分形几何简介

合集下载

《分形几何简介》课件

《分形几何简介》课件

分形的类型
自相似分形
自相似分形是指在不同尺度下具有相似结构的 图形,如科赫曲线和谢尔宾斯基三角形。
原子分形
原子分形是由单一基本元素重复形成的图案, 类似于雪花和花纹图案。
组分形
组分形是由多个不同形状的图形组合而成,例 如分形树和分形花朵。
拓扑分形
拓扑分形通过改变图形的拓扑结构,如将平面 断开或折叠,创建具有分形性质的图像。
分形的应用
分形图像的生成
分形几何的特性使其成为生成艺 术和图像的强大工具。许多美丽 的分形艺术作品都是通过数学算 法生成的。
分形在自然界中的应用
分形在工程领杂结构和形态,如树叶的纹理、 山脉的形状和云朵的分布。
分形几何的优势在于能够设计更 高效的结构和表面,如天线、电 路板和隔音材料的优化设计。
分形几何的未来
• 分形几何将继续发展,为我们提供对自然界和复杂系统的更深入理解和建模能力。 • 在科学和工程领域,分形几何将继续发挥重要作用,帮助解决复杂问题。 • 分形几何的应用将在未来社会的许多领域中持续拓展,包括建筑设计、艺术创作和生物医学等。
结束语
分形几何的意义远超出了几何学的范畴,它让我们对世界的复杂性有了更深入的认识,启发着我们的思维和创 造力。未来,分形几何将为科学、艺术和工程等领域带来更多的突破和创新。
《分形几何简介》
通过探索分形几何的奇妙世界,我们将带您踏上一段迥异于传统几何学的旅 程。了解分形几何的基本概念和其在科学和工程等领域的应用。
什么是分形几何
分形几何是一门研究非整数维度空间中的几何形状和模式的学科。不同于传 统几何学,分形几何更加接近自然界中的复杂结构和形态。
几何图形与分形
传统的几何图形基于欧氏几何学,具有整数维度,并且具有平滑的结构。分形的定义则更加灵活和重复,能够 描述自相似和具有复杂结构的图形。

分形几何

分形几何

图 1 科赫曲线
图 2 科赫雪花——面积有限,长度无限
以Koch曲线为例,以一维来度量它,它的 长度趋于无穷,而以二维来度量它,它的 面积为零,那么,它究竟是几维图形?1维? 2维? ????维吗?
经典的维度定义有问题吗?
在经典几何下,点被定义成0维的,点没有 长度;直线被定义成1维,只有长度,没有 面积,平面图形被定义成2维的,有面积, 没有体积,立体图形是3维的,有体积。
经典几何讨论的维度都是整数,它们的数 值与决定几何形状的变量个数及自由度是 一致的,这是一个很自然的想法。
相似维数的定义
一般地,如果某图形是由把全体缩小为1/a 的aD个相似图形构成的,那么此指数D就 具有维度的意义。此维数被称为相似维数。
相似维数常用DS表示,按照定义,DS完全 没有是整数的必要。如某图形是由全体缩 小1/a的b个相似形组成,则
用数学方法对放大区域进行着色处理,这些区域就变成 一幅幅精美的艺术图案,这些艺术图案人们称之为“分 形艺术”。“分形艺术” 以一种全新的艺术风格展示给 人们, 使人们认识到该艺术和传统艺术一样具有和谐、 对称等特征的美学标准。这里值得一提的是对称特征, 分形的对称性即表现了传统几何的上下、左右及中心对 称。同时自相似性又揭示了一种新的对称性, 即画面的 局部与更大范围的局部的对称,或说局部与整体的对称。 这种对称不同于欧几里德几何的对称,而是大小比例的 对称,即系统中的每一元素都反映和含有整个系统的性 质和信息。这一点与上面所讲的例子:“一头牛身体中 的一个细胞中的基因记录着这头牛的全部生长信息”, 完全吻合。 不管你是从科学的观点看还是从美学的观点 看,这都是那么富有哲理,分形艺术是科学上的美和美 学上的美的有机结合。
图 3 Mandelbrot集合

