(完整)高考专题:解析几何常规题型及方法

合集下载

高考复习中解析几何题型分析及解法梳理

高考复习中解析几何题型分析及解法梳理

一、解析几何题型分析:
1. 直线问题:主要考察直线的性质及其特征,如平行、垂直、中心弦定理等。

2. 圆形问题:主要考察圆形的性质及其特征,如圆心角定理、外切内接定理等。

3. 正多面体问题:主要考察正多面体的性质及其特征,如三角形内心定理、四面体最大最小化原理等。

4. 三角形问题:主要考察三角形的性质及其特征,如勾股定理、海伦-泰勒斯定理等。

5. 几何评价法问题: 主要是透过几何图型来评价各部分之间的大小或者数量上的差异,例如由于不同图彩之间存在一些明显差异,所以能够根据这些差异来作出正确判断或者作出正确估测。

二、解法收拾:
1. 第一步应该是将所有信息数字化,即将所有信息由文字表述方式数字化;
2. 第二步应该是根据所数字化后的信息来选用适合的几何方法;
3. 第三步应该是根据前两部中所使用方法来进行相应的代数或者几何运算;
4. 最后一步应该是核对并汇总前三部中所得到的信息,然后作出最合适书写样子上呈上。

高考数学:解析几何常考题型及解题方法汇总(含详解),

高考数学:解析几何常考题型及解题方法汇总(含详解),

相信很多同学都知道,解析几何其实并不难,解题思路也相对简单,但是它却折磨着大多数的考生们!
为什么?因为它的计算量实在是太大了,想找个简单快捷的方法去做都是很不容易的一件事。

在高考数学中,解析几何属于必考题,而且其所占的分值和函数也相差不大,都是在3 0分左右,但是它并没有像函数压轴题一样,让人看了就想放弃。

但是只要找对方法,你会发现其实解析几何也没有想象中的那么折磨人,而且出乎意料的简单。

今天,学长就为同学们整理了高考数学中解析几何的热点常考题和解题方法的汇总,希望同学们好好把握,在高考中取得一个更好的成绩!
需要电子打印版的同学可以私信发送,解析几何,就可以打印出来了!用起来超方便!!!。

高考数学解析几何题型和解法

高考数学解析几何题型和解法

解析几何问题的题型与方法一、知识整合高考中解析几何试题一般共有4题(2个选择题, 1个填空题, 1个解答题),共计30分左右,考查的知识点约为20个左右。

其命题一般紧扣课本,突出重点,全面考查。

选择题和填空题考查直线、圆、圆锥曲线、参数方程和极坐标系中的基础知识。

解答题重点考查圆锥曲线中的重要知识点,通过知识的重组与链接,使知识形成网络,着重考查直线与圆锥曲线的位置关系,求解有时还要用到平几的基本知识和向量的基本方法...............,这一点值得强化。

1. 能正确导出由一点和斜率确定的直线的点斜式方程;从直线的点斜式方程出发推导出直线方程的其他形式,斜截式、两点式、截距式;能根据已知条件,熟练地选择恰当的方程形式写出直线的方程,熟练地进行直线方程的不同形式之间的转化,能利用直线的方程来研究与直线有关的问题了.2.能正确画出二元一次不等式(组)表示的平面区域,知道线性规划的意义,知道线性约束条件、线性目标函数、可行解、可行域、最优解等基本概念,能正确地利用图解法解决线性规划问题,并用之解决简单的实际问题,了解线性规划方法在数学方面的应用;会用线性规划方法解决一些实际问题.3. 理解“曲线的方程”、“方程的曲线”的意义,了解解析几何的基本思想,掌握求曲线的方程的方法.4.掌握圆的标准方程:222)()(r b y a x =-+-(r >0),明确方程中各字母的几何意义,能根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径,掌握圆的一般方程:022=++++F Ey Dx y x ,知道该方程表示圆的充要条件并正确地进行一般方程和标准方程的互化,能根据条件,用待定系数法求出圆的方程,理解圆的参数方程cos sin x r y r θθ=⎧⎨=⎩(θ为参数),明确各字母的意义,掌握直线与圆的位置关系的判定方法. 5.正确理解椭圆、双曲线和抛物线的定义,明确焦点、焦距的概念;能根据椭圆、双曲线和抛物线的定义推导它们的标准方程;记住椭圆、双曲线和抛物线的各种标准方程;能根据条件,求出椭圆、双曲线和抛物线的标准方程;掌握椭圆、双曲线和抛物线的几何性质:范围、对称性、顶点、离心率、准线(双曲线的渐近线)等,从而能迅速、正确地画出椭圆、双曲线和抛物线;掌握a 、b 、c 、p 、e 之间的关系及相应的几何意义;利用椭圆、双曲线和抛物线的几何性质,确定椭圆、双曲线和抛物线的标准方程,并解决简单问题;理解椭圆、双曲线和抛物线的参数方程,并掌握它的应用;掌握直线与椭圆、双曲线和抛物线位置关系的判定方法.二、近几年高考试题知识点分析2004年高考,各地试题中解析几何内容在全卷的平均分值为27.1分,占18.1%;2001年以来,解析几何内容在全卷的平均分值为29.3分,占19.5%.因此,占全卷近1/5的分值的解析几何内容,值得我们在二轮复习中引起足够的重视.高考试题中对解析几何内容的考查几乎囊括了该部分的所有内容,对直线、线性规划、圆、椭圆、双曲线、抛物线等内容都有涉及.1.选择、填空题1.1 大多数选择、填空题以对基础知识、基本技能的考查为主,难度以容易题和中档题为主(1)对直线、圆的基本概念及性质的考查例1 (04江苏)以点(1,2)为圆心,与直线4x +3y -35=0相切的圆的方程是_________.(2)对圆锥曲线的定义、性质的考查例2(04辽宁)已知点)0,2(1-F 、)0,2(2F ,动点P 满足2||||12=-PF PF . 当点P 的纵坐标是21时,点P 到坐标原点的距离是 (A )26(B )23 (C )3(D )21.2 部分小题体现一定的能力要求能力,注意到对学生解题方法的考查例3(04天津文)若过定点(1,0)M -且斜率为k 的直线与圆22450x x y ++-=在第一象限内的部分有交点,则k 的取值范围是 (A)0k <<(B)0k <<(C)0k << (D )05k <<2.解答题解析几何的解答题主要考查求轨迹方程以及圆锥曲线的性质.以中等难度题为主,通常设置两问,在问题的设置上有一定的梯度,第一问相对比较简单.例4(04江苏)已知椭圆的中心在原点,离心率为12,一个焦点是F (-m,0)(m 是大于0的常数).(Ⅰ)求椭圆的方程;(Ⅱ)设Q 是椭圆上的一点,且过点F 、Q 的直线l 与y 轴交于点M.=,求直线l 的斜率.本题第一问求椭圆的方程,是比较容易的,对大多数同学而言,是应该得分的;而第二问,需要进行分类讨论,则有一定的难度,得分率不高. 解:(I )设所求椭圆方程是).0(12222>>=+b a by a x由已知,得 ,21,==a c m c 所以m b m a 3,2==. 故所求的椭圆方程是1342222=+my m x (II )设Q (Q Q y x ,),直线),0(),(:km M m x k y l 则点+=当),,0(),0,(,2km M m F -=由于时由定比分点坐标公式,得,62.139494,)3,32(.31210,32212022222±==+-=++=-=+-=k mm k m m kmm Q km km y m m x Q Q 解得所以在椭圆上又点0(2)()2,2,1212Q Q m km MQ QF x m y km +-⨯-=-==-==--- 当时.于是.0,134422222==+k mm k m m 解得 故直线l 的斜率是0,62±.例5(04全国文科Ⅰ)设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B .(I )求双曲线C 的离心率e 的取值范围:(II )设直线l 与y 轴的交点为P ,且5.12PA PB =求a 的值. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y a x 有两个不同的实数解.消去y 并整理得 (1-a 2)x 2+2a 2x -2a 2=0. ①.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率01,).e a a e e e ==<<≠∴>≠+∞ 即离心率的取值范围为(II )设)1,0(),,(),,(12211P y x B y x A.125).1,(125)1,(,125212211x x y x y x =-=-∴=由此得 由于x 1,x 2都是方程①的根,且1-a 2≠0,2222222222172522289,.,,121121160170,.13a a a x x x a a a a a =-=--=--->=所以消去得由所以例6(04全国文科Ⅱ)给定抛物线C :,42x y =F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点. (Ⅰ)设l 的斜率为1,求OB OA与夹角的大小;(Ⅱ)设]9,4[,∈=λλ若AF FB ,求l 在y 轴上截距的变化范围. 解:(Ⅰ)C 的焦点为F (1,0),直线l 的斜率为1,所以l 的方程为.1-=x y将1-=x y 代入方程x y 42=,并整理得 .0162=+-x x设),,(),,(2211y x B y x A 则有 .1,62121==+x x x x.31)(2),(),(212121212211-=++-=+=⋅=⋅x x x x y y x x y x y x.41]16)(4[||||21212122222121=+++=+⋅+=x x x x x x y x y x OB OA.41143||||),cos(-=⋅=OB OA 所以与夹角的大小为.41143arccos -π (Ⅱ)由题设λ= 得 ),,1(),1(1122y x y x --=-λ即⎩⎨⎧-=-=-.1212),1(1y y x x λλ 由②得21222y y λ=, ∵ ,4,4222121x y x y == ∴.122x x λ=③ 联立①、③解得λ=2x ,依题意有.0>λ∴),2,(),2,(λλλλ-B B 或又F (1,0),得直线l 方程为 ),1(2)1()1(2)1(--=--=-x y x y λλλλ或当]9,4[∈λ时,l 在方程y 轴上的截距为,1212---λλλλ或由 ,121212-++=-λλλλλ 可知12-λλ在[4,9]上是递减的, ∴ ,431234,341243-≤--≤-≤-≤λλλλ直线l 在y 轴上截距的变化范围为].34,43[]43,34[⋃--从以上3道题我们不难发现,对解答题而言,椭圆、双曲线、抛物线这三种圆锥曲线都有考查的可能,而且在历年的高考试题中往往是交替出现的,以江苏为例,01年考的是抛物线,02年考的是双曲线,03年考的是求轨迹方程(椭圆),04年考的是椭圆.三、热点分析与2005年高考预测1.重视与向量的综合在04年高考文科12个省市新课程卷中,有6个省市的解析几何大题与向量综合,主要涉及到向量的点乘积(以及用向量的点乘积求夹角)和定比分点等,因此,与向量综合,仍是解析几何的热点问题,预计在05年的高考试题中,这一现状依然会持续下去.例7(02年新课程卷)平面直角坐标系中,O 为坐标原点,已知两点A (3,1),B (-1,3),若点C 满足OB OA OC βα+=,其中α、β∈R,且α+β=1,则点C 的轨迹方程为(A )(x -1)2+(y -2)2=5 (B )3x +2y -11=0 (C )2x -y =0 (D )x +2y -5=0 例8(04辽宁)已知点)0,2(-A 、)0,3(B ,动点2),(x PB PA y x P =⋅满足,则点P 的轨迹是 (A )圆 (B )椭圆 (C )双曲线 (D )抛物线2.考查直线与圆锥曲线的位置关系几率较高在04年的15个省市文科试题(含新、旧课程卷)中,全都“不约而同”地考查了直线和圆锥曲线的位置关系,因此,可以断言,在05年高考试题中,解析几何的解答题考查直线与圆锥曲线的位置关系的概率依然会很大.① ②3.与数列相综合在04年的高考试题中,上海、湖北、浙江解析几何大题与数列相综合,此外,03年的江苏卷也曾出现过此类试题,所以,在05年的试题中依然会出现类似的问题.例9(04年浙江卷)如图,ΔOBC 的在个顶点坐标分别为(0,0)、(1,0)、(0,2),设P 为线段BC 的中点,P 2为线段CO 的中点,P 3为线段OP 1的中点,对于每一个正整数n,P n+3为线段P n P n+1的中点,令P n 的坐标为(x n,y n), .2121++++=n n n n y y y a (Ⅰ)求321,,a a a 及n a ; (Ⅱ)证明;,414*+∈-=N n y y nn (Ⅲ)若记,,444*+∈-=N n y y b n n n证明{}n b 是等比数列.解:(Ⅰ)因为43,21,153421=====y y y y y ,所以2321===a a a ,又由题意可知213+++=n n n y y y , ∴321121++++++=n n n n y y y a =221121++++++n n n n y y y y =,2121n n n n a y y y =++++∴{}n a 为常数列.∴.,21*∈==N n a a n(Ⅱ)将等式22121=++++n n n y y y 两边除以2,得,124121=++++n n n y y y 又∵2214++++=n n n y y y ,∴.414n n yy -=+(Ⅲ)∵)41()41(44444841n n n n n yy y y b ---=-=+++-)(41444n n y y --=+,41n b -=又∵,041431≠-=-=y y b∴{}n b 是公比为41-的等比数列.4.与导数相综合近几年的新课程卷也十分注意与导数的综合,如03年的天津文科试题、04年的湖南文理科试题,都分别与向量综合.例10(04年湖南文理科试题)如图,过抛物线x 2=4y 的对称轴上任一点P (0,m )(m>0)作直线与抛物线交于A,B 两点,点Q 是点P 关于原点的对称点。

