤维改性的技术进展

专刊约稿我国聚酯纤维改性的技术进展武荣瑞(北京服装学院,北京 100029) 摘要:综述了我国近十年来聚酯纤维改性技术的进展,主要是(1)染色改性:分散染料常压可染(E DDP),阳离子染料可染(C DP)(2)收缩改性(3)吸湿排汗改性(4)功能改性:导电,抗静电,阻燃,抗紫外,远红外,抗菌,负离子,磁性,抗凝血,芳香和消臭。

关键词:聚酯纤维;改性;技术进展近二十年来,我国的化学纤维工业取得了快速的发展,根据官方网站的数据,1985年我国化纤产量为104吨,2007年为2457万吨,其中以聚酯纤维的产量最大,占化纤总产量的四分之三,为1900万吨。

随着聚酯纤维的发展,其改性品种也逐年增加,特别在改性技术上有了很大的提高,在开展大量研究工作的同时,不少研究成果已转化成生产力,投入到工业化生产中。

本文主要阐述聚对苯二甲酸乙二醇酯三大类改性纤维的技术进展:A类,改变聚酯大分子的化学结构,从而改变其物理性能,达到纤维改性的目的,它包括(1)染色改性和(2)收缩改性。

B类,改变聚酯纤维的物理结构,主要是(3)吸湿排汗改性。

C类,在聚酯大分子中引入具有某种功能的基团,或添加功能添加剂,即(4)功能改性。

染色改性中的阳离子染料可染聚酯,尽管要引入具有亲阳离子染料功能基团的单体组分,但要能常压染色必须按A类改变,故仍为A类。

1 染色改性111 分散染料常压可染聚酯纤维只能用分散染料高温高压染色,不仅消耗能量,生产安全性差,而且影响聚酯纤维的手感,和其它纤维的混纺织物也不能在常温下同浴染色,因此聚酯纤维的常温常压染色就成为必需解决的问题。

尽管常压染色聚酯改性纤维在国外六、七十年代已工业化,但在我国只是通过国家八五科技攻关,才使研究成果推向工业化。

北京服装学院[1,2]和原浙江丝绸工学院[3]分别研制成功分散染料常压可染聚对苯二甲酸乙二醇酯共聚酯E DDP21和E DDP22,均已进行了工业生产。

北京服装学院不仅获得E DDP21的发明专利,而且在E DDP21纤维的染色[4a]、E DDP21与羊毛混纺织物的染色[5]以及E DDP21的其它性能上[6]开展了研究。

聚酯纤维教育课件

聚酯纤维教育课件

第二章 聚酯纤维
②缩聚反应 缩聚反应设备与酯交换基本相同,连续酯化后的
酯交换法连续生产聚酯工艺包括酯交换、预缩聚、 缩聚等过程,其原则工艺流程如图3-2所示。
①酯交换 将原料对苯二甲酸二甲酯连续加入熔化 器中,加热(150±5)℃熔化后,用齿轮泵送入高位槽 中。另将乙二醇连续加入到乙二醇预热器中预热至150160℃后,用离心泵送入高位槽中。将上述两种原料按 摩尔比1∶2分别用计量泵连续定量加入酯交换塔上部。
第二章 聚酯纤维
二、 聚对苯二甲酸乙二酯的生产
1 . 生产原理 用精制后的对苯二甲酸双羟乙酯在缩聚反应催化剂
和稳定剂缩聚反应,分离出乙二醇后即得聚对苯二甲酸 乙二醇酯,其反应如下:
第二章 聚酯纤维
由于缩聚反应属于可逆反应,为了使缩聚 反应进行完全,必须排出反应生成的低分子物质 (乙二醇),为此必须采用真空及强力搅拌,缩 聚反应最终压力不大于266.6Pa,才能获得高相 对分子质量的聚酯,一般产品的平均相对分子质 量不低于20000,用于制造纤维、薄膜的相对分 子质量约为25000。
聚酯纤维 PPT讲座
第二章 聚酯纤维
学习目的要求
初步掌握聚酯纤维的合成、纺丝等生产技术, 把握 结构、性能及应用, 了解其改性和新型聚酯纤维.
第二章 聚酯纤维
第一节 概述
聚酯是制造聚酯纤维、涂料、薄膜及工程塑料的 原料,是由饱和的二元酸与二元醇通过缩聚反应制得的 一类线性高分子缩聚物。这类缩聚物的品种随使用原 料或中间体而异,故品种繁多数不胜数。但所有品种均 有一个共同特点,就是其大分子的各个链节间都是以酯 基“-COO-”相联,所以把这类缩聚物通称为聚酯。 以聚酯为基础制得的纤维称为涤纶,是三大合成纤维 (涤纶、锦纶、腈纶)之一,是最主要的合成纤维。