分形几何概述

分形几何概述
(5)分形集的生成具有迭代性。
三、分形几何的研究方法
1、以分数维数来描述分形;
Mandelbrot提出了一个分形维数的概念。
在Euchlid几何学中我们知道维数的概念
点---0维;
线---1维;
面---2维;
分形几何与传统几何相比有什么特点:
⑴从整体上看,分形几何图形是处处不规则的,它的整体与局部都不能用传统的几何语言来描述。例如,海岸线和山川形状,从远距离观察,其形状是极不规则的。
⑵分形集都具有任意小尺度下的比例细节,或者说它具有精细的结构。
例如:Mandelbrot集,简称M集,是人类有史以来最奇异最瑰丽的几何图形. 它由一个主要的心形图与一系列大小不一的圆盘芽苞突起连在一起构成.你看,有的地方象日冕,有的地方象燃烧的火焰,那心形圆盘上饰以多姿多彩的荆棘,上面挂着鳞茎状下垂的微小颗粒,仿佛是葡萄藤上熟透的累累硕果.它的每一个细部都可以演绎出美丽的梦幻般仙境似的图案,因为只要把它的细部放大,展现在眼前的景象会更令人赏心悦目.而这种放大可以无限地进行下去,无论放大到哪一个层次,都会显示同样复杂的局部,这些局部与整体有某种相似的地方,但又不完全相同,仿佛里面酝藏着无穷的创造力,使你感到这座具有无穷层次结构的雄伟建筑的每一个角落都存在无限嵌套的迷宫和回廊,催生起你无穷的探究欲望.。
6、可以制作成各种尺寸的分形挂历、台历、贺卡、书签等等。
7、装点科技馆、少年宫、旅游景点等地点,美化公众环境。

我们来看曼德勃罗的分析:
当你用一把固定长度的直尺(没有刻度)来测量时,对海岸线上两点间的小于尺子尺寸的曲线,只能用直线来近似。因此,测得的长度是不精确的。
如果你用更小的尺子来刻画这些细小之处,就会发现,这些细小之处同样也是无数的曲线近似而成的。随着你不停地缩短你的尺子,你发现的细小曲线就越多,你测得的曲线长度也就越大。如果尺子小到无限,测得的长度也是无限。