高考专题复习—解析几何的题型与方法(精髓版)

高考专题复习—解析几何的题型与方法(精髓版)

角大小为( B )
A、 arctan a ; b
B、 arctan(- a ); b
C、 p + arctan a ; b
D、 p - arctan a . b
[例 3]与圆 (x 1)2 ( y 2)2 1 相切,且在两坐标轴上截距相等的直线有――( B )
A、2 条;
B、3 条;
C、4 条;
积的最大值为_______;2.
[例 15]已知 A 是圆 x 2 y 2 2ax 4 y 6 0 上任意一点,点 A 关于直线 x 2 y 1 0 的对称点也在圆上,那么实数 a 的值为___3__.
[例 16]已知动圆 C 与定圆 M: (x 2)2 y 2 1相切,且与 y 轴相切,则圆心 C 的轨迹方
[例 8]抛物线 C1: y 2 2x 关于直线 x y 2 0 对称的抛物线为 C2,则 C2 的焦点坐标为
____. (2, 5 ) . 2
[例 9]已知点 (a, b) 是圆 x 2 y 2 r 2 外的一点,则直线 ax by r 2 与圆的位置关系
是( C )
A、相离;
B、相切;
D、5 条.
[例 4]过点 P(2,3) 与坐标原点距离为 2 的直线方程是___ 5x 12y 26 0 与 x 2 .
[例 5]直线 l1, l2 斜率相等是 l1 // l2 的――――――――――――――――――( D )
A、充分不必要条件;B、必要不充分条件;C、充要条件;D、既不充分又不必要条件.
20XX 届高三数学题型与方法专题七:解析几何 1【基础知识梳理】
班级:
姓名:
[例 1]已知直线 l1 的斜率是
3 3
,直线

(word完整版)高中数学解析几何解题方法~

(word完整版)高中数学解析几何解题方法~

解析几何常规题型及方法(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。

典型例题 给定双曲线x y 2221-=。

过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。

(2)焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。

典型例题 设P(x,y)为椭圆x a y b22221+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。

(1)求证离心率βαβαsin sin )sin(++=e ; (2)求|||PF PF 1323+的最值。

(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式,应特别注意数形结合的办法典型例题 抛物线方程,直线与轴的交点在抛物线准线的右边。

y p x p x y t x 210=+>+=()()(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。

(4)圆锥曲线的有关最值(范围)问题圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。

<1>若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。

<2>若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数,三角函数,均值不等式)求最值。

典型例题已知抛物线y 2=2px(p>0),过M (a,0)且斜率为1的直线L 与抛物线交于不同的两点A 、B ,|AB|≤2p(1)求a 的取值范围;(2)若线段AB 的垂直平分线交x 轴于点N ,求△NAB 面积的最大值。

(word完整版)高中数学解析几何解题方法~

(word完整版)高中数学解析几何解题方法~

解析几何常规题型及方法(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(x i ,y 1),(X 2,y 2),代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。

2典型例题给定双曲线X2— 1。

过A (2, 1)的直线与双曲线交于两点P1及P 2,求线段P1 P 2的中点P2的轨迹方程。

(2)焦点三角形问题椭圆或双曲线上一点 P,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。

2y _.八, __________________: 1 上任一点,F [( c,0), F 2(c,0)为焦点, PF 1F 2 , PF 2F 1 。

b/(1)求证离心率 e --------sin.一33 .(2)求 |PF 1| PF 2I 的最值。

(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式,应特别注意数形结合 的办法 典型例题抛物线方程y2p(x 1) (p 0),直线x y t 与x 轴的交点在抛物线准线的右边。

(1)求证:直线与抛物线总有两个不同交点 (2)设直线与抛物线的交点为 A 、B,且OALOB,求p 关于t 的函数f ⑴的表达式。

(4)圆锥曲线的有关最值(范围)问题圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。

<1>若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。

<2>若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数, 三角函数,均值不等式)求最值。

典型例题 已知抛物线y2=2px(p>0),过M (a,0)且斜率为1的直线L 与抛物线交于不同的两点 A 、B, |AB|w 2P(1)求a 的取值范围;(2)若线段AB 的垂直平分线交x 轴于点N,求^ NAB 面积的最大值。

(2)设AB 的垂直平分线交 AB 与点Q,令其坐标为(X3,y3),则由中点坐标公式得: (5)求曲线的方程问题1 .曲线的形状已知 --------- 这类问题一般可用待定系数法解决。

高考专题:解析几何常规题型及方法

高考专题:解析几何常规题型及方法

高考专题:解析几何常规题型及方法一、高考风向分析:高考解析几何试题一般共有3--4题(1--2个选择题, 0--1个填空题, 1个解答题), 共计20多分, 考察的知识点约为20个左右,其命题一般紧扣课本, 突出重点, 全面考察。

选择题和填空题考察直线, 圆, 圆锥曲线中的根底知识,大多概念性较强,小巧灵活,思维多于计算;而解答题重点考察圆锥曲线中的重要知识点及其综合运用,重在考察直线与圆锥曲线的位置关系、轨迹方程,以向量为载体,立意新颖,要求学生综合运用所学代数、三角、几何的知识分析问题,解决问题。

二、本章节处理方法建议:纵观历年全国各省市文、理高考试卷,普遍有一个规律:占解几分值接近一半的填空、选择题难度不大,中等及偏上的学生能将对应分数收入囊中;而占解几分值一 半偏上的解答题得分很不理想,其原因主要表达在以下几个方面:〔1〕解析几何是代数与几何的完美结合,解析几何的问题可以涉及函数、方程、不等式、三角、几何、数列、向 量等知识,形成了轨迹、最值、对称、围、参系数等多种问题,因而成为高中数学综合 能力要求最高的容之一〔2〕解析几何的计算量相对偏大〔3〕在大家的"拿可拿之分〞 的理念下,大题的前三道成了兵家必争之地,而排放位置比拟为难的第21题或22题〔有 时20题〕就成了很多人遗忘的角落,加之时间的限制,此题留白的现象比拟普遍。

鉴于解几的特点,建议在复习中做好以下几个方面.1.由于高考中解几容弹性很 大。

有容易题,有中难题。

因此在复习中基调为狠抓根底。

不能因为高考中的解几解答题 较难,就拼命地去搞难题,套新题,这样往往得不偿失;端正心态:不指望将所有的题攻 下,将时间用在稳固根底、对付"跳一跳便可够得到〞的常规题上,这样复习,高考时就 能保证首先将选择、填空题拿下,然后对于大题的第一个小问争取得分,第二小题能拿几 分算几分。

