大肠杆菌发酵经验总结
大肠杆菌高密度发酵
课程设计说明书课程名称:发酵工程设计题目:大肠杆菌的高密度发酵院系:生物与食品工程学院学生姓名:******学号:************专业班级:10生物工程(2)班指导教师:*****课程设计任务书大肠杆菌的高密度摘要:在工业生产过程中,由于技术或是生产条件的限制,在大肠杆菌高密度发酵培养中很难实现其高密度发酵。
针对这一问题,我组专门为此设计一实验来探索发酵过程中的限制性因素。
我们从开始的发酵培养基的组分及其配比,到后来的灭菌方式,投料程序以及在发酵过程中温度的设定控制,PH值的设定控制及溶氧的设定控制都进行了严格的监测,再到最后的OD值,氨基氮以及还原糖的测定都进行严谨的完成。
关键词:大肠杆菌高密度发酵OD值目录1.设计背景 (1)1.1大肠杆菌高密度发酵产品及其质量安全现状 (1)1.2高密度发酵定义 (1)1.3 规定标准 (1)2.设计方案 (2)3.方案实施 (3)3.1 大肠杆菌简介 (3)3.2 菌种选材 (3)3.3 种子扩大培养 (3)3.4 发酵培养基配比 (3)3.5 发酵过程 (4)4.结果与结论 (7)5.收获与致谢 (9)6.参考文献 (10)1.设计背景1.1大肠杆菌高密度发酵产品及其质量安全现状目前,在发酵产业进入工业化,自动化的今天,产品的高密度发酵越来越受到国内外的重视。
人们在根据实验与生产阶段总结的经验中,逐步掌握发酵生产所需要的最佳控制条件。
在此过程中所得的产品密度更大,纯度更高,质量安全也得到了保障。
1.2高密度发酵定义高密度发酵(high cell density cultivation,HCDC)是指在一定条件和培养体系下,获得最多的细胞量,由此更多地或更高效地获得目的产物。
即利用一定的培养技术和装置提高菌体的发酵密度,使菌体密度较普通培养有显著提高,最终提高产物的比生产率(单位体积单位时间内产物的产量)。
通常认为菌体密度超过50 g(DCW)/L即为高密度发酵。
重组大肠杆菌高密度发酵工艺流程
重组大肠杆菌是一种重要的工业微生物,具有广泛的应用价值。
在大肠杆菌高密度发酵过程中,流程的设计和优化对产品的质量和产量具有重要影响。
本文将围绕重组大肠杆菌高密度发酵工艺流程展开讨论,探讨其流程设计、优化及相关技术。
通过对该工艺流程的深入研究,不仅可以提高重组蛋白的产量和纯度,还可以降低生产成本,为工业生产提供可靠的技术支持。
一、高密度发酵工艺流程概述1.1 菌种培养和预处理重组大肠杆菌菌种的培养是整个发酵过程的基础。
首先需要进行菌种的接种培养,培养基的选择、发酵条件的控制对于菌种的生长和繁殖至关重要。
对菌种的预处理也至关重要,包括对菌种进行筛选和培养基的调整等。
1.2 发酵过程控制发酵过程控制是重组大肠杆菌高密度发酵的关键环节,包括培养基的添加、通气量的控制、温度、pH值的调节等。
合理的发酵过程控制可以保证菌体的生长和代谢活性,从而提高产物的产量和纯度。
1.3 产物的回收和纯化重组大肠杆菌高密度发酵后,产物的回收和纯化也是至关重要的环节。
通过合理的回收和纯化工艺,可以获得高纯度的重组蛋白产品,满足不同应用领域的需求。
二、高密度发酵工艺流程优化2.1 发酵条件的优化在重组大肠杆菌高密度发酵过程中,发酵条件的优化对产品的产量和质量具有重要影响。
包括但不限于培养基配方的优化、发酵温度、通气量、pH值等参数的优化,通过优化发酵条件可以提高菌体的生长速率和产物的表达水平。
2.2 发酵过程监测与控制发酵过程的监测与控制是优化工艺流程的重要手段,包括对菌体生长情况的实时监测、代谢产物浓度的检测以及对发酵过程参数的实时调节等。
通过发酵过程的精准监测和控制,可以最大程度地发挥菌体的生长和代谢潜力。
2.3 产物回收与纯化工艺的改进产物的回收与纯化是影响产品质量的关键因素,通过改进产物回收与纯化工艺,可以提高产品的纯度和收率,降低生产成本,提高经济效益。
三、高密度发酵工艺流程相关技术3.1 培养基配方优化技术合理的培养基配方对于重组大肠杆菌的生长和表达具有重要影响,通过优化培养基配方,可以提高菌体的生长速率和产物的表达水平。
发酵细菌总结报告范文(3篇)
第1篇一、引言发酵技术是利用微生物的代谢活动来生产食品、药品、化工产品等的一种生物技术。
发酵细菌作为发酵过程中的主要微生物,在食品、医药、化工等领域具有广泛的应用。
本文对发酵细菌的种类、发酵过程、应用及发展趋势进行总结,以期为相关领域的研究提供参考。
二、发酵细菌的种类1. 醋酸菌醋酸菌是一种革兰氏阳性菌,广泛分布于土壤、水及空气中。
醋酸菌在发酵过程中可以将乙醇、葡萄糖等有机物转化为醋酸,产生具有酸味的醋。
醋酸菌在食品、医药、化工等领域具有广泛的应用。
2. 酵母菌酵母菌是一种单细胞真菌,广泛分布于土壤、植物表面及空气中。
酵母菌在发酵过程中可以将葡萄糖等有机物转化为酒精、二氧化碳等,产生酒、面包、啤酒等食品。
酵母菌在食品、医药、化工等领域具有广泛的应用。
3. 酵母乳杆菌酵母乳杆菌是一种革兰氏阳性菌,广泛分布于土壤、植物及动物肠道中。
酵母乳杆菌在发酵过程中可以将乳糖转化为乳酸,产生具有酸味的酸奶、酸奶饮料等。
酵母乳杆菌在食品、医药、化工等领域具有广泛的应用。
4. 醋酸杆菌醋酸杆菌是一种革兰氏阴性菌,广泛分布于土壤、水及空气中。
醋酸杆菌在发酵过程中可以将糖类、有机酸等物质转化为醋酸,产生具有酸味的醋。
醋酸杆菌在食品、医药、化工等领域具有广泛的应用。
5. 担子菌担子菌是一种大型真菌,广泛分布于土壤、植物及空气中。
担子菌在发酵过程中可以将纤维素、木质素等物质转化为糖类,产生香菇、金针菇等食用菌。
担子菌在食品、医药、化工等领域具有广泛的应用。
三、发酵过程1. 发酵菌的活化发酵菌的活化是指将菌种从休眠状态恢复到生长状态的过程。