聚酯纤维及织物的阻燃与抗熔滴改性

聚酯纤维及织物的阻燃与抗熔滴改性

聚酯纤维及织物的阻燃与抗熔滴改性聚酯纤维由于良好的机械性能、化学稳定性、可纺性和低成本, 在服用和装饰用等领域应用广泛。

但聚酯纤维本身易燃, 燃烧容易产生熔滴的特点, 限制了在装饰用纺织品领域的应用, 尤其是作为高层建筑和密闭环境中使用的装饰用纺织品。

主链型磷系阻燃剂是目前阻燃聚酯纤维应用最为广泛的阻燃剂, 通过磷系阻燃剂的氧化燃烧,加速聚酯熔滴的产生, 带走燃烧热量实现聚酯的阻燃改性, 但无法避免熔滴和有毒烟气的产生, 在密闭环境中使用对人体安全性的危害大。

因此, 本文从聚酯的阻燃和抗熔滴改性出发, 基于聚酯燃烧机制和抗熔滴改性机理,通过选用高成炭的侧链型含磷阻燃剂, 并配合无机溶胶的可交联特性,采用原位聚合的方法实现聚酯的阻燃和抗熔滴改性。

针对聚酯表面活性低的问题, 结合表面涂覆整理方法具有抗熔滴改性的优势采用具有柔性链段的聚硅氧烷溶胶和富含磷的植酸阻燃剂为涂覆整理液, 以浸渍涂覆整理的工艺,在聚酯织物表面形成柔性聚硅氧烷/植酸/ 柔性聚硅氧烷的三层功能涂覆结构, 实现聚酯织物阻燃和抗熔滴改性。

具体研究内容如下: 首先在侧链型含磷阻燃剂[ (6-氧代-6H-二苯并[c,e][1,2] 氧磷杂己环-6- 基)甲基]丁二酸(DDP)高效成炭的阻燃特性基础上,对DDP进行端羟基化改性,进一步提高阻燃剂的耐热稳定性。

傅里叶红外变化光谱(FTIR)和核磁共振光谱(NMR)结果表明,DDP与乙二醇(EG)发生酯化反应生成[ (6-氧代-6H-二苯并[c,e][1,2] 氧磷杂己环-6- 基)甲基] 丁二酸二羟基乙酯(DDP-EG)。

热失重分析(TGA)和动态热稳定性分析表明DDP的起始分解温度为269℃,分解温度低于聚酯聚合温度,热稳定性差,难以直接用于聚酯聚合反应DDP-EG的起始分解温度为290℃, 且在氮气气氛中,经300℃保温处理150 min质量残留为85.3%,热稳定性好,满足聚酯聚合温度要求;但DDP-EG在空气中热稳定性较差, 经300℃保温处理150 min 质量残留为62.1%。

