初二数学几何图形题(供参考)
初二数学几何图形练习题
初二数学几何图形练习题1. 设△ABC 为等腰直角三角形,其中∠BAC = 90°,∠ABC =∠ACB。
已知 AB = 5cm。
(a) 求 BC 的长度。
(b) 求△ABC 的面积。
2. 在△ABC 中,AD 是边 BC 的中线,且 AB = 3cm,BC = 4cm。
连接 BD,BD 的延长线交 AC 于 E 点。
(a) 求 BD 和 DE 的长度。
(b) 求△ADE 的面积。
3. 在△ABC 中,D、E 两点分别在边 AB、AC 上。
若DE ║ BC,则证明:AD/BD + AE/CE = 1。
4. 已知△ABC 中,∠BAC = 40°,∠ABC = 70°,点 D 在边 BC 上,且满足 BD = AC。
(a) 求∠BDC 的度数。
(b) 求∠ADB 的度数。
5. 在△ABC 中,D、F 分别是边 AB、AC 上的两个点,连接 BF、CD。
已知 AF = 6cm,BF = 4cm,CF = 3cm,FD = 1.5cm。
(a) 求△BFD 的面积。
(b) 求△ABC 的面积。
6. △ABC 的三个内角分别为 60°、75°、45°。
(a) 将△ABC 分别绕着顶点 A,边 BC,边 AC 旋转 90°,分别得到△A'B'C'、△AB'C'、△A'BC。
求△A'B'C'、△AB'C'、△A'BC 的内角。
(b) 证明△A'B'C' 是等腰三角形。
7. 在平面直角坐标系中,点 A(3, 4)、B(-1, -2)、C(-2, 6) 是顶点坐标。
连接 AB、AC,垂直平分 AC 的线段交 AB 的延长线于点 D。
求点 D 的坐标。
8. 已知△ABC 中,点 D、E 分别是边 AB、BC 上的两个点,且 DE ║ AC。
八年级数学几何图形画图题
八年级数学几何图形画图题
本文档旨在提供一些八年级数学中关于几何图形画图题的练题和解答。
以下是两道例题:
1. 问题:在平面直角坐标系中,画出方程2x - 3y = 6对应的直线。
解答:为了画出这条直线,我们需要知道直线上的两个点。
为此,我们可以将方程转化为斜截式(y = mx + c)形式。
首先,将方程转化为标准形式得到3y = 2x - 6。
然后,将方程左右两边同时除以3得到y = (2/3)x - 2。
现在,我们可以选择任意一个x值计算对应的y值。
假设x = 0,则y = (2/3)(0) - 2 = -2。
因此,我们得到了第一个坐标为(0, -2)。
选择另一个x值计算对应的y值可以得到另一个坐标为(3, 0)。
现在我们可以在平面直角坐标系中画出通过这两个点的直线。
2. 问题:在平面直角坐标系中,画出边长为4的正方形。
解答:正方形的特点是四边长度相等且四个角都是直角。
为了画出边长为4的正方形,我们可以根据这些特点来确定正方形的四个顶点坐标。
假设起点坐标为(0, 0),那么正方形的四个顶点分别是(0, 0)、(4, 0)、(4, 4)和(0, 4)。
连接这四个顶点,我们可以得到一个边长为4的正方形。
以上是两道八年级数学中关于几何图形画图题的例题和解答。
通过这些练,学生们可以加深对几何图形的理解,并提升他们的画图能力。
最新初中数学几何图形初步经典测试题及答案
最新初中数学几何图形初步经典测试题及答案一、选择题1.如图,直线AC ∥BD ,AO 、BO 分别是∠BAC 、∠ABD 的平分线,那么下列结论错误的是( )A .∠BAO 与∠CAO 相等B .∠BAC 与∠ABD 互补 C .∠BAO 与∠ABO 互余D .∠ABO 与∠DBO 不等【答案】D【解析】【分析】【详解】 解:已知AC//BD,根据平行线的的性质可得∠BAC+∠ABD=180°,选项B 正确;因AO 、BO 分别是∠BAC 、∠ABD 的平分线,根据角平分线的定义可得∠BAO=∠CAO, ∠ABO=∠DBO,选项A 正确,选项D 不正确;由∠BAC+∠ABD=180°,∠BAO=∠CAO, ∠ABO=∠DBO 即可得∠BAO+∠ABO=90°,选项A 正确,故选D.2.下面四个图形中,是三棱柱的平面展开图的是( )A .B .C .D .【答案】C【解析】【分析】根据三棱柱的展开图的特点作答.【详解】A 、是三棱锥的展开图,故不是;B 、两底在同一侧,也不符合题意;C 、是三棱柱的平面展开图;D 、是四棱锥的展开图,故不是.故选C .【点睛】本题考查的知识点是三棱柱的展开图,解题关键是熟练掌握常见立体图形的平面展开图的特征.3.在等腰ABC ∆中,AB AC =,D 、E 分别是BC ,AC 的中点,点P 是线段AD 上的一个动点,当PCE ∆的周长最小时,P 点的位置在ABC ∆的( )A .重心B .内心C .外心D .不能确定【答案】A【解析】【分析】 连接BP ,根据等边三角形的性质得到AD 是BC 的垂直平分线,根据三角形的周长公式、两点之间线段最短解答即可.【详解】连接BP 、BE ,∵AB=AC ,BD=BC ,∴AD ⊥BC ,∴PB=PC ,∴PC+PE=PB+PE ,∵PB PE BE +≥,∴当B 、P 、E 共线时,PC+PE 的值最小,此时BE 是△ABC 的中线,∵AD 也是中线,∴点P 是△ABC 的重心,故选:A.【点睛】此题考查等腰三角形的性质,轴对称图形中最短路径问题,三角形的重心定义.4.如图所示是一个正方体展开图,图中六个正方形内分别标有“新”、“时”、“代”、“去”、“奋”、“斗”、六个字,将其围成一个正方体后,则与“奋”相对的字是( )A .斗B .新C .时D .代【答案】C【解析】分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.详解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“时”相对的字是“奋”;“代”相对的字是“新”;“去”相对的字是“斗”.故选C.点睛:本题主要考查了正方体的平面展开图,解题的关键是掌握立方体的11种展开图的特征.5.下列语句正确的是()A.近似数0.010精确到百分位B.|x-y|=|y-x|C.如果两个角互补,那么一个是锐角,一个是钝角D.若线段AP=BP,则P一定是AB中点【答案】B【解析】【分析】A中,近似数精确位数是看小数点后最后一位;B中,相反数的绝对值相等;C中,互补性质的考查;D中,点P若不在直线AB上则不成立【详解】A中,小数点最后一位是千分位,故精确到千分位,错误;B中,x-y与y-x互为相反数,相反数的绝对值相等,正确;C中,若两个角都是直角,也互补,错误;D中,若点P不在AB这条直线上,则不成立,错误故选:B【点睛】概念的考查,此类题型,若能够举出反例来,则这个选项是错误的∠=∠的图形的个数是()6.如图,一副三角尺按不同的位置摆放,摆放位置中αβA.1B.2C.3D.4【答案】C【解析】【分析】根据直角三角板可得第一个图形∠β=45°,进而可得∠α=45°;根据余角和补角的性质可得第二个图形、第四个图形中∠α=∠β,第三个图形∠α和∠β互补.【详解】根据角的和差关系可得第一个图形∠α=∠β=45°,根据等角的补角相等可得第二个图形∠α=∠β,第三个图形∠α+∠β=180°,不相等,根据同角的余角相等可得第四个图形∠α=∠β,因此∠α=∠β的图形个数共有3个,故选:C.【点睛】此题主要考查了余角和补角,关键是掌握余角和补角的性质:等角的补角相等.等角的余角相等.7.一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是()A.中B.考C.顺D.利【答案】C【解析】试题解析:正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“考”是相对面,“你”与“顺”是相对面,“中”与“立”是相对面.故选C.考点:正方体展开图.8.如果圆柱的母线长为5cm,底面半径为2cm,那么这个圆柱的侧面积是()A.10cm2B.10πcm2C.20cm2D.20πcm2【答案】D【解析】【分析】根据圆柱的侧面积=底面周长×高.【详解】根据圆柱的侧面积计算公式可得π×2×2×5=20πcm2,故选D.【点睛】本题考查了圆柱的计算,解题的关键是熟练掌握圆柱侧面积公式.9.如图,一个正六棱柱的表面展开后恰好放入一个矩形内,把其中一部分图形挪动了位置,发现矩形的长留出5cm ,宽留出1,cm 则该六棱柱的侧面积是( )A .210824(3) cm -B .()2108123cm -C .()254243cm -D .()254123cm -【答案】A【解析】【分析】 设正六棱柱的底面边长为acm ,高为hcm ,分别表示出挪动前后所在矩形的长与宽,由题意列出方程求出a =2,h =9−23,再根据六棱柱的侧面积是6ah 求解.【详解】解:设正六棱柱的底面边长为acm ,高为hcm ,如图,正六边形边长AB =acm 时,由正六边形的性质可知∠BAD =30°,∴BD =12a cm ,AD =32a cm , ∴AC =2AD =3a cm ,∴挪动前所在矩形的长为(2h +3a )cm ,宽为(4a +12a )cm , 挪动后所在矩形的长为(h +2a 3a )cm ,宽为4acm , 由题意得:(2h +3)−(h +2a 3a )=5,(4a +12a )−4a =1, ∴a =2,h =9−23∴该六棱柱的侧面积是6ah =6×2×(9−232108(3) cm -;故选:A .【点睛】本题考查了几何体的展开图,正六棱柱的性质,含30度角的直角三角形的性质;能够求出正六棱柱的高与底面边长是解题的关键.10.图①是由白色纸板拼成的立体图形,将它的两个面的外表面涂上颜色,如图②所示.则下列图形中,是图②的表面展开图的是( ).A .B .C .D .【答案】B【解析】 试题分析:由平面图形的折叠及立体图形的表面展开图的特点解题.解:由图中阴影部分的位置,首先可以排除C 、D ,又阴影部分正方形在左,三角形在右,而且相邻,故只有选项B 符合题意.故选B .点评:此题主要考查了几何体的展开图,本题虽然是选择题,但答案的获得需要学生经历一定的实验操作过程,当然学生也可以将操作活动转化为思维活动,在头脑中模拟(想象)折纸、翻转活动,较好地考查了学生空间观念.11.如图,点A 、B 、C 是直线l 上的三个点,图中共有线段条数是( )A .1条B .2条C .3条D .4条【答案】C【解析】解:图中线段有:线段AB 、线段AC 、线段BC ,共三条.故选C .12.如图,在Rt ABC 中,90C ∠=︒,以顶点A 为圆心,适当长为半径画弧,分别交AC 、AB 于点M 、N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若4CD =,15AB =,则ABD △的面积是( )A .15B .30C .45D .60【答案】B【解析】【分析】作DE AB ⊥于E ,根据角平分线的性质得4DE DC ==,再根据三角形的面积公式求解即可.【详解】作DE AB ⊥于E由尺规作图可知,AD 是△ABC 的角平分线∵90C ∠=︒,DE AB ⊥∴4DE DC ==∴△ABD 的面积1302AB DE =⨯⨯= 故答案为:B .【点睛】本题考查了三角形的面积问题,掌握角平分线的性质、三角形面积公式是解题的关键.13.