(完整版)小升初奥数---最值问题

合集下载

小升初经典奥数题 (1)

小升初经典奥数题 (1)

周长:(高等难度)如图,把正方形ABCD的对角线AC任意分成10段,并以每一段为对角线作为正方形.设这10个小正方形的周长之和为P,大正方形的周长为L,则P与L的关系是______(填<,>,=)。

巧求周长部分题目:(高等难度)如图,长方形ABCD中有一个正方形EFGH,且AF=16厘米,HC=13厘米,求长方形ABCD 的周长是多少厘米。

年龄问题题目:(中等难度)甲、乙、丙三人年龄之和是94岁,且甲的2倍比丙多5岁,乙2倍比丙多19岁,问:甲、乙、丙三人各多大?【试题】刘老师搬一批书,每次搬15本,搬了12次,正好搬完这批书的一半。

剩下的书每次搬20本,还要几次才能搬完?【试题】小华每分拍球25次,小英每分比小华少拍5次。

照这样计算,小英5分拍多少次?小华要拍同样多次要用几分?【试题】同学们到车站义务劳动,3个同学擦12块玻璃。

(补充不同的条件求问题,编成两道不同的两步计算应用题)。

"照这样计算,9个同学可以擦多少块玻璃?"【试题】两个车间装配电视机。

第一车间每天装配35台,第二车间每天装配37台。

照这样计算,这两个车间15天一共可以装配电视机多少台?【试题】把7本相同的书摞起来,高42毫米。

如果把28本这样的书摞起来,高多少毫米?(用不同的方法解答)【试题】纺织厂运来一堆煤,如果每天烧煤1500千克,6天可以烧完。

如果每天烧1000千克,可以多烧几天?【试题】一台拖拉机5小时耕地40公顷,照这样的速度,耕72公顷地需要几小时1.一条路长100米,从头到尾每隔10米栽1棵梧桐树,共栽多少棵树?2.12棵柳树排成一排,在每两棵柳树中间种3棵桃树,共种多少棵桃树?一根200厘米长的木条,要锯成10厘米长的小段,需要锯几次?4.蚂蚁爬树枝,每上一节需要10秒钟,从第一节爬到第13节需要多少分钟?5.在花圃的周围方式菊花,每隔1米放1盆花。

花圃周围共20米长。

需放多少盆菊花?6.从发电厂到闹市区一共有250根电线杆,每相邻两根电线杆之间是30米。

小升初六年级奥数专题经典 最值问题答案

小升初六年级奥数专题经典 最值问题答案

例1.1.有9个同学要进行象棋比赛,他们准备分成两组,不同组的人相互之间只比赛一场,同组的人之间不比赛。

他们一共最多能比赛多少场?解答:两组人数的乘积即为比赛场数,故最多比赛4×5=20(场) 2.直角三角形斜边长为10cm ,求这个直角三角形面积的最大值。

解答:设直角三角形三边长分别为a ,b ,c ,其中c 为斜边长,根据勾股定理有a 2+ b 2=c 2=100,则当a 2= b 2=50时,a 2× b 2最大,为2500,所以面积a×b÷2最大为25.3.一个边长为30的正方形,四个角减去四个正方形,剩下部分可以拼成一个无盖长方体,那么所得的长方体容积最大是多少?解答:假设减去的正方形边长为x ,则拼成的长方体的容积为x (30-2x )(30-2x).由于4x+30-2x+30-2x=60,则当4x=30-2x=60÷3=20时,容积最大,为20×20×20÷4=2000.4.用1、2、3、4、5、6、7、8、9这九个数字(每个数字仅用一次)组成两个多位数,那么这两个多位数的乘积最大是多少?解答:先讨论确定两个多位数应为一个四位数和一个五位数。

再确定各个数位上的数字,高位数字越大则乘积越大。

再补上一个0(放在个位,计算出乘积后去掉),根据平均值定理:两个数和一定时,这两个数越接近,乘积越大。

可以得出最大值为:96420×87531÷10=843973902。

5.用1,3,5,7,9这5个数字组成一个三位数ABC 和一个两位数DE ,再用0,2,4,6,8这5个数字组成一个三位数FGH 和一个两位数IJ 。

求算式IJ FGH DE ABC ⨯-⨯的计算结果的最大值。

解答:为使IJ FGH DE ABC ⨯-⨯尽可能大,则要DE ABC ⨯尽可能大,IJ FGH ⨯尽可能小,后面类似例1的第4题,可得到算式的最大值为2046893751⨯-⨯=60483。

