中药逆转肿瘤多药耐药的分子生物学机制实验研究进展
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中药逆转肿瘤多药耐药的分子生物学机
制实验研究进展
(作者:___________单位: ___________邮编: ___________)
【摘要】总结了近年来中药逆转多药耐药的分子生物学研究的实验概况,从逆转多药耐药的经典、非经典及多靶点作用的角度阐述了中药的逆转作用,认为其主要是通过下调P-gp蛋白及调控MRP、LRP、拓扑异构酶、谷胱甘肽S转移酶、核转录因子、Ca2+浓度、凋亡相关基因等介导的多药耐药而实现,其作用多不局限于单一机制,而与其多靶点作用有关。
【关键词】中药;多药耐药;分子生物学
目前,化疗是治疗恶性肿瘤的主要手段之一,而在化疗过程中易产生肿瘤的多药耐药,大大降低了其疗效。因此,如何解决多药耐药就成为了提高化疗疗效,改善患者生活质量的关键问题。多药耐药(multidrug resistance,MDR)是一个多基因参与的过程,涉及多种耐药相关蛋白[1]。不同肿瘤具有不同的耐药表型,可以是某种耐药基因表达,也可能是多种耐药基因同时表达的结果,而由于中药的多靶点作用,其可通过作用于多个耐药相关蛋白达到逆转多药耐药的作用。目前,中药抗多药耐药的作用研究已深入到分子水平。本文概述
近年来中药在逆转多药耐药的分子水平的研究进展。
1 肿瘤多药耐药经典途径
P-gp蛋白介导的多药耐药是研究最多,机制最为明确的多药耐药产生途径,因此被称为多药耐药的经典途径。由MDR1基因编码的P-gp蛋白ATP依赖性的药物泵,其是通过水解ATP提供的能量,将进入细胞内的药物泵出细胞,使得细胞内药物浓度不断下降,最终使药物细胞毒作用减弱甚至丧失出现耐药[2]。中药下调P-gp蛋白的实验研究较多,下面就分体外与体内实验分别阐述。
1.1 体外实验研究解霞等[3]对川芎嗪(TMP)逆转多药耐药机制的研究显示MCF-7/ADM 细胞P-gp蛋白表达率为(90.60±0.41)%,而加入非细胞毒性剂量川芎嗪后,耐药细胞P-gp的表达率则降为(69.10±1.65)%(P0.01),结果提示TMP能显著抑制MCF-7/ADM细胞 P-gp的表达。谢长生等[4]复方三根制剂对MDR细胞株K562/ADR 和K562/VCR逆转作用的研究,结果复方三根制剂对K562/ADR 作用24,48,72 h后 P-gp蛋白表达量分别降为622±6.56,730±4.51,310±1.09,而对K562/VCR作用24,48,72h后P-gp表达量分别降为1054±83.16,775±7.02,3393±6.56,与空白对照组相比,能显著下调P-gp蛋白的表达,且有显著性差异(P0.05),提示其逆转多药耐药的作用可能与其下调P-gp蛋白的表达有关。许文林等[5]对汉防己甲素逆转多药耐药机制的研究发现 P-gp蛋白在K562/ADM 细胞中呈现高表达,经10μmol/L的汉防己甲素处理细胞48h后,细
胞平均荧光强度减弱,P-gp蛋白的表达减少,另外经汉防己甲素作用后,K562/ADM细胞中的MDR1基因拷贝数明显下降(P0.01)。
1.2 体内实验研究李贵海等[6]粉防己碱对获得性多药耐药小鼠S180肿瘤细胞相关蛋白的调控研究显示单纯应用DDP的模型组,其P-gp蛋白的表达为13.13±5.33,而粉防己碱无毒性高低剂量组其表达分别降为7.41±3.35和9.22±
2.36,且其抑制率显著提高,揭示逆转耐药的机制可能与其降低P-gp蛋白的表达有关。
另据实验报道,中药三氧化二砷、ECCG、甲基莲心碱、补骨脂素等也可下调P-gp蛋白的表达而达到逆转多药耐药的作用[7~10]。
2 多药耐药的非经典途径