几何里的艺术家——分形几何

几何里的艺术家——分形几何

几何里的艺术家——分形几何分形几何是一种研究自相似性形态的数学工具,指的是通过某种规则将形状无限细分而形成的一类具有自相似和自同构特性的几何对象。

分形几何研究的对象是具有复杂结构,但又存在某种“无限重复”的特征的物体。

分形几何的发展始于20世纪60年代末,由波兰数学家曼德布洛特提出的“曼德布洛特集合”起始。

曼德布洛特集合是一种通过迭代算法生成的美丽几何图形,具有自相似性和自同构性。

分形几何的应用极为广泛,涉及到艺术、自然科学、经济学、社会学等多个领域。

在艺术领域,分形几何被称为“几何里的艺术家”。

分形艺术家使用计算机软件,通过迭代重复和自相似性的特征,制作出多样化、繁复而又富有自然美感的几何图案。

著名的分形艺术家有迈克尔·波斯纳和罗杰·潘罗斯等。

他们的艺术作品对自然界的模仿、对礼物生命的呈现,精细而获得了广泛而热烈的反响。

此外,在科学领域,分形几何的应用也十分广泛。

例如,在天体物理学中,人们发现短时尺度的火花电放电现象,既有类似闪光灯光亮、语言简单、明显可见的特点,也有类似雷电光展现、花式炫耀的特点。

而通过分形几何方法,人们发现闪电显示具有分形特性,即闪电能从云层中一点开始向不同方向分支扩散,直至铺满整片云层。

而这种分形几何的特性,也被应用在气象学、地质学、分子物理学等学科中,对于研究高分辨率细节提供了一些新的思路和方法。

总之,分形几何的研究和运用,具有广泛的科学和文化意义。

它不仅为我们揭示了许多自然规律和物理特性,也为我们提供了艺术表达和审美的另一种视角。

几何里的艺术家,为我们打造了一个充满神秘美学的世界。

几何里的艺术家——分形几何

几何里的艺术家——分形几何

几何里的艺术家——分形几何几何不仅仅是数学中的一个概念,它也是艺术中的一种灵感源泉。

而分形几何则将几何之美发挥到了极致,成为了一种兼具科学和艺术特质的美学形式。

在分形几何的世界里,数学的精密和艺术的想象交织在一起,勾勒出了独特的美丽景观。

本文将带领读者一起探索几何里的艺术家——分形几何。

1. 分形几何的起源分形几何一词最早由法国数学家贝诺瓦·曼德博特在1975年提出。

分形一词源于拉丁文“fractus”,意为碎片、断裂。

在数学上,分形是指一种具有自相似性的几何形态,即整体的部分在不同尺度上都与整体类似。

这种自相似性使得分形几何成为了一种富有美感和艺术感的数学形式。

分形几何得到了诸多科学和艺术领域的关注,成为了一种跨学科的研究领域。

2. 分形几何和艺术在艺术领域,分形几何为艺术家们带来了无限的灵感。

通过计算机技术和数学算法,艺术家们可以创造出种种奇妙的分形图像,这些图像既具有科学的精密性,又富有艺术的想象力。

分形艺术作品常常展现出几何的美感和图案的丰富多样性,在细节的赏析上更是令人叹为观止。

分形艺术作品已经成为了一种独特的艺术风格,吸引了众多艺术家和观众的关注。

3. 分形几何的应用除了在艺术领域中发挥重要作用之外,分形几何在科学领域中也有着广泛的应用。

在物理、生物、地质等领域,分形几何被用来研究复杂系统的形态和特性。

分形几何的自相似性和分形维度等特性,为科学家们提供了一种独特的研究方法,帮助他们理解和解释自然界中的复杂现象。

分形几何的应用范围正在不断拓展,有望成为解决复杂问题的重要工具。

4. 分形几何与人类文化分形几何不仅仅是一种数学形式,它还深刻地影响着人类文化的发展。

在建筑、绘画、音乐等领域,分形几何都留下了深远的痕迹。

建筑设计师们常常运用分形几何的原理来设计出富有美感和结构稳定性的建筑物;绘画艺术家们则通过分形几何的图案来展现出作品的纷繁多样;音乐创作家们也借助分形几何的节奏和和谐结构来创作富有艺术感的音乐作品。

几何里的艺术家——分形几何

几何里的艺术家——分形几何

几何里的艺术家——分形几何分形几何是指生物学家、数学家Mandelbrot于20世纪60年代提出的一种新的几何方法。

它主要是以图形展示自然界里颇多的自相似性和重复性,我们在自然界中可以看到很多地方都能体现出分形几何的形态。

目前,分形几何的研究成果已经被广泛运用在计算机图形学、自然科学、金融、物理学等方面,并在各个领域都取得了很好的应用效果。

分形几何不同于常规的几何学,它将几何形态转换为数学符号来分析形态的特征。

分形几何的美感与特性分形几何的美在于它具有迷人的自相似性和重复性,这个特性使得分形几何的形态无论在大小还是在宏观与微观的层次上表现出了一致性。

这种自相似性不但具有几何形态的美感,并且在自然界的很多生物和物体中都可以看到它的存在。

譬如火花、雨滴和云朵都具有分形几何的形态,对此我们可以用数学符号和计算机程序来表达和描述这些自然现象。

在分形几何中,出现的大多数形态都是基于数学方程式的操作得到,这些数学方程式需要通过反复的迭代运算才能得到最终的形态,几何学家调用的工具主要是数学符号和计算机程序。

因此,分形几何不仅展示了具有美感的自相似性和重复性,还向我们展示了无穷的变幻和生命力,在人类的审美中表现出了多姿多彩的美,可以说是几何美学中的一种绚丽多彩的表现形式。

分形几何的计算机图形学应用分形几何在计算机图形学中的应用很广泛,计算机图像能够更加真实地表现物体的特性和微观结构,分形几何的技术能够很好地表现出物体的自相似性和重复性,因此在图像处理和计算机图形学中应用颇多。

其中一个应用场景是在动画电影中,我们常常看到很多自然界中的生物,譬如花朵、藤蔓和蘑菇等生物,它们都具有分形结构,设计师用计算机图形学的方法可以让这些生物呈现出美妙的自然形态。

另外,分形几何还被广泛运用在生成式艺术中,生成式艺术是一种基于数学或人工智能算法的艺术形式,使用分形几何的技术可以生成独特的图案和模型,比如拓扑结构和有机体结构等。