聚酯纤维

聚酯纤维

二. 聚酯纤维分类和性能
3.PTT(聚对苯二甲酸丙二酯)纤维
性能特点:玻璃化温度45~65℃ (1).PTT织物柔软而且具有优异的垂性。 (2).其分子链的三个亚甲基使其具有“奇碳效应”,分子链呈现类似于羊毛蛋白质 分子链的螺旋结构,具有明显的“Z”字形构象,导致其大分子链具有如同弹簧一样的 形变和形变回复能力,在纵向外力作用下,分子链很容易发生伸长,且在外力去除后 又恢复原状,赋予其优良的回弹性。
(8). 吸湿性很小,即使相对湿度在100%,吸湿率也仅为0.6%-0.8%。吸湿性较 差,易洗快干;但穿着有闷热感,易带静电、沾污灰尘,影响美观和舒适性。
二. 聚酯纤维分类和性能
2.PBT(聚对苯二甲酸丁二酯)纤维
性能特点:玻璃化温度22℃到43℃ (1)、PBT纤维的强度为30.91~35.32cN/tex,伸长率30%~60%,熔点为223℃,其结 晶化速度比聚对苯二甲酸乙二酯快10倍,有极好的伸长弹性回复率和柔软易染色的特 点。 (2)、由PBT制成的纤维具有聚酯纤维共有的一些性质,但由于在PBT大分子基本链节 上的柔性部分较长,导致纤维大分子链的柔性和弹性有所提高。 (3)、 PBT纤维具有有良好的耐久性、尺寸稳定性和较好的弹性,而且弹性不受湿度 的影响。 (4)、PBT纤维及其制品的手感柔软,吸湿性、耐磨性和纤维卷曲性好,拉伸弹性和压 缩弹性极好,其弹性回复率优于涤纶。。
高收缩聚酯纤维及其在非织造材料中的应用 于宾 焦晓宁 产业用纺织品 2012-11
八、功能性聚酯纤维
1.导电抗静电聚酯纤维
聚酯纤维的一大严重缺点是它的疏水性由于吸水性差, 易为油类所污染, 在 低湿度的场合下易带静电荷
1. 用耐久性抗静电剂涂覆 2. 将耐热性抗静电剂分散于聚酯熔体中 3. 制成具有抗静电性的共聚物后, 再熔融纺丝制成织物

改性聚酯(PET)纤维的制备与表征

改性聚酯(PET)纤维的制备与表征
1#样品,COPET 切片为国产 2#样品,COPET 切片为进口 3#样品,常规PET
从图 可得,1#的直线斜率最大,其次是 2#,3#的斜率最小,斜率的大小,意味着高聚物的表观粘 度表现出不同的温度敏感性。直线斜率△Eη/R 较大,则流动活化能△Eη较高,即粘度对温度变化较 敏感。1#与2#样品为COPET,对温度变化比较敏感。
大而避免液滴细流出现。
漫流型:漫流型虽然因表面积比液滴型小20%而能形成连续细流,但由于纺丝液体 在挤出喷丝孔后即沿喷丝板表面漫流,从而细流间易相互粘连,会引起丝条的周期性 断裂或毛丝,因此仍然不是正常细流。通常在喷丝板表面喷洒硅油或降低流体的温度, 以提高其粘度。
胀大型:胀大型与漫流型不同,纺丝流体在孔口发生胀大,但不流附于喷丝板 表面。只要胀大比控制在适当的范围,细流是连续稳定的,因此是纺丝中正常的 细流类型。纺丝流体出现孔口胀大现象的根源是纺丝流体的弹性。
王芳.阳离子海岛型复合纤维生产工艺技术研究[D].苏州大学
2.3 挤出熔体细流类型对纺丝成型的影响
液滴型
漫流型
胀大型
破裂型
液滴型:液滴型不能成为连续细流,无法形成纤维。流体表面张力越大,则细流缩 小其表面积成为液滴的倾向也越大,此外,温度过高,聚合物降解,粘度下降也促使
液滴的生产。在实际纺丝中,通常通过降低温度使粘度增大,或增加泵供量使纺速增
PET、ECDP、CDP、PARSTER热分解温度(Td)
当温度热分解温度时,聚合物大分子链发生断裂,分解为低聚物,分子量降低,不利
于纺丝。
PET的几种转变温度
名称
Tg
Tc(冷结晶温度Tc1与热结 晶温度Tc2)
Tm Td(起始分解温度)
PET 70-80℃