如图,点C 是射线OA 上一点,过C 作CD ⊥OB ,垂足为D ,作CE ⊥OA ,垂足为C ,交OB 于点E ,给出下列结论:①∠1是∠DCE 的余角;②∠AOB =∠DCE ;③图中互余的角共有3对;④∠ACD =∠BEC ,其中正确结论有( )A .①②③B .①②④C .①③④D .②③④【答案】B【解析】【分析】 根据垂直定义可得BCA 90∠=,ADC BDC ACF 90∠∠∠===,然后再根据余角定义和补角定义进行分析即可.【详解】解:CE OA ⊥,OCE 90∠∴=,ECD 190∠∠∴+=,1∠∴是ECD ∠的余角,故①正确;CD OB ⊥,AOB COCE 90∠∠∴==,AOB OEC 90∠∠∴+=,DCE OEC 90∠∠+=,B BAC 90∠∠∴+=,1ACD 90∠∠+=,AOB DCE ∠∠∴=,故②正确;1AOB 1DCE DCE CED AOB CED 90∠∠∠∠∠∠∠∠+=+=+=+=, ∴图中互余的角共有4对,故③错误;ACD 90DCE ∠∠=+,BEC 90AOB ∠∠=+,AOB DCE ∠∠=,ACD BEC ∠∠∴=,故④正确.正确的是①②④;故选B .【点睛】考查了余角和补角,关键是掌握两角之和为90时,这两个角互余,两角之和为180时,这两个角互补.14.已知直线m ∥n ,将一块含30°角的直角三角板按如图所示方式放置(∠ABC =30°),并且顶点A ,C 分别落在直线m ,n 上,若∠1=38°,则∠2的度数是( )A .20°B .22°C .28°D .38°【答案】B【解析】【分析】 过C 作CD ∥直线m ,根据平行线的性质即可求出∠2的度数.【详解】解:过C 作CD ∥直线m ,∵∠ABC =30°,∠BAC =90°,∴∠ACB =60°,∵直线m ∥n ,∴CD ∥直线m ∥直线n ,∴∠1=∠ACD ,∠2=∠BCD ,∵∠1=38°,∴∠ACD =38°,∴∠2=∠BCD=60°﹣38°=22°,故选:B.【点睛】本题考查了平行线的计算问题,掌握平行线的性质是解题的关键.15.如图,在△ABC中,∠ABC=90°,∠C=52°,BE为AC边上的中线,AD平分∠BAC,交BC边于点D,过点B作BF⊥AD,垂足为F,则∠EBF的度数为()A.19°B.33°C.34°D.43°【答案】B【解析】【分析】根据等边对等角和三角形内角和定理可得∠EBC=52°,再根据角平分线的性质和垂直的性质可得∠FBD=19°,最后根据∠EBF=∠EBC﹣∠FBD求解即可.【详解】解:∵∠ABC=90°,BE为AC边上的中线,∴∠BAC=90°﹣∠C=90°﹣52°=38°,BE=12AC=AE=CE,∴∠EBC=∠C=52°,∵AD平分∠BAC,∴∠CAD=12∠BAC=19°,∴∠ADB=∠C+∠DAC=52°+19°=71°,∵BF⊥AD,∴∠BFD=90°,∴∠FBD=90°﹣∠ADB=19°,∴∠EBF=∠EBC﹣∠FBD=52°﹣19°=33°;故选:B.【点睛】本题考查了三角形的角度问题,掌握等边对等角、三角形内角和定理、角平分线的性质、垂直的性质是解题的关键.16.如图,圆柱形玻璃板,高为12cm,底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的A处,则蚂蚁到达蜂蜜的最短距离()cm.A.14 B.15 C.16 D.17【答案】B【解析】【分析】在侧面展开图中,过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,求出A′Q,CQ,根据勾股定理求出A′C 即可.【详解】解:沿过A的圆柱的高剪开,得出矩形EFGH,过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,∵AE=A′E,A′P=AP,∴AP+PC=A′P+PC=A′C,∵CQ=12×18cm=9cm,A′Q=12cm﹣4cm+4cm=12cm,在Rt△A′QC中,由勾股定理得:A′C=22129=15cm,故选:B.【点睛】本题考查了圆柱的最短路径问题,掌握圆柱的侧面展开图、勾股定理是解题的关键.17.如图:点 C 是线段 AB 上的中点,点 D 在线段 CB 上,若AD=8,DB=3AD 4,则CD 的长为( )A .4B .3C .2D .1 【答案】D【解析】【分析】根据线段成比例求出DB 的长度,即可得到AB 的长度,再根据中点平分线段的长度可得AC 的长度,根据CD AD AC =-即可求出CD 的长度.【详解】∵38,4AD DB AD ==∴6DB =∴14AB AD DB =+=∵点 C 是线段 AB 上的中点∴172AC AB == ∴1CD AD AC =-=故答案为:D .【点睛】本题考查了线段的长度问题,掌握成比例线段的性质、中点平分线段的长度是解题的关键.18.下列说法中不正确的是( )①过两点有且只有一条直线②连接两点的线段叫两点的距离③两点之间线段最短④点B 在线段AC 上,如果AB=BC ,则点B 是线段AC 的中点A .①B .②C .③D .④【答案】B【解析】【分析】依据直线的性质、两点间的距离、线段的性质以及中点的定义进行判断即可.【详解】①过两点有且只有一条直线,正确;②连接两点的线段的长度叫两点间的距离,错误③两点之间线段最短,正确;④点B 在线段AC 上,如果AB=BC ,则点B 是线段AC 的中点,正确;故选B .19.如图,某河的同侧有A ,B 两个工厂,它们垂直于河边的小路的长度分别为2AC km =,3BD km =,这两条小路相距5km .现要在河边建立一个抽水站,把水送到A ,B 两个工厂去,若使供水管最短,抽水站应建立的位置为( )A .距C 点1km 处B .距C 点2km 处 C .距C 点3km 处D .CD 的中点处【答案】B【解析】【分析】 作出点A 关于江边的对称点E ,连接EB 交CD 于P ,则PA PB PE PB EB +=+=,根据两点之间线段最短,可知当供水站在点P 处时,供水管路最短.再利用三角形相似即可解决问题.【详解】作出点A 关于江边的对称点E ,连接EB 交CD 于P ,则PA PB PE PB EB +=+=.根据两点之间线段最短,可知当供水站在点P 处时,供水管路最短.根据PCE PDB ∆∆,设PC x =,则5PD x =-,根据相似三角形的性质,得 PC CE PD BD =,即253x x =-, 解得2x =.故供水站应建在距C 点2千米处.故选:B .【点睛】本题为最短路径问题,作对称找出点P ,利用三角形相似是解题关键.20.如图,在平行四边形ABCD 中,4AB =,7AD =,ABC ∠的平分线BE 交AD 于点E ,则DE 的长是( )A .4B .3C .3.5D .2【答案】B【解析】【分析】 根据平行四边形的性质可得AEB EBC ∠=∠,再根据角平分线的性质可推出AEB ABE ∠=∠,根据等角对等边可得4AB AE ==,即可求出DE 的长.【详解】∵四边形ABCD 是平行四边形∴//AD BC∴AEB EBC ∠=∠∵BE 是ABC ∠的平分线∴ABE EBC ∠=∠∴AEB ABE ∠=∠∴4AB AE ==∴743DE AD AE =-=-=故答案为:B .【点睛】本题考查了平行四边形的线段长问题,掌握平行四边形的性质、平行线的性质、角平分线的性质、等角对等边是解题的关键.。
初二数学几何题50道,要带答案带过程
初二数学几何题50道,要带答案带过程选择题:1. 若两角互为补角,则它们的差是()。
A.0°B.45°C.60°D.90°2. 在图中,如点S、T分别在边AB的延长线上,且∠ASP=60°,∠BAT=20°,则∠AST为()。
A.40°B.50°C.80°D.110°3. 已知正方形ABCD的边长为5cm,点E、F分别在边AD、AB上,且AE=BF,则三角形CEF的面积为()。
A.(5/8) cm²B.(9/8) cm²C.(13/8) cm²D.(15/8) cm²4. 如果一个圆心角的度数为30°,则它所对的弧度数是()。
A.π/6B.π/3C.π/4D.π/2填空题:1.如图,已知BC平分∠ABD,设∠BAC=a°,∠BCA=b°,则∠CBD=\_\_\_\_°。
2.如图,点A、B、C在同一条直线上,则对于ΔABC来说,以下说法正确的是:①AB=AC;②\angleBAC是钝角;③\angleABC+\angleACB =180^\circ,所以\angleABC=\_\_\_\_°,\angleACB=\_\_\_\_°。
3. 已知直角三角形ABC,其中\angleC=90°,BC=3,AC=4,则AB=\_\_\_\_。
4.如图,长方形ABCD中,点E、F分别为BC、CD上的点,若∠BAE=∠EFD,AB=10cm,则DF=\_\_\_\_cm。
解答题:1.如图,在\triangleABC中,垂足分别为D、E、F。
若AC=6,BD=8,DE=5,EF=9,则BC=()。
2.如图,已知\angleBAC=60°,AD平分\angleBAC,且BD=AD,点E为AD的延长线上的点,且\angleBEC=140°,则\angleACD=\_\_\_\_\_\_°。
初二数学几何图形练习题及答案2023
初二数学几何图形练习题及答案2023一、选择题1. 下图中的几何图形是()。
A. 直线B. 小数C. 三角形D. 方程式2. 角度为90度的图形是()。
A. 线段B. 正方形C. 圆形D. 点3. 下列图形中,能构成三角形的是()。
A. 正方形B. 椭圆形C. 圆形D. 矩形4. 下列图形中,边数最多的是()。
A. 三角形B. 方形C. 正方形D. 圆形5. 以下哪个图形是圆()。
A. 三角形B. 正方形C. (x-2)^2 + (y+3)^2 = 16D. 矩形二、填空题1. 正方形的周长是20cm,它的边长是()cm。
2. 三角形有()条边。
3. 圆的圆心到任意点的距离相等,这个性质叫做()。
4. 下图中两个角度之和等于()度。
(请插入一张图)5. 正方形的对角线长度是20cm,它的边长是()cm。
三、解答题1. 请根据下图,计算三角形的面积。
(请插入一张图)解:三角形的底为8cm,高为5cm。
面积 = 1/2 ×底 ×高= 1/2 × 8cm × 5cm= 20cm²2. 请根据下图,判断哪两个角度之和为90度。
(请插入一张图)解:根据图可知,∠ABC和∠DBC的两个角度之和为90度。
四、应用题1. 小明的房间是一个长方形,长为6m,宽为4m。
他想贴一块地毯在房间的中央,地毯的形状是正方形,边长为2m。
请问他需要购买多少平方米的地毯?解:房间的面积 = 长 ×宽= 6m × 4m= 24m²地毯的面积 = 边长 ×边长= 2m × 2m= 4m²需要购买的地毯面积 = 房间的面积 - 地毯的面积= 24m² - 4m²= 20m²小明需要购买20平方米的地毯。
2. 小明家的花园是圆形的,半径为5m。
他要在花园的周边围上一圈篱笆,请问他需要多长的篱笆?(π取3.14)解:圆的周长= 2π × 半径= 2 × 3.14 × 5m= 31.4m小明需要使用31.4m长的篱笆。
初二数学几何图形变换练习题
初二数学几何图形变换练习题在初中数学学习中,几何图形变换是一个重要的内容。
通过对图形进行平移、旋转、反射和放缩等操作,可以帮助我们加深对几何图形性质的理解。
下面将给出一些初二数学几何图形变换的练习题,希望能够帮助同学们巩固与拓展相关知识。