三、高考核心考点1、准确理解根本概念〔如直线的倾斜角、斜率、距离、截距等〕2、熟练掌握根本公式〔如两点间距离公式、点到直线的距离公式、斜率公式、定比分点的坐标公式、到角公式、夹角公式等〕3、熟练掌握求直线方程的方法〔如根据条件灵活选用各种形式、讨论斜率存在和不存在的各种情况、截距是否为0等等〕4、在解决直线与圆的位置关系问题中,要善于运用圆的几何性质以减少运算5、了解线性规划的意义及简单应用6、熟悉圆锥曲线中根本量的计算7、掌握与圆锥曲线有关的轨迹方程的求解方法〔如:定义法、直接法、相关点法、参数法、交轨法、几何法、待定系数法等〕8、掌握直线与圆锥曲线的位置关系的常见判定方法,能应用直线与圆锥曲线的位置关系解决一些常见问题四、常规题型及解题的技巧方法A:常规题型方面〔1〕中点弦问题具有斜率的弦中点问题,常用设而不求法〔点差法〕:设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。

高考理科数学解析几何题型与方法

高考理科数学解析几何题型与方法

F1(- c , 0), F2(c , 0)
F1(0 ,- c) , F2(0 , c)
|F1F2|= 2c(c > 0), c2 = a2 + b2
c
e= (e>1)
a
2
2
a
a
l 1:x=- ; l 2:x=
c
c
2
2
a
a
l1: y=- ;l2 : y=
c
c
y=±
b x( 或 a
x2 a2

y2 b2
4. 直线与圆锥曲线的位置关系:(在这里我们把圆包括进来)
(1). 首先会判断直线与圆锥曲线是相交、相切、还是相离的
a. 直线与圆:一般用点到直线的距离跟圆的半径相比
b. 直线与椭圆、双曲线、抛物线一般联立方程,判断相交、相切、相离
c. 直线与双曲线、抛物线有自己的特殊性
(2).a. 求弦所在的直线方程
2
y b2
1 的两焦点分别为
F1 ,F 2, P 为椭圆任意一点 ,当∠ F 1PF 2 最大时 ,
P 为短轴端点 ;
③椭圆上的点到焦点的最短距离为 a-c; 椭圆上的点到焦点的最长距离为 a+c
(2) 双曲线
a. 定义 定义 1:平面内与两个定点 F 1、F2 的距离的差的绝对值等于常数 (小于 |F 1F 2|)的点的
a2
a2
切线方程
(k 为切线斜率 )
b
b
k > 或 k<-
x0x
a -
y0y
a =1
a2
b2
(k 为切线斜率 )
a
a
k> 或k <-
y0 y
b -
x 0x

高中数学高考专题(6)解析几何的高考解答题型及求解策略

高中数学高考专题(6)解析几何的高考解答题型及求解策略
令k2-2=t,则k2=t+2(由上式知t>0),
∴S▱OANB=24
=24≤24=2,
当且仅当t=,即k2=时取等号,
∴当k=±时,平行四边形OANB的面积的最大值为2.
此时直线l的方程为y=±x+3.
[答题模板]解决这类问题的答题模板如下:







1.如图所示,已知圆G:x2-x+y2=0经过抛物线y2=2px的焦点F,过点(m,0)(m<0)且倾斜角为的直线l交抛物线于C,D两点.
第四步:借助函数知识求最值.
[规范解答](1)设椭圆的焦距为2c,∵离心率为,
∴2=,∴3a2=4c2,
又点(,0)是抛物线的焦点,∴c2=3.
∴a2=4,b2=a2-c2=1.
∴椭圆C的方程为+y2=1.
(2)∵=+,∴四边形OANB为平行四边形,
当直线l的斜率不存在时,显然不符合题意;
当直线l的斜率存在时,设直线l的方程为y=kx+3,
[解](1)依题意A(0,1),设F(c,0),则直线AF的方程为+=1,即x+cy-c=0.
因为直线AF与圆M相切,所以=,
得c=,所以a2=1+c2=3,故椭圆C的方程为+y2=1.
(2)由·=0知AP⊥AQ,从而直线AP与坐标轴不垂直,故可设直线AP的方程为y=kx+1,
直线AQ的方程为y=-x+1.
(1)求抛物线的方程;
(2)若焦点F在以线段CD为直径的圆E的外部,求m的取值范围.
[解](1)因为圆与x轴的交点为(0,0),(1,0),且抛物线的焦点在x轴的正半轴上,所以抛物线的焦点为(1,0),故可得抛物线方程为y2=4x.
(2)设C(x1,y1),D(x2,y2),因为点F在圆E外部,所以·>0,即(x1-1)(x2-1)+y1y2>0.

2023年全国卷解析几何解答题解法荟萃

2023年全国卷解析几何解答题解法荟萃

2023年全国卷解析几何解答题解法荟萃上两点,0FM FN ⋅=,求2102y px −+==可得,,因为0FM FN ⋅=,所以)()(★方法2:焦半径表示面积设直线()11:,,MN x my n M x y =+,()22,N x y ,则1||2MFN S FM FN ∆=‖ ()()121112x x =++()()121112my n my n =++++()2212121(1)(1)2m y y m n y y n ⎡⎤=+++++⎣⎦2(1).n =− ,因为0FM FN ⋅=,所以)()(★方法2.斜率转化与齐次化.如图,设线段AB 垂直于x 轴,D 为AB 中点,P 为线外任意一点,则有:PD PB PA k k k 2=+.设直线PQ 的方程为(2)1m x ny ++=.因为直线PQ 过点(2,3)−.,代入得13n =.因为点,P Q 在椭圆22:9436C x y +=上,变形得229[(2)2]436x y +−+=,整理可得:229(2)36(2)40x x y +−++=.齐次化得229(2)36(2)[(2)]40, x x m x ny y +−++++=化简得22436(2)(936)(2)0.y ny x m x −++−+=等式两边同除以2(2)x +,构造斜率式得 24369360,22y y n m x x ⎛⎫−⋅+−= ⎪++⎝⎭把13n =代入得 24129360,22y y m x x ⎛⎫−⋅+−= ⎪++⎝⎭由根与系数的关系得32AQ AP AE k k k +==,其中E 为椭圆上顶点,故所以线段MN 的中点是定点()0,3. ★方法3.同构双割线设直线AP 方程为(2)y k x =+,联立22194(2)y x y k x ⎧+=⎪⎨⎪=+⎩得:()2222491616360k x k x k +++−=,当0∆>时,由22163649A P k x x k −⋅=+及2A x =−得2281849P k x k −+=+ 所以22281836,4949k k P k k ⎛⎫−+ ⎪++⎝⎭,设直线PQ 为:(2)3y m x =++,代入点P 化简 得:2123636270k k m −++=同理,设直线AQ 的斜率为k ',同理得到2123636270k k m −'++=k 和k '是二次方程2123636270x x m −++=的两个根,所以3k k +'=.直线,AP AQ 的方程分别为(2),(2)y k x y k x =+='+,当0x =时,2,2M N y k y k ==',即有32M Ny y k k +=+'=,综上,MN 的中点为定点(0,3).则1,0AB BC k k a b ⋅=−+<<同理令0BC k b c n =+=>,且设矩形周长为C ,由对称性不妨设1依题意可设21,4A a a ⎛⎫+ ⎪⎝⎭,易知直线的斜率分别为k 和1k −,由对称性,不妨设则联立2214()y x y k x a a ⎧=+⎪⎪⎨⎪=−++⎪⎩直线1MA 的方程为(112y y x x =+与直线2NA 的方程可得:22x x +−★方法4.消y 留x 之后的非对称处理记过点(4,0)−的直线为l .当l 与x 轴垂直时,易知点(4,(4,M N −−−,(1,P −−.当直线l 与x 轴不垂直时,设点(1M x ,)()()12200,,,,y N x y P x y ,直线:(4)l y k x =+.将(4)y k x =+代人221416x y −=,得)()2222(4816160k x k x k −−−+=.依题意,得()221212221618,. 44k k x x x x k k −++==−−设1212()x x x x λμ=++,即()22221618. 44k k k kλμ−++=−−即12x x =()12542x x −+−①. 直线1MA 的方程为()1122y y x x =++,直线2NA 的方程为()2222yy x x =−−,联立直线1MA 与直线2NA 的方程可得:()()()()()()12120021212422,2242y x x x x x y x x x −+−−==++++即01212012122248. 2428x x x x x x x x x x −−+−=++++将①代入式得0022x x −=+()1212338338x x x x −−+=−−+,即1x =−,据此可得点P 在定直线=1x −上运动.已知B A ,分别为椭圆1:222=+y ax E )1(>a 的左右顶点,G 为E 的上顶点,8=⋅→→GB AG ,点P 为直线6=x 上的动点,PA 与E 的另一个交点为C ,PB 与E 的另一个交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.解析:(1)E 的方程为1922=+y x . (2)假设),(),,(),,6(2211y x D y x C t P .则由P C A ,,及P D B ,,三点共线可得:33;392211−=+=x y t x y t 将上面两式相除,再平方可得:91)3()3(21222221=+−⋅x x y y ....① 由于),(),,(2211y x D y x C 均在椭圆E 上,故满足:91;9122222121x y x y −=−=...② 将②代入①可得:91)3)(3()3)(3(2121=++−−x x x x ,整理可得:0364)(152121=−−+x x x x ...③假设直线CD 的方程为m kx y +=代入椭圆方程1922=+y x 可得: 09918)19(222=−+++m kmx x k将1999,19182221221+−=+−=+k m x x k km x x 代入③中,可得:023=+m k ,于是,直线CD 的方程为k kx y 23−=,故其过定点)0,23(.解法2.设()06,P y ,则直线AP 的方程为:()()00363y y x −=+−−,即:()039y y x =+联立直线AP 的方程与椭圆方程可得:()2201939x y y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810y x y x y +++−=,解得:3x =−或20203279y x y −+=+,将20203279y x y −+=+代入直线()039y y x =+可得:02069y y y =+,所以点C 的坐标为20022003276,99y y y y ⎛⎫−+ ⎪++⎝⎭. 同理可得:点D 的坐标为2002200332,11y y y y ⎛⎫−− ⎪++⎝⎭∴直线CD 的方程为:0022********2000022006291233327331191y y y y y y y x y y y y y y ⎛⎫−− ⎪++⎛⎫⎛⎫−−⎝⎭−=−⎪ ⎪−+−++⎝⎭⎝⎭−++, 整理可得:()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫−−+=−=− ⎪ ⎪+++−−⎝⎭⎝⎭整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=− ⎪−−−⎝⎭,故直线CD 过定点3,02⎛⎫ ⎪⎝⎭解法3.不禁思考,为何此题使用三点共线就可成功地实现了设而不求,整体代入的思想呢?关键在于对椭圆方程的理解,即所谓的第三定义:))(()1(222222x a x a ab a x b y +−=−=这样的话,在遇到与椭圆左右顶点有关的三点共线结构时,我们就可以通过斜率关系再利用点在椭圆上将))(()1(222222x a x a ab a x b y +−=−=代入斜率式,从而构造出含21x x +与21x x 的方程,整体代入完成求解.而上面这个问题有着明显的极点极线背景:从直线t x =上任意一点P 向椭圆)0(12222>>=+b a by a x 的左右顶点引两条割线21,PA PA 与椭圆交于N M ,两点,则直线MN 恒过定点)0,(2ta .2024届九省联考解析几何的深度探究的交点,求GMN面积的最小值.,由直线AB与直线1、x m=S=GMNS=MNG例2.过椭圆22221x y a b+=的长轴上任意一点(,0)()S s a s a −<<作两条互相垂直的弦,AB CD ,若弦,AB CD 的中点分别为,M N ,那么直线MN 恒过定点222,0a s a b ⎛⎫⎪+⎝⎭.证明:如图,设AB 的直线方程为x my s =+,则CD 的直线方程为1x y s m=−+ 联立方程组22221x my s x y ab =+⎧⎪⎨+=⎪⎩,整理得()()2222222220m b a y b msy b s a +++−=则()()22222222221212222222240,,b s a msb a b m b a s y y y y m b a m b a−−∆=+−>+=⋅=++ 由中点坐标公式得22222222,a s msb M m b a m b a ⎛⎫− ⎪++⎝⎭ 将m 用1m −代换得到222222222,a sm msb N m a b m a b ⎛⎫ ⎪++⎝⎭所以MN 的直线方程为()()2222222222221a b m b sm a s y x b m a b m a a m +⎛⎫+=− ⎪++−⎝⎭令0y =,得222a sx a b =+.所以直线MN 恒过定点222,0a s a b ⎛⎫ ⎪+⎝⎭. 二.对点训练的斜率均存在,求FMN面积的最大值解析:(1)由题意得1c =,2c a =(2)证明:①当直线AB ,CD 有一条斜率不存在时,直线2,03P ⎛⎫⎪⎝⎭. 12FMNFPMFPNSSS=+=⨯S=FMN[2,∞+S取得最大值FMN。