改性聚酯纤维是什么面料的

改性聚酯纤维是什么面料的

改性聚酯纤维是什么面料的
改性聚酯纤维是一种具有优异性能的合成纤维材料,被广泛用于纺织品行业。

它是以聚对苯二甲酸乙二醇酯为主要原料,通过化学处理和物理改性制备而成。

改性聚酯纤维具有许多突出特点,如优异的强度,优良的耐磨性,抗皱性能强,易于保养等优点,因此备受消费者青睐。

首先,改性聚酯纤维在面料中具有出色的抗张强度和耐磨性。

这使得制成的服装经久耐穿,不易变形,具有较强的耐久性。

无论是在日常穿着还是经历多次清洗后,衣物仍能保持良好的状态,不会轻易磨损和起球,因此备受人们喜爱。

其次,改性聚酯纤维具有优异的抗皱性能。

相比于其他常见面料,如棉花、羊毛等,改性聚酯纤维在穿着后不易产生皱褶,具有较好的恢复性。

这让穿着者无需过多担忧服装褶皱问题,既方便又美观。

此外,改性聚酯纤维的保养也十分简便。

因其本身具有较好的抗污性,日常的清洗维护非常容易。

一般情况下,只需按照洗衣标签上的指示进行清洗,即可轻松保持面料整洁和光亮。

除此之外,改性聚酯纤维还具有较高的色牢度和透气性。

在染色过程中,该面料吸收染料的能力优越,色彩鲜艳持久不褪色。

同时,其透气性良好,让穿着者感到舒适和透气,不易出现过度闷热的情况。

总的来看,改性聚酯纤维是一种性能优异的合成纤维材料,应用广泛且受到欢迎。

从抗张强度到耐磨性,再到抗皱性,这种面料都表现出色。

因其简便的保养和良好的透气性,能够满足人们对舒适、耐用服装的需求。

因此,在时尚潮流不断变迁的今天,改性聚酯纤维作为一种优质面料,必将继续受到消费者的喜爱与追捧。

1。

混凝土中添加聚酯纤维的效果与方法

混凝土中添加聚酯纤维的效果与方法

混凝土中添加聚酯纤维的效果与方法一、前言混凝土作为建筑工程中常用的材料之一,其性能直接影响着工程的质量和使用寿命。

为了提高混凝土的性能,研究人员不断开展混凝土的改性研究。

其中,添加聚酯纤维是一种常用的改性方法,本文将从聚酯纤维的性质、添加的方法以及添加后混凝土性能的变化等方面详细介绍。

二、聚酯纤维的性质聚酯纤维是一种具有优异性能的纤维材料。

它的主要成分为聚酯树脂,具有以下几个特点:1.耐腐蚀。

聚酯纤维具有很强的耐酸碱性能,可以在酸碱环境下长期使用。

2.耐热性。

聚酯纤维的熔点较高,可以在高温环境下使用。

3.耐磨性。

聚酯纤维具有很强的耐磨性,可以在摩擦环境下长期使用。

4.拉伸性。

聚酯纤维具有很好的拉伸性能,可以在机械应力下使用。

5.加工性。

聚酯纤维可以通过吹塑、纺织等多种加工工艺制备成不同形状和规格的纤维。

三、添加聚酯纤维的方法混凝土中添加聚酯纤维的方法主要有以下两种:1.直接添加。

将聚酯纤维直接加入混凝土中,并与混凝土充分搅拌均匀。

2.预混合添加。

将聚酯纤维与混凝土中的骨料一起预混合,然后再加入水泥、砂浆等原材料进行混凝土的生产。

在添加聚酯纤维时,应注意以下几点:1.聚酯纤维的掺量应根据混凝土的具体情况进行调整,一般为混凝土总质量的0.1%~0.5%。

2.混凝土中聚酯纤维的长度一般为6mm~19mm,直径为0.2mm~0.3mm。

3.添加聚酯纤维前应将其放置于干燥通风的地方,避免吸收水分。

四、添加聚酯纤维后混凝土性能的变化添加聚酯纤维后,混凝土的性能会发生以下变化:1.强度提高。

聚酯纤维可以在混凝土中形成网状结构,增强混凝土的抗拉强度和抗冲击性。

2.抗裂性能增强。

聚酯纤维可以防止混凝土开裂,提高混凝土的抗裂性能。

3.耐久性提高。

聚酯纤维可以防止混凝土的龟裂和剥落,提高混凝土的耐久性。