题目一:平移1. ABCD为一个平行四边形,EF是平行四边形的一条对角线。
(1)将平行四边形ABCD沿向量→→→→e向右平移3个单位得到平行四边形A1B1C1D1,连接DD1,证明A1D1∥EF。
(2)将平行四边形ABCD沿向量→→−→−→a向左平移4个单位得到平行四边形A2B2C2D2。
若A1A2的向量表示为→→−→−→b,则求向量→→−→−→b。
题目二:旋转2. 将正方形ABCD顺时针旋转90°得到正方形A1B1C1D1,连接CC1并延长,证明A1C1⊥CC1。
3. 将正方形ABCD顺时针旋转45°得到正方形A2B2C2D2,连接A2C2,若AC的长度为a,则求A2C2的长度。
题目三:反射4. 已知顶点是A(1,-3)的三角形ABC关于x轴反射得到三角形A1B1C1,连接AA1并延长,若直线AA1与x轴交于点D,求点D的坐标。
5. 直线y=x与直线y=2x关于直线y=-x反射,分别得到直线L1和L2。
若L1与L2的交点为P,则求P的坐标。
题目四:放缩6. 图中三角形ABC经过放缩得到三角形A1B1C1,若放缩比例为k,求A1B1 : BC的比值。
解答:题目一:平移1.(1)设向量→→→→AD=a,向量→→→→AC=b,由平移的性质知AA1=a+3,DD1=b+3。
根据平行四边形的性质,有AD=BC,AC=BD。
故A1D1∥EF得证。
(2)设向量→→−→−→a=〈x,y〉,则向量→→−→−→b=〈x-4,y〉。
根据平行四边形的性质,有AB=A1B1,AD=A1D1。
故向量→→−→−→a=AB-AD=〈x,y〉=A1B1-A1D1=向量→→−→−→b=〈-√2,0〉。
上海数学初二几何试题及答案
上海数学初二几何试题及答案一、选择题(每题3分,共15分)1. 下列几何图形中,属于二次图形的是:A. 圆B. 正方形C. 三角形D. 直线答案:A2. 在直角三角形中,如果一个锐角为30°,那么另一个锐角为:A. 45°B. 60°C. 30°D. 90°答案:B3. 已知一个矩形的长为6cm,宽为4cm,其面积为:A. 20cm²B. 24cm²C. 18cm²D. 12cm²答案:B4. 一个正六边形的内角和为:A. 720°B. 360°C. 540°D. 900°答案:A5. 一个圆的半径为3cm,那么它的周长为:A. 6π cmB. 12π cmC. 18π cmD. 24π cm答案:B二、填空题(每题2分,共10分)1. 在直角三角形中,如果两条直角边分别为3cm和4cm,那么斜边的长度为_______cm。
答案:52. 一个正五边形的外接圆半径为r,则其边长为_______cm。
答案:r√5/23. 如果一个平行四边形的对角线互相平分,那么这个平行四边形是______。
答案:矩形4. 已知一个圆的直径为10cm,那么它的面积为_______cm²。
答案:25π5. 一个三角形的三边长分别为3cm,4cm,5cm,这是一个______三角形。
答案:直角三、解答题(共75分)1. (15分)已知一个等腰三角形的底边长为6cm,两腰边长为5cm,求这个三角形的面积。
解:设等腰三角形的底边为AB,两腰边为AC和BC。
根据勾股定理,我们可以求出高CD的长度:CD² = AC² - AD² = 5² - (6/2)² = 25 - 9 = 16 CD = √16 = 4cm三角形ABC的面积= (1/2) × AB × CD = (1/2) × 6 × 4 =12cm²2. (15分)在一个正方形内,画一个最大的圆,已知正方形的边长为10cm,求这个圆的面积。
(专题精选)初中数学几何图形初步经典测试题及解析
故选:D.
点睛:本题主要考查了几何体的展开图,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.
4.如图所示是一个正方体展开图,图中六个正方形内分别标有“新”、“时”、“代”、“去”、“奋”、“斗”、六个字,将其围成一个正方体后,则与“奋”相对的字是( )
A. B. C. D.
【答案】D
【解析】
分析:三棱柱的侧面展开图是长方形,底面是三角形,据此进行判断即可.
详解:A选项中,展开图下方的直角三角形的斜边长为12,不合题意;
B选项中,展开图上下两个直角三角形中的直角边不能与其它棱完全重合,不合题意;
C选项中,展开图下方的直角三角形中的直角边不能与其它棱完全重合,不合题意;
∴∠M=∠CDE,
∵AB∥CD,
∴∠M=∠ABF,
∴∠CDE=∠ABF,
∵BF平分∠ABE,
∴∠ABE=2∠ABF,
∴∠ABE=2∠CDE.
故选:A.
【点睛】
本题考查了平行线的性质和角平分线的定义,作辅助线,是利用平行线的性质的关键,也是本题的难点.
14.如果 和 互余,下列表 的补角的式子中:①180°- ,②90°+ ,③2 + ,④2 + ,正确的有()
∵∠α+∠β=90°,∴2∠β+∠α=90°+∠β,不是∠β的补角,故④错误.
故正确的有①②③.
故选B.
【点睛】
本题考查了余角和补角的知识,解答本题的关键是掌握互余的两角之和为90°,互补的两角之和为180°.
15.如图,将一副三角板如图放置,∠COD=28°,则∠AOB的度数为( )
几何题目初二数学3篇
几何题目初二数学题目1:求扇形的面积扇形是一个常见的几何图形,它由一个圆心和两条半径组成,圆心角的度数决定了扇形的大小。
我们可以通过以下公式来求解一个扇形的面积:S = (θ / 360) × πr^2其中,θ代表圆心角的度数,r代表扇形的半径,π是一个常数,约等于3.14。
举个例子,如果一个扇形的半径为5cm,圆心角的度数为60°,那么它的面积应该为:S = (60 / 360) × 3.14 × 5^2 ≈ 13.09(cm^2)注意:在使用这个公式时,需要将度数换算成弧度,即用角度×π/180来计算角度的弧度值。
例如60°的弧度值应该是60×π/180=π/3。
题目2:求直角三角形的斜边长度直角三角形是一个有一条直角边的三角形,我们可以利用勾股定理来求解它的斜边长度。
勾股定理指出:在一个直角三角形中,直角边的两个平方和等于斜边的平方,即a^2+b^2=c^2。
(其中a和b分别为直角边,c为斜边)例如,如果一个直角三角形的直角边长度分别为3cm和4cm,那么它的斜边长度应该为:c = √(3^2 + 4^2) ≈ 5(cm)注意:在使用勾股定理时,必须要保证直角边的长度已知,且只能求解斜边长度,不能求解其他两个角或两个边的长度。
题目3:求圆柱的表面积和体积圆柱是一个由一个圆形底面和一个长方形侧面组成的几何体,我们可以通过以下公式来求解一个圆柱的表面积和体积:表面积S = 2πr^2 + 2πrh体积V = πr^2h其中,r代表圆柱的半径,h代表圆柱的高,π是一个常数,约等于3.14。
举个例子,如果一个圆柱的半径为3cm,高为5cm,那么它的表面积应该为:S = 2π×3^2 + 2π×3×5 ≈ 113.1(cm^2)它的体积应该为:V = π×3^2×5 ≈ 141.3(cm^3)注意:在使用这些公式时,需要将所有的长度单位统一转换成同一单位,例如上述例子中,半径和高都是用厘米表示,因此得到的表面积和体积单位也是厘米的平方和立方。
初二数学由三视图描述几何体试题
初二数学由三视图描述几何体试题1.如果物体的俯视图是一个圆,该物体可能是 .【答案】圆柱、圆锥【解析】俯视图是从物体的上面看得到的视图,找到俯视图里有圆的几何体即可.本题答案不唯一.圆柱、圆锥的俯视图为一个圆形.【考点】本题考查的是简单几何体的三视图点评:本题考查由俯视图确定几何体的形状,主要考查学生空间想象能力.2.一个立体图形的三视图如图这个立体图形是 .【答案】正六棱柱【解析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.根据主视图和左视图为矩形判断出是柱体,根据俯视图是六边形可判断出这个几何体应该是六棱柱.【考点】本题考查的是由三视图判断几何体点评:本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.3.一个几何体的主视图和左视图如图,该物体的形状是( )A.四棱柱B.五棱柱C.六棱柱D.三棱柱【答案】B【解析】由图分析得出大致轮廓为长方形外的另一视图为几边形就是几棱柱.第一个视图的大致轮廓是长方形,为棱柱的侧面,第二个视图为五边形,为棱柱的底面,∴该物体的形状是五棱柱,故选B.【考点】本题考查的是简单组合体的三视图点评:解答本题的关键是掌握棱柱2个视图的大致轮廓为长方形,另一视图为几边形就是几棱柱.4.由若干个小立方体叠成的几何体的三视图如图,这个几何体共有小立方体( )A.4个B.5个C.6个D.3个【答案】A【解析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图和左视图可得第二层立方体的个数,相加即可.由俯视图易得最底层有3个立方体,第二层有1个立方体,那么共有3+1=4个立方体组成.【考点】本题考查的是由三视图判断几何体点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.解答本题的关键是注意俯视图中有几个正方形,底层就有几个立方体.5.如图,是一个几何体的主视图、左视图和俯视图,则这个几何体是()【答案】C【解析】由俯视图可得最底层正方体的个数及形状,可排除2个选项,由左视图可得第二层有2个正方体,排除第3个选项,可得正确选项.由俯视图可得最底层有3个正方体,排除A;根据正方体的排列的形状可排除D;由左视图可得第二层有2个几何体,排除B.故选C.【考点】本题考查的是由三视图判断几何体点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.解答本题的关键是注意俯视图中有几个正方形,底层就有几个立方体.6.一个物体的三视图如图,请说出它的形状。
初中数学几何图形专题训练50题含答案