活化过程中,通常采用无菌水、营养物质等对菌种进行培养,使其恢复生长活力。
2. 发酵液的制备发酵液的制备是指将活化后的发酵菌接种到含有营养物质的发酵培养基中,使其进行代谢活动的过程。
发酵液的制备过程中,需要控制发酵液的pH、温度、营养物质等条件,以保证发酵菌的正常生长。
3. 发酵过程发酵过程是指发酵菌在发酵培养基中进行代谢活动,产生所需产品的过程。
最新大肠杆菌发酵经验总结
大肠杆菌发酵经验总结首先,补料速率与比生长速率直接影响着乙酸的生成速率和积累量(主要是补料速率与比生长速率影响发酵液中的残糖量,进而影响),所以适当的控制补料速率和比生长速率,对于控制乙酸的量有很好的效果。
其次,必须要保证充足的溶氧,并严格控制pH值,而且补酸碱的速率尽量缓和,不能太快;温度对于蛋白的表达也有很重要的影响,较低的发酵温度下所生产出的蛋白大多是有活性的,而较高的发酵温度下产生的蛋白大多一包涵体形式存在。
第三,选取合理的诱导时间非常重要,一般的诱导时间选在指数生长后期,而且诱导时的比生长速率最好能控制在0.2之内,选在此时诱导,1.将菌体的快速生长期与蛋白合成期分开,使这两个阶段互不影响,有利于蛋白的高表达;2.已经得到了大量的菌体,而且菌体的生物量基本接近稳定,不论是从动力学角度,还是能耗,物料成本方面,都比较合理。
第四,补料过程中的碳氮比也很重要。
若氮源过高,会使菌体生长过于旺盛,pH偏高,不利于代谢产物的积累,氮源不足,则菌体繁殖量少从而影响产量;碳源过多,则容易刑场较低的pH,抑制菌体生长,碳源不足,则容易引起菌体的衰老和自溶。
另外,碳氮比不当还会引起菌体按比例的吸收营养物质,从而直接影响菌体的生长和产物的合成。
根据自己的经验,一般情况下,对于一个稳定的发酵工艺下,如果总是在固定的发酵时间段出现溶菌现象,而且能排除噬菌体和染菌的可能性后,那就可能是因为碳氮比不合理造成的。
可以适当调整碳氮比。
大家讨论得较多的是关于代谢副产物乙酸对大肠杆菌发酵的影响,针对我们论坛所发的帖,我先总结以下几点,并作出相应解决措施。
一、代谢副产物-乙酸乙酸是大肠杆菌发酵过程中的代谢副产物,在多大的浓度下产生抑制作用各种说法不一,一般认为在好气性条件下,5~10g/L 的乙酸浓度就能对滞后期、最大比生长速率、菌体浓度以及最后蛋白收率等都产生可观测到的抑制作用。
当乙酸浓度大于10或20g/L 时,细胞将会停止生长,当培养液中乙酸浓度大于12g/L 后外源蛋白的表达完全被抑制。
大肠杆菌总结
大肠杆菌发酵经验总结首先,补料速率与比生长速率直接影响着乙酸的生成速率和积累量(主要是补料速率与比生长速率影响发酵液中的残糖量,进而影响)所以适当的控制补料速率和比生长速率,对于控制乙酸的量有很好的效果。
其次,必须要保证充足的溶氧,并严格控制p H值,而且补酸碱的速率尽量缓和,不能太快;温度对于蛋白的表达也有很重要的影响,较低的发酵温度下所生产出的蛋白大多是有活性的,而较高的发酵温度下产生的蛋白大多一包涵体形式存在。
第三,选取合理的诱导时间非常重要,一般的诱导时间选在指数生长后期,而且诱导时的比生长速率最好能控制在0.2之内,选在此时诱导,1.将菌体的快速生长期与蛋白合成期分开,使这两个阶段互不影响,有利于蛋白的高表达;2.已经得到了大量的菌体,而且菌体的生物量基本接近稳定,不论是从动力学角度,还是能耗,物料成本方面,都比较合理。
第四,补料过程中的碳氮比也很重要。
若氮源过高,会使菌体生长过于旺盛,p H偏高,不利于代谢产物的积累,氮源不足,则菌体繁殖量少从而影响产量;碳源过多,则容易形成较低的p H,抑制菌体生长,碳源不足,则容易引起菌体的衰老和自溶。
另外,碳氮比不当还会引起菌体按比例的吸收营养物质,从而直接影响菌体的生长和产物的合成。
根据自己的经验,一般情况下,对于一个稳定的发酵工艺下,如果总是在固定的发酵时间段出现溶菌现象,而且能排除噬菌体和染菌的可能性后,那就可能是因为碳氮比不合理造成的。
可以适当调整碳氮比.温度对大肠杆菌的影响:大肠杆菌发酵最适温度是37 C,当温度最适菌体生长时,比增长速率将会增大。
随温度上升细菌代谢加快,其产生代谢副产物也会增加。
这些副产物会对菌体的生长产生一定的抑制作用。
菌体生长过快也会影响质粒的稳定性。
降低培养温度,菌体对营养物质的摄取和生长速率都会下降。
同时也减少了有毒代谢副产物的产生和代谢热的产生。
有时降低温度更有利于目的蛋白的正确折叠及表达。
在重组大肠杆菌的发酵中不同发酵阶段其最适温度也不同,为了能获得大量的目的蛋白,首先要保证菌体的量,因此在前期可优先考虑菌体的生长,到诱导阶段应将目的产物的表达放在首位。
微生物发酵个人工作总结
微生物发酵个人工作总结篇一:发酵工程总结版发酵工程期末复习名词解释:1.发酵工程是发酵原理与工程学的结合,是研究生物细胞参与的工艺过程的的原理和科学,是研究利用生物材料生产有用物质服务于人类的综合性科学技术。
2.分批培养:是指在一个密闭系统内,投入有限数量的营养物质后接入少量微生物菌种进行培养,使微生物生长繁殖,在特定条件下只完成一个生长周期的微生物培养方法。
3.连续培养:是指以一定的速度向培养系统内添加新鲜培养基,同时又以相同的速度流出培养液,从而使培养系统内培养液的量维持恒定,微生物细胞能在近似恒定状态下生长的发酵方式。
4.补料分批培养:是指在分批培养过程中,间歇或连续地补加新鲜培养基的培养方法5.液化:用α-淀粉酶将淀粉转化为糊精和低聚糖。
6.糖化:用糖化酶(又称葡萄糖淀粉酶)将糊精和低聚糖转化为葡萄糖7.糊化:在温水中,当淀粉颗粒无限膨胀形成均一的粘稠液体的现象,称为淀粉的糊化。
此时的温度称为糊化温度。
8.老化:分子间已断裂的氢键、糊化淀粉又重新排列形成新的氢键的过程,也就是复结的过程。