4.施工性能改善。

聚酯纤维可以减少混凝土的收缩和开裂,提高混凝土的施工性能。

5.成本降低。

添加聚酯纤维可以减少混凝土的维护和修复成本,降低工程总成本。

聚酯纤维的表面改性与染色

聚酯纤维的表面改性与染色
-
近年来 , 国内的学者也对碱减量助剂进行 了研究 , 在连续碱减量过程中, 一般采用高浓度 的碱液, 而国内生产的碱减量助剂不耐高浓度 碱液。在连续碱减量的研究中 , 向碱液中加入 耐高浓度碱液的渗透剂, 作为改善碱液对纤维 的润湿性助剂
2
, 用帆布沉降法测定其润湿时
间的数据如表 1 所示。除了考虑润湿性外, 还 考虑到渗透剂在碱液中的溶解度和储存稳定性 及成本 , 选用耐高浓度碱渗透剂 PPE ! 942, 其 量为 2g/ L 。加入渗透剂后, 碱液的渗透性得到 改善, 织物的可染性和染色均匀性较好, 对碱减 量无明显影响。
C OR O O C O
-
OR
H 2O Na + OH-
O C ONa + ROH
CH2 CH2 ) n OH + 2n NaOH 2 ∀ 40 O C ONa + n H OCH2 CH2 OH 62
192 O n NaO C 210
碱减量法的技术关键是, 碱减量助剂的应 用。聚酯纤维是一种惰性极强的非极性纤维 ,
早期使用的碱减量助剂都是沿用阳离子染 料染色的助染剂 , 这类助剂有很强的阳离子活 性, 即有 很强的促进作 用; 但其残 留物不易 洗 掉, 在染色时与阴离子分散剂和染料凝聚形成 色斑, 降 低染色牢度 , 抑制织物上 高聚物的 脱 落, 影响手感, 还会使白色织物泛黄。为了克服 这些缺点 , 在阳离子分子中引入水溶性基团, 以 适当降低纤维对碱溶液的活性, 以降低在织物 上的残留量。根据近年来的专利资料介绍 , 很 多促进剂是以季铵盐为主 , 还混有多元醇、 胺类 或双氧水等物质组成的复配型碱减 量专用助
5! 9
质和数量是改善染色性和相容性的主要因素。 将经纬 密 N72 根 ∀ 34 根克重 为 78g/ m 2 的涤纶织 物, 洗涤后 在功 率为 100W, 压 力为 5P a 的等离子体 系统中处理 10min, 用 C ! 2R 分散兰和 B ! GY 分散黑染料进行上染率比较 ( 表 3)

乙烯聚酯纤维及表面改性的方法

乙烯聚酯纤维及表面改性的方法

1 等离子体处理对于气态物质,温度升至几千度时,由于分子碰撞加剧,分子就会产生电离,物质就变成了相互作用的正离子和电子组成的混合物,这种物质的第四态即等离子体。

该方法是通过等离子体处理以及在材料表面等离子体接枝来改变材料表面性能,美国进行研究改进后,将应用该技术处理的聚酯纤维(Refresca)投放市场。

等离子体技术的分类及其应用如表1所示。

表1 等离子体的特性及应用领域等离子体种类与发生方法等离子体特性电子密度ne/cm-3电场强度E/V/cm压力P/Torr电子温度Te/K气体温度Tg/K应用高温等离子体(平衡等离子体)弧光>1014 <20 >100 ~104 ~104化学合成,ICP发光分析,金属的熔融低温等离子体(非平衡等离子体)直流辉光109~101250~6*104<100 ~104~7*102等离子体CVD,等离子体聚合,刻蚀,表面处理高频108~1010100~500<100 ~104~7*102微波1011 <100 ~104~103 加热杀菌电晕<106 >2*104 >100 ~104 ~4*102 表面处理低温等离子体泛指近局域热力学平衡等离子体,含有大量的反应活性很高的电子、离子、分子、原子、自由基等,不仅是能量的携带者,而且还能作为反应物直接参与化学反应。