初中数学几何图形专题训练50题含答案(单选、填空、解答题)一、单选题1.如图,已知∠AOC=∠BOD=90º,∠AOD=150º,则∠BOC 的度数为( )A .30ºB .45ºC .50ºD .60º 2.下列图形属于立体图形的是( )A .正方形B .三角形C .球D .梯形 3.已知∠AOB =75°,以O 为端点作射线OC ,使∠AOC =48°,则∠BOC 的度数为( )A .123°B .123°和27°C .23°D .27°4.如图,已知点C 是线段AB 的中点,2AC cm =, 1.5DC cm =,则BD =( )A .0.5cmB .1cmC .1.5cmD .2cm 5.已知A ,B ,C ,D 四点,任意三点都不在同一直线上,以其中的任意两点为端点的线段的数量是( )A .5B .6C .7D .8 6.如图,将一块含有30°的直角三角板的顶点放在直尺的一边上,若2110∠=︒,那么1∠的度数是( )A .10°B .20°C .30°D .40° 7.如图,已知∠ACB=90°,CD∠AB ,垂足是D ,则图中与∠A 相等的角是( )A.∠1B.∠2C.∠B D.∠1、∠2和∠B 8.在地理课堂上,老师组织学生进行寻找北极星的探究活动时,李佳同学使用了如图所示的半圆仪,则下列四个角中,最可能和互补的角为()A.B.C.D.9.下列说法正确的是()A.连接两点的线段,叫做两点间的距离B.射线OA与射线AO表示的是同一条射线C.经过两点有一条直线,并且只有一条直线D.从一点引出的两条直线所形成的图形叫做角10.我军在海南举行了建国以来海上最大的军事演习,位于点O处的军演指挥部观测到军舰A位于点O的北偏东65︒方向(如图),同时观测到军舰B位于点O处的南偏西20︒方向,则AOB∠=()A .85︒B .105︒C .125︒D .135︒ 11.如图,小玮从A 处沿北偏东40°方向行走到点B 处,又从点B 处沿东偏南23°方向行走到点C 处,则∠ABC 的度数为( )A .99°B .107°C .127°D .129° 12.如图,CE 是ABC 的外角ACD ∠的平分线,且CE 交BA 的延长线于点E ,30B ∠=︒,100ACD ∠=︒,则E ∠的度数为( )A .10°B .15°C .20°D .25° 13.如图所示,正方体的展开图为( )A .B .C .D .14.如图方格纸中每个小正方形的边长均为1,线段AC 的两个端点均在小正方形的顶点上,点P 也在小正方形的顶点上.某人从点P 出发,沿图中已有的格点所连线段走一周(即不能直接走线段AC 且要回到P ),则这个人所走的路程最少是( )A .7B .14C .10D .不确定 15.如图,等边∠ABC 的边长为6,AD 是BC 边上的中线,M 是AD 上的动点,E 是边AC 上一点,若AE =2,则EM +CM 的最小值为( )AB .C .D .16.已知A ,B ,C 三点在同一条直线上,M ,N 分别为线段AB ,BC 的中点,且AB =60,BC =40,则MN 的长为( )A .10B .50C .10或50D .无法确定 17.如图,从4点钟开始,过了40分钟后,分针与时针所夹角的度数是( )A .090B .0100C .0110D .0120 18.一副三角板按如图方式摆放,且1∠的度数比2∠的度数小20︒,则2∠的度数为( )A .35︒B .40︒C .45︒D .55︒ 19.一把直尺和一块三角板ABC (含30°,60°角)的摆放位置如图,直尺一边与三角板的两直角边分别交于点D 、点E ,另一边与三角板的两直角边分别交于点F 、点A ,且∠CED=50°,那么∠BAF=()A.10°B.50°C.45°D.40°20.如图,直线AB MN∥,点C为直线MN上一点,连接AC、BC,∠CAB=40°,∠ACB=90°,∠BAC的角平分线交MN于点D,点E是射线AD上的一个动点,连接CE、BE,∠CED的角平分线交MN于点F.当∠BEF=70°时,令ECMα∠=,用含α的式子表示∠EBC为().A.52αB.10α︒-C.1102α︒-D.1102α-︒二、填空题21.如图,将∠AOB 绕点O 按逆时针方向旋转40°后得到∠COD,若∠AOB=15°,则∠AOD 的度数是______°.22.若∠A与∠B互余,则∠A+∠B=_____;若∠A与∠B互补,则∠A+∠B=_____. 23.如图,点A、O、B在一条直线上,且∠AOD=35°,OD平分∠AOC,则图中∠BOC=______度.24.如图,在直线AB 上有一点O ,OC ∠OD ,OE 是∠DOB 的角平分线,当∠DOE =20°时,∠AOC =___°.25.一个直棱柱有12条棱,则它是__棱柱.26.如图,EF 是ABC 的中位线,BD 平分ABC ∠交EF 于D ,若6,10AB BC ==,则DF =______.27.已知5526α∠=︒',则α∠的余角为____________28.在墙上钉一根细木条至少要钉2根钉才稳,根据是_________________________; 29.在棱柱中,任何相邻的两个面的交线都叫做______,相邻的两个侧面的交线叫做_______.30.如图所示,//AB CD ,CE 平分ACD ∠,并且交AB 于E ,118A ∠=︒,则AEC ∠等于______.31.如图,AOB 与COB △关于边OB 所在的直线成轴对称,AO 的延长线交BC 于点D .若45BOD ∠=︒,20C ∠=︒,则ADC ∠=___________.32.一副三角板按如图放置,则下列结论:∠如果230∠=︒,则有AC DE ∥;∠如果BC AD ∥,则有245∠=︒;∠如果445∠=︒,那么160∠=︒;∠ BAE CAD ∠+∠ 随着2∠的变化而变化,其中正确的是____.33.已知C 是线段AB 的中点,AB=10,若E 是直线AB 上的一点,且BE=3,则CE=_____34.如图,C ,D 是线段AB 上两点,已知AC :CD :DB=1:2:3,M 、N 分别为AC 、DB 的中点,且AB=8cm ,求线段MN 的长_____.35.已知OC 为一条射线,OM 平分AOC ∠,ON 平分BOC ∠.(1)如图1,当60AOB ∠=︒,OC 为AOB ∠内部任意一条射线时,MON ∠=_____; (2)如图2,当60AOB ∠=︒,OC 旋转到AOB ∠的外部时,MON ∠=_____; (3)如图3,当AOB α∠=,OC 旋转到AOB ∠(120BOC ∠<︒)的外部时,求MON ∠,请借助图3填空.解:因为OM 平分AOC ∠,ON 平分BOC ∠ 所以1122COM AOC CON BOC ∠=∠∠=∠,(依据是____________) 所以MON COM ∠=∠-_________12AOC =∠-_______12=________. 36.如图,已知60BAC ∠=︒,AD 是角平分线且20AD =,作AD 的垂直平分线交AC 于点F ,作DE AC ⊥,则DEF 的周长为 ______.37.平面内,已知AOB 90∠=,20,BOC OE ∠=平分,AOB OF ∠平分BOC ∠,则EOF ∠=______.38.如图所示,设L AB AD CD =++,M BE CE =+,N BC =.试比较M 、N 、L 的大小:________.39.已知点C 在线段AB 上,2AC BC =,点D 、E 在直线AB 上,点D 在点E 的左侧.(1)若18AB =,点D 与点A 重合,8DE =,则EC =_________;(2)若2AB DE =,线段DE 在直线AB 上移动,且满足关系式32AD EC BE +=,则CD AB =_______.三、解答题40.如图所示,在长方形ABCD 中,6cm BC ,8cm CD =,现绕这个长方形的一边所在直线旋转一周得到一个几何体.请解决以下问题:(1)说出旋转得到的几何体的名称?(2)如果用一个平面去截旋转得到的几何体,那么截面有哪些形状(至少写出3种)?(3)求旋转得到的几何体的表面积?(结果保留π)41.将一个正方体的表面沿某些棱剪开,展成一个平面图形,你能得到哪些形状的平面图形?42.如图,OB 为AOC ∠的平分线,OD 是COE ∠的平分线.(1)如果40AOB ∠=︒,30DOE ∠=︒,那么BOD ∠为多少度?(2)如果140AOE ∠=︒,30COD ∠=︒,那么AOB ∠为多少度?(3)如果AOC α∠=︒,COE β∠=︒,则BOD ∠=______°,如果AOE θ∠=︒,则BOD ∠=______︒.43.如图,点C 是线段AB 上的一点,点M 是线段AC 的中点,点N 是线段BC 的中点.(1)如果12,5AB cm AM cm ==,求BC 的长;(2)如果8MN cm =,求AB 的长.44.如图,一只蚂蚁沿长方体的表面从顶点A 爬到另一顶点M ,已知AB =3,AD = 4,BF = 5.求这只蚂蚁爬行的最短距离.45.已知AB CD ∥,点M 、N 分别在直线AB 、CD 上,AME ∠与CNE ∠的平分线所在的直线相交于点F .(1)如图1,点E 、F 都在直线AB 、CD 之间且70MEN ∠=︒时,MFN ∠的度数为___________;(2)如图2,当点E在直线AB、CD之间,F在直线CD下方时,写出MEN∠与MFN∠之间的数量关系,并证明;∠与(3)如图3,当点E在直线AB上方,F在直线AB与CD之间时,直接写出MEN∠之间的数量关系.MFN46.O为直线AB上的一点,OC∠OD,射线OE平分∠AOD.(1)如图∠,判断∠COE和∠BOD之间的数量关系,并说明理由;(2)若将∠COD绕点O旋转至图∠的位置,试问(1)中∠COE和∠BOD之间的数量关系是否发生变化?并说明理由;(3)若将∠COD绕点O旋转至图∠的位置,探究∠COE和∠BOD之间的数量关系,并说明理由.47.已知,P是线段AB的中点,点C是线段AB的三等分点,线段CP的长为4 cm.(1)求线段AB的长;(2)若点D是线段AC的中点,求线段DP的长.48.【提出问题】如图1,在直角ABC中,∠BAC=90°,点A正好落在直线l上,则∠1、∠2的关系为【探究问题】如图2,在直角ABC中,∠BAC=90°,AB=AC,点A正好落在直线l 上,分别作BD∠l于点D,CE∠l于点E,试探究线段BD、CE、DE之间的数量关系,并说明理由.【解决问题】如图3,在ABC中,∠CAB、∠CBA均为锐角,点A、B正好落在直线l 上,分别以A、B为直角顶点,向ABC外作等腰直角三角形ACE和等腰直角三角形BCF,分别过点E、F作直线l的垂线,垂足为M、N.∠试探究线段EM、AB、FN之间的数量关系,并说明理由;∠若AC=3,BC=4,五边形EMNFC面积的最大值为49.如图,两个形状、大小完全相同的含有3060︒︒、的三角板如图∠放置,PA PB 、与直线MN 重合,且三角板PAC ,三角板PBD 均可以绕点P 逆时针旋转.(1)求DPC ∠;(2)如图∠,若三角板PBD 保持不动,三角板PAC 的边PA 从PN 绕点P 逆时针旋转一定角度,PF 平分,APD PE ∠平分CPD ∠,求EPF ∠.(3)如图∠,在图∠基础上,若三角板PAC 的边PA 从PN 开始绕点P 逆时针旋转,转速为3︒/秒,同时三角板PBD 的边PB 从PM 绕点P 逆时针旋转,转速为2︒/秒,(当PC 转到与PM 重合时,两三角板都停止转动),求CPD BPN∠∠的值. (4)如图∠,在图∠基础上,若三角板PAC 开始绕点P 逆时针旋转,转速为5︒/秒,同时三角板PBD 绕点P 逆时针旋转,转速为1︒/秒,(当PA 转到与PM 重合时,两三角板都停止转动),在旋转过程中,PC PB PD 、、三条射线中,当其中一条射线平分另两条射线的夹角时,直接写出旋转的时间.参考答案:1.A【详解】试题分析:根据∠AOC=∠BOD=90º,∠AOD=150º,可得∠COD的度数,从而求得结果.∠∠AOC=∠BOD=90º,∠AOD=150º∠∠COD=∠AOD-∠AOC=60°∠∠BOC=∠BOD-∠COD=30°故选A.考点:本题考查的是角的计算点评:本题是基础应用题,只需学生熟练掌握角的大小关系,即可完成.2.C【分析】依据立体图形的定义回答即可.【详解】解:正方形、三角形、梯形是平面图形,球是立体图形.故选:C.【点睛】本题主要考查的是立体图形的认识,掌握相关概念是解题的关键.3.B【分析】讨论:当OC在∠AOB的内部,如图1,则∠BOC=∠AOB-∠AOC;OC在∠AOB的外部,如图2,则∠BOC=∠AOB+∠AOC.【详解】解:当OC在∠AOB的内部,如图1,∠∠AOB=75°,∠AOC=48°,∠∠BOC=∠AOB-∠AOC=75°-48°=27°;当OC在∠AOB的外部,如图2,∠∠AOB=75°,∠AOC=48°,∠∠BOC=∠AOB+∠AOC=75°+48°=123°,综上所述,∠BOC的度数为27°或123°.