9.间歇灭菌间歇灭菌就是将配制好的培养基放入发酵罐或其他装置中,通入蒸汽将培养基和所用设备一起进行灭菌的操作过程,也称分批灭菌或实罐灭菌。
10.连续灭菌将配制好的培养基在向发酵罐输送的同时加热、保温和冷却,进行灭菌。
11.呼吸强度(比耗氧速率) QO2 :单位质量干菌体在单位时间内消耗氧的量。
单位:mmolO2/(kg干菌体·h)。
12.摄氧率γ(耗氧速率):单位体积培养液在单位时间内消耗氧的量。
单位:γ=QO2·x x——细胞浓度,kg/m313.临界氧浓度微生物的耗氧速率受发酵液中氧的浓度的影响,各种微生物对发酵液中溶氧浓度有一个最低要求,即不影响呼吸所允许的最低溶氧浓度,称为临界氧浓度,以C临界表示14.静电除菌:利用静电引力来吸附带电粒子而达到除尘灭菌的目的。
15.辐射灭菌:利用各种射线或超声波破坏蛋白质等生物活性物质,从而起到灭菌作用。
大肠杆菌高密度发酵中乙酸代谢
文献介绍
• 发酵仪器(附图介绍)
实验培养曲线对比
PH7.0、6.5培养曲线对比分析
A:PH:PH7.0时,PH相对稳定,6小时后有一个上升过程,直到7.5小时 恢复正常。 PH6.5时,PH变化较大,6小时后上升,接近6.5小时下降、稳定,大 概在8.5小时,再次上升,30分钟后下降,直到10小时才稳定。
非常相似(图5).在发酵6 h 前不久,当乙酸浓度达到 7.2g/L时,葡
萄糖消耗急剧的减少( 10 分钟减少40% )与上面描述的0.5 g/L观察
到的内容相似。在发酵过程中控制葡萄糖浓度为2.0 g/L,当葡萄糖消
耗下降时,培养物并不消耗乙酸。在 40 分钟之后,培养基浓度恢复,
葡萄糖消耗的持续增加,乙酸产生的增加。在葡萄糖消耗量减少的整
个期间,PH和异柠檬酸盐裂解酶都没有增长,可以看得出没有乙酸
消耗的现象出现,在没有发生改变的情况下。
文献总结
• 内容总结 • 在大肠杆菌发酵培养过程中,有氧和糖的消耗
以及二氧化碳的排放量暂时下降50%-80%的现象 发生,并伴有排泄物被利用的现象发生。 • 相对于营养物确定的培养基,在营养物富集的 培养基中,大肠杆菌会缓慢生长,并且会产生乙 酸。乙酸在培养基中的存在多方面影响细胞的生 理特性,浓度升高的乙酸溶液限制培养物的生长 速率,其对复杂培养基的影响比确定培养基大多 了,在分批补料培养中,乙酸的产生明显高于批 发酵所产生的,这是因为在延伸生长阶段大肠杆 菌使得乙酸达到最高浓度。
文献介绍
• 试验内容 通过14L发酵罐进行大肠杆菌高密度培养,分别以PH
为7.5、7.0、6.5、6.0,葡萄糖浓度为0.5g/L进行培养。 PH6.0,葡萄糖浓度为2.0g/L进行培养。
大肠杆菌发酵经验总结
大肠杆菌发酵经验总结大肠杆菌发酵经验总结首先,补料速率与比生长速率直接影响着乙酸的生成速率和积累量(主要是补料速率与比生长速率影响发酵液中的残糖量,进而影响),所以适当的控制补料速率和比生长速率,对于控制乙酸的量有很好的效果。
其次,必须要保证充足的溶氧,并严格控制pH值,而且补酸碱的速率尽量缓和,不能太快;温度对于蛋白的表达也有很重要的影响,较低的发酵温度下所生产出的蛋白大多是有活性的,而较高的发酵温度下产生的蛋白大多一包涵体形式存在。
第三,选取合理的诱导时间非常重要,一般的诱导时间选在指数生长后期,而且诱导时的比生长速率最好能控制在之内,选在此时诱导,1.将菌体的快速生长期与蛋白合成期分开,使这两个阶段互不影响,有利于蛋白的高表达;2.已经得到了大量的菌体,而且菌体的生物量基本接近稳定,不论是从动力学角度,还是能耗,物料成本方面,都比较合理。
第四,补料过程中的碳氮比也很重要。
若氮源过高,会使菌体生长过于旺盛,pH偏高,不利于代谢产物的积累,氮源不足,则菌体繁殖量少从而影响产量;碳源过多,则容易刑场较低的pH,抑制菌体生长,碳源不足,则容易引起菌体的衰老和自溶。
另外,碳氮比不当还会引起菌体按比例的吸收营养物质,从而直接影响菌体的生长和产物的合成。
根据自己的经验,一般情况下,对于一个稳定的发酵工艺下,如果总是在固定的发酵时间段出现溶菌现象,而且能排除噬菌体和染菌的可能性后,那就可能是因为碳氮比不合理造成的。
可以适当调整碳氮比。
大家讨论得较多的是关于代谢副产物乙酸对大肠杆菌发酵的影响,现总结以下几点,并作出相应解决措施。
一、代谢副产物-乙酸乙酸是大肠杆菌发酵过程中的代谢副产物,在多大的浓度下产生抑制作用各种说法不一,一般认为在好气性条件下,5〜10g/L的乙酸浓度就能对滞后期、最大比生长速率、菌体浓度以及最后蛋白收率等都产生可观测到的抑制作用。
当乙酸浓度大于10或20g/L时,细胞将会停止生长,当培养液中乙酸浓度大于12g/L后外源蛋白的表达完全被抑制。
大肠杆菌发酵经验总结
大肠杆菌发酵经验总结引言大肠杆菌(Escherichia coli)是一种常见的肠道细菌,广泛应用于科学研究和工业生产中。
大肠杆菌发酵是一种重要的技术,在医药、食品、生物燃料等领域得到广泛应用。
本文将总结一些关于大肠杆菌发酵的经验,包括菌种的选择、发酵培养基的配方、发酵条件的调控等方面。
菌种的选择选择合适的大肠杆菌菌株是进行发酵实验的关键。
一般常用的大肠杆菌菌株有DH5α、BL21(DE3)、TOP10等。
DH5α是一种多克隆位点的菌株,适合进行重组蛋白表达;BL21(DE3)则适合进行外源蛋白的大量表达;TOP10是一种高效转化菌株,适合进行质粒构建和质粒扩增。
根据实验需求选择合适的菌株,可以提高实验效果。
发酵培养基的配方发酵培养基的配方是影响大肠杆菌发酵的重要因素之一。
一般的发酵培养基包括碳源、氮源、微量元素、缓冲盐等成分。
常用的碳源有葡萄糖、甘油等;氮源有蛋白胨、酵母粉等;微量元素包括铁、锌、镉等;缓冲盐一般使用磷酸盐缓冲液或醋酸钠。