相应地,等离子体技术对涤纶的表面改性包括两个方面:单纯通过等离子体处理,引发表面结构变化;利用低温等离子体引发与其他物质的接枝聚合。

1.1 单纯利用等离子体处理引发表面结构变化研究表明[1],经氩等离子体处理后,涤纶表面的N/C比例发生明显变化,接触角也发生明显变化。

氧等离子处理[2]后涤纶表面润湿性的变化,并进行了表面张力评价,发现处理后涤纶表面自由能增大,是表面张力的活性极性分量的贡献,XPS分析也表明,涤纶表面被吸入了大量含氧和含氮阳性基团。

研究等离子体处理的时效性问题[3]发现,等离子体处理后涤纶织物的强力会下降,但是短时间的碱预处理可减少织物拉伸断裂强力的损失。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

表面改性
五、等离子体处理 等离子体技术在纤维表面处理方面的应用始于20世纪60
年代末。 与化学表面处理处理方法相比有如下优点:
(1)省能源,无公害,满足环保的需要; (2)处理时间短,效率高(10-500s); (3)处理仅在纤维的表面,典型的作用深度为5~50nm,对 所处理的纤维的性能影响不大; (4)可处理形状较复杂的材料,材料表面处理的均匀性好; (5)反应环境温度低。因此,等离子体技术适合于材料表面 的改性。
第三阶段,反应速率逐渐降低,这是因为无定型区 的反应基本结束,反应逐步转向结构紧密的结晶区的缘 故。
表面改性
三、强氧化剂处理法 强氧化剂氧化法是由于纤维在强氧化剂的作用下,表
面被强氧化剂烧蚀,使聚合物表面发生裂解、交联和氧 化,使纤维和染料及其它材料之间的物理键合力和化学 键合力增强,提高了纤维的表面活化能力和润湿性,从 而改善了纤维的润湿性能。强氧化剂氧化法有酸洗、臭 氧氧化和双氧水浸润等
2)在沥青混凝土中加入超短聚酯纤维,利用纤维的 吸附作用和微观加筋作用,可以增加沥青之间的粘滞 力,延缓了沥青从矿料表面剥离的速度,因此增加了 路面抵抗水侵蚀的能力。
3)短纤维橡胶基复合材料(简称SFRC),来满足传 动带、密封制品、胶管等行业产品的需求。
第六节 聚乳酸纤维 1.6 聚乳酸纤维性能 聚乳酸(PLA)是一种聚羟基酸,它的原料乳酸可
织物经碱减量后,纤维间抱合力减小,孔隙增大 ,透气量增加,这对穿着舒适性有一定改善。
由于强度略有下降,有利于改进织物抗起球性能 。纯涤纶、涤棉或涤毛混纺织物经碱减量后抗起球性 能有所改善,目前国内外部分仿毛织物产品也采用碱 减量处理。
表面改性
二、聚酯纤维的氨解处理 氨解--是聚酯纤维又一种表面处理的化学方法。 在氨
纺织品常压等离子体连续处理装置
等离子体处理前后涤纶织物的SEM照片
1.4.3 聚酯纤维的应用
一、聚酯短纤维的应用 聚酯短纤维在棉纺行业的应用:大约80%被棉纺行
业使用; 聚酯短纤维在毛纺行业的应用:少量聚酯短纤维用
于毛纺行业,通过以下的仿毛技术: (1)通过化学改性和特殊的纺丝方法提高聚酯的热
二、聚酯长丝的应用1、纺织源自面 2、装饰方面 3、产业方面思考题(不交作业)
1. 简述聚酯纤维的主要改性方法和手段。 2. 聚酯长丝有哪些产品种类和产业应用领域?
第五节 产业用聚酯纤维的产品种类和应用领域
产业用纺织品发展战略
– 国务院於2009年2月4日发布的纺织工业调整振兴 规划明确提出,未来三年,中国产业用纺织品纤维 消费量将每年增长80~100万吨,在全行业纤维加 工总量中的比重将增加到19%左右。
图1-6-2 Lactron 在堆肥中的生物降解情况
1.6.2 聚乳酸纤维的制备及其应用