(完整版)小学奥数最值问题

(完整版)小学奥数最值问题

最值问题内容概述均值不等式,即和为定值的两数的乘积随着两数之差的增大而减小.各种求最大值或最小值的问题,解题时宜首先考虑起主要作用的量,如较高数位上的数值,有时局部调整和枚举各种可能情形也是必要的.典型问题2.有4袋糖块,其中任意3袋的总和都超过60块.那么这4袋糖块的总和最少有多少块?【分析与解】方法一:设这4袋为A、B、C、D,为使4袋糖块的总和最少,则每袋糖应尽量平均,有A、B、C袋糖有20、20、21块糖.则当A、B、D三袋糖在一起时,为了满足条件,D袋糖不少于21块,验证A、B、C、D 这4袋糖依次有20,20,2l,2l时满足条件,且总和最少.这4袋糖的总和为20+20+21+21=82块.方法二:设这4袋糖依次有a、b、c、d块糖,有61616161a b ca b da c db c d++≥⎧⎪++≥⎪⎨++≥⎪⎪++≥⎩①②③④,①+②+③+④得:3(a+b+c+d)≥244,所以a+b+c+d≥8113,因为a+b+c+d均是整数,所以a+b+c+d的和最小是82.评注:不能把不等式列为a b c60a+b+d60a+c+d60b+c+d60++〉⎧⎪〉⎪⎨〉⎪⎪〉⎩①②③④,如果这样将①+②+③+④得到3(a+b+c+d)>240,a+b+c+d>80,因为a、b、c、d均是整数,所以a+b+c+d的和最小是81.至于为什么会出现这种情况.如何避免,希望大家自己解决.4.用1,3,5,7,9这5个数字组成一个三位数ABC和一个两位数DE,再用O,2,4,6,8这5个数字组成一个三位数FGH和一个两位数IJ.求算式ABC×DE-FGH×IJ的计算结果的最大值.【分析与解】为了使ABC×DE-FGH×IJ尽可能的大,ABC×DE尽可能的大,FGH×IJ 尽可能的小.则AB C×DE最大时,两位数和三位数的最高位都最大,所以为7、9,然后为3、5,最后三位数的个位为1,并且还需这两个数尽可能的接近,所以这两个数为751,93.则FGH×IJ最小时,最高位应尽可能的小,并且两个数的差要尽可能的大,应为468×20.所以AB C×DE-FG H×IJ的最大值为751×93-468×20=60483.评注:类似的还可以算出FGH×IJ-ABC×DE的最大值为640×82-379×15=46795.6.将6,7,8,9,10按任意次序写在一圆周上,每相邻两数相乘,并将所得5个乘积相加,那么所得和数的最小值是多少?【分析与解】我们从对结果影响最大的数上人手,然后考虑次大的,所以我们首先考虑10,为了让和数最小,10两边的数必须为6和7.然后考虑9,9显然只能放到图中的位置,最后是8,8的位置有两个位置可放,而且也不能立即得到哪个位置的乘积和最小,所以我们两种情况都计算.8×7+7×10+10×6+6×9+9×8=312;9×7+7×10+10×6+6×8+8×9=313.所以,最小值为312.8.一个两位数被它的各位数字之和去除,问余数最大是多少?【分析与解】设这个两位数为ab=lOa+b,它们的数字和为a+b,因为lOa+b=(a+b)+9a,所以lOa+b≡9a(mod a+b),设最大的余数为k,有9a≡k(mod a+b).特殊的当a+b为18时,有9a=k+18m,因为9a、18m均是9的倍数,那么k也应是9的倍数且小于除数18,即0,9,也就是说余数最大为9;所以当除数a+b不为18,即最大为17时,:余数最大为16,除数a+b只能是17,此时有9a=15+17m,有m=7+9ta=15+17t⎧⎨⎩(t为可取0的自然数),而a是一位数,显然不满足;:余数其次为15,除数a+b只能是17或16,除数a+b=17时,有9a=15+17m,有m=6+9ta=13+17t⎧⎨⎩,(t为可取0的自然数),a是一位数,显然也不满足;除数a+b=16时,有9a=15+16m,有m=3+9ta=7+16t⎧⎨⎩(t为可取0的自然数),因为a是一位数,所以a只能取7,对应b为16-7=9,满足;所以最大的余数为15,此时有两位数79÷(7+9)=4……15.10.用1,2,3,4,5,6,7,8,9这9个数字各一次,组成一个被减数、减数、差都是三位数的正确的减法算式,那么这个算式的差最大是多少?【分析与解】考虑到对差的影响大小,我们先考虑百位数,为了让差最大,被减数的百位为9,减数的百位为1,如果差的百位为8,那算式就是如下形式:剩下的6个数字为2、3、4、5、6、7,因为百位数字为8,所以我们可以肯定被减数的十位数字比减数要大,而且至少大2,因为1已经出现在算式中了,算式的可能的形式如下:得数的十位只可能是减数和被减数的十位数字之差,或者小1,可能的算式形式如下:但这时剩下的数都无法使算式成立.再考虑差的百位数字为7的情况,这时我们可以肯定减数的十位数比被减数要大,为了使差更大,我们希望差值的十位为8,因此,算式可能的形式为:再考虑剩下的三个数字,可以找到如下几个算式:,所以差最大为784.12. 4个不同的真分数的分子都是1,它们的分母有2个是奇数、2个是偶数,而且2个分母是奇数的分数之和与2个分母是偶数的分数之和相等.这样的奇数和偶数很多,小明希望这样的2个偶数之和尽量地小,那么这个和的最小可能值是多少?【分析与解】设这四个分数为上12m、12n、12a+1、12b+1(其中m、n、a、b均为非零自然数)有12m+12n=12a+1+12b+1,则有12m-12b+1=12a+1-12n,我们从m=1,b=1开始试验:1 2=16+13=14+14,13=112+14=16+16,1 4=120+15=18+18,15=130+16=110+110,1 6=15+110=112+112,﹍我们发现,15和16分解后具有相同的一项110,而且另外两项的分母是满足一奇一偶,满足题中条件:1 5+115=16+110,所以最小的两个偶数和为6+10=16.14.有13个不同的自然数,它们的和是100.问其中偶数最多有多少个?最少有多少个?【分析与解】 13个整数的和为100,即偶数,那么奇数个数一定为偶数个,则奇数最少为2个,最多为12个;对应的偶数最多有11个,最少有1个.但是我们必须验证看是否有实例符合.当有11个不同的偶数,2个不同的奇数时,11个不同的偶数和最小为2+4+6+8+10+12+14+16+18+20+22=132,而2个不同的奇数和最小为1+3=4.它们的和最小为132+4=136,显然不满足:当有9个不同的偶数,4个不同的奇数时,9个不同的偶数和最小为2+4+6+8+10+12+14+16+18=90,而4个不同的奇数和最小为1+3+5+7=16,还是大于100,仍然不满足;当有7个不同的偶数,6个不同的奇数时,7个不同的偶数和最小为2+4+6+8+10+12+14=56,6个不同的奇数和为1+3+5+7+9+11:36,满足,如2,4,6,8,10,12,22,1,3,5,7,9,11的和即为100.类似的可知,最少有5个不同的偶数,8个不同的奇数,有2,4,8,10,16,1.3.5,7,9,11,13,15满足.所以,满足题意的13个数中,偶数最多有7个,最少有5个.。

(小学奥数)容斥原理之最值问题

(小学奥数)容斥原理之最值问题

1. 瞭解容斥原理二量重疊和三量重疊的內容;2. 掌握容斥原理的在組合計數等各個方面的應用.一、兩量重疊問題 在一些計數問題中,經常遇到有關集合元素個數的計算.求兩個集合並集的元素的個數,不能簡單地把兩個集合的元素個數相加,而要從兩個集合個數之和中減去重複計算的元素個數,即減去交集的元素個數,用式子可表示成:A B A B A B =+-(其中符號“”讀作“並”,相當於中文“和”或者“或”的意思;符號“”讀作“交”,相當於中文“且”的意思.)則稱這一公式為包含與排除原理,簡稱容斥原理.圖示如下:A 表示小圓部分,B 表示大圓部分,C 表示大圓與小圓的公共部分,記為:A B ,即陰影面積.圖示如下:A 表示小圓部分,B 表示大圓部分,C 表示大圓與小圓的公共部分,記為:A B ,即陰影面積.包含與排除原理告訴我們,要計算兩個集合A B 、的並集AB 的元素的個數,可分以下兩步進行:第一步:分別計算集合A B 、的元素個數,然後加起來,即先求A B +(意思是把A B 、的一切元素都“包含”進來,加在一起);第二步:從上面的和中減去交集的元素個數,即減去C AB =(意思是“排除”了重複計算的元素個數). 二、三量重疊問題A 類、B 類與C 類元素個數的總和A =類元素的個數B +類元素個數C +類元素個數-既是A 類又是B 類的元素個數-既是B 類又是C 類的元素個數-既是A 類又是C 類的元素個數+同時是A 類、B 類、C 類的元素個數.用符號表示為:A B C A B C A B B C A C A B C =++---+.圖示如下:教學目標知識要點7-7-5.容斥原理之最值問題1.先包含——A B +重疊部分A B 計算了2次,多加了1次;2.再排除——A B A B +-把多加了1次的重疊部分A B 減去.在解答有關包含排除問題時,我們常常利用圓圈圖(韋恩圖)來幫助分析思考.【例 1】 “走美”主試委員會為三~八年級準備決賽試題。

