信号数字化与动态信号分析仪

合集下载

振动测量仪器知识

振动测量仪器知识

振动测量仪器知识一、概述(一)用途振动测量仪器是一种测量物体机械振动的测量仪器。

测量的基本量是振动的加速度、速度和位移等,可以测量机械振动和冲击振动的有效值、峰值等,频率范围从零点几赫兹〜几千赫兹。

外部联接或内部设置带通滤波器,可以进行噪声的频谱分析。

随着电子技术尤其是大规模集成电路和计算机技术的发展,振动测量仪器的许多功能都通过数字信号处理技术代替模拟电路来实现。

这不仅使得电路更加简化,动态范围更宽,而且功能和稳定性也大大提高,尤其是可以实现实时频谱分析,使振动测量仪器的用途更加广泛。

(二)分类与特点振动测量仪器按功能来分:分为工作测振仪、振动烈度计、振动分析仪、激振器(或振动台)、振动激励控制器、振动校准器测量机械振动,具有频谱分析功能的称为频谱分析仪,具有实时频谱分析功能的称为实时频谱分析仪或实时信号分析仪,具有多路测量功能的多通道声学分析仪。

振动测量仪器按采用技术来分:分为模拟振动计、数字化振动计和多通道实时信号分析仪。

振动测量仪器按测量对象来分:分为测量机械振动的通用振动计,测量振动对人体影响的人体(响应)振动计、测量环境振动的环境振动仪和振动激励控制器。

工作测振仪特点通常是手持式,操作简单、价格便宜,只测量并显示振动的加速度、速度和位移等。

以前用电表显示测量值,现在都是用数字显示。

通常不带数据储存和打印功能,用于一般振动测量。

振动烈度计是指专用于测量振动烈度(10 Hz〜1000 Hz频率范围的速度有效值)的振动测量仪器。

实时信号分析仪特点实时信号分析仪是一种数字频率分析仪,它采用数字信号处理技术代替模拟电路来进行振动的测量和频谱分析。

当模拟信号通过采样及A/D转换成数字信号后,进入数字计算机进行运算,实现各种测量和分析功能。

实时信号分析仪可同时测量加速度、速度和位移,均方根、峰值(Peak、峰-峰值(Peak-Peak检波可并行工作。

不仅分析速度快,而且也能分析瞬态信号,在显示器上实时显示出频谱变化,还可将分析得到的数据输出并记录下来。

物理实验技术中的仪器与设备介绍

物理实验技术中的仪器与设备介绍

物理实验技术中的仪器与设备介绍引言:物理实验技术作为物理学学习与研究的重要环节,无法离开各种仪器与设备的辅助。

本文将介绍物理实验室常见的仪器与设备,并探讨它们在实验中的作用和应用。

一、光学实验仪器1. 光学显微镜光学显微镜是一种使用电子或光学技术观察微观物体的工具。

它结合了光学的成像原理和通过物镜和目镜的协同工作来增加放大倍率。

光学显微镜在生物学、医学和材料科学等领域具有重要应用。

2. 分光光度计分光光度计是利用物质对入射光的吸收、散射、透射等现象,通过对比光源和待测样品的光强,测定样品浓度或物质的特性的仪器。

它在分析化学、生化学等领域中广泛应用。

3. 干涉仪干涉仪是一种利用光的干涉原理来探测和测量物质性质的仪器。

常见的干涉仪包括迈克尔逊干涉仪、杨氏双缝干涉仪和薄膜干涉仪等。

干涉仪在物理研究、光学制造等领域中有广泛的应用。

二、电学实验仪器1. 示波器示波器是一种用于测量和记录电压波形的仪器。

它利用电子束扫描的方式将电压信号转化为可视的波形图。

示波器在电路设计、信号分析和故障排查等领域中起到至关重要的作用。

2. 动态信号分析仪动态信号分析仪是一种用于测量和分析电子信号的仪器。

它能够对频率、振幅和相位等信号参数进行精确测量和分析。

动态信号分析仪被广泛应用于通信、雷达、医学图像等领域的研究和开发。

3. 电位计电位计是一种用于测量和调节电势差的仪器。

它通过与电流表、电阻器等电路元件配合使用,实现对电势差进行准确定量测量和控制。

电位计在电化学、电解质溶液测量等领域中发挥重要作用。

三、力学实验仪器1. 弹簧测力计弹簧测力计是一种用于测量物体受力大小的仪器。

它利用弹簧的弹性变形来推断所受力的大小。

弹簧测力计在力学实验、材料测试等领域中被广泛应用。

2. 光电门光电门是一种利用光电效应来检测物体位置、速度等信息的仪器。

它由发射器和接收器组成,通过测量光电门接收到的光信号的变化来推断物体的运动状态。

光电门在运动学研究、自动化控制等领域有广泛应用。

动态信号分析仪安全操作及保养规程

动态信号分析仪安全操作及保养规程

动态信号分析仪安全操作及保养规程动态信号分析仪是一种被广泛应用于各类工业生产领域的高科技仪器设备,它能够通过采集物体振动的动态信号并将其进行分析,从而帮助用户检测出物体内部的缺陷和故障,辅助用户制定有效的维修和保养方案。

为了更好地保证动态信号分析仪的正常使用和延长其使用寿命,以下将为您介绍它的安全操作和保养规程。

安全操作1. 操作员应具备一定的技术知识在进行动态信号分析仪的操作时,操作员应具备一定的技术知识,了解其原理和工作方式。

如果是初次操作,操作员应事先进行相关的培训和指导,跟随有经验的人员参与实操,熟悉仪器的使用方法和操作流程,确保技能水平和安全意识符合要求。

2. 正确连接电源和信号线在接入电源前,应检查电源和电压是否符合动态信号分析仪的电气参数要求,避免供电不足或过大,导致设备损坏。

接线时应注意线路接法是否正确,电源线和信号线要分别接在相应的接口上,以免设备受到电击或触电事故发生。

3. 使用过程中应注意安全防护措施操作过程中应佩戴防静电手套,并注意保护设备不受损伤,设备外壳应经常擦拭,避免受到外界污染。

保持操作现场清洁、整洁、安全,避免绊倒、滑倒等意外事故的发生。

在设备运转时,应保持身体稳定,防止摇摆和跌倒。

4. 关闭设备前,应注意操作步骤在关闭设备之前,应先关闭设备的软件,在断开电源之前,给设备一定的停机时间,保证设备内的部件安全、准确、稳定地停止运转,然后再关掉电源,避免短路和电流浪涌对设备的损害。

保养规程1. 定期清理设备动态信号分析仪的频率转换器、计算机等部件上会积累灰尘、油污和异物,影响设备正常工作,因此需要定期进行清洗。

清洁时应避免使用含有酸性、碱性、易挥发的化学药品,轻微的灰尘可以用柔软的毛刷或清洁布擦拭。

2. 注意电源接口的保养动态信号分析仪的电源口很容易受到污染,长时间不进行干净的保养和维护,会使电源接口损坏,该接口损坏后会影响设备使用,因此要定期进行检查和清洁。