分形几何中的自相似性和重复性不仅提供了美感和独特的艺术表现形式,还为我们提供了一种模拟生命活动的方式,是数学艺术范畴中一个多功能的形式。

数学的分形几何

数学的分形几何

数学的分形几何分形几何是一门独特而迷人的数学领域,它研究的是自相似的结构和形态。

分形几何的概念由波蒂亚·曼德博(Benoit Mandelbrot)在1975年首次提出,之后得到了广泛应用和发展。

本文将介绍分形几何的基本概念和应用领域,旨在帮助读者更好地了解这一令人着迷的学科。

一、分形几何的基本概念分形(fractal)是一种非几何形状,具有自相似的特点。

简单来说,分形就是在各个尺度上都具有相似性的图形。

与传统的几何图形相比,分形图形更加复杂、细致,其形状常常无法用传统的几何方法进行描述。

分形几何的基本概念包括分形维度、分形特征和分形生成等。

1. 分形维度分形维度是分形几何中的重要概念之一。

传统的几何图形维度一般为整数,如直线的维度为1,平面的维度为2,而分形图形的维度可以是非整数。

分形维度能够描述分形的复杂程度和空间占据情况,是衡量分形图形特性的重要指标。

2. 分形特征分形几何的分形特征是指分形图形所具有的一些独特性质。

其中最著名的就是自相似性,即分形图形在不同尺度上具有相似的形态和结构。

此外,分形图形还具有无限的细节,无论放大多少倍都能够找到相似的结构。

3. 分形生成分形图形的生成是分形几何中的关键问题之一。

分形图形可以通过递归、迭代等方式进行生成,比如著名的分形集合——曼德博集合就是通过迭代运算得到的。

分形生成的过程常常需要计算机的辅助,对于不同的分形形状,生成算法也有所不同。

二、分形几何的应用领域分形几何的独特性质使其在许多领域中得到广泛应用。

以下列举了几个典型的应用领域。

1. 自然科学分形几何在自然科学中有着广泛的应用。

例如,分形理论可以用来研究自然界中的地形、云雾形态等。

通过分形几何的方法,我们能够更好地理解和描述自然界的复杂性,揭示出隐藏在表面之下的规律。

2. 经济金融分形几何在经济金融领域也有着重要的应用。

金融市场的价格走势往往具有分形特征,通过分形几何的方法可以更好地预测未来的市场走势和波动。

什么是分形几何?

什么是分形几何?

什么是分形几何?什么是分形几何?1973年,曼德勃罗(B.B.Mandelbrot)在法兰西学院讲课时,首次提出了分维和分形几何的设想。

分形(Fractal)一词,是曼德勃罗创造出来的,其愿意具有不规则、支离破碎等意义,分形几何学是一门以非规则几何形态为研究对象的几何学。

由于不规则现象在自然界是普遍存在的,因此分形几何又称为描述大自然的几何学。

分形几何建立以后,很快就引起了许多学科的关注,这是由于它不仅在理论上,而且在实用上都具有重要价值。

分形几何与传统几何相比有什么特点⑴从整体上看,分形几何图形是处处不规则的。

例如,海岸线和山川形状,从远距离观察,其形状是极不规则的。

⑵在不同尺度上,图形的规则性又是相同的。

上述的海岸线和山川形状,从近距离观察,其局部形状又和整体形态相似,它们从整体到局部,都是自相似的。

当然,也有一些分形几何图形,它们并不完全是自相似的。

其中一些是用来描述一般随即现象的,还有一些是用来描述混沌和非线性系统的。

什么是分维?在欧氏空间中,人们习惯把空间看成三维的,平面或球面看成二维,而把直线或曲线看成一维。

也可以梢加推广,认为点是零维的,还可以引入高维空间,但通常人们习惯于整数的维数。

分形理论把维数视为分数,这类维数是物理学家在研究混沌吸引子等理论时需要引入了,所以存在分维。

其实,Koch曲线的维数是1.2618……。

Fractal(分形)一词的由来据曼德勃罗教授自己说,fractal一词是1975年夏天的一个寂静夜晚,他在冥思苦想之余偶翻他儿子的拉丁文字典时,突然想到的。

此词源于拉丁文形容词fractus,对应的拉丁文动词是frangere (“破碎”、“产生无规碎片”)。

此外与英文的fraction (“碎片”、“分数”)及fragment(“碎片”)具有相同的词根。

在70年代中期以前,曼德勃罗一直使用英文fractional一词来表示他的分形思想。

因此,取拉丁词之头,撷英文之尾的fractal,本意是不规则的、破碎的、分数的。

几何里的艺术家——分形几何

几何里的艺术家——分形几何

几何里的艺术家——分形几何1. 引言1.1 什么是分形几何分形几何是一种数学理论,包括了自相似性、不规则性和复杂性等特点,它能够描述自然界和人造物体中所存在的复杂形态。