采用适合的聚合条件(主要是温度的控制和水分的
脱除),由乳酸直接聚合或将乳酸环状二聚体丙交酯开 环聚合,均可得到高分子量聚乳酸(图1-6-3)。
采用常规熔融纺丝工艺(高速纺一步法和纺丝-拉 伸二步法),可将聚乳酸纺制成纤维。
– 阻燃工业丝
各种公共建筑、商业网点和各种交通工具的内装饰 ,以及码头、仓库等的顶蓬等
– 高收缩涤纶短纤维
是人造革基布的主要材料,根据不同的人造革制造 过程,高收缩纤维的热水收缩率可以达到80%,适 用於制造高密度非织造布产品。
聚酯纤维的产业应用 – 涤纶超短纤维
1)化学分析用滤纸、高效真空吸尘器集成袋用纸、 饮料一次性用滤纸、食品加工用滤纸、汽车工业用滤 纸
的生物合成乳酸聚合物,采用熔融纺丝工艺,也成功地
纺制了聚乳酸纤维,商品名为Terramac。该公司开发了
单丝、复丝、短丝(常规型和皮芯复合型)及纺粘非织
造布等纤维品种。
由聚乳酸制成的服装,其使用寿命为2年左右。
聚乳酸纤维是最接近大规模实用阶段的可降解纤维 。但国内的研究开展较少,亟待引起重视。
聚酯纤维的改性_图文.ppt
课程介绍
第一章 聚酯纤维生产工艺
• 第一节 概论
重点内容:聚酯纤维的发展简史与产品分类。
• 第二节 聚酯原料生产工艺及技术
重点内容:聚酯原料的生产技术与工艺。
课程介绍
第一章 聚酯纤维生产工艺
• 第三节 聚酯纤维的生产技术及工艺
重点内容:聚酯纤维的的生产技术与工艺。
• 第四节 聚酯纤维的结构性能及改性
聚酯纤维的应用领域
2006年世界化学纤维总产量约为3703万吨,聚酯纤维约占 65%, 2010年将超过70%,全球聚酯纤维需求量平均年增 长率约7.0%,广泛应用於居室、运动和旅游方面,同时在交
通、建筑、石化、航空航天等工业领域发挥重要的作用。
聚酯纤维的产业应用
– 高模量低收缩(HMLS)聚酯工业丝
重点内容:聚酯纤维的各种改性方法和目的。
课程介绍
第一章 聚酯纤维生产工艺
• 第五节 产业用聚酯纤维的产品种类和 应用领域
重点内容:了解聚酯纤维的产业应用领域和前景 。
• 第四节 聚乳酸纤维
重点内容:了解聚乳酸纤维的特点与生产方法。
1.4.2 聚酯纤维的改性
改性的原因 – 染色性、吸湿性差 – 易起球、静电大、易沾污等 – 不同应用领域的要求差异
收缩性(由于羊毛具有很高的弹性回复率),使其沸水收缩 率提高到25%以上;
(2)采用混纤法将不同截面或不同热收缩率的聚酯 纤维进行混纤,使纱线、织物产生毛感;
(3)复合纺丝法,将其它的聚合物与聚酯一起进行 复合纺丝,生产纺毛纤维。
聚酯短纤维在其它行业的应用 (1) 细旦有光缝纫线专用短纤维 (2) 聚酯超短纤维(<12mm)的应用 一是用于造纸业; 二是用作复合材料的加强填充料; 三是用于植绒类产品。 (3) 聚酯短纤维作复合材料的填充料 (4) 非织造布领域的应用 (5) 聚酯纤维纸
虽是可以完全分解的聚合物,但在一般的大气环境和储 存仓库中并不会进行分解,仅在下列皆具备的环境下才 会快速进行分解反应:
a.充足的水气(相对湿度90%以上)
b.充足的氧气(非密闭环境中)
c.适当的温度(58~70℃)
适合的加工方式有:真空成型、射出成型、吹瓶、押出 、发泡、透明膜、保鲜膜等 。
解反应中,聚酯与胺发生亲核取代反应,胺作用于缺电子 的羰基碳上,使聚酯的分子链断裂形成酰胺,分子量减少 并溶出。
经过氨解处理,不仅使纤维产生具有较大亲水性的酰 胺基和氨基,而且在纤维的表面产生裂纹和坑洼。因此, 氨解处理可以极大地改善聚酯纤维的手感、亲水性、易去 污性、可染性,同时还可以提高纤维的抗静电性、抗起球 性、悬垂效果等。
适合作为速度较高的轿车子午线轮胎和轻载子午线 轮胎的骨架材料
– 中的超高强型、超低收缩型、耐磨型、活化型聚酯 工业丝
输送带、传动三角带、PVC涂贴层织物、安全气囊 (聚萘二甲酸乙二醇酯(PEN)) 、消防水带、胶 管等的骨架材料,被广泛应用於煤炭、冶金、矿山 、化工、港口等行业。
聚酯纤维的产业应用
DLZT-1000型
等离子体改性设备