根据实验需求选择适当的培养基配方,并进行必要的优化和改良,可以提高大肠杆菌的产量和发酵效率。
发酵条件的调控良好的发酵条件有助于提高大肠杆菌的生长和产量。
合适的温度是一个重要的因素,一般采用37℃作为发酵温度。
过高的温度会导致菌体受损,影响发酵效果;过低的温度则会限制菌体生长。
此外,pH值的调控也是重要的一步。
大肠杆菌一般在pH为6.5-7.5之间生长最好,因此在发酵过程中需要监测和调控培养液的pH 值。
此外,氧气供应也是一个需要注意的因素。
适当的氧气供应可以提高大肠杆菌的产量,但过高的氧气供应则会影响发酵效果。
因此,根据实验需求进行适当的氧气供应和调控是很重要的。
反式表达蛋白的优化大肠杆菌经常被用来表达外源蛋白,而部分外源蛋白在正常条件下难以高效表达。
为了解决这个问题,可以采用一些常见的优化策略。
一种常用的优化策略是改变菌株和/或质粒。
例如,使用BL21(DE3)菌株进行表达时,可在质粒上引入IPTG 诱导系统来提高表达效果。
大肠杆菌发酵经验总结
大肠杆菌发酵经验总结大肠杆菌发酵经验总结首先,补料速率与比生长速率直接影响着乙酸的生成速率和积累量(主要是补料速率与比生长速率影响发酵液中的残糖量,进而影响),所以适当的控制补料速率和比生长速率,对于控制乙酸的量有很好的效果。
其次,必须要保证充足的溶氧,并严格控制pH值,而且补酸碱的速率尽量缓和,不能太快;温度对于蛋白的表达也有很重要的影响,较低的发酵温度下所生产出的蛋白大多是有活性的,而较高的发酵温度下产生的蛋白大多一包涵体形式存在。
第三,选取合理的诱导时间非常重要,一般的诱导时间选在指数生长后期,而且诱导时的比生长速率最好能控制在0.2之内,选在此时诱导,1.将菌体的快速生长期与蛋白合成期分开,使这两个阶段互不影响,有利于蛋白的高表达;2.已经得到了大量的菌体,而且菌体的生物量基本接近稳定,不论是从动力学角度,还是能耗,物料成本方面,都比较合理。
第四,补料过程中的碳氮比也很重要。
若氮源过高,会使菌体生长过于旺盛,pH偏高,不利于代谢产物的积累,氮源不足,则菌体繁殖量少从而影响产量;碳源过多,则容易刑场较低的pH,抑制菌体生长,碳源不足,则容易引起菌体的衰老和自溶。
另外,碳氮比不当还会引起菌体按比例的吸收营养物质,从而直接影响菌体的生长和产物的合成。
根据自己的经验,一般情况下,对于一个稳定的发酵工艺下,如果总是在固定的发酵时间段出现溶菌现象,而且能排除噬菌体和染菌的可能性后,那就可能是因为碳氮比不合理造成的。
可以适当调整碳氮比。
大家讨论得较多的是关于代谢副产物乙酸对大肠杆菌发酵的影响,现总结以下几点,并作出相应解决措施。
一、代谢副产物-乙酸乙酸是大肠杆菌发酵过程中的代谢副产物,在多大的浓度下产生抑制作用各种说法不一,一般认为在好气性条件下,5~10g/L 的乙酸浓度就能对滞后期、最大比生长速率、菌体浓度以及最后蛋白收率等都产生可观测到的抑制作用。
当乙酸浓度大于10或20g/L 时,细胞将会停止生长,当培养液中乙酸浓度大于12g/L 后外源蛋白的表达完全被抑制。
大肠杆菌实验总结
分离划线分离:方法简单,但单菌落较难分开。
涂布分离:单菌落更易分开,但操作复杂。
(一)制备LB培养基(通用的细菌培养基)1、配方:蛋白胨10.0克,牛肉膏5.0g,氯化钠10.0克,水1000ml(配固体培养基再加琼脂20克)2、流程计算称量溶解调pH分装加塞,包扎灭菌倒平板培养基配制(特)培养基应现配现用,每次配置350ml,一次性使用完毕。
1、按下表称取物资配置LB培养基到500ml锥形瓶中:2、用双层铝箔和棉绳对锥形瓶进行封口,摇晃锥形瓶以使各物质迅速、均匀、完全、溶解。
待灭菌。
①分装:注意不要使培养基沾在管口或瓶口上,因此在将培养基转移到三角瓶或试管中时必须用___三角漏斗 _。
②加塞:试管用塑料盖或__棉花塞___;三角瓶口用_封口膜__或_6层纱布封口,再用__牛皮纸__或报纸封口。
③包扎:用_牛皮纸__或报纸④灭菌:高压蒸气灭菌法 1)加水:向外层锅内加入适量的水,加水的要求是不触及内胆 _.2)装锅:物品放置的要求__整齐、稳定、留出空隙:加盖:将盖上的排气软管插入内层灭菌桶的_排气槽__内。
再以__两两对称方式同时旋紧相对的两个螺栓,使螺栓松紧一致,勿使漏气。
3)加热排气:打开排气阀,使水沸腾以排除锅内的冷空气。
待冷空气完全排尽后,关上排气阀。
4)保温保压:当锅内压力升到1_kg/cm2时,控制热源,维持压力至15 _min。
5)出锅:切断电源,让灭菌锅内温度自然下降,当压力降至_0_时,打开_排气阀__,旋松螺栓,打开盖子,取出灭菌物品。
否则会因锅内压力较高,打开气阀后造成的压力差可能使容器内的培养基喷溅造成棉塞沾染培养基而发生污染,甚至使容器爆炸。
灭菌后,通常将实验用具放入60℃~80 ℃_烘箱中烘干,以除去灭菌时的水分,避免引起_污染_。
⑤倒平板、制斜面操作平台:超净台灭菌好的培养基和实验器具置于超净台上打开__紫外线 _和_过滤风,灭菌30min.倒平板:待培养基冷却至__60_ ℃时,将每只培养皿倒入_10~12_ml未凝固的固体培养基,置于_水平_位置上,轻轻晃动使其均匀铺满平皿底部,待凝,使之形成平面。
发酵工艺:工程菌高密度发酵工艺开发策略8项(以大肠杆菌为例)
发酵工艺:工程菌高密度发酵工艺开发策略8项(以大肠杆菌为例)利用重组DNA技术获取的生物药物在人类文明史上具有划时代的意义。
许多价值高产量低的功能蛋白如干扰素、白细胞介素、集落刺激因子、生长激素、胰岛素、人血白蛋白、蛋白酶等都在工程菌中获得了高效率表达。
由于工程菌高密度培养能够提高单位体积的产量,在工业生产上可以提高效率降低成本。
所以,高密度培养一直都是发酵工程师们所追捧的热点。