高考专题复习—解析几何的题型与方法(精髓版)

高考专题复习—解析几何的题型与方法(精髓版)

⾼考专题复习—解析⼏何的题型与⽅法(精髓版)20XX 届⾼三数学题型与⽅法专题七:解析⼏何1【基础知识梳理】班级:姓名:[例1]已知直线1l 的斜率是33,直线2l 过坐标原点且倾斜⾓是1l 倾斜⾓的两倍,则直线2l 的⽅程为___x y 3=.[例2]已知直线l 的⽅程为)0(,0≠=++ab c by ax 且l 不经过第⼆象限,则直线l 的倾斜⾓⼤⼩为( B )A 、arctana b ; B 、arctan(-a b ); C 、p +arctan a b ; D 、p -arctan a b. [例3]与圆1)2()1(22=-+-y x 相切,且在两坐标轴上截距相等的直线有――( B )A 、2条;B 、3条;C 、4条;D 、5条. [例4]过点)3,2(P 与坐标原点距离为2的直线⽅程是___026125=+-y x 与2=x.[例5]直线21,l l 斜率相等是21//l l 的――――――――――――――――――( D ) A 、充分不必要条件;B 、必要不充分条件;C 、充要条件;D 、既不充分⼜不必要条件. [例6]直线l 过点)3,2(P 与以)3,1(),2,3(--B A 为端点的线段AB 有公共点,则直线l 倾斜⾓的取值范围是______.]43,2[πarctg . [例7]将⼀张画有直⾓坐标系的图纸折叠使点)0,2(A 与点(0,6)B 重合,若点)0,3(C 与点D 重合,则点D 的坐标为_;)528,51(D . [例8]抛物线C 1:x y 22=关于直线02=+-y x 对称的抛物线为C 2,则C 2的焦点坐标为____.)25,2(-. [例9]已知点),(b a 是圆222r yx =+外的⼀点,则直线2r by ax =+与圆的位置关系是( C )A 、相离;D 、相交且过圆⼼. [例10]若圆O :222r yx =+上有且只有两点到直线01543:=-+y x l 的距离为2,则圆的半径r 的取值范围是____.51<.[例11]⼆次⽅程022=+++++F Ey Dx Cy Bxy Ax 表⽰圆的充要条件是_____;04,0,022>-+=≠=AF E D B C A .[例12]已知圆C 被y 轴截得的弦长是2,被x 轴分成的两段弧长之⽐为3:1,求圆⼼C 的轨迹⽅程.1222=-x y .[例13]直线l 过定点)0,4(M 与圆422=+yx 交于A 、B 两点,则弦AB 中点N 的轨迹⽅程为_____;4)2(22=+-y x ()10<≤x . [例14]直线l 过定点)0,4(M 与圆422=+y x 交于A 、B 两点,O 是坐标原点,则△AOB ⾯积的最⼤值为_______;2.[例15]已知A 是圆064222=-+-+y ax y x 上任意⼀点,点A 关于直线012=++y x 的对称点也在圆上,那么实数a 的值为___3__.[例16]已知动圆C 与定圆M :1)2(22=+-y x 相切,且与y 轴相切,则圆⼼C 的轨迹⽅程是__;)21(62-=x y 与232()2y x =-.[例17]已知)3,0(M ,⼀动圆I 过点M 与圆N :16)3(22=++y x 内切.(1)求动圆圆⼼I 的轨迹C 的⽅程;(2)经过点(2,0)Q 作直线l 交曲线C 于A 、B 两点,设OB OA OP +=,当四边形OAPB 的⾯积最⼤时,求直线l 的⽅程.(1)14=+y x . (2)由+=知,四边形OAPB 是平⾏四边形.要使得四边形OAPB ⾯积最⼤,则△OAB 的⾯积最⼤,注意变化中的定值条件.△OAB 的⾯积是△AOQ 的⾯积与△BOQ 的⾯积之差.设A ),(),,(2211y x B y x ,则12||||||AOB S y y ?=-.可在联⽴⽅程组时,消去变量x ,保留y .设直线l 的⽅程为2x my =+,由22221(41)1612042y x m y my x my ?+=??+++=??=+?.由△=22(16)412(41)0m m -??+>,得2430m ->. 由韦达定理得:1212221612,4141m y y y y m m +=-=++知021>y y .则12||||||AOBS y y ?=-=||21y y-==.令243(0)m t t -=>,那么:2S ==≤=,当16t t =时等号成⽴.此时274m =,即所求的直线⽅程为42x y =±+.[例18]已知复数z 满⾜4|2||2|=++-i z i z ,则z 对应点的轨迹是_______;以i 2与i 2-对应点为端点的线段.[例19]设P 是以21,F F 为焦点的椭圆)0(12222>>=+b a by a x 上的⼀点,若点P 满⾜:2121; B 、32; C 、31; D 、35.[例20]⼀直线l 过椭圆12422=+y x 的左焦点,被椭圆截得的弦长为2,则直线l 的⽅程2-=x .[例21]椭圆13422=+y x 上有2007个不同的点200721,,,P P P ,椭圆的右焦点为F ,数列)2007,,3,2,1|}({| =n FP n 是公差为d 的等差数列,则d 的取值范围是_____.]10031,0()0,10031[ -∈d .[例22]已知点)0,2(),0,2(B A -,点C 在直线1=y 上满⾜BC AC ⊥,则以A 、B 为焦点过点C 的椭圆⽅程为___.12622=+y x . [例23]⼀双曲线C 以椭圆12422=+x x 的焦点为顶点,长轴顶点为焦点,则此双曲线的⽅程为___.12222=-y x . [例24]⼀双曲线与1322=-y x 有共同渐近线且与椭圆1322=+y x 有共同焦点,则此双曲线的⽅程为________;21322=-y x .[例25]若关于x 的⽅程)2(12+=-x k x 有两个不等的实数根,则实数k 的取值范围是___.10<≤k.[例26]已知双曲线的⽅程为116922=-y x ,P 是双曲线上的⼀点,F 1、F 2分别是它的两个焦点,若7||1=PF ,则=||2PF _13;[例27]椭圆12622=+y x 和双曲线221x y a-=的公共焦点为21,F F ,P 是它们的⼀个公共点,则=∠21cos PF F _____;31>=-n y nx 的两焦点为P F F ,,21是此双曲线上的⼀点,且满⾜||||21PF PF +=22+n ,则△21F PF 的⾯积为___1_____.[例29]抛物线24x y =的焦点坐标是__)161,0(___;准线⽅程是__161-=y __[例30]已知抛物线的焦点为)1,1(F ,对称轴为x y =,且过M (3,2),则此抛物线的准线⽅程为__0105=±-+y x _;[例31]直线l 过抛物线y x 42=的焦点与抛物线交于A 、B 两点,若A 、B 两点到x 轴的距离之和等于3,则这样的直线l 有( B )A 、1条;B 、2条;C 、3条;D 、不存在.[例32]直线l 过抛物线的焦点与抛物线交于A 、B 两点,O 是抛物线的顶点,则△ABO 的形状是( C )A 、直⾓三⾓形;B 、锐⾓三⾓形;C 、钝⾓三⾓形;D 、不确定与抛物线的开⼝⼤⼩有关. [例33]求证:过抛物线)0(22>=p px y 焦点的所有弦长的最⼩值是p 2.分析:本例的证明⽅法很多.设其焦点弦为AB ,),(),,(2211y x B y x A ,则由抛物线的定义知12||2AB x x p p p p=++≥==.当且仅当21xx=时等号成⽴.此时直线AB与对称轴垂直.[例34]已知点M是椭圆12=+byax的⼀条不垂直于对称轴的弦AB的中点,O是坐标原点,设OM、AB的斜率分别为21,kk,则21kk?=―――――――――――――( C )A、22ba;B、22ab;C、22ab-;D、22[例35]设直线l过椭圆1422=+yx的右焦点,与椭圆相交于A、B两点,O是坐标原点,当△OAB的⾯积最⼤时,求直线l的⽅程.