【点睛】本题考查的是角的计算,在解答此题时要注意进行分类讨论,不要漏解.4.A【分析】根据线段中点和线段之间的关系计算即可.【详解】解:点C是线段AB的中点,∴2==,BC AC cm∴2 1.50.5=-=-=.BD BC CD cm故选:A.【点睛】本题考查线段中点和线段的长度关系,掌握线段中点的性质是解答关键.5.B【分析】根据题意画出示意图,即可得答案.【详解】解:如图所示,有四个点,且每三点都不在同一直线上,每两点连一条线段,则可以连6条线段,故选:B.【点睛】本题主要考查了直线、线段、射线数量问题,能正确根据题意画出图形是解决问题的关键.6.D【分析】利用平行线的性质和平角的性质可以求得结果得出答案.【详解】解:如图示∠=︒,将一块含有30︒的直角三角板的顶点放在直尺的一边上,2110∠32110∠=∠=︒,∠11802301801103040∠=︒-∠-︒=︒-︒-︒=︒【点睛】本题主要考查了平行线的性质,正确得出3∠的度数是解题关键.7.B【分析】【详解】∠∠ACB= 90°,即∠1+∠2= 90°又∠在Rt∠ACD 中,∠A+∠1=90°∠∠A=∠2故选:B.8.D【详解】析:根据图形估计∠AOB 的大致度数,然后根据互为补角的和等于180°进行解答即可.解答:解:根据图形可得∠AOB 大约为135°,∠与∠AOB 互补的角大约为45°,综合各选项D 符合.故选D .9.C【分析】根据线段、射线、直线的定义即可解题.【详解】解:A. 连接两点的线段长度,叫做两点间的距离B. 射线OA 与射线AO 表示的是同一条射线,错误,射线具有方向性,C. 经过两点有一条直线,并且只有一条直线,正确,D. 错误,应该是从一点引出的两条射线所形成的图形叫做角,故选C.【点睛】本题考查了线段、射线、直线的性质,属于简单题,熟悉定义是解题关键. 10.D【分析】根据方向角的定义以及角的和差关系进行计算即可.【详解】解:由方向角的定义可知,65NOA ∠=︒,20SOB ∠=︒,∠906525AOE ∠=︒-︒=︒,∠AOB AOE EOS SOB ∠=∠+∠+∠,259020=︒+︒+︒故选:D .【点睛】本题考查方向角,理解方向角的定义是解决问题的前提.11.B【分析】根据方位角的概念,画图正确表示出方位角,即可求解.【详解】如图:∠小明从A 处沿北偏东40︒方向行走至点B 处,又从点B 处沿东偏南23︒方向行走至点C 处,∠40DAB ∠=︒,23CBF ∠=︒,∠向北方向线是平行的,即AD BE ∥,∠40ABE DAB ∠=∠=︒,∠90EBF ∠=︒,∠902367EBC ∠=︒-︒=︒,∠4067107ABC ABE EBC ∠=∠+∠=︒+︒=︒,故选B .【点睛】本题考查方位角,解题的关键是画图正确表示出方位角.12.C 【分析】先根据角平分线的定义求出1502ECD ACD ∠=∠=︒,再由三角形外角的性质求解【详解】解:∠CE平分∠ACD,∠ACD=100°,∠1502ECD ACD∠=∠=︒,∠∠B=30°,∠∠E=∠ECD-∠B=20°,故选C.【点睛】本题主要考查了角平分线的定义,三角形外角的性质,熟知角平分线的定义和三角形外角的性质是解题的关键.13.A【分析】根据正方体的展开图的性质判断即可;【详解】A中展开图正确;B中对号面和等号面是对面,与题意不符;C中对号的方向不正确,故不正确;D中三个符号的方位不相符,故不正确;故答案选A.【点睛】本题主要考查了正方体的展开图考查,准确判断符号方向是解题的关键.14.B【分析】根据题意作图得到运动的轨迹,根据矩形的周长特点即可求解.【详解】如图,这个人所走的路程是图中的矩形,周长为2(3+4)=14故选B.【点睛】此题主要考查网格的作图,解题的关键是根据题意作出图形求解.15.C【分析】连接BE,交AD于点M,过点E作EF∠BC交于点F,此时EM+CM的值最小,求出BE即可.【详解】解:连接BE,交AD于点M,过点E作EF∠BC交于点F,∠∠ABC是等边三角形,AD是BC边上的中线,∠B点与C点关于AD对称,∠BM=CM,∠EM+CM=EM+BM=BE,此时EM+CM的值最小,∠AC=6,AE=2,∠EC=4,在Rt∠EFC中,∠ECF=60°,∠FC=2,EF=在Rt∠BEF中,BF=4,∠BE=故选:C.【点睛】本题考查轴对称求最短距离,熟练掌握轴对称求最短距离的方法,灵活运用勾股定理是解题的关键.16.C【分析】根据题意画出图形,再根据图形求解即可.【详解】解:(1)当C在线段AB延长线上时,如图1,∠M、N分别为AB、BC的中点,∠BM=12AB=30,BN=12BC=20;∠MN=50.(2)当C在AB上时,如图2,同理可知BM =30,BN =20,∠MN =10;所以MN =50或10,故选C .【点睛】本题考查线段中点的定义,比较简单,注意有两种可能的情况;解答这类题目,应考虑周全,避免漏掉其中一种情况.17.B【分析】4点时,分针与时针相差四大格,即120°,根据分针每分钟转6°,时针每分钟转0.5°,则40分钟后它们的夹角为40×6°﹣4×30°﹣40×0.5°.【详解】4点40分钟时,钟表的时针与分针形成的夹角的度数=40×6°﹣4×30°﹣40×0.5°=100°.故选B .【点睛】本题考查了钟面角:钟面被分成12大格,每大格30°;分针每分钟转6°,时针每分钟转0.5°.18.D【分析】根据题意结合图形列出方程组,解方程组即可.【详解】解:由题意得,1290,2120∠+∠︒⎧⎨∠-∠︒⎩==,解得135,255.∠︒⎧⎨∠︒⎩==. 故选:D .【点睛】本题考查的是余角和补角的概念和性质,两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.19.A【分析】先根据∠CED =50°,DE ∠AF ,即可得到∠CAF =50°,最后根据∠BAC =60°,即可得出∠BAF 的大小.【详解】∠DE ∠AF ,∠CED =50°,∠∠CAF =∠CED =50°,∠∠BAC =60°,∠∠BAF=60°﹣50°=10°,故选:A.【点睛】此题考查平行线的性质,几何图形中角的和差关系,掌握平行线的性质是解题的关键.20.D【分析】先求出∠ABC,再延长CE,交AB于点G,结合平行线的性质表示出∠BCE,然后根据三角形内角和定理表示∠CED,再根据角平分线得定义表示出∠CEB,最后根据三角形内角和定理得出答案.【详解】在∠ABC中,∠CAB=40°,∠ACB=90°,∠∠ABC=50°.延长CE,交AB于点G,∠MN BA∥,∠EGBα∠=,∠ACM=∠BAC=40°,∠∠ACE=α-40°,∠∠BCE=90°-(α-40°)=130°-α.∠∠CEA=180°-∠CAE-∠ACE,∠∠CED=180°-∠CEA=∠CAE+∠ACE=20°+(α-40°)=α-20°.∠EF平分∠CED,∠∠CEF=111022CEDα∠=-︒,∠∠CEB=1110706022αα-︒+︒=+︒,∠∠EBC=11180(60)(130)10 22ααα︒-+︒-︒-=-︒.故选:D.【点睛】本题主要考查了角平分线的定义,三角形内角和定理,平行线的性质,将待求角转化到适合的三角形是解题的关键.21.55°##55度【分析】根据将∠AOB 绕点O 按逆时针方向旋转40°后得到∠COD ,可得∠BOD = 40° 即可得∠AOD =∠BOD +∠AOB = 55°.【详解】∠将∠AOB 绕点O 按逆时针方向旋转40°后得到∠COD .∠∠BOD = 40°,∠∠AOB = 15°∠∠AOD =∠BOD +∠AOB = 40°+ 15°= 55°,故答案为:55°.【点睛】本题考查三角形的旋转变换,解题的关键是掌握旋转的性质.22. 90°##90度 180°##180度【分析】根据互余,互补的定义即可得到结果.【详解】若∠A 与∠B 互余,则∠A +∠B =90°;若∠A 与∠B 互补,则∠A +∠B =180°.故答案为:90°,180°【点睛】解答本题的关键是熟记和为90°的两个角互余,和为180°的两个角互补. 23.110【分析】根据角平分线可得270AOC AOD ∠=∠=︒,再利用补角的性质求解即可得.【详解】解:∵OD 平分AOC ∠,35AOD ∠=︒,∴223570AOC AOD ∠=∠=⨯︒=︒,∵AOC ∠与BOC ∠是邻补角,∴180AOC BOC ∠+∠=︒,∴18070110BOC ∠=︒-︒=︒.故答案为:110.【点睛】题目主要考查角平分线的计算及补角的性质,理解题意,结合图形求角度是解题关键.24.50【分析】先求出∠BOD ,根据平角的性质即可求出∠AOC .【详解】∠OE 是∠DOB 的角平分线,当∠DOE =20°∠∠BOD =2∠DOE =40°∠OC ∠OD ,∠∠AOC =180°-90°-∠BOD =50°故答案为:50.【点睛】此题主要考查角度求解,解题的关键是熟知角平分线的性质、直角的性质. 25.四【详解】试题解析:设该棱柱为n 棱柱,根据题意得:3n =12.解得:n =4.所以该棱柱为四棱柱,故答案是:四.26.2【分析】根据中位线的性质可得EF BC ∥,EF =12BC =5,则有∠CBD =∠BDE ,AE =BE =12AB =3,再根据BD 平分∠ABC ,有∠ABD =∠CBD ,即有∠ABD =∠BDE ,则可得DE =BE =3,问题得解.【详解】∠EF 是∠ABC 的中位线,∠EF BC ∥,EF =12BC =5,E 点为AB 中点, ∠∠CBD =∠BDE ,AE =BE =12AB =3. ∠BD 平分∠ABC ,∠∠ABD =∠CBD ,∠∠ABD =∠BDE ,∠DE =BE =3.∠DF =EF −DE =EF −BE =5−3=2.故答案为:2.【点睛】本题考了三角形中位线的性质、角平分线的性质以及等角对等边的知识,求出DE =BE 是解答本题的关键.27.3434'︒【分析】直接利用互余两角的关系,结合度分秒的换算得出答案.【详解】解:∠5526α∠=︒',∠α∠的余角为:9055263434'=︒'︒-︒.故答案为:3434'︒.【点睛】此题主要考查了余角的定义和度分秒的转换,正确把握相关定义是解题关键. 28.两点确定一条直线【分析】由于两点确定一条直线,所以在墙上固定一根木条至少需要两根钉子.【详解】在墙上固定一根木条至少需要两根钉子,依据的数学道理是两点确定一条直线. 故答案为两点确定一条直线.【点睛】当木工师傅锯木板时,他会用墨盒在木板上弹出墨线,这样会使木板沿直线锯下;在正常情况下,射击时只要保证瞄准的一只眼在两个准星确定在直线上,才能射中目标等等;它们都是运用了“两点确定一条直线”的直线的性质.29. 棱, 侧棱;【分析】由棱柱的组成部分的定义直接填空即可.【详解】在棱柱中,任何相邻的两个面的交线都叫做棱,相邻的两个侧面的交线叫做侧棱. 故答案为棱;侧棱.【点睛】熟记面与面相交成线,在棱柱中,任何相邻的两个面的交线都叫做棱. 30.31°【分析】要求AEC ∠的度数,根据平行线的性质,只需求得2∠的度数.显然结合平行线的性质以及角平分线的定义就可解决.【详解】解://AB CD ,CE 平分ACD ∠交AB 于E ,118A ∠=︒,1112(180)(180118)3122A ∴∠=∠=︒-∠=︒-︒=︒, 231AEC ∴∠=∠=︒,故答案为:31°.