(完整版)小学奥数最值问题

(完整版)小学奥数最值问题

最值问题内容概述均值不等式,即和为定值的两数的乘积随着两数之差的增大而减小.各种求最大值或最小值的问题,解题时宜首先考虑起主要作用的量,如较高数位上的数值,有时局部调整和枚举各种可能情形也是必要的.典型问题2.有4袋糖块,其中任意3袋的总和都超过60块.那么这4袋糖块的总和最少有多少块?【分析与解】方法一:设这4袋为A、B、C、D,为使4袋糖块的总和最少,则每袋糖应尽量平均,有A、B、C袋糖有20、20、21块糖.则当A、B、D三袋糖在一起时,为了满足条件,D袋糖不少于21块,验证A、B、C、D 这4袋糖依次有20,20,2l,2l时满足条件,且总和最少.这4袋糖的总和为20+20+21+21=82块.方法二:设这4袋糖依次有a、b、c、d块糖,有61616161a b ca b da c db c d++≥⎧⎪++≥⎪⎨++≥⎪⎪++≥⎩①②③④,①+②+③+④得:3(a+b+c+d)≥244,所以a+b+c+d≥8113,因为a+b+c+d均是整数,所以a+b+c+d的和最小是82.评注:不能把不等式列为a b c60a+b+d60a+c+d60b+c+d60++〉⎧⎪〉⎪⎨〉⎪⎪〉⎩①②③④,如果这样将①+②+③+④得到3(a+b+c+d)>240,a+b+c+d>80,因为a、b、c、d均是整数,所以a+b+c+d的和最小是81.至于为什么会出现这种情况.如何避免,希望大家自己解决.4.用1,3,5,7,9这5个数字组成一个三位数ABC和一个两位数DE,再用O,2,4,6,8这5个数字组成一个三位数FGH和一个两位数IJ.求算式ABC×DE-FGH×IJ的计算结果的最大值.【分析与解】为了使ABC×DE-FGH×IJ尽可能的大,ABC×DE尽可能的大,FGH×IJ 尽可能的小.则AB C×DE最大时,两位数和三位数的最高位都最大,所以为7、9,然后为3、5,最后三位数的个位为1,并且还需这两个数尽可能的接近,所以这两个数为751,93.则FGH×IJ最小时,最高位应尽可能的小,并且两个数的差要尽可能的大,应为468×20.所以AB C×DE-FG H×IJ的最大值为751×93-468×20=60483.评注:类似的还可以算出FGH×IJ-ABC×DE的最大值为640×82-379×15=46795.6.将6,7,8,9,10按任意次序写在一圆周上,每相邻两数相乘,并将所得5个乘积相加,那么所得和数的最小值是多少?【分析与解】我们从对结果影响最大的数上人手,然后考虑次大的,所以我们首先考虑10,为了让和数最小,10两边的数必须为6和7.然后考虑9,9显然只能放到图中的位置,最后是8,8的位置有两个位置可放,而且也不能立即得到哪个位置的乘积和最小,所以我们两种情况都计算.8×7+7×10+10×6+6×9+9×8=312;9×7+7×10+10×6+6×8+8×9=313.所以,最小值为312.8.一个两位数被它的各位数字之和去除,问余数最大是多少?【分析与解】设这个两位数为ab=lOa+b,它们的数字和为a+b,因为lOa+b=(a+b)+9a,所以lOa+b≡9a(mod a+b),设最大的余数为k,有9a≡k(mod a+b).特殊的当a+b为18时,有9a=k+18m,因为9a、18m均是9的倍数,那么k也应是9的倍数且小于除数18,即0,9,也就是说余数最大为9;所以当除数a+b不为18,即最大为17时,:余数最大为16,除数a+b只能是17,此时有9a=15+17m,有m=7+9ta=15+17t⎧⎨⎩(t为可取0的自然数),而a是一位数,显然不满足;:余数其次为15,除数a+b只能是17或16,除数a+b=17时,有9a=15+17m,有m=6+9ta=13+17t⎧⎨⎩,(t为可取0的自然数),a是一位数,显然也不满足;除数a+b=16时,有9a=15+16m,有m=3+9ta=7+16t⎧⎨⎩(t为可取0的自然数),因为a是一位数,所以a只能取7,对应b为16-7=9,满足;所以最大的余数为15,此时有两位数79÷(7+9)=4……15.10.用1,2,3,4,5,6,7,8,9这9个数字各一次,组成一个被减数、减数、差都是三位数的正确的减法算式,那么这个算式的差最大是多少?【分析与解】考虑到对差的影响大小,我们先考虑百位数,为了让差最大,被减数的百位为9,减数的百位为1,如果差的百位为8,那算式就是如下形式:剩下的6个数字为2、3、4、5、6、7,因为百位数字为8,所以我们可以肯定被减数的十位数字比减数要大,而且至少大2,因为1已经出现在算式中了,算式的可能的形式如下:得数的十位只可能是减数和被减数的十位数字之差,或者小1,可能的算式形式如下:但这时剩下的数都无法使算式成立.再考虑差的百位数字为7的情况,这时我们可以肯定减数的十位数比被减数要大,为了使差更大,我们希望差值的十位为8,因此,算式可能的形式为:再考虑剩下的三个数字,可以找到如下几个算式:,所以差最大为784.12. 4个不同的真分数的分子都是1,它们的分母有2个是奇数、2个是偶数,而且2个分母是奇数的分数之和与2个分母是偶数的分数之和相等.这样的奇数和偶数很多,小明希望这样的2个偶数之和尽量地小,那么这个和的最小可能值是多少?【分析与解】设这四个分数为上12m、12n、12a+1、12b+1(其中m、n、a、b均为非零自然数)有12m+12n=12a+1+12b+1,则有12m-12b+1=12a+1-12n,我们从m=1,b=1开始试验:1 2=16+13=14+14,13=112+14=16+16,1 4=120+15=18+18,15=130+16=110+110,1 6=15+110=112+112,﹍我们发现,15和16分解后具有相同的一项110,而且另外两项的分母是满足一奇一偶,满足题中条件:1 5+115=16+110,所以最小的两个偶数和为6+10=16.14.有13个不同的自然数,它们的和是100.问其中偶数最多有多少个?最少有多少个?【分析与解】 13个整数的和为100,即偶数,那么奇数个数一定为偶数个,则奇数最少为2个,最多为12个;对应的偶数最多有11个,最少有1个.但是我们必须验证看是否有实例符合.当有11个不同的偶数,2个不同的奇数时,11个不同的偶数和最小为2+4+6+8+10+12+14+16+18+20+22=132,而2个不同的奇数和最小为1+3=4.它们的和最小为132+4=136,显然不满足:当有9个不同的偶数,4个不同的奇数时,9个不同的偶数和最小为2+4+6+8+10+12+14+16+18=90,而4个不同的奇数和最小为1+3+5+7=16,还是大于100,仍然不满足;当有7个不同的偶数,6个不同的奇数时,7个不同的偶数和最小为2+4+6+8+10+12+14=56,6个不同的奇数和为1+3+5+7+9+11:36,满足,如2,4,6,8,10,12,22,1,3,5,7,9,11的和即为100.类似的可知,最少有5个不同的偶数,8个不同的奇数,有2,4,8,10,16,1.3.5,7,9,11,13,15满足.所以,满足题意的13个数中,偶数最多有7个,最少有5个.。