分析:由题可设直线l:3+=myx代⼊椭圆⽅程中得:0132)4(22=-++myym,设),(),,(2211A,可得△OAB的⾯积S=| |23|)||(|232121yyyy-=+,可得:619)1(132)4()4 ( 12 2 3 2 2 2 2 2 2 2 2 2 + + + + = + + = + + + = m m m m则当312=+m时,S有最⼤值为1.此时直线l⽅程为:32+±=yx.[例36]设点P为双曲线1422=-yx上的动点,F是它的左焦点,M是线段PF的中点,则点M的轨迹⽅程是_____;1 4)25(22=--yx[例37]已知椭圆的焦点是21,FF,P是椭圆上的⼀个动点.如果延长PFPQ=,那么动点Q的轨迹是( A )A、圆;B、椭圆;C、双曲线的⼀⽀;D、抛物线.[例38]已知直线l过点)1,1(M,双曲线C:1322=-yx.(1)若直线l与双曲线有且仅有⼀个公共点,求直线l的⽅程;(2)若直线与双曲线的右⽀有两个不同的交点,求直线l斜率的取值范围;(3)是否存在直线l使其与双曲线的有两个不同的交点A、B,且以AB为直径的圆过坐标原点?若存在求出此直线的斜率,不存在说明理由.分析:(1)当直线l与x轴垂直时,直线1=x满⾜题义.当直线l与x轴不垂直时,设直线⽅程为)1(1-=-xky,联⽴得⽅程:0)42()1(+-----kkxkkxk---(*)当032=-k时,⽅程(*)是⼀次⽅程,直线l与双曲线有⼀个公共点,此时直线l⽅程为)1(31-±=-xy.当032≠-k时,由△02448=-=k,得2=k,所以满⾜题义的直线l为:)1(3=-=--=xyyxx.(2)直线l与双曲线的右⽀有两个不同的交点,则⽅程(*)有两不等的正根.由△k2448-=0>,知2<k且>-+-=3423)1(22221221kkkxxkkkxx,得2 3<-<k02121=+y y x x .0)1())(1()1(221212=-++-++k x x k k x x k , 0142=++k k ,32±-=k (满⾜)2[例39]倾⾓为3π的直线l 过抛物线x y 42=的焦点F 与抛物线交于A 、B 两点,点C 是抛物线准线上的动点.(1)△ABC 能否为正三⾓形?(2)若△ABC 是钝⾓三⾓形,求点C 纵坐标的取值范围.分析:(1)直线l ⽅程为)1(3-=x y ,由x y 42=可得)332,31(),32,3(-B A .若△ABC 为正三⾓形,则3π=∠CAB ,由3π=∠AFx ,那么CA 与x 轴平⾏,此时4||=AC ,⼜3162313||=++=AB .与|AC|=|AB|⽭盾,所以△ABC 不可能是下正三⾓形.(2)设),1(m C -,则}332,34{},32,4{m m --=-=,2)332(-=?m 不可以为负,所以ACB ∠不为钝⾓.若CAB ∠为钝⾓,则038{=BA ,则0)32(338332<-+m ,得3310>m . 若⾓ABC ∠为钝⾓,则032-310()332,36()36,(+∞----∞ .20XX 届⾼三数学题型与⽅法专题七:解析⼏何2【典型题型⽅法】班级:姓名:⼀、轨迹问题(2)当r ∈(1,+∞)时,求N 的轨迹G ⽅程;(3)过点Q (0,2)的直线l 与(2)中轨迹G 相交于两个不同的点A ,B ,若CA --→CB --→>0,求直线l 的斜率的取值范围.解:(1)由已知得,当r =2时,可求得M 点的坐标为(-1,0).设P (0,b ),则由MP CP k k ?=-1,得:2b =1,所以b =±1,即点P 坐标为(0,±1).(2)设N (x ,y ),由已知得,在圆⽅程中令y =0,得M 点的坐标为(1-r ,0).由MP CP k k ?=-1,得:r =2b +1.因为点P 为线段MN 的中点,所以x =r -1=2b ,y =2b ,⼜x >1,所以点N 的轨迹⽅程为:2y =4x (x >0).(3)设直线l 的⽅程为:y =kx +2,M (1x ,1y ),N (2x ,2y ),=+=xy kx y 422,消去y ,得:22x k +x k )44(-+4=0.∵直线l 与抛物线2y =4x (x >0)相交于两个不同的点A ,B ,∴△=-32k +16>0,得:k <21.⼜因为CA --→CB --→>0,∴)1)(1(21--x x +21y y >0,212)1(x x k ++))(12(21x x k +-+5>0,2k +12k >0,∴k >0或k <-12.综上可得:0<k <21或k <-12.例2、如图,已知椭圆2222:1(0)x y C a b a b+=>>的焦点和上顶点分别为1F 、2F 、B ,我们称12F BF ?为椭圆C 的特征三⾓形.如果两个椭圆的特征三⾓形是相似的,则称这两个椭圆是“相似椭圆”,且三⾓形的相似⽐即为椭圆的相似⽐.(1)已知椭圆221:14x C y +=和222:1164x y C +=,判断2C 与1C 是否相似,如果相似则求出2C 与1C 的相似⽐,若不相似请说明理由;(2)已知直线:1l y x =+,与椭圆1C 相似且半短轴长为b 的椭圆b C 的⽅程,在椭圆b C 上是否存在两点M 、N 关于直线l 对2,底边长为3的等腰三⾓形,因此两个等腰三⾓形相似,且相似⽐为2:1(2)椭圆b C 的⽅程为:)0(142222>=+b by b x . 假定存在,则设M 、N 所在直线为y x t =-+,MN 中点为()00,x y .则=++-=142222b y bx tx y 0)(485222=-+-?b t xt x . 所以5,5420210t y t x x x ==+=.中点在直线1y x =+上,所以有35-=t. 12x x -==12()f b MN x b ==-=> (3)椭圆b C 的⽅程为:)0(142222>=+b by b x . 两个相似椭圆之间的性质有:(1)两个相似椭圆的⾯积之⽐为相似⽐的平⽅;(2)分别以两个相似椭圆的顶点为顶点的四边形也相似,相似⽐即为椭圆的相似⽐;(3)两个相似椭圆被同⼀条直线所截得的线段中点重合;(4)过原点的直线截相似椭圆所得线段长度之⽐恰为椭圆的相似⽐.⼆、最值问题例3、已知椭圆,1ny m x 22=+常数m 、n +∈R 且m>n (1) 当m=25,n=21时,过椭圆左焦点F 的直线交椭圆于点P,与y 轴交于点Q, 若FP 2QF =,求直线PQ 的斜率;(2)过原点且斜率分别为k 和k -(1k ≥)的两条直线与椭圆,1ny m x 2解:(1)椭圆121y 25x 22=+,)0,2(F - ,设P )t ,0(Q ),y ,x (00 ()()00y ,2x FP ,t ,2QF +=--=,?=FP 2QF ??-=-=?=-+=-2t y 3x y 2t )2x (22000052142t k 5218t 121y 25x 2020±==?±=?=+ (2)根据椭圆的对称性知四边形ABCD 为矩形,设)0y ,0x )(y ,x (A 1111>> 设kx y :l =与椭圆⽅程,mn my nx 22=+nmk mnx mn x mk nx 21222+==+ )1k (nmk kmn4y x 4S kx y 21111≥+==?=(3))1k (kn mk mn4S ≥+=,当1mn ,n m ,m n k k n mk <∴>== 时,即⼜[)上单调递增,在∞+∈+∴≥1k k n mk ,1k 0n m kn mk >+≥+? nm mn 4S 1k ,n m mn 4S max +==+≤∴时,当例4、已知直线L 1:y=kx+1与双曲线1y x :C 221=-的左⽀交于A 、B 两点,(1)求k 的取值范围;(2)直线L 经过点P (-2,0)及线段AB 的中点Q ,CD 是y 轴上的⼀条线段,对任意的直线L 都与线段CD ⽆公共点,试问CD 长的最⼤值是否存在,若存在,求出这个最⼤值;若不存在,请说明下由。