3. 驱动器的保养动态信号分析仪中的驱动器是重要部件,如果不注意保养就会出现摩擦、磨损等情况。

动态信号分析仪的特点都有哪些呢

动态信号分析仪的特点都有哪些呢

动态信号分析仪的特点都有哪些呢动态信号分析仪是用于测量和分析机械和电子设备中的振动、震动和噪音等动态信号的精密仪器。

它具有高精度、高速度、高灵敏度和高可靠性等特点。

本文将对动态信号分析仪的特点进行详细介绍。

1. 高精度动态信号分析仪采用了高精度、高速度的模数转换技术,可以对微弱的信号进行高精度的测量和分析。

它能够在高噪声环境下进行信号采集和分析,提高数据的可靠性和准确性。

同时,其具有高辨析度和高灵敏度,能够准确地检测和诊断机械设备中的故障和缺陷。

2. 高速度动态信号分析仪具备高速度的数据采集和处理能力,可以在短时间内采集和处理大量数据。

其采用了实时监测技术,能够对设备运行状态进行持续监测和分析,及时捕捉故障信号,快速反应和解决设备故障,有效提高设备的可靠性和安全性。

3. 多功能性动态信号分析仪具有多种功能,可以进行振动分析、频谱分析、时间频率分析、谐波分析、共振测试、幅值分析、相位分析等多项功能。

它能够满足不同范围的检测要求,适用于各种机械和电子设备中的振动、震动和噪音分析。

4. 易于操作动态信号分析仪采用了人性化的操作界面和简便的操作方式,可以快速上手操作。

同时,其具有自动化测试和诊断功能,能够自动识别和分析故障信号,提高工作效率和准确性。

此外,动态信号分析仪还支持远程监控和控制,使得远程工程师可以通过互联网等远程通信手段对设备进行监控和诊断。

5. 高可靠性动态信号分析仪采用了高品质的元器件和制造工艺,具有高可靠性和长寿命。

其外壳采用高强度、防水、防尘、防腐蚀的材料,能够在恶劣环境下工作。

同时,其具有自诊断和自校准功能,能够保证设备的稳定性和准确性。

6. 可拓展性动态信号分析仪具有良好的可拓展性,可以与其他测试设备、数字信号处理器等设备相连接,实现更为精细的检测和分析。

其支持多种接口和通讯协议,具有较高的兼容性和可扩展性。

综上所述,动态信号分析仪具有高精度、高速度、高灵敏度、高可靠性、多功能性、易于操作和可拓展性等多项特点,是工业领域中进行振动、震动和噪音分析的理想设备之一。

Spider-20动态信号分析仪公司推荐

Spider-20动态信号分析仪公司推荐

Spider-20是一款紧凑而强大的无线动态信号分析仪和数据采集仪。

它提供4个24位高精确高保真输入通道,和一个独特的软件可选的转速计输入信号源输出通道(使用传统的BNC连接器)。

每个输入可单独编程接受AC或DC电压或从一个内置电子IEPE(ICP)传感器输出。

Spider20 的尺寸为13.5*10.9*3.25cm,可充电,内置闪卡,内置WIFI接口。

使用iPAD可以设置、查看或记录历史信号,以及执行频谱分析、测量频率响应函数FRF和相干函数。

将它连接到笔记本或PC电脑还可享受我们EDM软件提供的全部软件功能,包括1/N倍频程声学功能、旋转机械阶次跟踪,冲击响应谱测试或专用的数字滤波器等。

Spider-20 完全脱离PC操作,只需用手进入黑盒操作模式,利用我们灵活的自动测试计划和阈值检测软件使Spider-20变成一个智能化无人监控能够响应数据条件或网络指令,通过邮件向您发送通知。

是有线款动态信号分析仪和数据采集仪,用有线以太网连接取代了Wi-Fi,与Spider-20 技术指标和功能相同。

Spider-20特点超便携易用性:重量只有560g 高精度性:24位分辨率,100dB动态输入范围内置WIFI,4G闪存,电池保证6小时续航4个输入通道,1个转速输出通道,最高采样率102.4KHz 脱离PC,黑匣子工作模式支持iPAD、笔记本、PC电脑连接操作。

Spider-20功能实时数据记录,瞬态捕捉转速、相位、轴心轨迹实时数据滤波阶次跟踪倍频程分析与声级计实时算数运算报警监测正弦扫频FRF分析时域统计分析冲击响应谱自动阈值检测任意波形输出传感器校准系统前端校准自功率谱、互功率谱、相干与传递函数。

Spider-20应用动态信号分析振动测试汽车动力学机械故障诊断模态分析过程监控自动阈值检测声学研究NVH应用机械现场监测全身振动远程监测路谱试验数据采集。

杭州锐达数字技术有限公司是美国晶钻仪器公司中国总代理,负责产品销售、技术支持与产品维护,是机械状态监测、振动噪声测试、动态信号分析、动态数据采集、应力应变测试等领域的供应商,提供手持一体化动态信号分析系统、多通道动态数据采集系统、振动控制系统、多轴振动控制系统、三综合试验系统和远程状态监测系统等。

动态信号分析仪的特点都有哪些呢 分析仪操作规程

动态信号分析仪的特点都有哪些呢 分析仪操作规程

动态信号分析仪的特点都有哪些呢分析仪操作规程动态信号分析仪是一款便携式多通道并行同步采样的动态信号测试分析系统;包含动态信号测试分析系统所需的直流电压放大器、抗混滤波器、A/D转换器、DSP实动态信号分析仪是一款便携式多通道并行同步采样的动态信号测试分析系统;包含动态信号测试分析系统所需的直流电压放大器、抗混滤波器、A/D转换器、DSP实时信号处理系统、锂电池组及采样控制和计算机通讯的全部硬件;以及操作简便的管理和分析软件,用于多通道电压、电荷、ICP 传感器及4~20mA变送器的输出信号的采集和分析。

特点:高度便携:利用计算机的1394接口实时进行数据传送, 实现了热拔插和即插即用;并且较大程度上满足了对便携式仪器和采样速度的要求,测试系统不仅可在实验室使用,也可方便地应用于生产现场;高度集成:模块化设计的硬件,每个测量机箱可插入两个4通道数采和1通道转速测量模块;每台计算机可控制8通道数采和2通道转速同步并行采样,满足了多通道、高精度、高速动态信号的测量需求;每通道包含独立的DSP实时信号处理系统:可选择的模拟滤波 + DSP实时数字滤波,构成高性能抗混滤波器,还可根据转速周期,实时完成连续的整周期采样;每通道独立的16位A/D转换器:实现了多通道并行同步采样,通道间无串扰影响及采样速率不受通道数的限制,大大提高了系统的抗干扰能力;准确的采样速率:先进的DDS数字频率合成技术产生高精度、高稳定度的采样脉冲,保证了多通道采样速率的同步性、准确性和稳定性;数字磁带机信号记录功能:利用计算机海量的存储硬盘,长时间实时、无间断记录多通道信号;DMA方式传送数据:测试数据通过嵌入式实时操作环境下,DMA方式实时传送,保证了数据传送的高速、稳定、不漏码;先进的工艺:多层线路板,全贴片工艺,大大提高了硬件的可靠性和抗干扰能力;供电:智能化管理的可充电锂电池组供电;完全便携:防潮、防振设计,工作温度范围可拓宽至-10℃~60℃;信号适调器:配套各种可程控的信号适调器(包括电压适调模块、应变适调模块、电荷适调模块、双恒流源应变适调模块);不仅具有极强的抗干扰能力,而且由于参数由数采统一控制,系统的单位量纲实现了“傻瓜”设置。

Agilent35670A动态信号分析仪

Agilent35670A动态信号分析仪

Agilent 35670A动态信号分析仪00000产品指标:现场进行测试,测试质量可达实验室等级产品信息:Agilent35670A动态信号分析仪Agilent35670A可在各种现场进行测试,测试质量可达实验室等级,比如在小汽车测试轨上,或飞过城市上空时,或在潜艇狭窄的密闭舱内。