【点睛】本题考查的是角平分线的性质及平行线的性质,比较简单,需同学们熟练掌握.31.70︒##70度【分析】根据三角形外角的定义和性质可知ADC A ABD ∠=∠+∠,利用轴对称的性质求出A ∠与ABD ∠的大小并进行计算即可. 【详解】解:AOB 与COB △关于边OB 所在的直线成轴对称∴20A C ∠=∠=︒,2ABD ABO ∠=∠,根据三角形外角的性质可知:在AOB 中,452025ABO BOD A ∠=∠-∠=︒-︒=︒222550ABD ABO ∴∠=∠=⨯︒=︒∴ 在ABD △中,205070ADC A ABD ∠=∠+∠=︒+︒=︒.故答案为:70︒.【点睛】本题考查轴对称的性质和三角形外角的性质,熟练运用三角形的外角性质进行计算是本题的解题关键.32.∠∠∠【分析】根据平行线的判定与性质即可逐一进行证明.【详解】解:∠∠230∠=︒,∠190260∠=︒-∠=︒,∠60AED ∠=︒,∠1AED ∠=∠,∠AC DE ∥;所以∠正确;∠∠BC AD ∥,∠345B ∠=∠=︒,∠290345∠=︒-∠=︒;所以∠正确;∠如图,∠445,60EGF GEF ∠=∠=︒∠=︒,∠4560105GFA ∠=︒+︒=︒,∠1GFA C ∠=∠+∠,∠45C ∠=︒,∠160∠=︒.所以∠正确.∠∠123290∠+∠=∠+∠=︒,∠21239090180BAE CAD ∠+∠=∠+∠+∠+∠=︒+︒=︒,∠BAE CAD ∠+∠随着2∠的变化不会发生变化;所以∠错误;所以其中正确的是∠∠∠.故答案为:∠∠∠.【点睛】本题考查了平行线的判定与性质,解决本题的关键是准确区分平行线的判定与性质,并熟练运用.33.2或8【分析】由已知C 是线段AB 中点,AB=10,求得BC'= 5,进一步分类探讨:E 在BC 内;E 在BC 的延长线上;由此画图得出答案即可.【详解】C 是线段AB 的中点, AB= 10,BC= AB= 5,如图,当E 在BC 内,CE= BC- BE= 5- 3=2;∠如图,E 在BC 的延长线上,CE= BC+ BE= 5+3=8 ;所以CE= 2或8;故本题答案为:2或8.【点睛】解决本题的关键突破口是分类讨论,本题考查了学生综合分析的能力,要求学生掌握线段中点的意义,线段的和与差.34.153cm 【分析】根据线段的比例,可得线段的长度,根据线段的和差,可得答案.【详解】∠AC :CD :DB=1:2:3,设AC=a ,CD=2a ,DB=3a ,∠AB=AC+CD+DB=a+2a+3a=6a=8,解得:a=43, ∠AC=43,DB=3×43=4, ∠M 、N 分别为AC 、DB 的中点, ∠AM=12AC=23,BN=12DB=2, ∠MN=AB-AM-BN=8-23-2=513(cm ). 故答案为:153cm 【点睛】本题考查了与线段中点有关的计算,根据比例关系列出方程求出各线段的长是关键.35. 30° 30° 角平分线定义 ∠CON 12BOC ∠ α 【分析】对于(1),根据角平分线定义得12COM AOC ∠=∠,12CON BOC ∠=∠,再结合12MON COM CON AOB ∠=∠+∠=∠,可得答案; 对于(2),仿照(1),根据12MON COM CON AOB ∠=∠-∠=∠求解; 对于(3),仿照(2)解答即可.(1)因为OM 平分∠AOC ,ON 平分∠BOC , 所以12COM AOC ∠=∠,12CON BOC ∠=∠, 所以11603022MON COM CON AOB ∠=∠+∠=∠=⨯︒=︒. 故答案为:30°.(2) 因为OM 平分∠AOC ,ON 平分∠BOC , 所以12COM AOC ∠=∠,12CON BOC ∠=∠, 所以11603022MON COM CON AOB ∠=∠-∠=∠=⨯︒=︒. 故答案为:30°.(3)因为OM 平分∠AOC ,ON 平分∠BOC , 所以12COM AOC ∠=∠,12CON BOC ∠=∠(依据的角平分线定义), 所以111222MON COM CON AOC BOC α∠=∠-∠=∠-∠=. 故答案为:角平分线定义,∠CON ,12BOC ∠,α. 【点睛】本题主要考查了角的和差的计算,角平分线定义,掌握角平分线定义是解题的关键.36.10+【分析】根据含30°角的直角三角形的性质求出DE 、根据勾股定理求出AE ,根据线段垂直平分线的性质、三角形的周长公式计算,得到答案.【详解】解:∠60BAC ∠=︒,AD 是角平分线,∠30DAE ∠=︒,在Rt DAE 中,20,30AD DAE =∠=︒, ∠1102DE AD ==,由勾股定理得:AE =∠AD 的垂直平分线交AC 于点F ,∠FA FD =,∠DEF 的垂直10DE EF FD DE EF FA DE AE =++=++=+=+故答案为:10+【点睛】本题考查的是直角三角形的性质、勾股定理、线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.37.35︒或55︒【分析】分OC 在AOB ∠的内部和外部进行讨论,运用角平分线性质及角的和差进行运算即可.【详解】解:∠AOB 90∠=,OE 平分,AOB ∠ ∠∠BOE=12∠AOB=45°∠20,BOC ∠=OF 平分BOC ∠ ∠∠FOC=∠FOB =12∠BOC=10°当OC 在AOB ∠的内部时,如图∠∠EOF=∠BOE-∠BOF=45-10=35︒︒︒当OC 在AOB ∠的外部时,如图∠∠EOF=∠BOE+∠BOF=45+10=55︒︒︒故答案为:35︒或55︒【点睛】本题考查了角平分线的定义,先求出∠BOC 的度数,再求出∠FOC 的度数,最后求出答案,有两种情况,以防漏掉.38.L M N >>【分析】根据连接两点的所有线中,线段最短的性质解答.【详解】∠AB+AE >BE ,CD+DE >CE ,∠AB+AE+CD+DE >BE+CE ,即l >m ,又BE+CE >BC ,即m >n ,∠L M N >>.【点睛】本题考查了知识点两点之间线段最短,解题的关键是熟记性质.39. (1)4 (2)116或1742. 【分析】(1)画出符合题意的图形,由18,2AB AC BC ==,求解BC ,再利用线段的和差关系求解EC 即可得到答案;(2)根据AC=2BC ,AB=2DE ,线段DE 在直线AB 上移动,满足关系式32AD EC BE +=,再分六种情况讨论,∠当DE 在点A 左侧时,∠当A 在DE 之间时,∠当DE 在线段AC 上时,∠当C 在DE 之间时,∠当D 在CB 之间时,∠当D 在B 的右边时,可以设CE=x ,DC=y ,用含x 和y 的式子表示,,AD EC BE 的长,从而得出x 与y 的等量关系,即可求出 CD AB的值. 【详解】解:(1)如图,18AB DB ==,2,AC BC = 163BC AB ∴==, 8DE =,1886 4.EC AB DE BC ∴=--=--=(2)∠AC=2BC ,AB=2DE ,满足关系式32AD EC BE +=, ∠当DE 在点A 左侧时,如图,设CE=x ,DC=y , 则DE y x =-,∠()()242,33AB y x AC AB y x =-==-,()12222,333BC y x y x =-=-∠41,33AD DC AC x y =-=- ∠2133BE BC CE y x =+=+ ∠7133AD EC x y +=- ∠32AD EC BE +=, ∴ ()23,AD EC BE += ∠7121233333x y y x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭, 解得,811x y =, ∠ ()11.826211CD y y AB y x y y ===-⎛⎫- ⎪⎝⎭ ∠当A 在DE 之间时,如图,设,,CE x CD y == 则DE y x =-, 同理可得:11.6CD AB = ∠当DE 在线段AC 上时,设,,CE x CD y == 则DE y x =-,,222,DE y x AB DE y x ∴=-==-24422,,33333AC AB y x BC y x ∴==-=- 1411,,3333AD AC CD y x AD CE y x ∴=-=-+=- 21+,33BE BC CE y x ==+ AD CE ∴+<,BE32AD EC BE +=, AD CE ∴+>,BE∴ 不合题意舍去;∠当C 在DE 之间时,如图,设CE=x ,DC=y , 则DE=x+y ,∠()()242,,33AB x y AC AB x y =+==+ ()()112333BC AB x y x y ==+=+, ∠41,33AD AC DC x y =-=+ ∠7133AD EC x y +=+ ∠21,33BE BC CE y x =-=- ∠32AD EC BE += ∴ ()23,AD EC BE += ∠7121233333x y y x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭, 解得,417x y =, ∠ ()174242217CD y y AB x y y y ===+⎛⎫+ ⎪⎝⎭. ∠当D 在CB 之间时,设,,CD y CE x == 则,222,DE x y AB DE x y =-==- 4422,,3333AC x y BC x y ∴=-=- 4112,,3333AD AC CD x y BE CE BC x y ∴=+=-=-=+ 71,33AD CE x y ∴+=- ∠32AD EC BE += ∴ ()23,AD EC BE += 同理可得:8,11x y = 与图形条件x >y 不符舍去, ∠当D 在B 的右边时,设,,CD y CE x == 则,222,DE x y AB DE x y =-==-4422,,3333AC x y BC x y ∴=-=- 4112,,3333AD AC CD x y BE CE BC x y ∴=+=-=-=+ 71,33AD CE x y ∴+=- ∠32AD EC BE += ∴ ()23,AD EC BE += 同理可得:8,11x y =与图形条件x >y 不符,舍去, 综上:CD AB 的值为:116或1742. 故答案为116或1742. 【点睛】本题考查的是线段的和差关系,二元一次方程思想,与线段相关的动态问题,分类讨论的思想,掌握以上知识是解题的关键.40.(1)圆柱(2)长方形、圆形或梯形(3)168π平方厘米或224π平方厘米【分析】(1)由图形旋转性质可知旋转后得到的几何体是圆柱;(2)用一个平面截圆柱,从不同角度截取的形状不同;(3)分情况讨论,找出圆柱的底面半径和高,即可求解.【详解】(1)解:由图形旋转性质可知,绕长方形的一边所在直线旋转一周后所得立方体为柱体、底面为圆,因此得到的几何体是圆柱.故答案为圆柱.(2)解:用一个平面截圆柱,截面形状可能为长方形、圆形或梯形.(3)解:分情况讨论,若绕BC 边旋转,则所得圆柱的表面积为:228286=224S S S 侧底平方厘米;若绕CD 边旋转,则所得圆柱的表面积为:226268=168S S S 侧底平方厘米.故旋转得到的几何体的表面积为168π平方厘米或224π平方厘米.【点睛】本题考查了点、线、面、体,截几何体,圆柱的表面积计算等知识点,解题关键是理解点动成线、线动成面、面动成体.41.【解析】略42.