小升初数学奥数题压轴题

小升初数学奥数题压轴题

小升初数学奥数题压轴题一、列方程问题【数量关系】方程的等号两边数量相等。

【解题思路和方法】可以概括为“审、设、列、解、验、答”六字法。

例题:甲乙两班共90人,甲班比乙班人数的2倍少30人,求两班各有多少人?第一种方法:设乙班有Χ人,则甲班有(90-Χ)人。

找等量关系:甲班人数=乙班人数×2-30人。

列方程:90-Χ=2Χ-30解方程得Χ=40 从而知 90-Χ=50第二种方法:设乙班有Χ人,则甲班有(2Χ-30)人。

列方程(2Χ-30)+Χ=90解方程得Χ=40 从而得知2Χ-30=50答:甲班有50人,乙班有40人。

二、最值问题【数量关系】一般是求最大值或最小值。

【解题思路和方法】按照题目的要求,求出最大值或最小值。

例题:在火炉上烤饼,饼的两面都要烤,每烤一面需要3分钟,炉上只能同时放两块饼,现在需要烤三块饼,最少需要多少分钟?解:先将两块饼同时放上烤,3分钟后都熟了一面,这时将第一块饼取出,放入第三块饼,翻过第二块饼。

再过3分钟取出熟了的第二块饼,翻过第三块饼,又放入第一块饼烤另一面,再烤3分钟即可。

这样做,用的时间最少,为9分钟。

答:最少需要9分钟。

三、公约公倍问题【数量关系】绝大多数要用最大公约数、最小公倍数来解答。

【解题思路和方法】先确定题目中要用最大公约数或者最小公倍数,再求出答案。

最大公约数和最小公倍数的求法,最常用的是“短除法”。

例题:一张硬纸板长60厘米,宽56厘米,现在需要把它剪成若干个大小相同的最大的正方形,不许有剩余。

问正方形的边长是多少?解硬纸板的长和宽的最大公约数就是所求的边长。

60和56的最大公约数是4。

答:正方形的边长是4厘米。

四、抽屉原则问题【数量关系】基本的抽屉原则是:如果把n+1个物体(也叫元素)放到n个抽屉中,那么至少有一个抽屉中放着2个或更多的物体(元素)。

抽屉原则可以推广为:如果有m个抽屉,有k×m+r(0<r≤m)个元素那么至少有一个抽屉中要放(k+1)个或更多的元素。

小升初奥数难题

小升初奥数难题

小升初奥数难题1,.甲乙两种食品共100千克,总值若干元。

现在甲降价20%,乙提价20%后,两种食品每千克均为9.6元,总值少140元。

问两种食品各几元?甲原本每千克卖9.6÷4/5=12元,乙原本每千克卖9.6÷6/5=8元。

设甲有x克12x+8(100-x)=140+960 12x+800-8x=1100 x=75甲720元乙240元。

2\某商店将某种DVD按进价提高35%后,打出“九折优惠酬宾,外送50元出租车费”的广告,结果每台仍旧获利208元,那么每台DVD的进价是多少元?解:定价是进价的1+35% 打九折后,实际售价是进价的135%×90%=121.5%每台DVD的实际盈利:208+50=258(元)每台DVD的进价258÷(121.5%-1)=1200(元)答:每台DVD的进价是1200元3.一辆汽车从甲地开往乙地。

如果车速提高20%则可提前一小时到达。

如果以原速行驶120千米后,再将速度提高25%,则可提前40分钟到达。

甲乙两地相距多少千米?现速与原速的比: (1+20%):1=6:5 原定行完全程的时间: 1÷(6-5)×6=6小时行120千米后,加快的速度与原速的比: (1+25%):1=5:4行120千米后按原速还需要行走的时间: 40/60÷(5-4)×5=10/3小时原速: 120÷(6-10/3)=45千米甲乙距离: 45×6=270千米答:那么甲、乙两地相距270千米4.某学生政治、语文、数学、英语、常识五科的平均成绩是89分,政治、数学两科的平均成绩是91.5分,语文、英语两科的平均成绩是84分,政治、英语两科的平均成绩是86分,且英语比语文多10分。

问该生这五科的成绩各是多少分?英语89语文79政治83数学100常识94a+b+c+d+e=89X5a+b=91.5X2c+d=84X2a+d=86X2d-c=10带入就可以求出来了一、填空题。