它的体积很小,可以放在飞机座位现面。

35670是一种有二通道或四通道(选件AY6)的FFT类型频谱/网络分析仪。

这种标准仪器可在直流至100KHz左右的范围内进行频谱、网络、时域及幅度域测量。

采用四通道HP35670A可以增加下列场合的测量能力,在汽车内测量不同地方的噪声,进行三轴向振动测量,或者沿着噪声传输路径收集不同位置的数据。

Agilent35670A可以把所有工具放在一个包装箱内。

倍频程分析选件1D1可以增加1/1,1/3或1/12倍频程频谱的实时测量功能,频率高达40KHz。

计算阶次跟踪选项1D0能显示出频谱与阶次间的函数关系,或者表示出多个阶次的幅度与PRM的函数关系。

高达8MB的附加存储器(选件UFC)将大容量的瞬态时间俘获或多余的空间提供给四组以内的时域或频域瀑布型(Waterfall)数据。

任意可调整源(选件1D4)使人们可以用实际的测试信号进行测量。

使用"HP仪器BASIC"语言,可以自动测量或者规定仪器接口。

只要用这样一台仪器,就可以在现场处理振动及噪声问题。

(你可以对所有选件进行更换,所以当前只买需要的功能模块,以后根据需要再添加)。

深瞬态时间捕获存贮器可记录4通道数据及转速表信号,以用于窄带FFT,倍频程,相关,阶或直方图工作方式。

预触发和后触于窄带FFT,倍频程,相关,阶或直方图工作方式。

预触发和后触发延迟功能使您能捕获单次事件的前沿,或删除信号的传输延迟。

可达40KHz的实进倍频程分析(ANSISI.11-1986倍频程分析(选件1D1)相当于对Agilent35670A增添了实时倍频程分析功能。

动态信号分析仪简介

动态信号分析仪简介

Agilent Technologies 35670A Dynamic Signal AnalyzerProduct OverviewThe Agilent 35670A is a portable two- or four-channel dynamic signal analyzer with the versatility to be several instruments at once. Rugged and portable, it’s ideal for field work. Yet it has the performance and functionality required for demanding R&D applications. Optional features optimize the instrument for troubleshooting mechanical vibration and noise problems, characterizing control systems, or general spectrum and network analysis.Take the Agilent 35670Awhere it’s needed!Whether you’re moving an instrument around the world or around the lab, portability is a real benefit. Small enough to fit under an airplane seat, the 35670A goes where it’s needed. But there’s more to portability than size. Like a nominal 12- to 28-Volt DC power input and self-contained featuresthat do not require externalhardware, such as built-inpiezoelectric integrated circuitpower supply, analog trigger andtachometer inputs, and optionalcomputed order tracking.Versatile enough to beyour only instrument forlow frequency analysisWith the 35670A, you carry severalinstruments into the field in onepackage. Frequency, time, andamplitude domain analysis are allavailable in the standardinstrument. Build on that capabilitywith options that either add newmeasurement capability or enhanceall measurement modes.Versatile two- or four-channel high-performanceFFT-based spectrum/network analyzer122 µHz to 102.4 kHz 16-bit ADCKey SpecificationsFrequency Range:102.4 kHz 1 channel51.2 kHz 2 channel25.6 kHz 4 channelDynamic Range:90 dB typicalAccuracy:±0.15 dBChannel Match:±0.04 dB and ±0.5 degreesReal-time Bandwidth: 25.6 kHz/1 channelResolution:100, 200, 400 & 800 linesTime Capture:0.8 to >6 Msamples (option UFC)Source Types:Random, Burst random,Periodic chirp, Burst chirp, Pinknoise, Sine, Swept-Sine (option1D2),Arbitrary (option 1D4)The Agilent 35670Ashown with fourchannels (option AY6)AY6Add Two Channels (Four Total)1D0Computed Order Tracking1D1Real-Time OctaveMeasurementsUK4Microphone Adapter andPower Supply1D2Swept-Sine Measurements1D3Curve Fit and Synthesis1D4Arbitrary Waveform Source1C2Agilent Instrument BASIC1001D0 - 1D4 bundle2Agilent 35670ADynamic Signal AnalyzerShown with option AY6 - Add Two ChannelsInput Channels•Analog A-weighted fil-ters (switchable)•Transducer sensitivity input•Engineering units: g, m/s 2, m/s, m, in/s 2, in/s, in, mil, kg, dyn, lb,N, and pascals •Built-in 4 mAconstant current power supply(17 cm) display Display area is not compromised by portabilityPrecisionMeasurements •16-bit ADC•±0.15 dB spectrum amplitude accuracy •±0.04 dB, ±0.5degrees channel match (full scale)•90 dB dynamic range (typical)•130 dB dynamic range with swept-sine (option 1D2)•Up/Down autorange •Up only autorangeMath FunctionsPowerful math and data editing functions to quickly modify meas-urement results. (Curve fit and frequency responsesynthesis available with option 1D3.)Built-In 3.5 inch Flexible Disk Drive Store instrument states,programs, time captured data, waterfall data,trace data, limits, math functions, data tables,and curve fit/synthesis tables.Supported disk formats are HP-LIF andMS-DOS. Internal RAM may also beformatted as storage disk.Powerful Markers Extract information from measurement data with trace and special markers:•Individual Trace •Coupled Trace•Absolute or Relative •Peak Search •Harmonic •Band•Sideband Power •Waterfall•Time Parameter •Frequency and DampingVersatileMeasurement Modes Standard and optionalmeasurement modes include:•FFT Analysis•Real-Time Octave Analysis (option 1D1)•Order Analysis (option 1D0)•Swept-Sine (option 1D2)•Correlation Analysis •Histogram Analysis •Time CaptureAll measurement options may be retrofitted.RPM Display Read RPM in any measurement modeAgilent Instrument BASIC (Option 1C2)Develop a customuser-interface, integrate several instruments and peripherals into a system using the 35670A as the system controller, or simply automate measurements.Online Help Applications oriented help is just a few keystrokes away.Source Types •Random Noise •Burst Random Noise •Periodic Chirp •Burst Chirp •Pink Noise •Fixed Sine •Arbitrary Waveform Source (Option 1D4)•Swept-Sine Source (Option 1D2) Note: The source is located on the front panel of a standard two-channel 35670A.GPIB ConnectorIntegrate the35670A with otherinstruments andperipherals forsystem operationor printing/plotting.System controllerfor GPIB (IEEE-488.1and 488.2) compati-ble instrumentationvia AgilentInstrument BASIC(option 1C2).Provides direct con-trol of GPIB printers,plotters,and HP SS80 diskdrives.Serial PortPlot to HP-GLplotters or print toHP-GL and rasterprinters.Parallel PortPlot to HP-GL plottersor print to HP-GL andraster printers.DC PowerAccepts 12 to 28 voltsdc (nominal). Use the35250A power cable forDC power source con-nection, or the 35251Apower cable with ciga-rette-lighter adapter.Low Noise FanFan may be turnedoff for acousticapplications.Running speed dependsonambienttemperature.External MonitorDrive a VGA monitorfor remote viewing bylarge groups.Tachometer(42 Volt Peak Max)No external signalconditioning hardwarerequired. Readsfrequency (RPM) onselected levelsbetween ±20 Volts.External Trigger(42 Volt Peak Max)No external signalconditioning hardwarerequired. Triggers onselected levelbetween ±10 Volts.KeyboardUse a standard PCkeyboard to title data,edit Agilent InstrumentBASIC programs,or to operate theinstrument.Power SelectSwitch betweenAC and DC powersources withoutinterrupting instru-ment operation.AC PowerUniversal powersupply will operatewith anycombination ofvoltage between100 and 240 VACand line frequencybetween 47 and440 Hz. Themaximum powerrequirement is350 VA.34Laboratory-qualitymeasurements in the fieldObtain all of the performance of your bench-top analyzer in a portable instrument.Ease-of-usePortability, versatility, and perfor-mance are valued attributes, but to be really valuable an instrument must also be easy to use. The 35670A has a friendly front panel,plus online help that’s alwaysavailable to answer your questions.An interactive measurement state lets you configure the instrumentsetup from a single display.Two spectrums of road induced vibration measured at different speeds are comparedusing the front/back modeof the Agilent 35670A.FFT-based spectrum analyzers, such as the 35670A, are ideal for measuring the spectra of low-frequency signals like speech or mechanical vibration. Transient components,usually missed with swept-frequency analyzers, are easily measured and displayed at speeds fast enough to follow trends. The 35670A has both the performance and features required to take full advantage of this technology.16-Bits for High PerformanceWith a 16-bit ADC (90 dB typical dynamic range) and a real-time bandwidth of 25.6 kHz, you can be sure nothing will be missed. Resolve signals using 100 to 1600 lines resolution, or for really close-in analysis, use frequency zoom to resolve signals with up to 61 µHz resolution. Use time or RPM arming to develop waterfalls of sequential vibration spectra for trend analysis or for an overview of device vibration.Power and Linear SpectrumsMatch your spectrum measurement mode to the signal being tested. Use linear spectrum analysis to measure both the amplitude and phase of periodic signals such as the spectra of rotating machinery.Power spectrum analysis is provided for averaging nonrepetitive signals.AveragingVarious averaging modes let you further refine spectrum analysis measurements. Time averaging extracts repetitive signals out of the noise while rms averagingreduces the noise to its mean value.Exponential averaging, available for both time and rms averaging, is useful for reducing the noise while following changing signals—tracking the resonance shifts in a fatiguing structure for example.Spectrum Analysis5Time DomainUse your spectrum analyzer as alow-frequency oscilloscope or view signals in the time and frequency domains simultaneously. (Note: anti-alias filters can be switched off.) Special markers for time-domain data facilitate extraction of key control system performance parameters: overshoot, rise time,setting time, and delay time.Data TableUse a tabular format to keep track of key frequencies in the spectra of rotating machinery. The amplitude and frequency of the signal and a 16-character entry label field are listed for each selected point.Automatic Units ConversionDisplay vibration data in the units of your choice. Select g, m/sec 2, in/sec 2, m/s, in/s, m, mil, inch, Kg, lb, N, dyn,or pascals as appropriate for your application.The instrument automatically converts frequency-domain data from specified input transducer units to the units you select for display. For example, accelerometer data is automatically converted and displayed as mils when mils are selected. Of course, dB, dBV, dBm and volts are available for electrical applications.MarkersMarkers streamline analysis by helping you select and display specific data. Marker functions include marker to peak, next right peak, and coupled markers for selecting points in multiple data displays. Markers readouts are absolute or relative to your selected reference.Special MarkersThree special marker functions facilitate analysis of your spectral data. Sideband markers aid analysis of modulation signals. Use thisfunction to quickly locate sidebands in the complicated spectra of rotating machines. A band-power marker reads the total power in a selected band of frequencies and a total harmonic distortion marker lets you calculate total harmonic distortion without including the effects of noise.Measurement results at key frequencies can be labeled and listed using data table.Harmonic markers are used to calculate the THD of a signal without including the effects of noise.Simultaneousdisplay of frequency and time domain data facilitates analysis of gear mesh vibration.6The 35670A has the flexibility to make measurements of both electrical networks and mechanical devices. FFT-based network analysis is fast enough to allow real-time adjustments of circuit parameters while the swept-sine option provides exacting measurements over more than six frequency decades, and a 130 dB dynamic range.SourceSelect the optimum stimulus for each application—random noise,periodic chirp, pink noise, fixed sine, burst random, and burst chirp.For zoomed network analysismeasurements, the source is band-translated to match the zoom span at frequencies up to 51.2 kHz. An optional arbitrary source lets you test your product using real-world signals. A ±10 Volt DC source offset facilitates tests of control systems.Impact TestingForce and exponential windows allow impact testing for modal and structural analysis. Quality measurements are ensured using preview and accept/reject during averaging. A 4 mA constant current transducer power supply is built-in for true portability.Frequency ResponseMeasurementsLimits are used for go/no go testing in production. The response of an accelerometer is being checked inthis example.Characteristics of a selected resonance are automatically calculated from an impact measurement using the frequency and damping marker.LimitsTest network measurements against preset limits. Up to 800 separate line segments are available for setting upper and lower limits.Limits are also used for testing spectrum measurements.Four Channels (option AY6)Test up to three devicessimultaneously with a four-channel 35670A. Channel one is the common reference channel and two, three,and four are the response channels.Alternatively, select channels one and three as reference channels for two totally independent network measurements. See option AY6 description for more information.7MarkersA frequency and damping marker provides the resonant frequency and the damping ratio of single-degree-of-freedom frequency response measurements.Gain and phase margin markers extract key frequency-domain stability data from frequency response measurements of control systems.Signal Injection for Control LoopsUse one of three Agilent signal injection devices for testing control loops. The 35280A summing junction provides convenient DC to 1 MHz signal injection for most control loops. Use the 35281A clip-on transformer when it is not possible to temporarily open the loop, or use the 35282A signal injection transformer when secondary voltages are up to 600 Vpk.Capture transient events or time histories for complete analysis in any measurement mode (except swept-sine). Use either the entire time-capture record or a selected region of interest for repetitive analysis in the FFT, octave, order track, correlation or histogram instrument modes.Standard 16 Mbytes of memory for deep time-capture capability.Time CaptureAn interval of time-capture data has been selected for analysis in the octave mode.8Taking the measurement is only half the job. Raw measurement data must be stored, recalled, printed,plotted, integrated with other data for analysis, and reported. The 35670A has a variety of tools to help you finish the job.Enhanced Data Transfer Utilities for PCsStandard Data Format (SDF)Utilities, provided with the 35670A,allow you to easily move data from the instrument to wherever it’s needed:Using Measurement ResultsSelf-contained—no ratio synthesizer or tracking filter required Order Maps Order Tracking RPM or Time Trigger Display RPM ProfileTrack Up to Five Orders/Channel Up to 200 Orders Composite Power RPM MeasurementsOrder tracking facilitates evaluation of spectra from rotating machines by displaying vibration data as a function of orders (or harmonics)rather than frequency.All measurement spectra is normalized to the shaft RPM.Now you can have order tracking without compromising portability.Traditional analog order tracking techniques require external tracking filters and ratio synthesizers. With Agilent’s computed order tracking algorithm, external hardware is gone.Because order tracking isimplemented in the software, data is more precise and your job is easier. Compared to traditional analogorder tracking techniques, computed order tracking offers:Computed Order Tracking(Option 1D0)The slice marker feature is used to select and display an order or suborder from an order map.