分形几何可以将复杂的形状分解为简单的结构单元,从而更好地解释和描述复杂系统的特征。

分形几何的研究对象可以是自然界中的云雾、山脉、植物等,也可以是人类创造的艺术作品、城市景观等。

通过分形几何的研究,人们能够更深入地理解形态的形成规律和演化过程,为科学研究和艺术创作提供了新的视角。

分形几何的特点在于其不规则性和自相似性。

不规则性指的是形状的复杂度和不规则程度,而自相似性则是指在不同尺度上体现相似性。

分形几何的特点使得人们可以用简单的数学模型来描述复杂的自然现象,从而更好地理解事物的本质及其演变规律。

分形几何是一种独特的数学理论,它不仅在科学领域有着广泛的应用,还在艺术领域中扮演着重要的角色。

通过分形几何的研究和应用,人们能够更好地理解世界的复杂性和多样性,从而为人类的进步和发展提供新的思路和方向。

1.2 分形几何的应用分形几何在应用领域有着广泛的用途,其独特的性质和特点使其在科学、工程、医学等领域发挥着重要作用。

分形几何在图像压缩和图像处理中有着重要的应用。

通过分形图像压缩技术,可以大大减少图像传输和存储时所需的数据量,从而提高图像的传输速度和保存效率。

分形图像处理技术还可以用于图像的放大和缩小,不会出现传统方法中所产生的模糊和失真现象。

在地理信息系统中,分形几何可以用来模拟地形特征,以实现更加逼真的地形图像。

分形几何在地震预测、金融市场分析、气象预测等领域也有着广泛的应用。

分形几何的应用领域十分广泛,不断地为各个领域带来新的发展和突破。

1.3 分形几何在艺术中的作用分形几何在艺术中的作用主要体现在其能够呈现出独特而美丽的几何形状和图案。

分形几何的特点使得它能够生成各种复杂、丰富并且具有自相似性的图像。

这种自相似性使得分形几何产生的图案看起来既具有整体性又具有细节性,给人以视觉上的愉悦和惊叹。

分形几何

分形几何

• 分数维的研究对象是不平滑的,不可微分 的。从这个意义上来说,分数维否定(通常 意义下的)微分,这是一个划时代的革命。 另一方面,分数维并没有对时空给出一个 实验性的新概念,并且在动力学意义上给 系统行为的理解获益不多。后者对我们在 座年青学者去建立一个全新的理论体系倒 是存在很多的自由空间 • 先看两个典型的由数学方法产生的分形
• 下面介绍三种分维的计算方法
2.相似维数
• 如上图,对于一条单位长度线段(DT=1),若将 它等分成N=2段,则每段的长度为R=1/2;若将它 等分成N=3段,则每段的长度为R=1/3,显然有 N*R=1.从测量角度理解,相当于用长为R的尺子 去测量线段的长度,那么测得的尺度数N(R)与尺 度之间有下列关系 • N(R)=R^-1 • 对于一条单位面积的二维正方形平面(DT=2), 将其等分成N=4份,则分割的小正方形面积为 R^2=1/4; 将其等分成N=9份,则分割的小正方形 面积为R^2=1/27. 显然有N*R^2=1.那么二维平面 的小正方形测量数目N(R)为 • N(R)=R^-2
分形几何
• 分形几何学产生于20世纪70年代末80年代 初,是一门以非规则几何形态为研究对象 的新兴学科。由于在自然界中普遍存在不 规则的对象或现象,因此分形几何又称为 大自然的几何学。 • 分形是具有自相似性的一类形状,也就是 说,这类形状在不同的放大倍率下看起来 一样
• 分形对象在自然界中普遍存在,海岸线、山脉、 河流、炊烟、云彩、树干、闪电、血管等都是分 形。 • 分数维图形最大的特点是——无特征长度,或者 是它的自相似性。于是,他们可以从局部发现整 体,不论你从哪一个层次看问题都会获得同样的 变化规律。非整数维数,早在100多年前即有人 探索,为什么只有到近几十年才崭露头角呢?最 重要的是因为computer的飞速发展,它不仅把原 先不能计算的问题变成完全可算,而且种类繁多, 漂亮的分形图形使人们真正从直观上认识了 Fractal。

《分形几何学》课件

《分形几何学》课件

分形风险管理:评 估和管理金融市场 的风险
分形投资策略:基 于分形理论的投资 策略,如分形交易 策略、分形投资组 合管理等
分形在物理学中的应用
分形几何学的未来 展望
分形几何学的发展趋势
应用领域:分形几何学在计算机图形学、图像处理、生物医学等领域的应用将越来越广泛
理论研究:分形几何学的理论研究将更加深入,包括分形维数的计算、分形几何的拓扑性质等
添加标题
添加标题
添加标题
添加标题
特点:具有自相似性,即无论放大 或缩小,其形状保持不变
性质:具有无限长度,但面积却为 零,是一种典型的分形图形
分形几何学的应用 实例
分形在图像压缩中的应用
分形压缩算法:基于分形几何学的图像压缩算法 压缩效果:提高压缩比,降低图像质量损失 应用场景:适用于图像传输、存储和显示等领域 技术挑战:如何平衡压缩比和图像质量损失,提高压缩算法的效率和稳定性
发展:1977年,数学家哈肯提出分形几何学的基本理论
应用:分形几何学在物理学、生物学、经济学等领域得到广泛应用 现状:分形几何学已成为现代数学的一个重要分支,对科学研究和实际应 用具有重要意义
分形几何学的应用领域
分形几何学的基本 概念
自相似性
定义:在任意 尺度下,具有 相同或相似的
结构或模式
特点:自相似 性是分形几何 学的核心概念
科赫曲线的生成过程: 将一条线段分为三等份, 去掉中间一段,然后将 剩下的两段分别替换为 两个新的科赫曲线
科赫曲线的应用:在计 算机图形学、动画制作 等领域有广泛应用
科赫曲线的性质:具有 自相似性、无限长度和 面积、分形维数等性质
皮亚诺曲线
定义:由意大利数学家皮亚诺提出 的一种分形图形