小升初数学常考内容讲义:最值问题-最新教育文档

小升初数学常考内容讲义:最值问题-最新教育文档

小升初数学常考内容讲义:最值问题编者小语:小编为同学们整理了小升初数学常考内容讲义:最值问题,适合六年级同学小升初复习之用,低年级也可以提前进行学习。

并祝各位同学在小升初考试中取得优异成绩!!!第三讲最值问题内容概述均值不等式,即和为定值的两数的乘积随着两数之差的增大而减小.各种求最大值或最小值的问题,解题时宜首先考虑起主要作用的量,如较高数位上的数值,有时局部调整和枚举各种可能情形也是必要的.典型问题1.有4袋糖块,其中任意3袋的总和都超过60块.那么这4袋糖块的总和最少有多少块?【分析与解】方法一:设这4袋为A、B、C、D,为使4袋糖块的总和最少,则每袋糖应尽量平均,有A、B、C袋糖有20、20、21块糖.则当A、B、D三袋糖在一起时,为了满足条件,D袋糖不少于21块,验证A、B、C、D这4袋糖依次有20,20,2l,2l 时满足条件,且总和最少.这4袋糖的总和为20+20+21+21=82块.方法二:设这4袋糖依次有a、b、c、d块糖,a、b、c、d均是整数,所以a+b+c+d的和最小是81.至于为什么会出现这种情况.如何避免,希望大家自己解决.2.用1,3,5,7,9这5个数字组成一个三位数ABC和一个两位数DE,再用O,2,4,6,8这5个数字组成一个三位数FGH和一个两位数IJ.求算式ABCDE-FGHIJ的计算结果的最大值.【分析与解】为了使ABCDE-FGHIJ尽可能的大,ABCDE尽可能的大,FGHIJ尽可能的小.则ABCDE最大时,两位数和三位数的最高位都最大,所以为7、9,然后为3、5,最后三位数的个位为1,并且还需这两个数尽可能的接近,所以这两个数为751,93.则FGHIJ最小时,最高位应尽可能的小,并且两个数的差要尽可能的大,应为46820.所以ABCDE-FGHIJ的最大值为75193-46820=60483.评注:类似的还可以算出FGHIJ-ABCDE的最大值为64082-37915=46795.3.将6,7,8,9,10按任意次序写在一圆周上,每相邻两数相乘,并将所得5个乘积相加,那么所得和数的最小值是多少?【分析与解】我们从对结果影响最大的数上人手,然后考虑次大的,所以我们首先考虑10,为了让和数最小,10两边的数必须为6和7.然后考虑9,9显然只能放到图中的位置,最后是8,8的位置有两个位置可放,而且也不能立即得到哪个位置的乘积和最小,所以我们两种情况都计算.87+710+106+69+98=312;97+710+106+68+89=313.所以,最小值为312.4.一个两位数被它的各位数字之和去除,问余数最大是多少?【分析与解】设这个两位数为 ab=10a+b,它们的数字和为a+b,因为lOa+b=(a+b)+9a,所以lOa+b9a(mod a+b),设最大的余数为k,有9ak(mod a+b).特殊的当a+b为18时,有9a=k+18m,因为9a、18m均是9的倍数,那么k也应是9的倍数且小于除数18,即0,9,也就是说余数最大为9;所以当除数a+b不为18,即最大为17时,得数的十位只可能是减数和被减数的十位数字之差,或者小1,可能的算式形式如下:6. 4个不同的真分数的分子都是1,它们的分母有2个是奇数、2个是偶数,而且2个分母是奇数的分数之和与2个分母是偶数的分数之和相等.这样的奇数和偶数很多,小明希望这样的2个偶数之和尽量地小,那么这个和的最小可能值是多少?7.有13个不同的自然数,它们的和是100.问其中偶数最多有多少个?最少有多少个?【分析与解】 13个整数的和为100,即偶数,那么奇数个数一定为偶数个,则奇数最少为2个,最多为12个;对应的偶数最多有11个,最少有1个.但是我们必须验证看是否有实例符合.当有11个不同的偶数,2个不同的奇数时,11个不同的偶数和最小为2+4+6+8+10+12+14+16+18+20+22=132,而2个不同的奇数和最小为1+3=4.它们的和最小为132+4=136,显然不满足:当有9个不同的偶数,4个不同的奇数时,9个不同的偶数和最小为2+4+6+8+10+12+14+16+18=90,而4个不同的奇数和最小为1+3+5+7=16,还是大于100,仍然不满足;当有7个不同的偶数,6个不同的奇数时,7个不同的偶数和最小为2+4+6+8+10+12+14=56,6个不同的奇数和为1+3+5+7+9+11:36,满足,如2,4,6,8,10,12,22,1,3,5,7,9,11的和即为100.类似的可知,最少有5个不同的偶数,8个不同的奇数,有2,4,8,10,16,1.3.5,7,9,11,13,15满足.所以,满足题意的13个数中,偶数最多有7个,最少有5个.。

最值问题(讲义)六年级下册小升初数学应用题真题汇编通用版(含解析)

最值问题(讲义)六年级下册小升初数学应用题真题汇编通用版(含解析)

最值问题(讲义)六年级下册小升初数学应用题真题汇编通用版(含解析)小升初数学运用题真题汇编典型运用题—最值问题班级姓名得分1.(湖南湘郡培粹中学小升初招生)五个连续的自然数的和是75,这五个连续的自然数中最大的数是。

2.(河南鹤壁六年级期末)小明、小红、小刚三人的年龄正好是三个连续的偶数,他们的年龄总和是48岁,他们中最大的是多少岁?3.(浙江杭州六年级期末)用3、4、5、7四个数组成两个分数,再进行运算,结果最大是多少?请列式计算。

4.(江苏宿迁小学毕业考试)如右图,一个圆柱形油桶,底面直径是6dm,高是10dm。

(1)要给油桶的表面刷上油漆,刷油漆的面积是多少平方分米?(2)用这样的一整桶汽油为油箱容量是51升的小汽车加油,最多可以加满多少辆?(油桶铁皮的厚度忽略不计)5.(黑龙江齐齐哈尔六年级期末)如图所示,一个棱长为6厘米的正方体,从正方体的底面向内挖去一个最大的圆锥体,剩下的体积是多少立方厘米?6.(安徽合肥小升初考试)伐木工人准备将一根圆柱形的木材(如图)加工成最大的方木(指横截面的正方形面积最大),这根方木的体积是多少立方厘米?合多少立方米?7.(山东青岛六年级期末)制作一个无盖圆柱形水桶,有四种型号的铁皮可供选择(不考虑损耗)。

(1)要恰好做成水桶,有几种选择方案?(2)算一算哪种方案做成的水桶容积最大?最大是多少?8.(陕西爱知中学入学考试)在一条水渠边,用篱笆围成一块直角梯形菜地(如图)。

已知篱笆总长28米,那么怎样围这块菜地的面积最大?最大地面积是多少平方米?9.(湖南广益中学小升初招生)a和b是小于100的两个非零的不同自然数。

的最大值是。

10.(某工大附中入学考试)一艘货船上卸下了若干台机器,这些机器的总质量是38吨,但每台机器的质量都不超过1吨。

如果用载重3吨的汽车把这些机器运到仓库,那么至少需要几辆这样的汽车才能保证一次运完?11.(湖南雅礼梅溪湖中学小升初招生)从1开始,轮流加3加4,得到下面的一列数:1,4,8,11,15,18,22,…在这列数中,最小的三位数是。

小升初奥数-数论1.doc

小升初奥数-数论1.doc

整除问题与极值问题题型1数的拆解与数的整除1.在能同时被2, 3, 5整除的三位数中,最大的数是(2012高新一中)2.四位数23 口口能同时被2, 3, 5整除,那么这个四位数最大是。

(2012电大附中)3.能同时被3, 5, 8整除的最大的三位数是—o (2015 I大附中)4.小明将于2017年的3月份参加数学竞赛,这个门有5个星期三、5个星期四、5个星期五,那么这个月的23号是星期—。