(1)70BOD ∠=︒(2)40AOB ∠=︒ (3)()12αβ+;12θ【分析】(1)根据角平分线的定义得出40BOC AOB ∠=∠=︒,30DOC DOE ∠=∠=︒,再根据角度之间的关系求出BOD ∠的度数即可;(2)先根据角平分线的定义,30COD ∠=︒,得出260COE COD ∠=∠=︒,根据140AOE ∠=︒,求出80AOC ∠=︒,根据角平分线的定义即可得出答案; (3)根据角平分线的定义得出1122BOC AOC ∠=∠=︒,1122COD COE ∠=∠=︒,根据角度之间的关系得出()12BOD ∠=+︒;根据角平分线的定义得出12BOD AOE ∠=∠. 【详解】(1)解:∠OB 为AOC ∠的平分线,OD 是COE ∠的平分线,∠40BOC AOB ∠=∠=︒,30DOC DOE ∠=∠=︒,∠403070BOD BOC DOC ∠=∠+∠=︒+︒=︒.(2)解:∠OD 是COE ∠的平分线,30COD ∠=︒,∠260COE COD ∠=∠=︒,∠140AOE ∠=︒,∠80AOC AOE COE ∠=∠-∠=︒,∠OB 为AOC ∠的平分线,∠4120AOB AOC ∠=∠=︒. (3)解:∠OB 为AOC ∠的平分线,OD 是COE ∠的平分线,AOC α∠=︒,COE β∠=︒,∠1122BOC AOC ∠=∠=︒,1122COD COE ∠=∠=︒, ∠()111222BOD BOC COD ∠=∠+∠=︒+︒=+︒; ∠OB 为AOC ∠的平分线,OD 是COE ∠的平分线,∠1BOC AOB 2∠=∠,12COD COE ∠=∠, ∠BOD BOC COD ∠=∠+∠1122AOC COE =∠+∠ ()12AOC COE =∠+∠ 12AOE =∠ 12=. 故答案为:()12αβ+;12θ. 【点睛】本题主要考查了角平分线的定义,几何图形中的角度计算,解题的关键是熟练掌握角平分线的定义,数形结合.43.(1)2BC cm =;(2)16AB cm =【分析】(1)先求出AC ,根据BC=AB-AC ,即可求出BC ;(2)求出BC=2CN, AC=2CM,把MN=CN+MC=8cm 代入求出即可.【详解】解: (1) ∠点M 是线段AC 的中点,∠AC=2AM,∠AM=5cm,∠AC=10cm,∠AB=12cm ,∠BC=AB-AC=12-10=2cm,(2)∠点M 是线段AC 的中点,点N 是线段BC 的中点.∠BC=2NC ,AC=2MC,∠MN=NC+MC=8cm ,∠AB=BC+AC=2NC+2MC==2(NC+MC)=2MN=28⨯cm=16cm .【点睛】本题考查了两点之间的距离的应用,主要考查学生的观察图形的能力和计算能力.44【分析】由AB=3,AD=4,BF=5长宽高三种长度不同,蚂蚁走的折面不同,距离也不同,要按不同的棱展开两个面,(1)长方形沿着棱ND展开,(2)长方形沿着棱DC展开,(3)长方形沿着棱BC展开,用勾股定理求出对角线的长度,再比较取最短者.【详解】∠AB=3,AD=4,BF=5∠MC =BF=AE=5,BC=AD=MF=4,MN= CD=AB=3(1)长方形沿着棱ND展开如图∠所示时,在Rt∆AEM中AM2=AE2+EM2= AE2+(NE+MN)2=52+(3+4)2=25+49=74,(2)长方形沿着棱DC展开如图∠所示时,AM2=AB2+( BC+CM)2=32+(4+5)2=9+81=90,(3)长方形沿着棱BC展开如图∠所示时,AM2=MF2+( AB+BF)2=42+(3+5)2=16+64=80,∠ AM=∠【点睛】本题考查蚂蚁所走最短路径问题,涉及长方体的侧面展开问题,要会分析最短路径涉及几个面展开,展开后走的哪条路径为最短,分别求出经比较才能解决问题.45.(1)145°(2)∠MEN=2∠MFN,证明见解析(3)1∠MEN+∠MFN=180°,证明见解析2【分析】分析:(1)过E作EH∠AB,FG∠AB,根据平行线的性质得到结论;(2)根据三角形的外角的性质得,平行线的性质,角平分线的定义即可得到结论;(3)根据平行线的性质得到∠MGE∠∠ENC,根据角平分线的定义得到∠MGE∠∠ENC∠2∠FNG∠∠AME∠2∠1∠∠E∠∠MGE∠∠E∠2∠FNG,根据三角形的外角的性质和四边形的内角和即可得到结论.(1)解:如图1,过E作EH∠AB,FG∠AB。
2020-2021初中数学几何图形初步经典测试题附答案解析(1)
2020-2021初中数学几何图形初步经典测试题附答案解析(1)一、选择题1.下列说法,正确的是() A.经过一点有且只有一条直线 B.两条射线组成的图形叫做角 C.两条直线相交至少有两个交点 D.两点确定一条直线【答案】D 【解析】 【分析】根据直线的性质、角的定义、相交线的概念一一判断即可. 【详解】A 、经过两点有且只有一条直线,故错误;B 、有公共顶点的两条射线组成的图形叫做角,故错误;C 、两条直线相交有一个交点,故错误;D 、两点确定一条直线,故正确,故选D. 【点睛】本题考查直线的性质、角的定义、相交线的概念,熟练掌握相关知识是解题的关键2 . / 1 与/ 2 互余,/ 1 与/3 互补,若/ 3=125°,则/ 2=()解:根据题意得:/ 1 + 7 3=180°, / 3=125°,则/ 1=55°, 1 + 7 2=90°,则/ 2=35°故选:A.【点睛】 本题考查余角、补角的计算.3 .如图,一个正六棱柱的表面展开后恰好放入一个矩形内,把其中一部分图形挪动了位置,发现矩形的长留出 5cm,宽留出1cm,则该六棱柱的侧面积是()A. 35°【答案】A 【解析】 【分析】【详解】B. 45C. 55D. 65°A. (108 24察)cm2B. 108 1273 cm2C. 54 2443 cm2D. 54 1273 cm2【答案】A【解析】【分析】设正六棱柱的底面边长为acm,高为hcm,分别表示出挪动前后所在矩形的长与宽,由题意列出方程求出a= 2, h =9-2J3,再根据六棱柱的侧面积是6ah求解.【详解】解:设正六棱柱的底面边长为acm,高为hcm ,如图,正六边形边长AB= acm时,由正六边形的性质可知/ BAD= 30°,BD= —a cm, AD= ^3 a cm , 2 2,AC=2AD=邪a cm,A ------ i—- - - -D「•挪动前所在矩形的长为(2h+2£a) cm,宽为(4a + - a ) cm ,2挪动后所在矩形的长为(h+2a+J3a) cm,宽为4acm,由题意得:(2h+2万a) -(h + 2a+V3a) =5, (4a+1a)-4a=1,2・•.a=2, h=9- 2技「•该六棱柱的侧面积是6ah = 6X2X(9- 2^/3) = (108 2473) cm2;故选:A.【点睛】本题考查了几何体的展开图,正六棱柱的性质,含30度角的直角三角形的性质;能够求出正六棱柱的高与底面边长是解题的关键.4.将一副三角板如下图放置,使点A落在DE上,若BC P DE ,则AFC的度数为 ()A. 90°B. 75°C. 105°D. 120°【答案】B 【解析】 【分析】根据平行线的性质可得 /E /BCE 30 ,再根据三角形外角的性质即可求解 的度数. 【详解】••• BC//DE Z E / BCE 30••• / AFC / B / BCE 45 3075故答案为:B. 【点睛】本题考查了三角板的角度问题,掌握平行线的性质、三角形外角的性质是解题的关键.【分析】根据三棱柱的展开图的特点作答. 【详解】A 、是三棱锥的展开图,故不是;B 、两底在同一侧,也不符合题意;C 、是三棱柱的平面展开图;D 、是四棱锥的展开图,故不是 .故选C. 【点睛】本题考查的知识点是三棱柱的展开图,解题关键是熟练掌握常见立体图形的平面展开图的 特征.6 .如图,直线a//b,点B 在直线b 上,且AB± BC, Z 1=55 °,那么/ 2的度数是AFC5.下面四个图形中,是三棱柱的平面展开图的是 ( )由垂线的性质可得/ ABC=90 ,所以/ 3=180° -90°-/1=35°,再由平行线的性质可得到/ 2的度数.【详解】又「 a// b, 所以/ 2=7 3=35° . 故选C. 【点睛】本题主要考查了平行线的性质7 .如右图,在 ABC 中, ACB 90 , CD AD ,垂足为点D ,有下列说法:①点 A 与点B 的距离是线段AB 的长;②点A 到直线CD 的距离是线段 AD 的长;③线段 CD 是 ABC 边AB 上的高;④线段CD 是 BCD边BD 上的高.上述说法中,正确的个数为()【答案】D 【解析】 【分析】根据两点间的距离定义即可判断 ①,根据点到直线距离的概念即可判断 ②,根据三角形的高的定义即可判断③④. 【详解】B. 30°C. 35°D. 50°B. 2个C. 3个D. 4个BA. 20°【答案】C解:①、根据两点间的距离的定义得出:点A 与点B 的距离是线段 AB 的长,・•.①正确;②、点A 到直线CD 的距离是线段 AD 的长,••・②正确; ③、根据三角形的高的定义, 那BC 边AB 上的高是线段 CD, ••.③正确;④、根据三角形的高的定义,ADBC 边BD 上的高是线段 CD,④ 正确.综上所述,正确的是①②③④ 共4个. 故选:D. 【点睛】本题主要考查对两点间的距离,点到直线的距离,三角形的高等知识点的理解和掌握,能 熟练地运用概念进行判断是解此题的关键.8 .如图,B 是线段AD 的中点,C 是线段BD 上一点,则下列结论中错误..的是(*・ ・.AB C D A. BC=AB-CDB. BC=-(AD-CD)【答案】B 【解析】试题解析:: B 是线段AD 的中点,.•.AB=BD=-AD2 ,A 、BC=BD-CD=AB-CD 故本选项正确;-1B 、BC=BD-CD] AD-CD,故本选项错误;-- - 1......G BC=BD-CDh AD-CD,故本选项正确; 2D 、BC=AC-AB=AC-BD 故本选项正确.故选B.9.如图,直线 AB, CD 交于点 O,射线 OM 平分/ AOC,若/ AOC= 76°,则/ BOM 等于8CA. 38°B, 104°C, 142°D, 144【答案】C 【解析】・. / AOC= 76°,射线 OM 平分/ AOC,1 1/ AOM= — / AOC=— x 76=38C. BC=- AD-CDD. BC=AC-BD()2 2 'BOM=180° 上 AOM=180° 38 =142°,故选C.点睛:本题考查了对顶角相等的性质,角平分线的定义,准确识图是解题的关键10.已知:在RtAABC 中,/ C=90 °, BC=1, AC= J3 ,点D 是斜边AB 的中点,点E 是边C. D.【答案】C 【解析】 【分析】作B 关于AC 的对称点B',连接B'。
初二数学几何考试题
初二数学几何考试题无论是身处学校还是步入社会,我们都不可避免地会接触到试题,借助试题可以更好地考核参考者的知识才能。
那么问题来了,一份好的试题是什么样的呢?下面是小编收集整理的初二数学几何考试题,仅供参考,大家一起来看看吧。
1,如图矩形ABCD对角线AC、BD交于O,E F分别是OA、OB 的中点(1)求证△ADE≌△BCF:(2)若AD=4cm,AB=8cm,求CF的长。