2024高考数学解析几何知识点总结与题型分析

2024高考数学解析几何知识点总结与题型分析

2024高考数学解析几何知识点总结与题型分析随着时间的推移,我们离2024年的高考越来越近。

数学作为高考的一门重要科目,解析几何是其中的一个重点内容。

为了帮助同学们更好地复习解析几何,并在高考中取得好成绩,本文将对2024高考数学解析几何的知识点进行总结与题型分析。

1. 直线与平面1.1 直线的方程直线的一般方程为Ax + By + C = 0,其中A、B、C为常数。

根据直线的特点,我们可以将其方程转化为其他形式,如点斜式、两点式、截距式等,以便于解题。

1.2 平面的方程平面的一般方程为Ax + By + Cz + D = 0,其中A、B、C、D为常数。

类似于直线的情况,根据平面的性质,我们可以将其方程转化为点法式、截距式等形式。

2. 空间几何体2.1 球球是解析几何中的一个重要概念。

其方程为(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2,其中(a, b, c)为球心坐标,r为半径长度。

2.2 圆锥曲线圆锥曲线包括圆、椭圆、双曲线和抛物线。

通过对几何体的方程进行适当的变化,可以得到不同类型的圆锥曲线方程。

掌握其特点和方程形式,对于解析几何的学习非常重要。

3. 空间几何关系3.1 直线与直线的位置关系直线与直线的位置关系包括相交、平行、重合等情况。

根据两条直线的方程,我们可以通过求解方程组或直线的斜率等方式,判断它们之间的空间位置关系。

3.2 直线与平面的位置关系直线与平面的位置关系包括相交、平行、重合等情况。

根据直线的方程和平面的方程,我们可以通过代入求解或者检验点的方法,判断它们之间的位置关系。

4. 解析几何的常见题型4.1 直线与平面的交点求解给定直线和平面的方程,我们需要求解它们的交点。

通过将直线方程代入平面方程中,可以得到关于未知变量的方程组,进而求解出交点的具体坐标。

4.2 距离计算在解析几何中,我们常常需要计算点、直线或平面之间的距离。

对于给定的两点,我们可以利用距离公式进行计算;对于直线和平面,我们可以利用点到直线/平面的距离公式进行计算。

高中数学解析几何解题方法.docx

高中数学解析几何解题方法.docx

高考专题:解析几何常规题型及方法A:常规题型方面( 1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(x1 , y1 ) , ( x2 , y2 ) ,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。

典型例题给定双曲线 x2y 2 1 。

过A(2,1)的直线与双曲线交于两点P1及 P2,求线段 P1 P2的中点P2的轨迹方程。

分析:设 P1 (x1 , y1 ) , P2 ( x2, y2 ) 代入方程得 x12y121, x22y22 1 。

22两式相减得( x1x2 )( x1 x2 )1( y1y2 )( y1 y2 ) 0 。

2又设中点 P( x,y ),将x1x22x , y1 y2 2 y 代入,当 x1x2时得2x 2 y y1y20 。

·x1x22又 k y1y2y1,x1x2x2代入得 2 x 2y 2 4 x y0 。

当弦 P1 P2斜率不存在时,其中点P( 2, 0)的坐标也满足上述方程。

因此所求轨迹方程是 2 x2y24x y 0说明:本题要注意思维的严密性,必须单独考虑斜率不存在时的情况。

( 2)焦点三角形问题椭圆或双曲线上一点P,与两个焦点F1、 F2构成的三角形问题,常用正、余弦定理搭桥。

典型例题设 P(x,y) 为椭圆x2a 2y 2b21 上任一点,F1 ( c,0) , F2( c,0)为焦点,PF1 F2,PF2 F1。

(1)求证离心率esin(sin sin);(2)求|PF1|3PF2 |3的最值。

分析:( 1)设| PF1| r1, |PF2r1r22cr2,由正弦定理得sin sin(。

sin)得r1 r22c,sin sin(sin)c sin()esin sina( 2)( a ex) 3(a ex)32a 36ae 2 x 2。

当x 0 时,最小值是 2a 3;当x a 时,最大值是 2a 3 6e2 a 3。

高考数学解析几何问题

高考数学解析几何问题

高考数学解析几何问题解析几何问题是高考数学中的常见题型,主要涉及平面直角坐标系中的点、直线、圆、椭圆、双曲线和抛物线等几何图形的性质和应用。

以下是一些解析几何问题的常见类型和解题技巧:直线方程问题:已知直线上的两点,求直线方程。

使用两点式或斜率截距式。

已知直线斜率和一个点,求直线方程。

使用点斜式。

已知直线与坐标轴的交点,求直线方程。

使用截距式。

已知直线的一般式方程,求其他形式的方程。

进行方程变形。

直线与圆的位置关系:判断直线与圆的位置关系(相离、相切、相交)。

利用圆心到直线的距离与半径的关系。

求直线与圆的交点。

联立直线方程和圆的方程,解方程组。

圆的方程问题:已知圆心和半径,求圆的方程。

使用标准式。

已知圆上三点,求圆的方程。

利用三点共圆的性质,设圆的一般式方程,代入三点坐标求解。

已知圆的直径两端点,求圆的方程。

使用直径式。

椭圆、双曲线和抛物线的方程和性质:已知焦点和准线,求椭圆、双曲线或抛物线的方程。

利用定义和性质。

判断点是否在椭圆、双曲线或抛物线上。

代入点的坐标到方程中检验。

求椭圆、双曲线或抛物线的离心率、焦点、准线等性质。

利用标准方程和性质计算。

圆锥曲线的综合问题:结合直线和圆锥曲线的位置关系,求交点、弦长、最值等问题。

联立方程、利用韦达定理、弦长公式等。

利用圆锥曲线的几何性质,如对称性、焦点性质等,求解相关问题。

参数方程和极坐标方程问题:将直角坐标方程转化为参数方程或极坐标方程。

利用转换公式。

将参数方程或极坐标方程转化为直角坐标方程。

消去参数或利用极坐标与直角坐标的关系。

解题技巧:熟记各种几何图形的性质,如直线方程的形式、圆的性质、圆锥曲线的标准方程和性质等。

理解并掌握各种几何图形之间的位置关系,如直线与圆、直线与圆锥曲线等。

善于利用几何图形的对称性、焦点性质等简化计算。

在处理复杂问题时,可以尝试使用特殊值法、排除法等策略来缩小解题范围。

多做练习,培养解题的熟练度和思维灵活性。

希望这些建议能帮助你更好地理解和解决高考数学中的解析几何问题。

(完整版)解析几何七种常规题型及方法

(完整版)解析几何七种常规题型及方法

解析几何七种常规题型及方法常规题型及解题的技巧方法 A :常规题型方面 一、一般弦长计算问题:例1、已知椭圆()2222:10x y C a b a b +=>>,直线1:1x yl a b-=被椭圆C 截得的弦长为3e =,过椭圆C 2l 被椭圆C 截的弦长AB, ⑴求椭圆的方程;⑵弦AB 的长度。

思路分析:把直线2l 的方程代入椭圆方程,利用韦达定理和弦长公式求解.解析:⑴由1l 被椭圆C 截得的弦长为,得228a b +=,………①又e =,即2223c a =,所以223a b =………………………….②联立①②得226,2a b ==,所以所求的椭圆的方程为22162x y +=.⑵∴椭圆的右焦点()2,0F ,∴2l 的方程为:)2y x -, 代入椭圆C 的方程,化简得,251860x x -+= 由韦达定理知,1212186,55x x x x +==从而12x x -==由弦长公式,得12AB x =-==,即弦AB 的长度为5点评:本题抓住1l 的特点简便地得出方程①,再根据e 得方程②,从而求得待定系数22,a b ,得出椭圆的方程,解决直线与圆锥曲线的弦长问题时,常用韦达定理与弦长公式.二、中点弦长问题:具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数.典型例题 给定双曲线x y 2221-=。

过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。

分析:设P x y 111(,),P x y 222(,)代入方程得x y 121221-=,x y 222221-=。

两式相减得()()()()x x x x y y y y 12121212120+--+-=.又设中点P(x,y ),将x x x 122+=,y y y 122+=代入,当x x 12≠时得 22201212x yy y x x ---=·。

解析几何问题的题型与解题方法

解析几何问题的题型与解题方法
(A) (B) (C) (D)2
1.2 部分小题体现一定的水平要求水平,注意到对学生解题方法的考查
例3若过定点 且斜率为 的直线与圆 在第一象限内的部分有交点,则 的取值范围是
(A) (B)
(C) (D)
2.解答题
解析几何的解答题主要考查求轨迹方程以及圆锥曲线的性质.以中等难度题为主,通常设置两问,在问题的设置上有一定的梯度,第一问相对比较简单.
1.选择、填空题
1.1 绝大部分选择、填空题以对基础知识、基本技能的考查为主,难度以容易题和中档题为主
(1)对直线、圆的基本概念及性质的考查
例1 以点(1,2)为圆心,与直线4x+3y-35=0相切的圆的方程是_________.
(2)对圆锥曲线的定义、性质的考查
例2已知点 、 ,动点P满足 . 当点P的纵坐标是 时,点P到坐标原点的距离是
例4已知椭圆的中心在原点,离心率为 ,一个焦点是F(-m,0)(m是大于0的常数).
(Ⅰ)求椭圆的方程;
(Ⅱ)设Q是椭圆上的一点,且过点F、Q的直线 与y轴交于点M. 若 ,求直线l的斜率.
本题第一问求椭圆的方程,是比较容易的,对绝大部分同学来说,是应该得分的;而第二问,需要实行分类讨论,则有一定的难度,得分率不高.
3.理解“曲线的方程”、“方程的曲线”的意义,了解解析几何的基本思想,掌握求曲线的方程的方法.
4.掌握圆的标准方程: (r>0),明确方程中各字母的几何意义,能根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径,掌握圆的一般方程: ,知道该方程表示圆的充要条件并准确地实行一般方程和标准方程的互化,能根据条件,用待定系数法求出圆的方程,理解圆的参数方程 (θ为参数),明确各字母的意义,掌握直线与圆的位置关系的判定方法.