(2016交大附中)5.一个数除以9余8,除以6余5,这个数加上1就能被5整除,则符合条件的最小自然数是—(2016 铁一中)6.12 U 345曰能被72整除,则曰内两个数的积是—。

7.在1〜1000的自然数中,不能被3也不能被5整除的数共有—个(2015交大附中)8.在89, 121, 135, 480, 157, 483中,是3的倍数的有个。

(2015工大附中)9.若Ia219b7 是99的倍数,则a+b=10.已知七位数92AB427 能被99整除,那么两位数岳二11.已知x+2y (其中x, y都是正整数)能被9整除,则2 (5x-8y・4)被9除的余数为—。

(2013远东一中)12.在947后面添上三个不同的数字,组成一个能被2, 3, 5同时•整除的最小的六位数,这个数是—。

(2012工大附中)13.一个三位数,既能被8整除,乂能被9整除,而且5是它的因数,则这个三位数最小是—o (2015 —中)14.一个自然数与4的和能被6整除,与4的差能被8整除,则满足上述条件的最小的自然数是—o (2013高新一中)15.—个六位数的各位数字都不相同,最左边一位数字是3,且它能被11整除,这样的六位数中最小的是o (2013高新一中)16.一个四位数106 口,同时可以被2和3整除,那么口内可以填()o (2014交大附中)A. 6B. 5C. 4D. 217.已知a是一个整数,则它的倒数是()o (2014铁一中)A. aB. - c.[或者没有 D.无法确定a a18.下面四个数都是六位数,N是大于0小于10的自然数,S是0。

六年级下册数学_小升初7最值问题人教版(16张)人教版精品课件

六年级下册数学_小升初7最值问题人教版(16张)人教版精品课件

思 例4:一排椅子只有15个座位,部分座位已有人就座,朋朋来后一
维 看,他无论坐在哪个座位,都将与已就座的人相邻。问:在朋朋之
拓 前已就座的最少有几人?
展 将15个座位顺次编为1-15号。 余下:51-40=11(张)
除得65分的同学外,其余5位同学的总分是91×6-65=481分。
需花:1000+650×3=2950(元).
小客车限乘客25人,每辆车每天租金650元。
索 未统计的票数:210-190=20(张) 小客车每人需要:650÷25=26(元). 问:在朋朋之前已就座的最少有几人?
某班51个同学投票选一名班长,统计其中40张选票数的结果是:甲得18票,乙得12票,丙得10票,甲至少再得多少张票,才能保证以得票最多而当选班长?
前190张票中,甲得到75张,乙得到65张,丙得到50张。
如果2号位、5号位已有人就座,那么1号位、3号位、4 所以当租3辆小车和1辆大车时都能满载没空座最省钱.
金门路小学有54名学生要去参观科技馆,票价如下:成人票30元,学生票打7折,10人团体票150元,请你帮忙算一算,怎样买最省钱?
号位、6号位的人就必然与2号位或5号位的人相邻。 学生票价格:30×70%=21(元)
9 10 1111 12 13 1144 15
通过观察可发现:可看成每3人为1组中间为已有人 座位,看分成几组,则可得到最少人,有余数则加1。
15÷3=5(个)
答:在朋朋之前已就座的最少有5人
即 一排椅子共有18个座位,部分座位已有人就座,小奥来
学 即
后一看,他无论坐在哪个座位,都将与已就座的人相
115=40+75=40+25×3 因为乙和甲的票数接近,相差18-12=6(票),

小学奥数最值问题进阶习题答案

小学奥数最值问题进阶习题答案

小学奥数最值问题进阶习题答案
1、 几个小孩的年龄之和为 22,则他们年龄之乘积最大为?
2、 两个正整数的乘积为 99,则这两个正整数的和最大是多少,最
小是多少?
3、 如图,一个长方形被分成 4 个小长方形,其中长方形 A 、B 、C 的
周长分别是 10 厘米、12 厘米、14 厘米,那么长方形 D 的面积最大是______平方厘米。

4、将 99 个人分为两组,同组的两个人两两之间握一次手,两组至少共可以握多少次手?
5、用 0 至 9 十个数字组成一个四位数、一个三位数、一个两位数和一个一位数,数字不可重复使用,则这四个数的乘积最大是多少?最小是多少?
6、将自然数 1 至 9 无重复地填入下面算式的方框中,使得结果最小。

则这个最小值是多少?
7、如图,在长方形 ABCD 中, AB =67, BC=30, BE+BF = 49 ,那么,三角形 DEF 面积的最小值是多少?。

(完整)四年级奥数之最值问题

(完整)四年级奥数之最值问题

四年级奥数之最值问题知识点睛:在一定范围内求最大值或最小值的问题,我们称之为“最大最小问题”。

“最大”、“最小”是我们所熟悉的两个概念,多年来各级数学竞赛中经常会出现求最值问题,解决办法有:一、枚举法例1一把钥匙只能开一把锁,现在有4把钥匙4把锁。

但不知哪把钥匙开哪把锁,最多要试多少次就能配好全部的钥匙和锁?(北京市第三届“迎春杯”数学竞赛试题)分析与解开第一把锁,按最坏情况考虑试了3把还未成功,则第4把不用试了,它一定能打开这把锁,因此需要3次。

同样的道理开第二把锁最多试2次,开第三把锁最多试1次,最后一把锁则不用再试了。

这样最多要试的次数为:3+2+1=6(次)。

二、综合法例2x3=84A(x、A均为自然数)。

A的最小值是______。

(1997年南通市数学通讯赛试题)分析与解根据题意,84A开立方的结果应为自然数,于是我们可以把84分解质因数,得84=2×2×3×7,因此x3=2×2×3×7×A,其中A的质因数至少含有一个2、两个3、两个7,才能满足上述要求。

即A的最小值为(2×3×3×7×7=)882。

三、分析法例3一个三位数除以43,商是a,余数是b,(a、b均为自然数),a+b 的最大值是多少?(广州市五年级数学竞赛试题)分析与解若要求a+b的最大值,我们只要保证在符合题意之下,a、b尽可能大。

由乘除法关系得43a+b=一个三位数因为b是余数,它必须比除数小,即b<43b的最大值可取42。

根据上面式子,考虑到a不能超过23。

(因为24×43>1000,并不是一个三位数)当a=23时,43×23+10=999,此时b最大值为10。

当a=22时,43×22+42=988,此时b最大值为42。

显然,当a=22,b=42时,a+b的值最大,最值为22+42=64。

上海市小升初口奥练习题口奥题库---杂题

上海市小升初口奥练习题口奥题库---杂题

【最值】【策略】【4】有一个探险家,计划用6天的时间徒步横穿沙漠,他请了一些搬运工帮助一起搬运粮食和水,如果每个人一次最多只能携带一个人4天吃的粮食和水,那么这位探险家至少要雇用________个搬运工。