证明:(1)在矩形ABCD中,AC,BD为对角线,∴AO=OD=OB=OC∴∠DAO=∠ADO=∠CBO=∠BCO∵E,F为OA,OB中点∴AE=BF=1/2AO=1/2OB∵AD=BC, ∠DAO=∠CBO,AE=BF∴△ADE≌△BCF(2)过F作MN⊥DC于M,交AB于N∵AD=4cm,AB=8cm∴BD=4根号5∵BF:BD=NF:MN=1:4∴NF=1,MF=3∵EF为△AOB中位线∴EF=1/2AB=4cm∵四边形DCFE为等腰梯形∴MC=2cm∴FC=根号13cm。
2,如图,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=2DC,对角线AC⊥BD,垂足为F,过点F作EF∥AB,交AD于点E,CF=4cm。
(1)求证:四边形ABFE是等腰梯形;(2)求AE的长。
(1)证明:过点D作DM⊥AB,∵DC∥AB,∠CBA=90°,∴四边形BCDM为矩形.∴DC=MB.∵AB=2DC,∴AM=MB=DC.∵DM⊥AB,∴AD=BD.∴∠DAB=∠DBA.∵EF∥AB,AE与BF交于点D,即AE与FB不平行,∴四边形ABFE是等腰梯形.(2)解:∵DC∥AB,∴△DCF∽△BAF。
∴CD AB =CF AF =1 2。
∵CF=4cm,∴AF=8cm。
∵AC⊥BD,∠ABC=90°,在△ABF与△BCF中,∵∠ABC=∠BFC=90°,∴∠FAB+∠ABF=90°,∵∠FBC+∠ABF=90°,∴∠FAB=∠FBC,∴△ABF∽△BCF,即BF CF =AF BF ,∴BF2=CFAF.∴BF=4 2 cm.∴AE=BF=4 2 cm.3,如图,用三个全等的菱形ABGH、BCFG、CDEF拼成平行四边形ADEH,连接AE与BG、CF分别交于P、Q,(1)若AB=6,求线段BP的长;(2)观察图形,是否有三角形与△ACQ全等?并证明你的'结论解:(1)∵菱形ABGH、BCFG、CDEF是全等菱形∴BC=CD=DE=AB=6,BG∥DE∴AD=3AB=3×6=18,∠ABG=∠D,∠APB=∠AED∴△ABP∽△ADE∴BP DE =AB AD∴BP=AB AD DE=6 18 ×6=2;(2)∵菱形ABGH、BCFG、CDEF是全等的菱形∴AB=BC=EF=FG∴AB+BC=EF+FG∴AC=EG∵AD∥HE∴∠1=∠2∵BG∥CF∴∠3=∠4∴△EGP≌△ACQ。
八年级数学平面几何图形性质练习题及答案
八年级数学平面几何图形性质练习题及答案一、正方形的性质练习题及答案1. 如图所示,ABCD是一个正方形。
已知DE⊥AD,DF⊥BC。
证明:DE=DF。
解析:根据正方形的性质,对角线相互垂直且相等。
因此,△ADE ≌△BDF(AC共边,∠EDA=∠BFD=90°,AD=BD)。
∴ DE=DF。
2. 已知正方形ABCD的边长为a,E是BC的中点,F是CD的中点,连接AF交BD于点G,求证:AG=3a/4。
解析:连接AC。
由于E是BC的中点,所以BE=EC=a/2。
∴△BEG是等腰直角三角形,∠BGE=∠BEG=45°,所以BE=BG=a/2。
又因为AF是CD的中点,所以DF=FC=a/2。
所以△DFA是等腰直角三角形,∠DFA=∠FDA=45°。
∴∠CAG=∠DFA+∠BGE=45°+45°=90°。
所以△CAG是直角三角形,AG=√(AC²-CG²)=√(a²-(3a/4)²)=√(a²-9a²/16)=√(7a²/16)=√(49a²/64)=7a/8=3a/4。
二、矩形的性质练习题及答案1. 若一个矩形的周长为40 cm,且它的宽比长度的1/4,求它的长和宽。
解析:设矩形的宽为x cm,则长度为4x cm。
周长为40 cm,即2(x+4x)=40。
解得5x=20,所以x=4。
∴矩形的长为4x=4*4=16 cm,宽为x=4 cm。
2. 如图所示,矩形ABCD中,AE=3 cm,BE=4 cm,连接EC。
(1)求证:△AED ≌△BEC;(2)求证:CD=AD+BC。
解析:(1)根据已知条件,AE=EC,所以△AED ≌△BEC(边边边三个对应边相等)。
(2)由于△AED ≌△BEC,所以∠A=∠B,∠C=∠D。
∴∠C+∠A=∠D+∠B,即∠CAD=∠CBD。
初二数学·几何图形专练及答案
CF = FH = m
AE = CH = 2m
3 BF = 2FH + DF
3
A AN ⊥ DF
N
CAE = BAE AOB = AOD
ADB = ABD
AD = AB ADF = ABF AHB = AND = 90 ABH ADN (AAS)
AN = AH BH = DN
RtANF RtAHF RtANF RtAHF(HL)
24
DE AC
DA = DC AE = CE = 5
ABD
14 AB + BD + AD = 14
AB + BC + AC = AB + BD + CD + AC = 14 + 10 = 24
ABC
24
14
1 (−1, 4) 2 2 m 3 BF = 2FH + DF
1 CH ⊥ y H
1
A
(−3, 0) B
SABC
=
1 2
AB
CM
=
1 2
AC
BC
CM = AC BC = 24 AB 5
PC + PQ
24
5
B
BC = 8
P PQ ⊥ AC
17
10
C
ABC CDE
CA = CB CD = CE ACB = 60 DCE = 60
ACE = 60
ACD = BCE = 120
ACD BCE
CA = CB ACD = BCE CD = CE
14
ABC
BC = AB A
x
By
Cx
1
1
初二数学几何图形题
几何图形题常见辅助线的作法有以下几种:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”.遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”.遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.一、以等边三角形为基础1.已知:如图1,点C为线段AB上一点,△ACM,△CBN都是等边三角形,AN交MC于点E,BM交CN于点F.(1)求证:AN=BM;(2)求证:△CEF为等边三角形;(3)将△ACM绕点C按逆时针方向旋转90O,其他条件不变,在图2中补出符合要求的图形,并判断第(1)、(2)两小题的结论是否仍然成立(不要求证明).2。
如图,△ABC为等边三角形,AB=6cm,O为AB上的任意一点(与B点不重合),OD⊥BC于D;DE⊥AC于E;EP⊥AB 于P。
问:当OB的长等于多少时,点P与点O重合?二、以等腰直角三角形为基础3。
如图1图2图3,△AOB,△COD均是等腰直角三角形,∠AOB=∠COD=90º,(1)在图1中,AC与BD相等吗,有怎样的位置关系?请说明理由.(2)若△COD绕点O顺时针旋转一定角度后,到达图2的位置,请问AC与BD还相等吗,还具有那种位置关系吗?为什么?(3)若△COD绕点O顺时针旋转一定角度后,到达图3的位置,请问AC与BD还相等吗?还具有上问中的位置关系吗?为什么?4.如图,两个全等的含30°、60°角的三角板ADE和三角板ABC放置在一起,∠DEA=∠ACB=90°,∠DAE=∠ABC=30°,E、A、C三点在一条直线上,连接BD,取BD中点M,连接ME、MC,试判断△EMC的形状,并说明理由.G HF E D C B A 5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1文档来源为:从网络收集整理.word 版本可编辑. G H F E
D C
B A 几何图形题
常见辅助线的作法有以下几种:
遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”.
遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”.
遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.
过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠” 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.
特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.
一、以等边三角形为基础
1.已知:如图1,点C 为线段AB 上一点,△ACM ,△CBN 都是等边三角形,AN 交MC 于点E ,BM 交CN 于点F .
(1)求证:AN=BM ; (2)求证:△CEF 为等边三角形;
(3)将△ACM 绕点C 按逆时针方向旋转90 O ,其他条件不变,在图2中补出符合要求的图形,并判断第(1)、(2)
两小题的结论是否仍然成立(不要求证明).
2.如图,△ABC 为等边三角形,AB=6cm ,O 为AB 上的任意一点(与B 点不重合),OD ⊥BC 于D ;DE ⊥AC 于E ;EP ⊥AB 于P 。
问:当OB 的长等于多少时,点P 与点O 重合?
二、以等腰直角三角形为基础
3.如图1图2图3,△AOB ,△COD 均是等腰直角三角形,∠AOB =∠COD =90º,
(1)在图1中,AC 与BD 相等吗,有怎样的位置关系?请说明理由。
(2)若△COD 绕点O 顺时针旋转一定角度后,到达图2的位置,请问AC 与BD 还相等吗,还具有那种位置关系吗?为什么?
(3)若△COD 绕点O 顺时针旋转一定角度后,到达图3的位置,请问AC 与BD 还相等吗?还具有上问中的位置关系吗?为什么?
4.如图,两个全等的含30°、60°角的三角板ADE 和三角板ABC 放置在一起,∠DEA=∠ACB=90°,∠DAE=∠ABC=30°,E 、A 、C 三点在一条直线上,连接BD ,取BD 中点M ,连接ME 、MC ,试判断△EMC 的形状,并说明理由.
5.已知:在△ABC 中,∠ACB 为锐角,点D 为射线BC 上一动点,连接AD ,以AD 为一边且在AD 的左侧作等腰直角△ADE ,解答下列各题:如果AB=AC ,∠BAC=90°.
(i )当点D 在线段BC 上时(与点B 不重合),如图甲,线段BD ,CE 之间的关系为______________
(ii )当点D 在线段BC 的延长线上时,如图乙,i )中的结论是否还成立?为什么?
6.如图:在△ABC 中,BE 、CF 分别是AC 、AB 两边上的高,在BE 上截取BD=AC ,在CF 的延长线上截取 CG=AB ,连结AD 、AG 。
求证:(1)AD=AG ,
(2)AD 与AG 的位置关系如何? 7.在Rt △ABC 中,AB=AC ,∠BAC=90°,O 为BC 的中点.写出点O 到△ABC 的三个顶点A 、B 、C 的距离的大小关系,
并说明理由. (1)若点M 、N 分别是AB 、AC 上的点,且BM=AN ,试判断△OMN 形状,并证明你的结论.
(2)S ∆AMN 、s ∆OMN 、ABC S △又有怎样的数量关系?请写出你的猜想,不需证明.
2文档来源为:从网络收集整理.word 版本可编辑. 8.如图,已知在△ABC 中,∠BAC 为直角,AB=AC ,D 为AC 上一点,CE ⊥BD 于E .
(1)若BD 平分∠ABC ,求证: (i )CE=12
BD ;(ii ) BC =AB +AD ; (2)若D 为AC 上一动点,∠AED 如何变化,若变化,求它的变化范围;若不变,求出它的度数,并说明理由。