•For general digital signal processingand filtering , translate data files to formats compatible with MATLAB and MATRIX X , Data Set 58, or ASCII for use in popular spreadsheets.•For specific applications, useapplication software that reads SDF files directly, such as STARModal and STARAcoustics from SMS and CADA-PC from LMS.•Transfer data to and from the 35665A, 3566A, 3567A, 3562A,3563A.•Use the viewdata feature to display data on your PC or to convert to the HP-GL format for transfer to Microsoft’s Word for Windows or Lotus’ AMI PRO word processing software.•Convert between HP-LIF and MS-DOS ®formats.•Read data files into a program.Documented ResultsThe 35670A supports a variety of GPIB, serial and parallel printers and plotters for direct hardcopy output.The internal 3.5 inch flexible disk drive stores data, instrument states,HP-GL plots and Agilent Instrument BASIC programs in HP-LIF or MS-DOS formats for future recall or use on HP workstations or a personal computer.Entire display screens can be import-ed directly into your word processing program by plotting HP-GL files to your named DOS file. HP-GL files are interpreted and displayed directly by Microsoft’s Word for Windows and AMI PRO from Lotus Development Corp.•Improved dynamic range athigh orders•More accurate tracking of rapidly changing shaft speeds•Accurate RPM labeled spectra with exact RPM trigger arm •Wide 64:1 ratio of start to stop RPMsOrder MapUse order maps for an overview of vibration data versus RPM or time.Display the amplitude profile of individual orders and suborders using the slice marker function. Alternatively, use trace markers to select individual traces for display.MS-DOS and Microsoft are U.S. registered trademarks of Microsoft Corp.9Order TrackingMeasure only the data you need.Order tracking lets you measure the amplitude profile of up to five orders plus composite power simultaneously on each channel. Up to four orders or three orders and composite power can be dis-played simultaneously.RPM ProfileUse RPM profile to monitor the variation of RPM with time during order tracking measurements.Composite PowerComposite power provides the total signal power in a selected channel as a function of RPM.Run-Up and Run-Down MeasurementsRun-up and run-down measurements of any order are made using external trigger as the phase reference.Display the results as bode or polar plots; both are available.Markers allow convenient notation of important shaft speeds.OrbitsObtain oscilloscope-quality orbit measurements with your 35670A.Unlike traditional FFT analyzers, the 35670A equipped with computed order tracking displays a selected number of loops (usually one) as theshaft RPM is varied.Order tracking is used to simultaneously display up to four orders or a combination of orders,composite power and RPM profile.Markers are used to annotate shaft speeds at selected points in a run-up measurement.Oscilloscope-quality orbit diagrams mean you carry only one instrument onto the shop floor.10Real-Time Third Octave to 40 kHz ANSI S1.11-1986 Filter Shapes Microphone Inputs and Power A-Weighted Overall SPLRPM or Time-Triggered Waterfalls Eliminate the expense and inconvenience of multiple instruments in the field. With optional real-time octave analysis,and the optional microphoneadapter and power supply, you have a complete real-time octave analyzer added to your 35670A at a fraction of the cost of a second instrument.Now you can carry both your FFT and real-time octave analyzers to the job site in the same hand.Real-Time 1/3-Octave to 40 kHz on One ChannelWith two input channels of1/3-octave real-time measurements at frequencies up to 20 kHz, you get all of the information you’ll ever need to understand the noise performance of your product. No misinterpreted measurementsbecause transient components were missed. When the frequency range requirement is 10 kHz or less, use four channels to characterize spatial variations. For those exceptional circumstances, use 1/3-octave resolution at frequencies up to 40 kHz on a single channel.Resolutions of 1/1- and 1/12-octave are also available.Real-Time Octave Measurements (Option 1D1)Microphone Adapter and Power Supply (Option UK4)Overall sound pressure level and A-weighted sound pressure level can be displayed with the octave bands individually, together, or not at all.A fan-off mode lets you use the instrument in the sound field being measured.ANSI S1.11-1986All octave filters comply with filter shape standards ANSI S1.11-1986(Order 3, type 1-D), DIN 45651, and IEC 225-1966. An 80 dB dynamic range for the audio spectrumprovides the performance required by acousticians. Switchable analog A-weighting filters in the input channels comply fully with bothANSI S1.4-1983 and IEC 651-1979 Type 0.Advanced AnalysisUse waterfall displays of octave data for an overview of device noise versus time or RPM. Display individual frequency bands as a function of RPM or time using the slice marker function. Alternatively,use trace markers to select individual traces for display.A pink noise source is available for testing electro-acoustic devices.Sound LevelMeter MeasurementsPeak hold, impulse, fast, slow, and L eq are all provided with optional Real-time Octave Measurements. All measurements conform toIEC 651-1979 Type 0 - Impulse.Real-time 1/3-octave measurements at frequenciesup to 40 kHz.T his waterfall display of a flyover test can be analyzed trace-by-trace or by selecting time slices along thez-axis.Agilent 35670A with option UK4 microphone adapter and power supply.11130 dB Dynamic Range Logarithmic or Linear Sweeps “Auto” Frequency Resolution While FFT-based network analysis is fast and accurate, swept-sine measurements are a better choice when the device under test has a wide dynamic range or coversseveral decades of frequency e swept-sine measurements to extend the network measurement capabilities of the 35670A.Network Analysis Over a 130 dB RangeWith traditional swept-sine, the 35670A is optimally configured to measure each individual point in the frequency response. The result is a 130 dB dynamic range. With FFT-based network analysis, all frequency points are stimulated simultaneously and the instrument configures itself to measure thehighest amplitude response—thereby limiting the dynamic range.Characterize Nonlinear NetworksUse the auto-level feature to hold the input or output amplitude constant during a sweep. This provides the device response for a specific signal amplitude. With FFT-based network analysis using random noise, the randomamplitudes of the stimulus tend to “average out” the non-linearities and therefore does not capture thedependency of the response on the stimulus amplitude.Logarithmic SweepTest devices over more than six decades of frequency range using logarithmic sweep. In this mode,the frequency is automatically adjusted to provide the same resolution over each decade offrequency range. With FFT-network analysis, resolution is constant—not a problem when measuring over narrow frequency ranges.FlexibleMake the measurement your way.Independently select logarithmic or linear sweep, sweep up or down,automatic or manual sweep, and autoresolution.Automatic Frequency ResolutionUse autoresolution to obtain the fastest sweep possible without sacrificing accuracy. With autoresolution, the 35670Aautomatically adjusts the frequency step according to the deviceresponse. High rates of amplitude and phase change are matched with small frequency steps. Low rate-of-change regions are quickly measured with larger frequency steps.Test Multiple Devices SimultaneouslyIncrease throughput in production.Swept-sine measurements up to 25.6 kHz can be made on three devices simultaneously using swept-sine on a four-channel 35670A. Channel one is the common reference channel for these measurements.Alternatively, channels one and three can be designated asindependent reference channels for two totally independent swept-sine measurements.Swept-Sine Measurements(Option 1D2)The stability of a control loop is quickly character-ized using the gain and phase margin marker function.12Agilent Instrument BASIC (Option 1C2)Realize the advantages of using your instrument with a computer without sacrificing portability. Agilent Instrument BASIC provides the power of a computer inside your 35670A.Keystroke RecordingMost program development begins with keystroke recording. Each keystroke is automatically saved as a program instruction as you set up your measurement using the front panel. The recorded sequence can be used as the core of asophisticated program or run as an automatic sequence.Program entry and editing Program debugging Memory allocation Relation operators General math Graphics control Graphics plotting Graphics axes and labeling Program controlBinary functions Trigonometric operations String operations Logical operators GPIB control Mass storage Event initiated branching Clock and calendar General device I/O Array operationsOver 200 Agilent InstrumentBASIC Commands13Add Two Channels (Option AY6)Curve Fit and Synthesis (Option 1D3)51.2 kHz Frequency Range On One and Two Channels 25.6 kHz Frequency Range On Four ChannelsOne or Two Reference Channels Enhance your productivity by adding two additional inputchannels to your portable analyzer.Having four channels often means the difference between solving a problem in the field and having to schedule time in a test bay.Monitor four signals simultaneously or use channel one as thereference channel for up to three simultaneous cross-channel measurements. Two totally independent cross-channel measurements are made by selecting channels one and three as independent reference channels.All channels are sampled e triaxial measurements to simul-taneously characterize the motion of mechanical devices in three axes. For control systems, simultaneously measure several points in a single loop.20 Poles/20 Zeros Curve Fitter Frequency Response Synthesis Pole/Zero, Pole/Residue and Polynomial FormatUse curve fit and synthesis in the 35670A to take the guesswork out of your design process. The 20-pole and 20-zero multiple-degree-of-freedom curve fitter calculates a mathematical model of your system or circuit from measured frequency response data.The model can be expressed in pole/zero, pole/residue, orpolynomial format.Curve fit provides an exact mathematical model of your circuit or device.Transfer the circuit model to the synthesis function to experiment with design modifications. Add and delete poles and zeros, change gain factors, time delays, or frequency scaling, then synthesize the frequen-cy response from the modified model. Design modifications are tested without ever touching a sol-dering iron.14Standard 16 Mbytes RAMArbitrary Waveform Source (Option 1D4)Expand the data storage and time-capture capacity of your 35670A.Frequency or Time Domain Entry Data EditStore Up to Eight Arbitrary WaveformsTest your products using real-world signals. Measure a signal in either the time or frequency domain, then output it via the arbitrary waveform source. Use math functions and data edit to obtain precisely the output waveform you need. An arbitrary waveform may be output once or repeatedly.Standard source types can beoptimized for specific applications.For example, random noise can be shaped to improve the effectivedynamic range of your measurement.Alternatively, you can use data edit and math functions to create an arbitrary waveform.Use time capture as a digital tape recorder, then playback captured signals through the arbitrarywaveform source.Math functions are used to optimize a burst chirp signal for a frequency response measurement.Expand the data storage and time-capture capacity of your 35670A.Number of Spectra Stored Per ChannelStandard 16 MbyteFFT - 1 Channel 11400FFT- 2 Channels 2600FFT - 4 Channels 33001/3-Octave Spectra 448000Time Capture 1>6 MSamplesStandard 2 Mbyte Nonvolatile RAMUse the 2 Mbyte nonvolatile RAM in environments too harsh for the 3.5inch flexible disk drive. The memory functions as a high-speed disk for storage of the following information.•Instrument Setup States •Trace Data•User Math Definitions •Limit Data•Time Capture Buffers•Agilent Instrument BASIC Programs •Waterfall Display Data •Curve Fit/Synthesis Tables •Data TablesInformation stored in nonvolatile RAM is retained when the power is off.1Conditions: Preset with instrument mode switched to 1 channel.2Conditions: Preset3Conditions: Preset with instrument mode switched to 4 channels.4Conditions: Preset with instrument mode switched to octave.。