本文就工程大肠杆菌高密度发酵工艺开发中涉及的关键控制点加以探讨。
1工程菌种稳定可靠的菌种是工业化大生产的有力保障,直接关系到生产效率和成本高低。
不同于传统诱变育种模式,在对待工程菌菌种问题上,有人认为基因工程菌种构建完成后无需经过严格单克隆筛选,既节约时间成本又大大减少了工作量,这其实是一个认识误区。
这样做出来的菌种很难连续稳定传代50次以上,给中试放大以及后续的长期稳定生产留下了隐患。
业内一般以能否稳定遗传50代作为判断工程菌种优劣的一个标准。
发酵所需的接种量不是越大越好,要适当。
接种量过小导致适应期过长,菌种易提前老化,也增加了杂菌污染的风险。
接种量过大会过早引起溶氧不足,导致发酵失控。
且营养物质消耗过快也会影响后期正常生长。
一般大肠杆菌接种量遵循逐级增大的原则,并将最后一级的放大倍数控制在10倍左右。
种子培养一定要在最佳条件下进行,培养时间不宜过长,当种子生长至最佳状态时果断移种。
如果种子做的不好,其负面影响往往在发酵中后期会有所体现。
工程菌种培养会加入抗生素,不仅是为了抑制杂菌生长,更重要的是为了给菌种形成正向的抗性筛选压力,及时淘汰质粒丢失的菌株或者衰老的菌体,保证质粒携带菌群的正常生长与表达。
2高密度发酵培养基除了必须的碳源以外,有机复合氮源在蛋白表达阶段不可或缺。
有机复合氮源可提供丰富的氨基酸、小肽、嘌呤、嘧啶、维生素、生物素以及一些生物活性物质,能减轻细胞代谢负担,促进外源蛋白表达。
如果酵母膏和蛋白胨是以流加的方式添加时,存在一种非常有趣的代谢机制:当流加培养基中只有酵母膏时,重组蛋白不稳定;而当流加培养基中只有蛋白胨时,大肠杆菌难以再利用其所产生的乙酸。
大肠杆菌高密度发酵提高表达量的策略
大肠杆菌高密度发酵提高表达量的策略概述重组大肠杆菌的高密度培养的目的在于获得更高的目标蛋白单位体积产量。
但是在重组大肠杆菌的高密度培养过程中,常常遇见的是高密度低表达现象,表达效率只有摇瓶的三分之一。
实现外源蛋白在菌体高密度培养过程中高效率表达仍是工程重组菌发酵的研究热点。
添加复合氮源菌体生长至高密度时,营养成分逐步耗尽。
营养的缺乏也是限制高密度培养下实现高表达的因素。
Shimizu等发现在表达阶段,限制蛋白胨和酵母抽提物的浓度,对外源基因表达不利,补料液中加大酵母抽提物比例可以提高外源蛋白的表达量。
认为有机氮源提供丰富的氨基酸、小肽、嘌呤、嘧啶、维生素、生物素以及一些生物活性物质,减轻了细胞代谢负担,促进了外源蛋白的表达。
利用代谢工程作用消除乙酸的抑制作用乙酸对菌体生长和外源蛋白表达抑制的机理通常认为是乙酸破坏了跨膜质子梯度,而跨膜质子梯度是氧化磷酸化和其它需能跨膜运输所必需。
pH为中性时乙酸以HAc 和Ac-形式共存,HAc渗透过细胞膜,在细胞内(pH约为7.5)再分解为H+和Ac-。
由于不断渗透使胞外HAc和Ac-之间平衡向HAc移动,结果引起一个净电中性H+内流,降低了胞内pH 。
由于具有缓冲功能的培养基体积大,乙酸渗透不会导致胞外pH发生剧烈变化,因此胞内pH降低将产生去偶联影响。
细胞自身的稳态机制需要能量以改变胞内pH降低趋势,即使质子推动力不发生变化情况下也是如此。
因此为了快速生长,E.coli不仅需要一个大的质子电动势,而且需要维持最佳胞内pH。
乙酸大量积累将加剧代谢去偶联的发生。
也有报道认为乙酸等短链脂肪酸对DNA、RNA、蛋白质、脂质和肽聚糖等的合成均有抑制,而这些大分子物质是菌体生长和外源蛋白表达所必需的。
目前,一些控制乙酸生成的方法正在被人们所研究,比如培养基优化法,有人以甘油代替葡萄糖作为碳源,实现了高密度培养;葡萄糖流加控制也是一种常用的控制乙酸的方法。
为了减少或避免乙酸积累,已经发展了各种葡萄糖流加策略,流加方式主要有恒速流加、线性流加、指数流加等。
大肠杆菌在工业发酵中的应用
大肠杆菌在工业发酵中的应用大肠杆菌(Escherichia coli)是一种广泛存在于自然界中的细菌,以其快速繁殖、易于培养、基因遗传和代谢途径清楚等特点,成为重要的微生物工程研究材料。
自从20世纪50年代,人们就开始利用大肠杆菌作为工业微生物生产众多化学品与生物制品,如费德尔-克拉夫茨试剂、氨基酸、抗生素、人类胰岛素等。
随着人类对微生物工程表达技术的不断提高,大肠杆菌在工业发酵中的应用变得更加广泛。
本文将就此对大肠杆菌在工业发酵中的应用进行阐述。
基因重组技术在大肠杆菌中的应用2006年,克雷格发表了大肠杆菌首个全基因组鉴定报告,该报告揭示了大肠杆菌基因组进化关系、基因功能和调节机理的重要信息。
随着大肠杆菌基因重组技术的不断提高,其在工业发酵中的应用也愈加广泛。
利用基因重组技术,人们可以在大肠杆菌中表达许多人类蛋白质,从而得到有益的生物制品。
比如,在大肠杆菌中表达人类白蛋白,可以利用其替代人体血浆,来预防一些遗传病和血液病。
此外,大肠杆菌在表达组合蛋白的方面也有很大的应用前景,如表达多肽疫苗、人类肝素、曼诺糖、葡聚糖、胞外酶等。
大肠杆菌在生物燃料生产中的应用生物燃料目前被誉为未来氢能源的热门产物,而大肠杆菌在生物燃料生产中也有其出色的表现。
大肠杆菌在产生乙醇方面有一定的潜力。
研究表明,大肠杆菌在发酵糖过程中分泌麦芽糖酶(MalZ),可以将来自于淀粉、糖和纤维质的碳水化合物转化为糖,同时还可以耗尽优质碳水化合物的余量,产生高浓度的乙醇。
此外,在利用生物质产生氢气的过程中,人们也发现大肠杆菌表达的羟甲酰辅酶A还原酶(HdrABC)也可以促进生物产氢的过程。
大肠杆菌在食品工业中的应用大肠杆菌在食品工业中的应用非常广泛,主要是利用其代谢产物,如酶和胞外多糖等。
以酶为例,在食品酶方面,大肠杆菌可以发酵出多种酶,包括蛋白酶、淀粉酶、葡萄糖酸酶等,这些酶对于食品的加工、改良和调味都具有良好的帮助作用。