分形几何简介

分形几何简介

分形几何的研究对象(一) —自相似集

1 Cantor集

2 Sierpinski垫片

3 Koch曲线
Cantor集C
Cantor集C的一些基本性质


1. Cantor集是自相似的. 2. Cantor集有“精细结构”. 3. Cantor集的定义简单明了. 4. Cantor集是由一个迭代过程得到的. 5. Cantor集的几何性质难以用传统的语言来描 述. 6. Cantor集的长度等于0,但是点的个数是不 可数的.
Sierpinsk垫片
Sierpinsk垫片的生成过程 —第1步
Sierpinsk垫片的生成过程 —第2步
Sierpinsk垫片的生成过程 —第3步
Sierpinsk垫片的生成过程 —第4步
Sierpinski垫片S的一些基本性 质

与Cantor集类似。

面积等于0.
Koch曲线
Koch曲线的生成过程 —第1步

微积分中的一个问题

如何研究在闭区间上处处连续处处不可导 的函数:如Weierstrass函数?
一类Weierstrass函数的具体表 达式
W ( x)
n 0


( s 2) n
sin( x)
n
其中1<s<2,
1
大自然的不规则性:


树木花草、山川河流、烟雾云彩等是不 规则的。晶体的生长,分子的运动轨迹 等也是不规则的。如何用几何来描述它? B. Mandelbrot 观察到英国海岸线与Van Koch 曲线的关系,提出了一门描述大自 然的几何形态的学科---分形(Fractal).

分形几何简介

分形几何简介

成,有:
(1/r) ^D=N, D=lnN/ln(1/r)
的关系成立,则指数D称为相似性维数,D可 以是整数,也可以是分数.
1.5
1
0.5
0
-0.5
-1
-1.5
-1.5
-1
-0.5
0
0.5
1
1.5
自然界中的分形
• 自然界中的许多研究对象在形态、功能和 信息三方面或其中某1方面具有相似性,就认 为该对象具有分形特征.

我们首先画1个线段、正方形和立方
体,它们的边长都是1.将它们的边长二等分,
此时,原图的线度缩小为原来的1/2,而将原图
等分为若干个相似的图形.其线段、正方形、
立方体分别被等分为2^1、2^2和2^3个相似的子图源自,其中的指数1、2、3,正好等于与
图形相应的经验维数.1般说来,如果某图形
是由把原图缩小为r的相似的N个图形所组
不能说是科学上有教养的人;在将来,1个人
如果不能同样熟悉分形,他就不能被认为是
科学上有文化的人.
• 自然界中的分形具有两个明显的特征: 1、自然界中的分形仅在1定尺度范围,1定层
次中才表现出分形特征. 二、自然界的分形行为只有有限层次的嵌套,
且是具有自相似分布特征的随机对象,必须 从统计的角度考虑、分析和处理.

著名理论物理学家惠勒说过这样的话:
在过去,1个人如果不懂得“熵”是什么,就
分形几何简介
分形的概念
• 1973年,曼德勃罗(B.B.Mandelbrot)在法 兰西学院讲课时,首次提出了分维和分形几 何的设想.
• 曼德勃罗(1986年)对分形几何的定义是: 分形是指由于各个部分组成的形态,每个部 分以某种形式与整体相似.

分形几何介绍

分形几何介绍

第三节分形一、分形概念在前面章节中讨论的物体表示使用了欧氏几何方法,即物体形状由方程来描述。

这些方法适用于讨论加工过的物体:具有平滑的表面和规则的形状。

但自然景物,如山脉和云,则是不规则或粗糙的,欧氏方法不能真实地表现这些物体。

可以使用分形几何方法(Fracta1 geometry)来真实地描述自然景物,使用过程而不是使用方程来对物体进行建模。

正如我们所期望的,过程描绘的物体其特征远不同于方程描绘的物体。

物体的分形几何表示可以用于很多领域,以描述和解释自然现象的特性。

在计算机图形学中,使用分形方法来产生自然景物显示及各种数学和物理系统的可视化。

分形物体有两个基本的特征:每点上具有无限的细节以及物体整体和局部特性之间的自相似性。

自相似性可以有不同的形式,这取决于分形表示的选择。

我们利用一个过程来描述分形物体,该过程为产生物体局部细节指定了重复操作。

自然景物,理论上可以用重复无限次的过程得到表示。

事实上,自然景物的图形显示仅使用有限步生成。

看两个被认为是分形的典型的例子:例1 三分康托(Cantor)集设E0是闭区间[0,1],即E0是满足0≤x≤1的实数x组成的点集;E1是E0去掉中间1/3之后的点集,即E1是两个闭区间[0,1/3]和[1/3,2/3];E2是分别去掉E1中两个区间的中间1/3之后的点集,即E2已经是四个闭区间。