6电力系统稳定器PSS简介及现场试验

6电力系统稳定器PSS简介及现场试验

太原12#机组无PSS时2%电压阶跃响应试验曲线
太原12#机组PSS投入2%电压阶跃响应试验曲线
扬二600MW机组无PSS时1%电压阶跃响应试验曲线
扬二600MW机组投PSS时1%电压阶跃响应试验曲线
谢谢大家!!!
临界增益测试
若无任何异常,逐渐增加PSS的增益Kpss (注意:每次更改Kpss之前将PSS退出, 更改后再投入PSS,如此反复),直到发 电机励磁电压出现轻微持续的振荡为止, 此时的增益Kpss即为PSS的临界增益。
整定临界增益
• 测得临界增益值为 • 实际整定值为 p.u. p.u.
• 注:根据DL/T 650-1998,PSS增益实际 整定值一般为临界增益的1/3~1/5。
校核相位补偿特性
根据PSS模型中传递函数(图1)和上述PSS 参数,通过计算校核被试机组励磁系统 有补偿的相频特性。校核结果必须基本 满足要求。
临界增益测试
• 将一个较小的增益放大倍数输入B套调节 器PSS参数窗。 • 手动按钮投入“PSS投入”,观察B套有 无异常。(注意:若有任何异常情况, 立即退出PSS,或者切换至A套。)
Upmax Pe
Kpss 1 TsS
TwS 1 TwS
1 T 1S 1 T 2S
1 T 3S 1 T 4S
Upmin
Upss
PSS模型
• IEEE标准PSS-2A模型:
W Tw1S 1+Tw1S Tw2S 1+Tw2S + + Ks3 P + Tw3S 1+Tw3S Ks2 1+T7S 1+T8S N [1+T9S]M
不投入PSS的参考波形
投PSS情况下的电压阶跃试验

动态测试技术教学大纲

动态测试技术教学大纲

《动态测试技术》教学大纲学时:32 学分:2 开课学期:第×学期一、课程目的与任务1.本课程为测控技术与仪器专业选修课程。

2. 本课程与培养目标的关系是:本课程学生在学习误差理论与数据处理,传感技术,检测技术等课程后掌握动态测试与分析技术的基本原理和技能、学会如何使用这些技术在工程实践中设计并组建动态测试系统。