【答案】2个【最值】【2】一个偶数的数字和是40,这个偶数最小是多少?【答案】59998【最值】【策略】【2】超市为了提高销售额,最近推出了每次买三瓶饮料,可以用空瓶调换一瓶同样饮料的促销周活动。

小王一次买了11瓶饮料买,他在这一周内最多能喝到几瓶饮料?【答案】16【最值】【策略】【3】需要在最短时间内,向全班同学发出紧急通知,如果打电话通知1个人需要1分钟,则5分钟最多可通知多少位同学?【答案】31位【最值】【策略】【3】有16个不同国家的集邮爱好者,想通过邮寄的方法相互交换各国最近发行的邮票,使得没人都有16个国家的纪念邮票,请想出一个通信次数最少的交换办法?【答案】最少30次。

让15个人分别把自己的邮票寄给第16个人,然后第16个人收集所有邮票再寄给那15个人,由此每人即可得到16个国家的邮票。

【最值】【策略】【4】9名同学负责教室卫生,每次打扫卫生需要3个参加。

如果任意两名同学都只能在一起打扫一次卫生,那么最多能安排打扫多少次卫生?【答案】12次【最值】【3】8个互不相同的非零自然数的总和是56,如果去掉最大的数及最小的数,那么剩下的数的总和是44。

问:剩下的数中,最小的数是多少?【答案】4【策略】【统筹】【2】妈妈杀好鱼后,让小明帮助烧鱼.他洗鱼、切鱼、切姜片葱花、洗锅煎烧,各道工序共花了15分钟,请你设计一个顺序,使花费的时间最少。

洗盘子2分钟,切鱼2分钟,切葱姜1分钟,洗锅2分钟,将锅烧热3分钟,煎鱼5分钟。

【答案】12分钟【逻辑推理】【3】有4个人坐在火车站候车室的一条长椅上。

一老者走上前去,问道:“现在是什么时间?”4个人同时看了一下自己的手表,然后分别作了回答,甲说:“现在是19点54分。

小学六年级奥数第十五章最值问题(2021年整理)

小学六年级奥数第十五章最值问题(2021年整理)

小学六年级奥数第十五章最值问题(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(小学六年级奥数第十五章最值问题(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为小学六年级奥数第十五章最值问题(word版可编辑修改)的全部内容。

第十五章最值问题知识要点1.如果两个整数的和一定,那么这两个整数的差越小,它们的乘积越大。

当两个数相等时,它们的乘积最大。

2.两个自然数的乘积一定时,两个自然数的差越小,这两个自然数的和也越小.3。

把一个数拆分成若干个自然数之和,如果要使这若干个自然数的乘积最大,那么这些自然数应全是2或3,且2的个数不超过2个。

典例巧解例1 两个自然数的和是13,要使两个整数的乘积最大,这两个整数是多少?点拨将两个自然数的和为13的所有情况都列出来,有以下7种情况:13=0+13,0×13=0; 13=1+12, 1×12=12;13=2+11,11×2=22; 13=3+10,3×10=30;13=4+9,4×9=36; 13=5+8,5×8=40;13=6+7, 6×7=42。

由此可见,两个整数的和一定时,两个整数的差越小,它们的乘积越大。

解13÷2=6……1, 6×(6+1)=42。

答:这两个整数分别为6和7。

例2 比较下面两个乘积的大小。

A=57128463×87596512 B=57128470×87596505点拨要比较A与B的大小,用计算的方法求积会很麻烦.仔细观察两组对应因数的大小,我们不难发现,两个因数的和是一定的,只要比较每组两个因数差的大小就可以了,差大的积反而小,差小的积反而大.解 A组两个因数的差:87596512-57128463=30468049,B组两个因数的差:87596505-57128470=30468035。

小升初经典奥数题附答案

小升初经典奥数题附答案

周长:(高等难度)如图,把正方形ABCD的对角线AC任意分成10段,并以每一段为对角线作为正方形.设这10个小正方形的周长之和为P,大正方形的周长为L,则P与L的关系是______(填<,>,=)。

巧求周长部分题目:(高等难度)如图,长方形ABCD中有一个正方形EFGH,且AF=16厘米,HC=13厘米,求长方形ABCD 的周长是多少厘米。

年龄问题题目:(中等难度)甲、乙、丙三人年龄之和是94岁,且甲的2倍比丙多5岁,乙2倍比丙多19岁,问:甲、乙、丙三人各多大【试题】刘老师搬一批书,每次搬15本,搬了12次,正好搬完这批书的一半。

剩下的书每次搬20本,还要几次才能搬完【试题】小华每分拍球25次,小英每分比小华少拍5次。

照这样计算,小英5分拍多少次小华要拍同样多次要用几分【试题】同学们到车站义务劳动,3个同学擦12块玻璃。

(补充不同的条件求问题,编成两道不同的两步计算应用题)。

"照这样计算,9个同学可以擦多少块玻璃"【试题】两个车间装配电视机。

第一车间每天装配35台,第二车间每天装配37台。

照这样计算,这两个车间15天一共可以装配电视机多少台【试题】把7本相同的书摞起来,高42毫米。

如果把28本这样的书摞起来,高多少毫米(用不同的方法解答)【试题】纺织厂运来一堆煤,如果每天烧煤1500千克,6天可以烧完。

如果每天烧1000千克,可以多烧几天【试题】一台拖拉机5小时耕地40公顷,照这样的速度,耕72公顷地需要几小时1.一条路长100米,从头到尾每隔10米栽1棵梧桐树,共栽多少棵树2.12棵柳树排成一排,在每两棵柳树中间种3棵桃树,共种多少棵桃树一根200厘米长的木条,要锯成10厘米长的小段,需要锯几次4.蚂蚁爬树枝,每上一节需要10秒钟,从第一节爬到第13节需要多少分钟5.在花圃的周围方式菊花,每隔1米放1盆花。

花圃周围共20米长。

需放多少盆菊花6.从发电厂到闹市区一共有250根电线杆,每相邻两根电线杆之间是30米。

小学数学六年级奥数《最值问题(1)》练习题(含答案)

小学数学六年级奥数《最值问题(1)》练习题(含答案)