由MDR1基因编码的P-gp蛋白过度表达介导的药物外排是产生MDR的经典机制,除此外,MDR还与多药耐药相关蛋白(MRP)、肺耐药相关蛋白(LRP)、谷胱甘肽S转移酶、拓扑异构酶、细胞凋亡等多种非经典机制密切相关。
2.1 MRP介导的多药耐药多药耐药蛋白1(MRP1)属于ATP结合的盒式(ATP-binding cassette,ABC)运输蛋白家族成员,它可以通过细胞膜转运多种抗肿瘤药,从而限制抗肿瘤药进入细胞[11]。
徐萌等[12]用汉防己甲素逆转肺癌耐药实验研究发现经汉
防己甲素处理12,24,36 h后MRP蛋白表达量的表达分别为32.21±4.79,30.56±4.58,25.55±7.58,而对照组则分别为53.42±7.42,52.98±10.35,60.98±9.37,差异有非常显著性意义(P0.01),提示汉防己甲素可以下调肺癌耐药细胞MRP蛋白表达。成静等[13]对三氧化二砷研究显示MRPmRNA在耐药细胞A549/R中均呈过表达状态,A549/R细胞经浓度为0.150,0.375,0.750 μmol/L 的As2O3作用48h后,MRPmRNA的表达水平呈不同程度的降低,且随着其浓度增加,MRPmRNA表达水平逐渐下降。
另外,王利等[14]葛根素逆转人胃癌裸鼠原位移植瘤多药耐药性的体内实验研究显示5-FU联合葛根素组MRP蛋白阳性表达率为37.5%,显著低于对照组生理盐水组(82.5%)及单纯5-FU组(74%)(P0.05),提示其逆转多药耐药作用与其下调MRP蛋白阳性表达率有关。
2.2 谷胱甘肽介导的多药耐药多药耐药的产生机制复杂多样,其中谷胱甘肽S-转移酶活性的增强是产生多药耐药的重要机制。肖希斌等[15]的研究显示K562/A02细胞GST-π的PCR扩增带亮度较强,而经甲基莲心碱(Nef)处理组PCR扩增带亮度明显减弱,提示Nef在mRNA水平上抑制GST-π基因的mRNA转录,蛋白质印迹检测结果亦显示,未经药物处理的K562/A02组的蛋白杂交带,明显强于K562/A02+Nef组,表明Nef能抑制GST-π蛋白的表达。
苗立云等[16]青蒿琥酯逆转K562/A02细胞耐药性机理的研究显示K562/A02细胞内GSH呈现高表达(P0.05),经100μg/ml 青蒿琥酯处理48 h后,K562/A02细胞内GSH含量较药物处理前明显降低(P0.05)。
2.3 核转录因子介导的多药耐药核转录因子(NF-κB)在细胞增殖和凋亡中起关键调控作用,而目前有研究显示其在多药耐药的产生中也扮演着重要的角色,陈进伟等[17]K562/A02耐药细胞NF-κB 活性测定的研究发现活化后K562/A02细胞NF-κB表达明显增强(P 0.01),提示K562/A02细胞耐药可能与增高的NF-κB活性相关,其研究显示经无毒性剂量葛根素处理后的K562/A02细胞的NF-κB活性较未经葛根素处理前明显降低(P0.01)。宋玉成等[18]对盐酸千金藤素(CH)逆转EAC/ADR细胞多药耐药性的机制研究发现耐药细胞中活性高于敏感细胞 (P0.05),化疗药ADR可激活耐药细胞的NF-κB 活性,对敏感细胞无影响,其研究显示CH不但可抑制EAC/ADR细胞中NF-κB持续性活性,而且可抑制ADR对NF-κB的激活,体内实验显示荷瘤小鼠EAC/ADR细胞核内NF-κB呈持续性活化状态,ADR作用2h后诱导NF-κB活化,CH与ADR合用2h后,可明显抑制ADR对NF-κB活性的诱导。
2.4 LRP及拓扑异构酶介导的多药耐药肺耐药相关蛋白(LRP)与拓扑异构酶亦是近期研究较多的耐药介导介质。LRP作用机制是通过降低药物的核质分布比率和通过囊泡、胞吐作用将药物排出细胞[19]。拓扑异构酶(TopoⅡ)是调控DNA拓扑状态的酶类,据研究发