此过程要继续进行,E k是2k个长度为1/3k的闭区间组成的点集。

三分康托集F是属于所有的E k的点组成的集,即。

F可以看成是集序列E k当k趋于无穷时的极限。

只能画出k取定时的某个E k。

当k充分大时,E k是对F的很好的近似的表现。

三分康托集中去掉的线段的总长度是多少?可以求出,是1。

还剩下多少呢?注意到三分康托集是区间[0,1]中的可以展成以3为底的幕级数的下面形式的数组成的:a13-1+a23-2+a33-3…其中a i的取值限制为0或2,不取1。

为看清这一事实,注意从E0得到E1时,去掉的是a i=1的数,从E1得E2时,去掉的是a2=1的数,并以此类推。

几何里的艺术家——分形几何

几何里的艺术家——分形几何

几何里的艺术家——分形几何分形几何是一个结合了数学和艺术的领域,它研究的是自相似的图案和结构。

分形的概念最早由法国数学家勒谢德雷于20世纪70年代提出。

他认为自然界中存在着许多看似无规律的现象,如云朵的形状、山脉的轮廓、树的分枝等,但这些现象却具有某种规律性。

通过数学的方法,勒谢德雷研究了这些现象背后的规律,并将其命名为“分形”。

分形几何的一个重要特点就是自相似性。

自相似是指一个物体的一部分与整体非常相似。

树的分枝和整棵树的形状非常相似,云朵的一小块与整个云朵的形状也非常相似。

这种自相似性使得分形图案可以无限地重复下去,越往细节处观察,越能发现新的图案。

分形几何的应用非常广泛。

在科学领域,分形几何可以用来研究各种现象,如地理地貌的形成、动植物的生长规律等。

在工程领域,分形几何可以用来设计更高效的网络、建筑和交通系统等。

在艺术领域,分形几何可以用来创作各种艺术作品,如绘画、雕塑和音乐。

分形几何在艺术创作中的应用非常有意思。

艺术家可以利用分形几何的原理,创造出各种奇妙的图案和结构。

他们可以通过数学软件生成分形图案,然后再加以修改和装饰,使其更具艺术效果。

艺术家还可以利用分形几何的自相似性,创作出逐渐放大或缩小的图案,使观众感受到无限的延伸和变化。

分形几何作品可以以各种形式呈现。

在绘画中,艺术家可以使用分形图案来创造各种纹理和形状。

在雕塑中,艺术家可以使用分形几何的结构来构建复杂的雕塑作品。

在音乐中,艺术家可以利用分形几何的规律来创作出奇妙的音乐作品,如迭代曲线和分形序列。

分形几何是一个充满艺术魅力的领域。

它的研究和应用为我们揭示了自然界和人类社会中的规律和美丽。

分形几何作品以其奇妙和无限的形式给人带来了无尽的想象空间,使我们更好地了解和欣赏世界的复杂性和多样性。

几何里的艺术家——分形几何

几何里的艺术家——分形几何

几何里的艺术家——分形几何分形几何是一门结合数学和艺术的学科,它研究自相似性和无限重复的图形。

分形是一种可以通过递归运算生成的图形,其每个部分都与整体具有相似的形状和属性。

分形几何广泛应用于自然界、科学、艺术和计算机图形学等领域。

分形几何的概念最早由波兰数学家曼德博勒特·曼德博勒特于20世纪70年代提出。

他通过迭代运算生成了一种被称为“曼德博集合”的分形图形,该图形具有无限复杂的细节和自相似性。

曼德博勒特的研究成果开创了分形几何的研究领域,吸引了许多科学家和艺术家的关注。

分形几何的魅力在于它展现了自然界中许多复杂的形态和规律。

分形几何可以用来描述云朵、山脉、树木、海岸线等自然景观的形状和纹理。

这些自然景观往往具有层次分明、规则重复的结构,正是分形几何的特点所能很好地解释和模拟这种现象。

在艺术领域,分形几何为艺术家们提供了一种新的创作方式和表现手法。

艺术家可以使用分形生成软件来创作出具有分形特征的艺术作品。

这些作品通常具有随机性、复杂性和自相似性,给观者带来一种与众不同的观感和感官体验。

分形艺术常常被赋予一种神秘、浪漫和超现实的风格,使人沉浸其中。

分形几何的应用还扩展到计算机图形学和图像处理领域。

分形图形可以被用来生成真实感模拟、虚拟现实和特效动画。

通过分形算法,计算机可以生成具有高度精细化和无限细节的图像,使得图像更加逼真、生动,并且可以实现无尽的变化。

