牛吃草问题(五年级奥数讲解及例题分析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学奥数之牛吃草问题

牛吃草问题是小学奥数五年级的内容,学过的同学都知道这是一类比较复杂的应用题,还有一些相应的变形题:排队买票、大坝泄洪、抽水机抽水等等。

那么在这里讲下牛吃草问题的解题思路和解题方法、技巧供大家学习。

一、解决此类问题,孩子必须弄个清楚几个不变量:1、草的增长速度不变 2、草场原有草的量不变。草的总量由两部分组成,分别为:牧场原有草和新长出来的草。新长出来草的数量随着天数在变而变。

因此孩子要弄清楚三个量的关系:

第一:草的均匀变化速度(是均匀生长还是均匀减少)

第二:求出原有草量

第三:题意让我们求什么(时间、牛头数)。注意问题的变形:如果题目为抽水机问题的话,会让求需要多少台抽水机

二、解题基本思路

1、先求出草的均匀变化速度,再求原有草量。

2、在求出“每天新增长的草量”和“原有草量”后,已知头数求时间时,我们用“原有草量÷每天实际减少的草量(即头数与每日生长量的差)”求出天数。

3、已知天数求只数时,同样需要先求出“每天新生长的草量”和“原有草量”。

4、根据(“原有草量”+若干天里新生草量)÷天数”,求出只数

三、解题基本公式

解决牛吃草问题常用到的四个基本公式分别为:

1、草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷(吃的较多天数-吃的较少天数)

2、原有草量=牛头数×吃的天数-草的生长速度×吃的天数

3、吃的天数=原有草量÷(牛头数-草的生长速度)

4、牛头数=原有草量÷吃的天数+草的生长速度

四、下面举个例子

例题:有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽。如果养牛21头,那么几天能把牧场上的草吃尽呢?并且牧场上的草是不断生长的。

一般方法:先假设1头牛1天所吃的牧草为1,那么就有:

(1)27头牛6天所吃的牧草为:27×6=162 (这162包括牧场原有的草和6天新长的草。)

(2)23头牛9天所吃的牧草为:23×9=207 (这207包括牧场原有的草和9天新长的草。)

(3)1天新长的草为:(207-162)÷(9-6)=15

(4)牧场上原有的草为:27×6-15×6=72

(5)每天新长的草足够15头牛吃,21头牛减去15头,剩下6头吃原牧场的草:72÷(21-15)=72÷6=12(天)

所以养21头牛,12天才能把牧场上的草吃尽

公式解法:

(1)草的生长速度=(207-162)÷(9-6)=15

(2)牧场上原有草=(27-15)×6=72

再把题目中的21头牛分成两部分,一部分15头牛去吃新长的草(因为新长的草每天长15份,刚好可供15头牛吃,剩下(21-15=6)头牛吃原有草:72÷(21-15)=72÷6=12(天))所以养21头牛,12天才能把牧场上的草吃完。

方程解答:

设草的生长速度为每天x份,利用牧场上的原有草是不变的列方程,则有

27×6-6x =23×9-9x

解出x=15份

再设21头牛,需要x天吃完,同样是根据原有草不变的量来列方程:

27×6-6×15 =23×9-9×15=(21-15)x

解出x=12(天)

所以养21头牛。12天可以吃完所有的草。

牛吃草问题试题总结

牛吃草问题在普通工程问题的基础上,工作总量随工作时间均匀的变化,这样就增加了难度.

牛吃草问题的关键是求出工作总量的变化率.

下面给出几例牛吃草及其相关问题.

1. 草场有一片均匀生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供21头牛吃几周?(这类问题由牛顿最先提出,所以又叫“牛顿问题”.)

【分析与解】27头牛吃6周相当于27×6=162头牛吃1周时间,吃了原有的草加上6周新长的草;

23头牛吃9周相当于23×9=207头牛吃1周时间,吃了原有的草加上9周新长的草;于是,多出了207-162=45头牛,多吃了9-6=3周新长的草.所以45÷3=15头牛1周可以吃1周新长出的草.即相当于给出15头牛专门吃新长出的草.于是27-15=12头牛6周吃完原有的草,现在有21头牛,减去15头吃长出的草,于是21-15=6头牛来吃原来的草;

所以需要12×6÷6=12(周),于是2l头牛需吃12周.

评注:我们求出单位“1”面积的草需要多少头年来吃,这样就把问题化归为一般工程问题了.

一般方法:

先求出变化的草相当于多少头牛来吃:(甲牛头数×时间甲-乙牛头数×时间乙)÷(时间甲-时间乙);

再进行如下运算:(甲牛头数-变化草相当头数)×时问甲÷(丙牛头数-变化草相当头数)=时间丙.

或者:(甲牛头数-变化草相当头数)×时间甲÷时间丙+变化草相当头数丙所需的头数.

巩固练习:

1、牧场上一片青草,每天牧草都匀速生长.这片牧草可供10头牛吃20天,或者可供15头牛吃10天.问:可供25头牛吃几天?

这类题难就难在牧场上草的数量每天都在发生变化,我们要想办法从变化当中找到不变的量.总草量可以分为牧场上原有的草和新生长出来的草两部分.牧场上原有的草是不变的,新长出的草虽然在变化,因为是匀速生长,所以这片草地每天新长出的草的数量相同,即每天新长出的草是不变的.即:

(1)每天新长出的草量是通过已知的两种不同情况吃掉的总草量的差及吃的天数的差计算出来的.

(2)在已知的两种情况中,任选一种,假定其中几头牛专吃新长出的草,由剩下的牛吃原有的草,根据吃的天数可以计算出原有的草量.

(3)在所求的问题中,让几头牛专吃新长出的草,其余的牛吃原有的草,根据原有的草量可以计算出能吃几天.

解答:解:设1头牛1天吃的草为“1“,由条件可知,前后两次青草的问题相差为10×20-15×10=50.

为什么会多出这50呢?这是第二次比第一次多的那(20-10)=10天生长出来的,所以每天生长的青草为50÷10=5.

现从另一个角度去理解,这个牧场每天生长的青草正好可以满足5头牛

相关文档
最新文档