高考中解析几何问题的题型与方法

高考中解析几何问题的题型与方法

解析几何问题的题型与方法例1、椭圆22221(,0)x y a b a b+=>的两个焦点F 1、F 2,点P 在椭圆C 上,且P F 1⊥F 1F 2,,| P F 1|=34,,| P F 2|=314.(I )求椭圆C 的方程;(II )若直线L 过圆x 2+y 2+4x-2y=0的圆心M 交椭圆于A 、B 两点,且A 、B 关于点M 对称,求直线L的方程。

解法一:(Ⅰ)因为点P 在椭圆C 上,所以6221=+=PF PF a ,a=3. 在Rt △PF 1F 2中,,52212221=-=PF PF F F 故椭圆的半焦距c =5,从而b 2=a 2-c 2=4,所以椭圆C 的方程为4922y x +=1. (Ⅱ)设A ,B 的坐标分别为(x 1,y 1)、(x 2,y 2). 由圆的方程为(x +2)2+(y -1)2=5,所以圆心M 的坐标为(-2,1). 从而可设直线l 的方程为 y =k (x +2)+1, 代入椭圆C 的方程得 (4+9k 2)x 2+(36k 2+18k )x +36k 2+36k -27=0.因为A ,B 关于点M 对称. 所以.29491822221-=++-=+kk k x x 解得98=k , 所以直线l 的方程为,1)2(98++=x y 即8x -9y +25=0. (经检验,符合题意) 解法二:(Ⅰ)同解法一.(Ⅱ)已知圆的方程为(x +2)2+(y -1)2=5,所以圆心M 的坐标为(-2,1). 设A ,B 的坐标分别为(x 1,y 1),(x 2,y 2).由题意x 1≠x 2且,1492121=+yx① ,1492222=+yx②由①-②得.04))((9))((21212121=+-++-y y y y x x x x③因为A 、B 关于点M 对称,所以x 1+ x 2=-4, y 1+ y 2=2,代入③得2121x x y y --=98,即直线l 的斜率为98, 所以直线l 的方程为y -1=98(x+2),即8x -9y +25=0.(经检验,所求直线方程符合题意.) 例2、 直线1:+=kx y l 与双曲线12:22=-y x C 的右支交于不同的两点A 、B .(I )求实数k 的取值范围;(II )是否存在实数k ,使得以线段AB 为直径的圆恰好过双曲线的右焦点F ?若存在,求出k 的值;若不存在,说明理由.解:(I )由方程组⎩⎨⎧=-+=12122y x kx y 消去y 得022)2(22=++-kx x k . 设),,(),,(2211y x B y x A 由题意,直线l 与双曲线C的右支交于不同两点,⎪⎪⎪⎩⎪⎪⎪⎨⎧>-=>--=+>--=∆≠-∴0220220)2(8)2(02221221222k x x k k x x k k k ).2,2(--∈⇒k(II )假设存在实数k ,使得以线段AB 为直径的圆恰好过)0,(c F ,则FB FA ⊥,0=⋅∴,))((2121=+--∴y y c x c x ,即)1)(1())((2121=+++--kx kx c x c x ,整理得01))(()1(221212=+++-++c x x c k x x k .将26=c 及22221--=+k k x x ,22221-=k x x 代入并化简可得066252=-+k k .解得566--=k 或566+-=k (舍去). 故存在566--=k 满足题意. 例 3 设经过点),0(m Q 且倾斜角为4π的直线l 与椭圆4422=+y x 交于不同的两点A 、B ,O 为坐标原点.(I )若QB AQ 23-=,求m 的值;(II )当AOB ∆的面积最大时,求m 的值.解:(I )直线l 的方程为m x y +=,由⎩⎨⎧=++=4422y x m x y 得0)1(48522=-++m mx x .由题意,0)1(80)8(22>--=∆m m ,∴55<<-m .设),,(),,(2211y x B y x A 则有5821mx x -=+①,5)1(4221-=m x x ②.由23-=可得,2123x x -=-③.由①②③联解可得291455±=m ,且满足0>∆.故m 的值为291455±. (II )结合图形可知AOB ∆的面积21221124)(121x x x x m x x m S AOB -+⋅⋅=-⋅⋅=∆ 5)1(16)58(2122---⋅⋅=m m m )5(5222m m -= 24552m m +-=.易知当252=m 时,AOB S ∆取得最大值, 此时m 的值为210±. (注:求AOB S ∆的表达式时,题解中用的是图形的割补思想,若用点O 到直线AB 的距离2m d =及弦长122x x AB -=来处理,可得到同样的结果.)例4 已知椭圆1222=+y x .(I)求斜率为2的平行弦中点的轨迹方程;(II)过)1,2(N 的直线l 与椭圆相交,求被l 截得的弦的中点轨迹方程;(III)求过点)21,21(P 且被P 点平分的弦所在直线的方程.解:设弦的两端点为),(),,(2211y x B y x A ,中点为),(00y x M ,则有210212,2y y y x x x =+=+.由122121=+y x ,122222=+y x 两式作差得:1))((2))((12121212=+-++-y y y y x x x x ,00121212122)(2y x y y x x x x y y -=++-=--∴.即002y xk AB -=.①I )设弦中点为),(y x M ,由①式,yx22-=,∴04=+y x .故所求的轨迹方程为04=+y x (在已知椭圆的内部). (II )不妨设l 交椭圆于A 、B ,弦中点为),(y x M .由①式,yxk k AB l 2-==,又∵12--==x y k k MN l ,122--=-∴x y y x .整理得,04222=--+y x y x 此即所求的轨迹方程. (III )由①式,弦所在的直线的斜率21200-=-=y x k ,故其方程为)21(2121--=-x y ,即0342=-+y x .例5、设双曲线C :线222x -y =1(a>0)与直l:x+y =1a相交于两个不同的点A 、B .(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.125=求a 的值. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得 (1-a 2)x 2+2a 2x -2a 2=0. ① .120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率01,).2e a a e e e ==<<≠∴>≠+∞ 即离心率的取值范围为例6、已知双曲线12222=-by a x 的离心率332=e ,过),0(),0,(b B a A -的直线到原点的距离是.23(1)求双曲线的方程; (2)已知直线)0(5≠+=k kx y 交双曲线于不同的点C ,D 且C ,D 都在以B 为圆心的圆上,求k 的值. 解:∵(1),332=a c 原点到直线AB :1=-b y a x 的距离.3,1.2322==∴==+=a b c abb a ab d .故所求双曲线方程为 .1322=-y x(2)把33522=-+=y x kx y 代入中消去y ,整理得 07830)31(22=---kx x k . 设CD y x D y x C ),,(),,(2211的中点是),(00y x E ,则.11,315531152002002210k x y k k kx y k k x x x BE -=+=-=+=⋅-=+= ,000=++∴k ky x即7,0,03153115222=∴≠=+-+-k k k kk k k 又故所求k=±7. 例7、O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足||||AC AB ++=λ,[)∞∈+,0λ,则P 的轨迹一定通过△ABC 的( )(A )外心 (B )内心 (C )重心 (D )垂心分析:因为||||AB AC AB AC AB AC 、分别是与、同向的单位向量,由向量加法的平行四边形则知||||AB ACAB AC +是与∠ABC 的角平分线(射线)同向的一个向量,又()AB ACOP OA AP AB ACλ-==+,知P 点的轨迹是∠ABC 的角平分线,从而点P 的轨迹一定通过△ABC 的内心。

高考专题_解析几何常规题型和方法

高考专题_解析几何常规题型和方法

高考专题:解析几何常规题型及方法一、高考风向分析:高考解析几何试题一般共有3--4题(1--2个选择题, 0--1个填空题, 1个解答题), 共计20多分, 考查的知识点约为20个左右,其命题一般紧扣课本, 突出重点, 全面考查。

选择题和填空题考查直线, 圆, 圆锥曲线中的基础知识,大多概念性较强,小巧灵活,思维多于计算;而解答题重点考查圆锥曲线中的重要知识点及其综合运用,重在考察直线与圆锥曲线的位置关系、轨迹方程,以向量为载体,立意新颖,要求学生综合运用所学代数、三角、几何的知识分析问题,解决问题。

二、本章节处理方法建议:纵观历年全国各省市文、理高考试卷,普遍有一个规律:占解几分值接近一半的填空、选择题难度不大,中等及偏上的学生能将对应分数收入囊中;而占解几分值一 半偏上的解答题得分很不理想,其原因主要体现在以下几个方面:(1)解析几何是代数与 几何的完美结合,解析几何的问题可以涉及函数、方程、不等式、三角、几何、数列、向 量等知识,形成了轨迹、最值、对称、范围、参系数等多种问题,因而成为高中数学综合 能力要求最高的内容之一(2)解析几何的计算量相对偏大(3)在大家的“拿可拿之分” 的理念下,大题的前三道成了兵家必争之地,而排放位置比较尴尬的第21题或22题(有 时20题)就成了很多人遗忘的角落,加之时间的限制,此题留白的现象比较普遍。

鉴于解几的特点,建议在复习中做好以下几个方面.1.由于高考中解几内容弹性很 大。

有容易题,有中难题。

因此在复习中基调为狠抓基础。

不能因为高考中的解几解答题 较难,就拼命地去搞难题,套新题,这样往往得不偿失;端正心态:不指望将所有的题攻 下,将时间用在巩固基础、对付“跳一跳便可够得到”的常规题上,这样复习,高考时就 能保证首先将选择、填空题拿下,然后对于大题的第一个小问争取得分,第二小题能拿几 分算几分。