此外,在面包生产中,大肠杆菌的酶可以使面团更松软、口感更佳,而在大肠杆菌的胞外多糖方面,其生物合成的多糖对于食品制造也是非常有益的,如xanthan多糖用于增粘剂和乳化剂等。
大肠杆菌高密度经验总结
大肠杆菌发酵经验总结首先,补料速率与比生长速率直接影响着乙酸的生成速率和积累量(主要是补料速率与比生长速率影响发酵液中的残糖量,进而影响),所以适当的控制补料速率和比生长速率,对于控制乙酸的量有很好的效果。
其次,必须要保证充足的溶氧,并严格控制pH值,而且补酸碱的速率尽量缓和,不能太快;温度对于蛋白的表达也有很重要的影响,较低的发酵温度下所生产出的蛋白大多是有活性的,而较高的发酵温度下产生的蛋白大多一包涵体形式存在。
第三,选取合理的诱导时间非常重要,一般的诱导时间选在指数生长后期,而且诱导时的比生长速率最好能控制在0.2之内,选在此时诱导,1.将菌体的快速生长期与蛋白合成期分开,使这两个阶段互不影响,有利于蛋白的高表达;2.已经得到了大量的菌体,而且菌体的生物量基本接近稳定,不论是从动力学角度,还是能耗,物料成本方面,都比较合理。
第四,补料过程中的碳氮比也很重要。
若氮源过高,会使菌体生长过于旺盛,pH偏高,不利于代谢产物的积累,氮源不足,则菌体繁殖量少从而影响产量;碳源过多,则容易刑场较低的pH,抑制菌体生长,碳源不足,则容易引起菌体的衰老和自溶。
另外,碳氮比不当还会引起菌体按比例的吸收营养物质,从而直接影响菌体的生长和产物的合成。
根据自己的经验,一般情况下,对于一个稳定的发酵工艺下,如果总是在固定的发酵时间段出现溶菌现象,而且能排除噬菌体和染菌的可能性后,那就可能是因为碳氮比不合理造成的。
可以适当调整碳氮比。
大家讨论得较多的是关于代谢副产物乙酸对大肠杆菌发酵的影响,针对我们论坛所发的帖,我先总结以下几点,并作出相应解决措施。
一、代谢副产物-乙酸乙酸是大肠杆菌发酵过程中的代谢副产物,在多大的浓度下产生抑制作用各种说法不一,一般认为在好气性条件下,5~10g/L 的乙酸浓度就能对滞后期、最大比生长速率、菌体浓度以及最后蛋白收率等都产生可观测到的抑制作用。
当乙酸浓度大于10或20g/L 时,细胞将会停止生长,当培养液中乙酸浓度大于12g/L 后外源蛋白的表达完全被抑制。
基因工程大肠杆菌发酵的研究
基因工程大肠杆菌发酵的研究基因工程大肠杆菌发酵是一种高效的生物工程技术,广泛应用于医药、食品、化工等领域。
该技术利用基因工程手段,将外源基因导入大肠杆菌中,使其表达出所需的蛋白质或其他代谢产物。
本文旨在探讨基因工程大肠杆菌发酵的研究现状、实验方法、实验结果及分析,以期为相关领域的研究提供参考。
基因工程大肠杆菌发酵的研究已经取得了长足进展。
国内外研究者通过基因改造、代谢工程、细胞工程等手段,成功地实现了多种外源基因在大肠杆菌中的表达。
这些外源基因产物包括抗体、疫苗、胰岛素、生长因子等具有重要应用价值的蛋白质。
同时,基因工程大肠杆菌发酵在提高产量、优化发酵条件等方面也取得了显著成果。
基因工程大肠杆菌发酵的实验方法主要包括以下步骤:接种:将经过基因改造的大肠杆菌接种至含有适量营养物质的液体培养基中。
培养:在适宜的温度和pH条件下,进行静置培养或搅拌培养,以利于微生物的生长和繁殖。
提取:经过离心、过滤等手段,将大肠杆菌细胞分离出来,并将其中的目标蛋白质或代谢产物提取出来。
实验方法具有操作简单、易于大规模生产等优点。
然而,该方法也存在一定的局限性,如发酵过程中可能出现的杂菌污染、产物稳定性不足等问题,需进一步完善。
通过基因工程大肠杆菌发酵实验,我们成功地实现了目标蛋白质的表达能力提高,并优化了发酵条件,提高了产量。
经过对发酵液的成分进行分析,发现目标蛋白质的表达量占大肠杆菌总蛋白的30%以上,说明表达水平较高。
同时,我们发现经过基因改造的大肠杆菌在发酵过程中的生长速度和细胞密度均得到显著提高。
实验结果表明,基因改造的大肠杆菌在发酵过程中表现出优良的性能。
通过对比实验,我们发现经过基因改造的大肠杆菌比未经过改造的大肠杆菌的目标蛋白质表达量高出数倍。
我们发现基因改造的大肠杆菌在发酵过程中的生长速度和细胞密度也得到显著提高,这为提高目标产物的产量奠定了基础。
然而,实验结果也表明该方法存在一些不足之处。
虽然目标蛋白质的表达量较高,但仍有部分大肠杆菌细胞未表达目标蛋白质,这可能影响到产物的纯度和收率。
重组大肠杆菌 高密度发酵工艺流程
重组大肠杆菌是一种重要的微生物工程技术,它在生物医药领域具有广泛的应用前景。
高密度发酵是重组大肠杆菌工程中的关键技术之一,它能够提高生产效率,降低成本,是生物制药工业发展的重要推动力。
本文将围绕重组大肠杆菌高密度发酵工艺流程展开讨论,旨在全面梳理该流程的节点、原理和优化策略,为相关领域的研究人员和工程师提供参考和借鉴。
一、高密度发酵工艺流程概述高密度发酵是指通过对发酵过程中的微生物、培养基、营养物质、发酵条件等方面进行优化,使得发酵反应体系中微生物细胞数量达到较高水平的一种发酵技术。
重组大肠杆菌是一种常见的表达宿主,其高密度发酵工艺流程主要包括菌种预处理、大规模发酵、收获和纯化等环节。
1. 菌种预处理菌种的筛选和预处理对于高密度发酵的成功至关重要。
首先要选择生长迅速、表达目的蛋白质能力强的重组大肠杆菌菌株,确保其具有较高的生产潜力。
随后进行菌种的预培养和激发,通过连续传代、逐渐提高菌种浓度等手段,使菌种达到理想的生长状态,为大规模发酵做好准备。
2. 大规模发酵大规模发酵是高密度发酵的核心环节,其主要包括发酵罐设计、发酵培养基配方、发酵条件控制等内容。
在发酵罐设计方面,需要考虑罐体结构、通气方式、搅拌方式等因素,以保证发酵过程中的氧气和营养物质充分混合,为微生物生长提供良好的环境。
培养基的配方需要根据菌株特性进行调整,保证细胞生长所需的碳源、氮源、无机盐等养分充足。