除了在科学、艺术和计算机图形学中的应用,分形几何还对理解自然界的一些现象和规律具有重要意义。

分形几何揭示了许多自然界中的分形结构,如闪电、河流、植物的分枝、肺部的支气管等。

了解并研究这些自然现象的分形特征,对于深入理解它们的内在规律和运行机制具有重要意义。

分形几何是一门有着深厚学术背景和广泛应用前景的学科。

它不仅仅是一门数学理论,更是一门艺术表现和探索自然界的工具。

通过分形几何的研究和应用,人们可以更好地理解自然现象、创造艺术作品、设计复杂图形和模拟现实世界。

分形几何超级介绍

分形几何超级介绍

分数维
现在我们从测量的角度引入了维数概念, 将维数从整数扩大到分数。即: 如果某图形是由把原图缩小为1/λ的相似的 k个图形所组成,有:k= λ^D D即维数 D = logk/logλ 其中:( λ 为线度的放大倍数 k为“体积”的放大倍数)
Sierpinski垫圈的分数维
• 如右下角的垫圈 ,它是由原图缩小1/2的相 似的3个图形组成。 • 故其维数为D=log3/log2
分维数的多种定义
• 分数维可用于定量描述分形集的复杂性。 • 分维数已有多种定义。 • 豪斯道夫维数是基于豪斯道夫测度而建立起来的 一种分形维数,它是分形几何的维数理论的基础; • 盒维数或称盒计数维数是一个具有广泛应用的维 数,计算一个分形的盒维数是相对简单的。 • 其他分维数有:柯尔莫哥诺夫熵、熵维数、容量 维数、对数维数和信息维数等。

自相似性
一个系统的自相似性是指某种结构或过程的特 征从不同的空间尺度或时间尺度来看都是相似 的,或者某系统或结构的局域性质或局域结构 与整体类似。另外,在整体与整体之间或部分 与部分之间,也会存在自相似性。一般情况下 自相似性有比较复杂的表现形式,而不是局域 放大一定倍数以后简单地和整体完全重合。
分形几何
数理基础试验班 李道坚 范宇航
分形几何的起源
分形几何的概念是美籍法国数学家曼德布罗特 (B.B.Mandelbrot)1975年首先提出的,但最早的工作可 追朔到1875年,德国数学家维尔斯特拉斯构造了处处连续 但处处不可微的函数,集合论创始人康托构造了有许多奇 异性质的三分康托集。1890年,意大利数学家皮亚诺构造 了填充空间的曲线。1904年,瑞典数学家科赫设计出类似 雪花和岛屿边缘的一类曲线。1915年,波兰数学家谢尔宾 斯基设计了象地毯和海绵一样的几何图形。这些都是为解 决分析与拓朴学中的问题而提出的反例,但它们正是分形 几何思想的源泉。1975年,他创立了分形几何学。在此 基础上,形成了研究分形性质及其应用的科学,称为分形 理论。

分形几何

分形几何

分形几何图片:
曼德尔球
曼德尔布罗特蛋糕
神秘洞穴
寻找隐藏的维度: Байду номын сангаасw_19rrm4tfdt.html
数学1202 1111120201 白金燕
分形几何:是一门以不规则几何形态为研究对象
的几何学。相对于传统几何学的研究对象为整数维 数,如,零维的点、一维的线、二维的面、三维的 立体乃至四维的时空。分形几何学的研究对象为分 数维数,如0.63、1.58、2.72。因为它的研究对象普 遍存在于自然界中,因此分形几何学又被称为“大 自然的几何学”。
分形的生成:基于一个不断迭代的方程式,即
一种基于递归的反馈系统。分形有几种类型,可 以分别依据表现出的精确自相似性、半自相似性 和统计自相似性来定义。虽然分形是一个数学构 造,它们同样可以在自然界中被找到,这使得它 们被划入艺术作品的范畴。分形在医学、土力学、 地震学和技术分析中都有应用。
曼德尔布罗特:著名数学家、分形几何之父。 1924年11月20日出生于波兰华沙一个学术传统深厚的 犹太家庭。2010年10月15日辞世,享年85岁。 1947-1949年他来到加州理工学 院学习航空学,获得硕士学位。 1952年获得了巴黎大学的数学博 士学位。 1967年他在美国权威的《科学》 杂志上发表了题为《英国的海岸 线有多长?》的著名论文。 1987年退休后来到耶鲁大学担任 数学教授。 1993年获得沃尔夫物理学奖,颁 奖词评论说“他的研究改变了我 们的世界观”。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档