三、高考核心考点1、准确理解基本概念(如直线的倾斜角、斜率、距离、截距等)2、熟练掌握基本公式(如两点间距离公式、点到直线的距离公式、斜率公式、定比分点的坐标公式、到角公式、夹角公式等)3、熟练掌握求直线方程的方法(如根据条件灵活选用各种形式、讨论斜率存在和不存在的各种情况、截距是否为0等等)4、在解决直线与圆的位置关系问题中,要善于运用圆的几何性质以减少运算5、了解线性规划的意义及简单应用6、熟悉圆锥曲线中基本量的计算7、掌握与圆锥曲线有关的轨迹方程的求解方法(如:定义法、直接法、相关点法、参数法、交轨法、几何法、待定系数法等)8、掌握直线与圆锥曲线的位置关系的常见判定方法,能应用直线与圆锥曲线的位置关系解决一些常见问题四、常规题型及解题的技巧方法A:常规题型方面(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考专题:解析几何常规题型及方法一、高考风向分析:高考解析几何试题一般共有3--4题(1--2个选择题, 0--1个填空题, 1个解答题), 共计20多分, 考查的知识点约为20个左右,其命题一般紧扣课本, 突出重点, 全面考查。

选择题和填空题考查直线, 圆, 圆锥曲线中的基础知识,大多概念性较强,小巧灵活,思维多于计算;而解答题重点考查圆锥曲线中的重要知识点及其综合运用,重在考察直线与圆锥曲线的位置关系、轨迹方程,以向量为载体,立意新颖,要求学生综合运用所学代数、三角、几何的知识分析问题,解决问题。

二、本章节处理方法建议:纵观历年全国各省市文、理高考试卷,普遍有一个规律:占解几分值接近一半的填空、选择题难度不大,中等及偏上的学生能将对应分数收入囊中;而占解几分值一 半偏上的解答题得分很不理想,其原因主要体现在以下几个方面:(1)解析几何是代数与 几何的完美结合,解析几何的问题可以涉及函数、方程、不等式、三角、几何、数列、向 量等知识,形成了轨迹、最值、对称、范围、参系数等多种问题,因而成为高中数学综合 能力要求最高的内容之一(2)解析几何的计算量相对偏大(3)在大家的“拿可拿之分” 的理念下,大题的前三道成了兵家必争之地,而排放位置比较尴尬的第21题或22题(有 时20题)就成了很多人遗忘的角落,加之时间的限制,此题留白的现象比较普遍。

鉴于解几的特点,建议在复习中做好以下几个方面.1.由于高考中解几内容弹性很 大。

有容易题,有中难题。

因此在复习中基调为狠抓基础。

不能因为高考中的解几解答题 较难,就拼命地去搞难题,套新题,这样往往得不偿失;端正心态:不指望将所有的题攻 下,将时间用在巩固基础、对付“跳一跳便可够得到”的常规题上,这样复习,高考时就 能保证首先将选择、填空题拿下,然后对于大题的第一个小问争取得分,第二小题能拿几 分算几分。

三、高考核心考点1、准确理解基本概念(如直线的倾斜角、斜率、距离、截距等)2、熟练掌握基本公式(如两点间距离公式、点到直线的距离公式、斜率公式、定比分点的坐标公式、到角公式、夹角公式等)3、熟练掌握求直线方程的方法(如根据条件灵活选用各种形式、讨论斜率存在和不存在的各种情况、截距是否为0等等)4、在解决直线与圆的位置关系问题中,要善于运用圆的几何性质以减少运算5、了解线性规划的意义及简单应用6、熟悉圆锥曲线中基本量的计算7、掌握与圆锥曲线有关的轨迹方程的求解方法(如:定义法、直接法、相关点法、参数法、交轨法、几何法、待定系数法等)8、掌握直线与圆锥曲线的位置关系的常见判定方法,能应用直线与圆锥曲线的位置关系解决一些常见问题四、常规题型及解题的技巧方法A:常规题型方面(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。

典型例题 给定双曲线x y 2221-=。

过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。

分析:设P x y 111(,),P x y 222(,)代入方程得x y 121221-=,x y 222221-=。

两式相减得 ()()()()x x x x y y y y 12121212120+--+-=。

又设中点P (x,y ),将x x x 122+=,y y y 122+=代入,当x x 12≠时得 22201212x yy y x x ---=·。

又k y y x x y x =--=--121212,代入得24022x y x y --+=。

当弦P P 12斜率不存在时,其中点P (2,0)的坐标也满足上述方程。

因此所求轨迹方程是24022x y x y --+=说明:本题要注意思维的严密性,必须单独考虑斜率不存在时的情况。

变式练习:给定双曲线2x 2 - y 2 = 2 ,过点B(1,1)能否作直线L,使L 与所给双曲线交于两点Q 1、Q 2 两点,且点B 是线段Q 1Q 2的中点?如果直线L 存在,求出它的方程;如果不存在,说明理由. (2)焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。

典型例题 设P(x,y)为椭圆x a y b22221+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。

(1)求证离心率βαβαsin sin )sin(++=e ;(2)求|||PF PF 1323+的最值。

分析:(1)设||PF r 11=,|PF r 22=,由正弦定理得r r c122sin sin sin()αβαβ==+。

得r r c122++=+sin sin sin()αβαβ,βαβαsin sin )sin(++==a c e (2)()()a ex a ex a ae x ++-=+3332226。

当x =0时,最小值是23a ;当a x ±=时,最大值是26323a e a +。

变式练习:设F 1、F 2分别是双曲线12222=-by a x (a>0,b>0)的左、右两个焦点,P 是双曲线上的一点,若∠P=θ,求证:S △=b 2cot2θ(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式,应特别注意数形结合的办法 典型例题抛物线方程,直线与轴的交点在抛物线准线的右边。

y p x p x y t x 210=+>+=()()(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。

(1)证明:抛物线的准线为114:x p=--由直线x+y=t 与x 轴的交点(t ,0)在准线右边,得 t pt p >--++>14440,而 由消去得x y ty p x y +==+⎧⎨⎩21()x t p x t p 2220-++-=()() Θ∆=+--()()2422t p t p =++>p t p ()440 故直线与抛物线总有两个交点。

(2)解:设点A(x 1,y 1),点B(x 2,y 2) ∴+=+=-x x t p x x t p 121222, ΘOA OB k k OA OB ⊥∴⨯=-,1 则x x y y 12120+= 又y y t x t x 1212=--()()∴+=-+=x x y y t t p 1212220() ∴==+p f t t t ()22又,得函数的定义域是p t p f t >++>0440() ()()-⋃+∞200,, 变式练习:直线y=ax+1与双曲线3x 2-y 2=1交于两点A 、B 两点 (1)若A 、B 都位于双曲线的左支上,求a 的取值范围 (2)当a 为何值时,以AB 为直径的圆经过坐标原点? (4)圆锥曲线的有关最值(范围)问题圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。

<1>若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。

<2>若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数,三角函数,均值不等式)求最值。

典型例题已知抛物线y 2=2px(p>0),过M (a,0)且斜率为1的直线L 与抛物线交于不同的两点A 、B ,|AB|≤2p(1)求a 的取值范围;(2)若线段AB 的垂直平分线交x 轴于点N ,求△NAB 面积的最大值。

分析:这是一道直线与圆锥曲线位置关系的问题,对于(1),可以设法得到关于a 的不等式,通过解不等式求出a 的范围,即:“求范围,找不等式”。

或者将a 表示为另一个变量的函数,利用求函数的值域求出a 的范围;对于(2)首先要把△NAB 的面积表示为一个变量的函数,然后再求它的最大值,即:“最值问题,函数思想”。

解:(1)直线L 的方程为:y=x-a,将y=x-a 代入抛物线方程y 2=2px,得:设直线L 与抛物线两交点的坐标分别为A (x 1,y 1),B(x 2,y 2),则⎪⎩⎪⎨⎧=+=+>-+221212)(204)(4ax x p a x x a p a ,又y 1=x 1-a,y 2=x 2-a,,2)2(80,0)2(8,2||0)2(8]4)[(2)()(||21221221221p a p p a p p p AB a p p x x x x y y x x AB ≤+<∴>+≤<+=-+=-+-=∴Θ解得:.42p a p -≤<-(2)设AB 的垂直平分线交AB 与点Q ,令其坐标为(x 3,y 3),则由中点坐标公式得:p a x x x +=+=2213, .2)()(221213p a x a x y y y =-+-=+=所以|QM|2=(a+p-a)2+(p-0)2=2p 2.又△MNQ 为等腰直角三角形,所以|QM|=|QN|=P 2,所以S △NAB =22222||22||||21p p p AB p QN AB =⋅≤⋅=⋅,即△NAB 面积的最大值为P 22。

变式练习:双曲线12222=-by a x (a>0,b>0)的两条准线间的距离为3,右焦点到直线x+y-1=0的距离为22 (1)求双曲线的方程(2)设直线y=kx+m(k 0≠且m 0≠)与双曲线交于两个不同的点C 、D ,若A(0,-1)且AC =AD ,求实数m 的取值范围(5)求曲线的方程问题1.曲线的形状已知--------这类问题一般可用待定系数法解决。

典型例题已知直线L 过原点,抛物线C 的顶点在原点,焦点在x 轴正半轴上。

若点A (-1,0)和点B (0,8)关于L 的对称点都在C 上,求直线L 和抛物线C 的方程。

分析:曲线的形状已知,可以用待定系数法。

设出它们的方程,L :y=kx(k ≠0),C:y 2=2px(p>0)设A 、B 关于L 的对称点分别为A /、B /,则利用对称性可求得它们的坐标分别为:A /(12,11222+-+-k k k k ),B (1)1(8,116222+-+k k k k )。

因为A 、B 均在抛物线上,代入,消去p ,得:k 2-k-1=0.解得:k=251+,p=552. 所以直线L 的方程为:y=251+x,抛物线C 的方程为y 2=554x. 变式练习:在面积为1的△PMN 中,tanM=21,tanN=-2,建立适当的坐标系,求出以M 、N 为焦点且过点P 的椭圆方程。

相关文档
最新文档