发酵过程中温度、pH、溶氧量、搅拌速率等参数的控制也至关重要,可通过在线监测和智能控制系统进行实时调节,以确保发酵反应的顺利进行。
3. 收获和纯化发酵结束后,需对发酵液进行收获和纯化,以获取所需的重组蛋白质产品。
收获过程包括发酵液的分离、离心、过滤等操作,目的是将微生物细胞和培养基分离,获取含有目的产物的上清液。
随后进行一系列的纯化步骤,如固定化金属亲和层析、离子交换层析、尺寸排阻层析等,最终得到纯度较高的重组蛋白质产品。
二、高密度发酵工艺流程优化策略为了提高重组大肠杆菌的生产效率和产品质量,研究人员和工程师们一直在不断探索和优化高密度发酵工艺流程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大肠杆菌发酵经验总结大肠杆菌发酵经验总结首先,补料速率与比生长速率直接影响着乙酸的生成速率和积累量(主要是补料速率与比生长速率影响发酵液中的残糖量,进而影响),所以适当的控制补料速率和比生长速率,对于控制乙酸的量有很好的效果。
其次,必须要保证充足的溶氧,并严格控制pH值,而且补酸碱的速率尽量缓和,不能太快;温度对于蛋白的表达也有很重要的影响,较低的发酵温度下所生产出的蛋白大多是有活性的,而较高的发酵温度下产生的蛋白大多一包涵体形式存在。
第三,选取合理的诱导时间非常重要,一般的诱导时间选在指数生长后期,而且诱导时的比生长速率最好能控制在0.2之,选在此时诱导,1.将菌体的快速生长期与蛋白合成期分开,使这两个阶段互不影响,有利于蛋白的高表达;2.已经得到了大量的菌体,而且菌体的生物量基本接近稳定,不论是从动力学角度,还是能耗,物料成本方面,都比较合理。
第四,补料过程中的碳氮比也很重要。
若氮源过高,会使菌体生长过于旺盛,pH偏高,不利于代产物的积累,氮源不足,则菌体繁殖量少从而影响产量;碳源过多,则容易刑场较低的pH,抑制菌体生长,碳源不足,则容易引起菌体的衰老和自溶。
另外,碳氮比不当还会引起菌体按比例的吸收营养物质,从而直接影响菌体的生长和产物的合成。
根据自己的经验,一般情况下,对于一个稳定的发酵工艺下,如果总是在固定的发酵时间段出现溶菌现象,而且能排除噬菌体和染菌的可能性后,那就可能是因为碳氮比不合理造成的。
可以适当调整碳氮比。
大家讨论得较多的是关于代副产物乙酸对大肠杆菌发酵的影响,现总结以下几点,并作出相应解决措施。
一、代副产物-乙酸乙酸是大肠杆菌发酵过程中的代副产物,在多大的浓度下产生抑制作用各种说法不一,一般认为在好气性条件下,5~10g/L 的乙酸浓度就能对滞后期、最大比生长速率、菌体浓度以及最后蛋白收率等都产生可观测到的抑制作用。
当乙酸浓度大于10或20g/L 时,细胞将会停止生长,当培养液中乙酸浓度大于12g/L 后外源蛋白的表达完全被抑制。
预防乙酸产生的措施:1、通过控制比生长速率来减少乙酸的产生:比生长速率越高,乙酸产生越多,当比生长速率超过某个值时,乙酸开始产生。
可以通过降低温度,调节酸碱度,控制补料等方法来降低比生长速率。
2、透析培养:在大肠杆菌的培养过程中可以用透析技术除去发酵液中的有害物质,降低乙酸含量从而实现重组菌的高密度发酵和产物的表达。
3、控制葡萄糖的浓度:葡萄糖是大肠杆菌发酵过程中重要的碳源之一,用其作碳源是要将其控制在一个较低的水平上,以减少乙酸的产生。
常用的控制方法主要有:恒pH法:大肠杆菌会代葡萄等产生乙酸,使pH 值下降。
因此可通过pH值的高低作为控制葡萄糖的指标,该法的缺点是pH 的变化不完全是由葡萄糖代的结果,容易造成补料体系出错。
恒溶氧法:菌体代时会消耗氧,使溶氧下降,当葡萄糖浓度低到一定程度时菌体代下降,消耗氧能力下降,溶氧上升。
因此,根据溶氧曲线补加葡萄糖,保持溶氧恒定,可以控制葡萄糖在一定的水平。
二、温度大肠杆菌发酵最适温度是37 C,当温度最适菌体生长时,比增长速率将会增大。
随温度上升细菌代加快,其产生代副产物也会增加。
这些副产物会对菌体的生长产生一定的抑制作用。
菌体生长过快也会影响质粒的稳定性。
降低培养温度,菌体对营养物质的摄取和生长速率都会下降。
同时也减少了有毒代副产物的产生和代热的产生。
有时降低温度更有利于目的蛋白的正确折叠及表达。
在重组大肠杆菌的发酵中不同发酵阶段其最适温度也不同,为了能获得大量的目的蛋白,首先要保证菌体的量,因此在前期可优先考虑菌体的生长,到诱导阶段应将目的产物的表达放在首位。
三、培养方式微生物的培养方式主要有分批、连续和补料分批3种。
大肠杆菌发酵大多采用补料分批培养,这是在现代发酵工艺得到优化的一种方式,能有效的优化微生物培养过程中的化学环境。
使微生物处于最佳的生长环境。
这种方式一方面可以避免某些营养成分初始浓度过高出现底物抑制现象,另一方面能够防止限制性营养成分被耗尽而影响细胞的生长和产物的形成。
补料分批培养已广泛应用于各种各样的初级、次级生物产品和蛋白等的发酵生产中。
生物技术研究者追求的两个主要目标,一是新型生物产品的开发,另一就是为传统的或新生生物产品,寻求更经济的生产方式。
近十年来,利用遗传工程技术来生产一些重要的生物药物,是生物技术领域中迅速发展的一个重要方向。
在这一研究领域里,如何创造更经济、更有效的方法,来提高生产过程的经济性和产品的市场竞争力,已经成为生物技术领域的科学家们所关注的焦点问题。
利用重组DNA技术生产重要的生物药物,在人类文明史上具有划时代的意义。
由于生产成本和生产率的高低直接影响公司的生存,重组生物药物生产过程的优化已经成为一个重要问题。
它包括以下六个方面∶(1)适宜宿主的选择;(2)重组蛋白积累位点(如可溶的胞积累、胞聚合积累、周质积累或胞外积累)的确定;(3)重组基因最大表达的分子策略;(4)细胞生长和生产环境的优化;(5)发酵条件的优化;(6)后处理过程的优化。