本课程具有知识与技术的综合程度高、实践性强等特点,培养学生的动手能力和独立解决实际问题的能力。

本课程可以实现培养要求中的掌握信息的获取、传输、处理和应用的基本技术与方法。

学生通过学习后应获得各种动态参数信息并加以分析的技能,理解并掌握模态分析的基本原理和分析方法,初步了解动态测试中的误差分析技术知识和能力要求。

3.课程主要讲述的内容为:介绍工业生产和科学研究中常用的动态测试分析理论和测试技术。

包括动态测试的基本概念;振动信号的处理和分析基本理论;频响分析和模态分析的物理概念和模态分析方法;常用的动态测试技术及动态测试在工程中的应用等。

二、课程目标与要求(从知识能力和素质三个维度描述)1、知识目标: 了解动态测试技术的基本概念,掌握动态测试技术的基本方法。

2、能力目标: 学会如何使用这些技术在工程实践中设计并组建动态测试系统。

3、素质目标:能够培养学生分析问题和解决学题的能力。

三、与其它课程的联系和分工本课程是测控专业的专业选修课,通过本课程学习使学生了解动态测试技术的概念,并初步掌握的动态测试技术基本方法。

各种被测量通过传感器及基本测试已在《传感技术》及《检测技术》中讲授,一些基本的信号处理的基本方法及实验测试分析方法在《误差理论与数据处理》中学习过,本课程在这些课程的基础上进一步讲解动态测试技术的相关理论和测试技术。

四、课程主要内容与学时分配五、课程教学内容和具体要求第一单元教学目标:了解动态测试的基本概念,知道动态测试系统的主要性能指标,掌握动态测试的基本理论教学要求:介绍动态测试的基本概念,指导动态测试系统的主要性能指标,讲解动态测试的基本理论,包括动态系统的特性及参数测量,模态分析的基本概念。

NIELVIS实验指导书(推荐文档)

NIELVIS实验指导书(推荐文档)

目录硬件设备............................................. - 2 -一、NI ELVIS平台工作站............................... - 3 -二、NI ELVIS原型实验板............................... - 3 -三、NI ELVIS的安装与配置............................. - 4 -四、配置NI ELVIS软件................................ - 4 -五、NI ELVIS软件 .................................... - 5 -六、硬件概述......................................... - 6 -1、DAQ硬件 .......................................... - 6 -2、旁路模式下使用DAQ硬件............................ - 6 -3、ELVIS平台工作站 .................................. - 6 -4、NI ELVIS原型实验板................................ - 8 - 实验一交通用LED灯实验............................. - 9 - 实验二数字温度计实验............................... - 15 - 附录I: ............................................ - 21 -硬件设备NI ELVIS 虚拟仪器教学实验套件是NI 公司于2004年推出的一套基于Lab VIEW设计和原型创建的实验装置。

NI ELVIS (Educational Laboratory Virtual Instrumentation Suite,简称ELVIS)虚拟仪器教学实验系统实际上就是将Lab VIEW和NI的DAQ设备相结合,综合应用得到一个Lab VIEW的教学实验产物,它包括硬件和软件两部分:硬件包括一台可运行Lab VIEW的计算机,一块多功能数据采集卡,一根68针电缆和NI ELVIS教学实验操控工作台;软件则包括Lab VIEW开发环境、NI-DAQ、可以针对ELVIS硬件进行程序设计的一系列Lab VIEW API和一个基于Lab VIEW 设计虚拟仪器软件包。

基于GNURadio的频谱分析仪设计

基于GNURadio的频谱分析仪设计

基于GNURadio的频谱分析仪设计金伟正;赵小月;肖云;林漫晖【摘要】设计了一种基于软件无线电(SDR)平台GNURadio便携式频谱分析仪,给出了完整的设计方案.频谱分析仪由天线、收发转换开关、射频前端、中频接收、ADC、混频器、抽取滤波、DSP、移动客户端显示、云端存储组成,采用HackRF One作为信号处理模块的射频中频硬件平台.该分析仪具有频率分辨率可调、频带宽、便携性好、灵活性强等特点,可广泛用于实验教学.【期刊名称】《实验室研究与探索》【年(卷),期】2019(038)001【总页数】5页(P86-90)【关键词】频谱分析仪;软件无线电;频率分辨率【作者】金伟正;赵小月;肖云;林漫晖【作者单位】武汉大学电子信息学院,武汉430079;武汉大学电子信息学院,武汉430079;武汉大学电子信息学院,武汉430079;武汉大学电子信息学院,武汉430079【正文语种】中文【中图分类】TN761.2;G642.4230 引言目前,频谱分析仪主要分为超外差式扫描调谐分析仪和傅里叶分析仪两大类[1]。

傅里叶分析仪难以对高频信号进行分析;超外差式扫描调谐分析仪对硬件要求很高,且这两类频谱分析仪难以同时满足高频率分辨率和宽频带的要求。

将模数转换器和数模转换器尽量靠近天线,直接使射频模拟信号转换为适合在数字信号处理器和计算机中处理的数据信息,在计算机中编写软件模块来实现信号的复杂处理过程,最后使这样的无线电系统具有良好的灵活性和扩展性,这就是软件无线电技术的设计思想[2]。

随着信息技术的快速发展,现代频谱分析仪朝着数字化、模块化、软件化的方向不断演进[3-4]。

现代的频谱分析仪中已经采用软件无线电结构,利用模拟的射频接收端和全数字式的中频接收处理系统,实现高频率分辨率和多测量功能。

本文基于软件无线电的采用宽带中频数字化方案的频谱分析仪可广泛用于信号的实时频谱分析,相比传统的频谱分析仪,具有频谱分析误差小,频率分辨率高;频带宽;具有灵活性、开放性、模块化结构;便于携带等优点。

动态信号分析仪的应用及原理

动态信号分析仪的应用及原理

在现代测试技术中动态信号分析仪是重要的测试设备,既可用于系统动态特性的测量也可用于稳态分析,还可用于强度试验以及频谱分析。

动态信号分析仪的应用有动态数据采集、机械振动分析、振动控制系统分析、声学分析、结构分析等领域。

目前各国生产的动态信号分析仪型号规格很多性能也各异,如美国晶钻仪器公司的CoCo-80X和CoCo-90X动态信号分析仪,它是一款手持式仪器,同时具有数据动态数据记录功能,它有4/8/16输入通道,最高采样率102.4KHz,最高150dB的动态范围,数字滤波器有效防止削波等,自带电池与内存,特别适合野外实时数据采集与分析,在桥架结构监测、大型机械状态监测、高校振动试验、汽车NVH模态分析、航空航天高铁隧道监测、环境噪声监测、声学分析等,功能有频谱分析及相关函数、结构模态分析、动平衡、路径采集点检、旋转机械阶次跟踪、倍频程和声级计、全身振动、阈值检测、冲击响应谱和正弦扫频、包络分析、数据采集等。

★动态信号分析仪原理
动态信号分析仪一般由如下几个部分组成:
1.防混叠低通滤波器。

2.模拟到数字转换器ADC。

3.数字信号处理器:数字变频,数字滤波,数字信号处理(如FFT等频率分析函数)等。

4.控制和显示。

杭州锐达数字技术有限公司是美国晶钻仪器公司中国总代理,负责产品销售、技术支持与产品维护,是机械状态监测、振动噪声测试、动态信号分析、动态数据采集、应力应变测试等领域的供应商,提供手持一体化动态信号分析系统、多通道动态数据采集系统、振动控制系统、多轴振动控制系统、三综合试验系统和远程状态监测系统等。

更多详情请拨打联系电话或登录杭州锐达数字技术有限公司咨询。

国内外测试技术比较

国内外测试技术比较
第二十四页,共33页
3.国内外虚拟仪器的发展比较
虚拟仪器与虚拟仪器开发平台软件LabVIEW
第二十五页,共33页
4.国内外检测机构组成和运行情况
❖ 国内检测机构体系经过长期建设,总体较为完善。 机构按认定部门级别可分为国家级、省市级、高等 院校及科研机构三个层次。
❖ 国内检测机构组织的运作方式包括独立机构、多机 构组建、会员制协作中心等。近年来,依托强势科 研机构建立的公共测试平台的功能比以往传统的检 测机构强大,不仅提供检测服务,还可提供共享实 验室的代理运作和培训,并具有一定的孵化功能。 以下为近来值得关注的两类新型的测试机构(平台 ):
第七页,共33页
1.1我国测试技术的现状
自主研发产品
CAN总线智能差压变送器
DCS控制实验装置
第八页,共33页
1.1我国测试技术的现状

系统模块化、标准化基 础较差
开放性、通用性、综合 能力考虑少
在顶层设计对可测试性 缺乏系统考虑和规范化
要求


丰富的人才资源
产业转型政策
国内稳定的经济增长

第九页,共33页
1.2国外测试技术的现状
❖ 1.2.1国外测试技术的标准化系统 ❖ 国外(主要指美、欧)测试技术从20
世纪中期发展到现在已形成了标准化、系 列化、自动化的框架。发展了诸如军事上 的ATS(Automatic Test System)系统 标准、工业上的EPA(Ethernet for Plant Automation)系统标准和电子电 气EMC(Electro Magnetic Compatibility)标准。
第一页,共33页
1.2国外测试技术的现状
❖ (2)网络化 ❖ 当前国际上现场总线与智能仪表的发