DLZT-1000型等离子体改性设备为卧式圆筒型材料表面改性处理设备。 是利用电容式耦合辉光放电技术使气体电离产生冷等离子体。冷等离子体 不同于一般中性气体,它的基本特点是系统主要由带电粒子支配(冷等离 子体中含有大量的电子、离子、激发态原子和分子及自由基等活性粒子) ,在外部电场、磁场的影响下,存在多种基元过程和等离子体与固体表面 的相互作用,可以在材料(金属、半导体、高分子材料)表面引起刻蚀、 氧化、还原、裂解、交联和聚合等物理、化学反应,对材料表面进行改性 。这些改性在不损伤基体的前提下,赋予材料表面新的性能,• 如亲水性( 或疏水性)、可染性、粘接性、耐磨性、抗静电性及生物相容性等等。这 种技术尤其适用于天然高分子材料(棉、毛、丝、麻)和合成高分子材料 (化纤、塑料、合成橡胶等),因而在材料、化工、电子、印刷、纺织、 制造、医疗、生物技术等领域有广泛的应用。
改性方法 – 化学方法 共聚、纤维表面改性处理 – 物理方法 共混 改进纺丝加工技术,变更纤维加工条件 改变纤维形态以及通过后纺与其他纤维混纺、交织等
表面改性
表面改性是在纤维形成以后进行的 表面改性方法具有针对性强、效果显著等优点 表面改性方法包括:化学改性、光化学改性、等离 子体处理等
一、 聚酯纤维的碱减量处理 原理:聚酯纤维在强碱和高温作用下,大分子中的酯
基发生水解反应断裂,分解为热水可溶的低聚物或单体。 经水洗过程,热水可溶性物从纤维中洗出。
表面改性
表面改性
减量效果与碱浓度的关系
表面改性
碱减量后纤维性能的改进 碱减量后,聚酯纤维织物的去污性能得到改善,
例如以10%NaOH碱减量后的聚酯织物进行悬浮性污 物去污试验,其效果相当于一般去污后整理,但耐洗 性却比后者好得多。
Lactron是日本钟纺公司生产的PLLA长丝的商品名 。 Lactron有多种规格的产品,如复丝、单丝、短丝、 纱线、纺粘非织造布等。 Lactron的物理性能与常规PA 和PET纤维接近(见表1-6-2)。
表1-6-2 Lactron 的物理性能

日本尤尼吉卡公司使用美国Cargill Dow公司生产
表面改性
四、光化学表面处理 在光化学处理过程中,聚合物链在γ射线、紫外线
、电子束等高能射线的照射下,发生链断裂而产生很 多自由基,在辐照的同时引入比较亲水的单体在纤维 表面聚合,使纤维表面活化,从而达到改善纤维表面润 湿性和染色性。
最常用的单体为丙烯酸 处理后纤维的强度下降较多,但可改善聚酯纤维 的润湿性和粘着性等表面性能
由玉米乳清、甜菜下脚、土豆废渣、奶酪下脚等经发酵 、蒸馏获得。在常见的可生物降解聚合物中,聚乳酸的 性能最为优越(见表1-6-1):耐热性能良好、结晶度 高、强度高、透明,且可热塑成形。人们对它进行了大 量的研究,并取得了许多进展。
相关文档
最新文档