只有这六个方面都以实现高生产率为目标,整个生产过程的最优化才能实现。
(一)细胞生长环境的优化策略要提高细胞密度和生产率,首先需要对微生物生长的物理和化学环境进行优化,包括生长培养基的组成,培养物理参数(pH、温度和搅拌)及产物诱导条件。
优化这些参数的目的在于保证细胞生长处于最适的环境条件之下,避免营养物过量或不足、防止产物降解以及减少有毒产物的形成。
1.培养基组成的优化培养基常含有碳(能)源、氮源,以及微营养物如维生素和微量元素,这些营养物的浓度与比例,对实现生产重组微生物的高密度发酵是很重要的。
例如,过量的Fe2+和CaCO3与相对低浓度的磷酸盐可促进黄曲霉生产L-苹果酸;链霉菌在60~80 mmol/L -淀粉酶的产量可提高2倍。
α的产率显著提高。
此外还发现,限制精氨酸的浓度虽然会抑制细胞的生长,但比起精氨酸充足时细胞生长优良的情况,其重组βCO32-存在下,其丝氨酸蛋白酶生产能力可提高10倍之多;在重组微生物达到高细胞密度后,限制磷酸盐浓度可使抗生素和异源白介素培养基中复合氮源的种类对重组大肠杆菌的高密度发酵也非常重要。
一般地,当流加培养基中含有酵母膏时,重组蛋白不稳定;而当流加培养基中含有蛋白胨时,大肠杆菌不能再利用其所产生的乙酸。
将酵母膏和蛋白胨都加入流加培养基中,不但所生产的重组蛋白非常稳定,细胞还能再利用代合成的乙酸,这是一种非常有趣的代机制。
恒化技术可用于优化精氨酸营养缺陷型大肠杆菌X90的生长培养基。
使该菌株以0.4 h-1的比生长速率在含精氨酸的基本培养基上生长,待培养达到稳定状态后,在恒化器分别加入氨基酸、维生素和微量元素来考察这些物质对菌体生长和精氨酸合成的影响。
结果表明,由于氨基酸生物合成途径的末端产物抑制作用,加入某些氨基酸后,细胞生长反而受到抑制。
加入NH4Cl后细胞量则出现了戏剧性的增长。
而添加维生素对菌体生长基本上没有任何影响。
通过计算生物量对每种基质的产率,最终可以确定高密度发酵培养基的组成,在此优化培养基上,大肠杆菌X90细胞密度可达到92 g/L,同时形成56 mg/L的胞外重组蛋白酶。
2.特殊营养物的添加-酰胺酶的培养基中添加60β在某些情况下,向培养基中添加一些营养物质能提高生产率。
这些营养物的作用有可能是作为产物的前体,也有可能是阻止产物的降解,例如,在培养重组大肠杆菌生产氯霉素乙酰转移酶(一种由许多芳香族氨基酸组成的蛋白)时添加苯丙氨酸,可将酶的比活力提高大约2倍;在培养重组枯草芽孢杆菌生产 g/L的葡萄糖和100 mmol/L 的磷酸钾能使重组蛋白的稳定性显著提高。
其原因可能是由于宿主细胞产生的多种胞外蛋白酶的活性被抑制,从而防止了重组蛋白的降解。
在生长培养基中添加特殊物质有时还能以一种未知的机制提高生产率。
例如,在摇瓶培养M icromonospora cbersina时添加碘化钠可使dynemicin A的产量提高35倍,但在小型反应器中却无法重复这一结果。
3.限制代副产物的积累培养条件的控制对代副产物的形成影响甚大。
在分批或流加培养中,某些营养物的浓度过高均会导致Crabtree效应的产生。
在这种效应下,酿酒酵母会产生乙醇,大肠杆菌则会产生过量乙酸,一旦生成乙酸,细胞生长及重组蛋白的生产均会受到抑制。
大肠杆菌形成乙酸的速度依赖于细胞的生长速度和培养基的组成。
业已确证,如果在培养基中添加复合营养物(如大豆水解物),则会增加乙酸的积累量。
针对如何减轻由于乙酸积累而产生的负面影响,众多研究者进行了大量工作,如利用循环发酵技术来限制乙酸在重组大肠杆菌高密度培养中的积累。
近来也有研究表明,添加某些氨基酸能减轻乙酸的抑制作用。
如在培养基中添加10 -酰胺酶,并能刺激酶从周质向培养基中释放,但此时仍有乙酸伴随生成。
β-淀粉酶和αmg/ L的甘氨酸能显著促进大肠杆菌合成重组(二)培养模式由于许多营养物在高浓度下对细胞有抑制作用,而为了达到高细胞密度,又必须供给大量的营养物质,因此,浓缩营养物必须以与其消耗速率成比例的速度加入反应器中。
为此产生了多种形式的补料策略,它可以简单到线性补料,也可以复杂到利用数学模型计算得出的策略来控制补料速率。
具体来说,培养模式的选择主要依赖于以下三个因素∶(1)所培养细胞的具体代行为;(2)利用抑制性底物合成目的产物的潜力;(3)诱导条件以及测量细胞培养各项参数的能力。
1.大肠杆菌流加发酵策略大肠杆菌是迄今为止遗传背景最清楚的菌株,广泛用于基因工程的研究中。
大肠杆菌高密度培养时最关键的问题是如何尽量减少乙酸的产生,因为高浓度葡萄糖或高比生长速率带来的高浓度乙酸会严重抑制细胞生长和重组蛋白的生产。
研究发现,即使葡萄糖浓度只有0.25~0.5 g/L,大肠杆菌仍会产生乙酸。
因此,高细胞密度发酵所采用的流加策略必须按照一定的算法制定,以保持反应器中底物浓度处于较低的水平。
营养物最好以它们的消耗速率加入反应器中,这样不仅可以防止底物积累到毒性水平,也不会使细胞处于饥饿状态。
近年来已经报道了多种控制大肠杆菌流加培养中流加速率的方法,其多数是将流加速率与一种物理参数间接耦合(如溶氧、pH或CO2释放速率)。
有学者将溶氧控制在一个预定值上以保证较低的生长速率,结果乙酸产生很少,最终细胞干重达到110 g/L,并发现较低的比生长速率还有利于重组蛋白的高表达。
在另一个控制低比生长速率的高细胞密度培养中,研究者采用先指数流加葡萄糖、铵盐和无机盐,后采用广义线性流加的培养策略,有效地防止了乙酸的积累,重组大肠杆菌的细胞密度达到66 g/L,通过温度诱导可在胞形成19.2 g/L的活性重组蛋白。
如果将葡萄糖浓度控制在一个不致于产生毒性的足够低的水平上,也可以使细胞在不存在限制性基质的情况下迅速生长到高细胞密度。