动态信号分析仪操作规程,1200字

动态信号分析仪操作规程,1200字

动态信号分析仪操作规程动态信号分析仪操作规程一、引言动态信号分析仪是一种广泛应用于工程领域的测试仪器,用于分析和测量信号的频率、幅度、相位等参数。

准确地操作动态信号分析仪对于得到可靠的测试结果至关重要。

本操作规程旨在指导操作人员正确地使用动态信号分析仪进行测试。

二、安全须知1. 操作人员应熟悉该仪器的安全操作方法和相关规程。

2. 操作人员应穿戴符合要求的个人防护装备,包括耳塞、护目镜等。

3. 在使用过程中,应注意防止电击、触电等风险。

禁止在潮湿环境中操作仪器。

4. 当发生电器故障、烟雾或异味时,应立即停止使用并通知维修人员。

三、仪器准备1. 检查仪器的外观是否完好无损。

2. 确认仪器与电源的连接是否牢固可靠。

3. 检查测量电缆和传感器是否正常工作。

四、仪器设置1. 打开仪器电源,确保仪器处于正常工作状态。

2. 根据测试需求选择适当的测量模式和参数设置。

3. 设置参考信号源,校准仪器零点和增益。

五、进行测试1. 将被测信号正确连接到仪器的输入端口。

2. 调整测试信号的频率、幅度等参数,确保测量范围和分辨率符合要求。

3. 开始数据采集前,应等待足够的稳定时间,确保测试结果的准确性。

4. 运行测试程序,记录测量数据。

5. 检查测试结果是否符合预期,并及时记录和报告异常情况。

6. 完成测试后,关闭仪器电源,并及时清理和归档数据。

六、维护和保养1. 定期检查和校准仪器,确保其工作状态和测试精度。

2. 清洁仪器外壳和按键,防止灰尘积累或影响操作。

3. 确保仪器周围环境干燥、通风良好,避免潮湿和高温环境。

4. 定期更换电池和消耗品,避免因电力不足或耗尽导致测试中断。

5. 对于长期闲置的仪器,应采取适当的防护措施,避免损坏或老化。

七、故障排除在测试过程中,如果出现异常情况,操作人员应及时停止测试并进行故障排除。

如果无法解决问题,应通知维修人员进行维修。

八、结束语本操作规程对动态信号分析仪的使用进行了详细介绍和规范,希望能帮助操作人员正确操作仪器,提高测试效果和结果的可靠性。

比值校正法的动态信号分析仪频率示值误差校准方法

比值校正法的动态信号分析仪频率示值误差校准方法

• 92•计算机从动态信号分析仪获取到的离散数字信号,进行离散傅里叶变换后,其频谱的频率、幅值和相位都可能存在较大的误差。

现行的动态信号分析仪检定规程中,对频率示值误差校准时,采用手动调整正弦信号发生器的频率使得动态信号分析仪的幅值示值最大的方式进行。

这种方法效率较低,并且不利于实施自动校准。

基于比值校正法的动态信号分析仪频率示值误差校准方法,具有与传统方法同样的准确度,具有更高的校准效率,并为动态信号分析仪的自动校准实施提供可能。

近年来,随着计算机技术的发展,动态信号分析仪大部分都是基于计算机(上位机)进行测量的。

而计算机获取的信号均为离散的数字信号,无法获取到连续的模拟信号。

在对谐波信号进行离散傅里叶变换后,其频谱的频率、幅值和相位都可能存在较大的误差。

现行的规程《JJG 834—2006 动态信号分析仪检定规程》中,对频率示值误差的校准时,采用手动调整正弦信号发生器的频率使得动态信号分析仪的幅值示值最大的方式进行。

这种方法效率较低,并且不利于实施自动校准。

单频率成分或者间隔较远的多频率信号,其离散频谱可以利用相关的方法进行校正,从而得到真实频率。

从理论分析来看,在信号不含噪声的情况下,比值校正法是一种精确的离散频谱校正方法。

校准动态信号分析仪时,从正弦信号发生器输入的信号均为单频率信号,并且其信噪比非常高,可以认为几乎不含噪声。

因此,本文提出基于比值校正法的动态信号分析仪频率示值误差校准方法,提高校准效率,为动态信号分析仪的自动校准实施提供可能。

并且,在某些频率值测量要求高的场合,也可以使用该方法实时地测量出信号的真实频率。

1 比值校正法校准频率示值误差理论分析比值校正法利用频率(窗长)归一化后差值为1的主瓣峰顶附近二条谱线的窗函数比值,建立一个以归一化校正频率为变量的方程,解出归一化校正频率,进而进行频率、幅值和相位校正。

设窗长归一化窗函数的频谱函数为W ( f ),W ( f )对称于y 轴,则可以构造出窗谱函数主瓣峰顶附近最大值和次大值之间的比值函数:(1)式(1)中,y k ——最大值和次大值所对应的靠前的谱线处的幅值;y k +1——最大值和次大值所对应的靠后的谱线处的幅值;——要求解的窗长归一化的频率校正量。

(北京科电)GEX-2000技术说明书(出版)

(北京科电)GEX-2000技术说明书(出版)

GEX—2000发电机励磁调节器技术说明书北京科电亿恒电力技术有限公司目录第一章前言 (1)第二章装置主要特点 (2)2。

1 装置特点 (2)2。

2 装置适用范围 (4)第三章主要功能及技术指标 (7)3.1 装置主要功能 (7)3。

1。

1 调节及控制功能 (7)3.1.2 限制和保护功能 (8)3.1.3 其它辅助功能 (8)3。

2 主要技术指标 (9)3。

2。

1 模数转换器输入参数 (9)3。

2.2 开关量输入输出容量 (10)3。

2.3 输出参数: (10)3.2。

4 网络接口 (10)3.2.5 电源参数 (10)3。

2.6 指标参数 (11)第四章系统配置 (12)4。

1 电气配置 (12)4.1。

1 励磁系统框图 (12)4。

1.2 输入输出接口示意图 (12)4。

1。

3 硬件组成 (13)4。

2 结构配置 (13)4.2.1 机柜构成 (13)4。

2。

2 分层介绍 (14)第五章基本原理 (19)5。

1 基本原理 (19)5.2 单板原理 (20)5.3 软件说明 (23)5。

3。

1 主调度程序 (24)5。

3.2 中断程序 (24)第六章键盘、显示及操作 (31)6。

1 键盘操作说明 (31)6。

2 主画面显示 (32)6.3 主菜单显示 (33)6。

3。

1 测量显示 (34)6.3.2 参数设置 (35)6。

3.3 保护投退 (39)6。

3.4 开入状态 (39)6。

3.5 传动试验 (40)6.3.6 系统试验 (41)6.3.7 故障追忆 (41)6。

3。

8 故障波形 (42)6.3。

10 精度调整 (43)6.3。

11 机组参数 (44)6。

3.12 系统设置 (44)6。

3.13 试验选项 (45)6。

3.14 其它试验 (46)第七章上位机监控程序 (47)7.1 主画面 (47)7.2 状态显示 (48)7.3 故障记录及SOE (50)7.4 参数设置 (50)7。

不宜在非固定场所实施校准的测量设备清单

不宜在非固定场所实施校准的测量设备清单
涡街流量计
620420
超声流量计
620422
靶式流量计
620423
皂膜流量计
620425
气体层流流量计
620426
速度式流量计
620429
差压式流量计
620431
冷水水表
620432
热水表
620433
(膜式)燃气表
620499
旋进旋涡流量计
620499
湿式气体流量计
620499
标准表法压缩天然气加气机检定装置
630109
声强测量仪
630110
噪声剂量计
630111
个人声暴露计
6302.电声
630201
杂音计
630202
声音发生器含噪声发生器
630203
猝发音信号源
630205
噪声统计分析仪
630206
多通道声分析仪
630207
信纳表
630208
音准仪
630209
电话电声测试仪
630210
驻极体传声器
630211
640114
工频电压比例标准
6402.电流
640201
直流标准电流源
六位半以上
640202
直流电流表(源)
六位半以上。含模拟式、数字式
640203
交流电流表(源)
六位半以上。含模拟式、数字式
640206
泄漏电流测量仪
6403.电阻
640301
标准电阻
640302
硅单晶电阻率标准样片
640311
四探针电阻率测量仪
6205.压力
620501
活塞式压力计

基于动态信号分析仪的便携式振动校准器的测量方法

基于动态信号分析仪的便携式振动校准器的测量方法

基于动态信号分析仪的便携式振动校准器的测量方法
董平
【期刊名称】《上海计量测试》
【年(卷),期】2012(000)004
【摘要】以便携式振动校准器工作原理和窗函数理论为基础,以B&K公司的PULSE 3560C动态信号分析仪和标准加速度计套组8305/2626为检测工具,以实验数据为佐证,研究并归纳出便携式振动校准器检测过程中窗函数的选择对检测数据准确性的影响程度
【总页数】3页(P10-12)
【作者】董平
【作者单位】江苏省计量科学研究院
【正文语种】中文
【相关文献】
1.动力设备便携式动态信号分析仪的研制 [J], 陈照章;孙玉坤
2.基于TMS320F2812便携式动态信号分析仪 [J], 张家田;李强;严正国
3.便携式多通道振动信号分析仪数采模块设计 [J], 张峰;赵慧昌;石现峰
4.便携式振动校准器加速度幅值测量结果的不确定度评定 [J], 贾小冬
5.基于35670A动态信号分析仪的振动台检定系统 [J], 马培凤;王子龙;袁振
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
s
9
EMEC @ Shanghai Jiaotong University
Email: yuzy@ Tel: 54743090 54743053
• 3 量化
量化是将模拟信号采样后得到的离散信号变为数 字信号,以便计算机能接受,因此必须对离散信 号进行数字化,即编码,这项工作由A/D转化器 来完成。目前有8、12、14、16bit芯片,量程范 围由,±5,±10V等。 例如:12bit A/D转化器,量程为±10V 动态范围:20log212 =20 ×12×0.303=72dB 分辨率:满量程/211=满量程/2048 =±5mV,其 中1位是正负标志。
信号调理器或放大器
激振系统
动态信号分析仪
2
EMEC @ Shanghai Jiaotong University
Email: yuzy@ Tel: 54743090 54743053
模拟输入:未经数字化处理的连续电信号 模拟抗混滤波:防止频率混叠 采样保持:多通道的同步相当重要 采样、数模转化:利用计算机进行数据处理需要到频域的转换 显示、处理、控制等
EMEC @ Shanghai Jiaotong University
Email: yuzy@ Tel: 54743090 54743053
3.5 平均技术
• 平均技术是用以降低信号中混入的随机噪声分量含量的一 种方法。 • 主要种类有:
– – – – 时域平均 频率平均 指数平均 峰值平均等
21
EMEC @ Shanghai Jiaotong University
Email: yuzy@ Tel: 54743090 54743053
3.6 分析仪
• 与计算机接口不同,分析仪可分为: – GPIB,仪器接口(仪器类) – ISA,计算机总线接口(卡类) – PCI,计算机总线接口(卡类) – PCMCIA,便携式电脑接口(卡类) – VXI,仪器总线接口(卡类) – PXI,仪器总线接口,NI公司(卡类) – USB,通用串行总线,可以连接127个设备 – Ethernet,网卡接口
3.3 泄漏与窗函数
数字信号分析对有限长度T的离散时间序列进行离 散傅立叶变换(DFT)运算,这意味着首先要对 时域信号进行截断。这种截段将导致频谱分析出 现误差,其效果是使得本来集中于某一频率的功 率(或能量),部分被分散到该频率邻近的频 域,这种现象称为“泄漏”效应。
13
EMEC @ Shanghai Jiaotong University
22
EMEC @ Shanghai Jiaotong University
Email: yuzy@ Tel: 54743090 54743053
现代工业测试
23
EMEC @ Shanghai Jiaotong University
Email: yuzy@ Tel: 54743090 54743053
LDS公司
EMEC @ Shanghai Jiaotong University
Email: yuzy@ Tel: 54743090 54743053
27
3
EMEC @ Shanghai Jiaotong University
Email: yuzy@ Tel: 54743090 54743053
典型双通道信号分析仪组成
4
EMEC @ Shanghai Jiaotong University
Email: yuzy@ Tel: 54743090 54743053
•窗的特性
类型 矩形窗 Hanning窗 Hamming窗 Guss窗 平顶窗 K 1 2 2.52 4 4.63
17
最高旁瓣量 级/dB -13 -32 -43 -55 -94
固有增益 1.00 0.50 0.54 0.43 0.22
EMEC @ Shanghai Jiaotong University
1 ∞ X s (ω ) = ∑ X (ω − nωs ) T n = −∞
8
EMEC @ Shanghai Jiaotong University
Email: yuzy@ Tel: 54743090 54743053
•采样定理: 设 x(t )是一个频限信号,其最高频率分量为 ωm (或)f m ,当采样频率 ωs > 2ωm 时,采样后的离散信 号的频谱 X (ω ) 就不会发生混叠,则 x(t ) 可完全由采 样值确定。
– 输出通道
• 通道数,输出电压范围,DAC位数,动 态范围,分辨率等
– 软件功能
• 设置功能,传感器的参数设置等 • 分析功能,振动、噪声、模态测、故障 分析等 • 处理功能,数据记录,图表报告功能
– 硬件功能
• 计算机要求 • 接口情况,如USB, Ethernet等
– 其他
• 外观 • 工作环境要求等
因为,采样信号序列是一个周期函数,其傅里叶变换为
G (ω ) = 2π
n = −∞
∑ T δ (ω − nω )
s

1
所以:
1 ∞ X s (ω ) = ∑ X (ω − nωs ) T n = −∞
7
EMEC @ Shanghai Jiaotong University
Email: yuzy@ Tel: 54743090 54743053
• 窗函数类型:

T
0
w(t )dt = T
15
EMEC @ Shanghai Jiaotong University
Email: yuzy@ Tel: 54743090 54743053
16
EMEC @ Shanghai Jiaotong University
Email: yuzy@ Tel: 54743090 54743053
第3章 信号数字化与动态信号分析仪
3.1 基本知识 • 1 动态信号分析基本组成
被测对象 测量系统 分析系统
激振系统
反馈系统
1
EMEC @ Shanghai Jiaotong University
Email: yuzy@ Tel: 54743090 54743053
被测对象
传感器
6
EMEC @ Shanghai Jiaotong University
Email: yuzy@ Tel: 54743090 54743053
•混叠现象:
假定: F[ x(t )] = X (ω ), F [ g (t )] = G (ω ) 根据频域卷积定理,有
X s (ω ) = 1 X (ω ) ∗ G (ω ) 2π
Email: yuzy@ Tel: 54743090 54743053
14
EMEC @ Shanghai Jiaotong University
Email: yuzy@ Tel: 54743090 54743053
• 解决泄漏问题的唯一办法是确保信号的周期性,或者在观 察窗内能够完整地观测。但一般来说这种要求很难实现 的。所以采取加窗减少泄漏。
j 2 nπ
K N
样本记录的信号的时间周期:T 采样点数为:N 则:采样时间间隔为△t,即T=N △t 采样频率:fs=1/ △t,谱线的频率间隔 △f=1/T
12
EMEC @ Shanghai Jiaotong University
Email: yuzy@ Tel: 54743090 54743053
3.2 离散傅立叶变换
X ( f ) = ∫ x(t )e − j 2πft dt
−∞ ∞
X (nΔf ) =
K =0
∑ x( K ⋅ Δt )e
N −1 K =0
N −1
− j 2 nπ
K N
x(t ) = ∫ X ( f )e
−∞

j 2πft
df
1 x( KΔt ) = N
∑ X (n ⋅ Δf )e
ISA、PCI
VXI
PXI
24
EMEC @ Shanghai Jiaotong University
Email: yuzy@ Tel: 54743090 54743053
+
USB
PCMICA
25
EMEC @ Shanghai Jiaotong University
Email: yuzy@ Tel: 54743090 54743053
• 2 采样定理
采样就是将连续模拟信号变化成离散数字信号的 过程。 离散后的信号能唯一地确定原连续信号,并要求 离散信号通过D/A(数/模)转换后能恢复成原连 续信号。
5
EMEC @ Shanghai Jiaotong University
Email: yuzy@ Tel: 54743090 54743053
10
EMEC @ Shanghai Jiaotong University
Email: yuzy@ Tel: 54743090 54743053
11
EMEC @ Shanghai Jiaotong University
Email: yuzy@ Tel: 54743090 54743053
Email: yuzy@ Tel: 54743090 54743053
19
EMEC @ Shanghai Jiaotong University
Email: yuzy@ Tel: 54743090 54743053
3.4 滤波
滤波类型与滤波选择原则
20
32CH 2-4CH
Dataphysics公司
26
40-1024CH
EMEC @ Shanghai Jiaotong University
相关文档
最新文档