小学数学六年级奥数《最值问题(1)》练习题(含答案)一、填空题1.一把钥匙只能开一把锁.现在有4把钥匙4把锁,但不知哪把钥匙开哪把锁,最多要试 次才能配好全部的钥匙和锁.2.用长和宽分别是4厘米和3厘米的长方形小木块,拼成一个正方形,最少要用这样的木块 块.3.一个一位小数用四舍五入法取近似值精确到万位,记作50000.在取近似值以前,这个数的最大值是 .4.100个自然数,它们的总和是10000,在这些数里,奇数的个数比偶数的个数多,那么这些数里至多有 个偶数.5.975⨯935⨯972⨯( ),要使这个连乘积的最后四个数字都是零.在括号内最小应填 .6.有三个连续自然数,它们依次是12、13、14的倍数,这三个连续自然数中(除13外)是13倍数的那个数最小是 .7.下图九个数中取出三个数来,这三个数都不在同一横行,也不在同一纵行.问:怎样取才能使这三个数之和最大,最大数是 .8.农民叔叔阿根想用20块长2米,宽1.2米的金属网建一个靠墙的长方形鸡窝.为了防止鸡飞出,所建鸡窝的高度不得低于2米,要使鸡窝面积最大,长方形的长和宽分别应是 .9.一个三角形的三条边长是三个两位的连续偶数,它们的末位数字和能被7整除,这个三角形的最大周长等于 .10.农场计划挖一个面积为432m 2的长方形养鱼池,鱼池周围两侧分别有3m 和4m 的堤堰如图所示,要想占地总面积最小,水池的长和宽应为 .二、解答题11.下图中,已知a 、b 、c 、d 、e、f 是不同的自然数,且前面标有两个箭头的每一个数恰等于箭头起点的两数的和(如b =a +d ),那么图中c 最小应为多少?a b cd ef12.唐老鸭与米老鼠进行一万米赛跑,米老鼠的速度是每分钟125米,唐老鸭的速度是每分钟100米.唐老鸭手中掌握着一种迫使米老鼠倒退的电子遥控器,通过这种遥控器发出第n 次指令,米老鼠就以原速度的n ⨯10%倒退一分钟,然后再按原来的速度继续前进,如果唐老鸭想在比赛中获胜,那么它通过遥控器发出指令的次数至少应是多少次?13.某游泳馆出售冬季学生游泳卡,每张240元,使用规定:不记名,每卡每次只限一人,每人只限一次.某班有48名学生,老师打算组织学生集体去游泳,除需购买若干张游泳卡,每次游泳还需包一辆汽车,无论乘坐多少名学生,每次的包车费均为40元.若要使每个同学游8次,每人最少交多少钱?14.某商店需要制作如图所示的工字形架100个,每个由铝合金型材长为2.3米,1.7米,1.3米各一根组装而成.市场上可购得该铝合金型材的原料长为 6.3米.问:至少要买回多少根原材料,才能满足要求(不计损耗)?———————————————答 案——————————————————————1. 6第一把钥匙最坏的情况要试3次,第二把要试2次,第三把要试1次,共计6次.2. 12因4和3的最小公倍数为12,故最少需这样的木块12块.3. 50000.44. 48一共有100个自然数,其中奇数应多于50个,因为这100个自然数的总和是偶数,所以奇数的个数是偶数,至少有52个,因而至多有48个.5. 20因975=39⨯52,935=187⨯5,972=243⨯22,要使其积为1000的倍数,至少应乘以5⨯22=20.6. 1105因为12、13、14的公倍数分别加上12、13、14后才依次是12、13、14倍数的连续自然数,故要求是13的倍数的最小自然数,只须先求12、13、14的最小公倍数为1092,再加上13得1105.7. 20第一横行取6,第二横行取7,第三横行取7.8. 12米,6米.金属网应竖着放,才能使鸡窝高度不低于2米.如图,设长方形的长和宽分别是x 米和y 米,则有x +2y =1.2⨯20=24.长方形的面积为S =xy =()y x 221⨯.因为x 与2y 的和等于24是一个定值,故它们的乘积当它们相等时最大,此时长方形的面积S 也最大,于是有:x =12,y =6.9. 264依题意,末位数字和能被7整除的只有7、14、21等三种.但三个两位的连续偶数相加其和也一定是偶数,故符合题意的只有14.这样三个最大的两位连续偶数.它们的末位数字又能被7整除的,便是90、88、86,它们的和即三角形最大周长为90+88+86=264.10. 24m ,18m如图,设水池边长为xm ,宽为ym ,则有xy =432,占地总面积S =(x +8)(y +6)m 2 于是S =xy +6x +8y +48=6x +8y +480.因6x +8y =48⨯432为定值,故当6x =8y 时,S 最小,此时x =24,y =18.11. 依题意,d 应当取最小值1,那么a 和f 只能一个为2,另一个为4.这样,根据b =a +d ,e =d +f ,b 和e 便只能一个为3,另一个为5,而c =b +e .所以c 最小应为3+5=8.12. 米老鼠跑完全程用的时间为10000÷125=80(分),唐老鸭跑完全程的时 间为10000÷100=100(分).唐老鸭第n 次发出指令浪费米老鼠的时间为n n 1.01125%101251+=⨯⨯+. 当n 次取数为1、2、3、4…13时,米老鼠浪费时间为1.1+1.2+1.3+1.4+…+2.3=22.1(分)大于20分.因为米老鼠早到100-80=20分,唐老鸭要想获胜,必须使米老鼠浪费的时间超过20分钟,因此唐老鸭通过遥控器至少要发13次指令才能在比赛中获胜.13.设一共买了x 张卡,一共游泳y 次,则共有xy =48⨯8=384(人次),总运费为:(240x +40y )元.因240x ⨯40y =240⨯40⨯384是一定值,故当240x =40y ,即y =6x 时和最小,此时可求得x =8,y =48.总用费为240⨯8+40⨯48=3840(元),平均每人最少要交3840÷48=80(元).显然④⑤⑥三种方案损耗较小. ④⑤⑥⑦方案依次切割原材料42根、14根、29根和1根共用原材料42+14+29+1=86(根).。

最值问题解题思路奥数

最值问题解题思路奥数

马到成功奥数专题:离散最值引言:在国内外数学竞赛中,常出现一些在自然数范围内变化的量的最值问题,我们称之为离散最值问题;解决这类非常规问题,尚无统一的方法,对不同的题目要用不同的策略和方法,就具体的题目而言,大致可从以下几个方面着手:1.着眼于极端情形;2.分析推理——确定最值;3.枚举比较——确定最值;4.估计并构造;离散最值问题渗透到小升初的各个奥数专题中,学好它可为解决数论,计数,应用问题等打下扎实的基础;一、从极端情形入手从极端情形入手,着眼于极端情形,是求解最值问题的有效手段;题目1.一个布袋中有红、黄、绿三种颜色的小球各10个,这些小球的大小均相同,红色小球上标有数字“4”,黄色小球上标有数字“5”,绿色小球上标有数字“6”;小明从袋中摸出8个球,它们的数字和是39,其中最多可能有多少个球是红色的解:假设摸出的8个球全是红球,则数字之和为4×8=32,与实际的和39相差7,这是因为将摸出的黄球、绿球都当成是红球的缘故;用一个绿球换一个红球,数字和可增加6-4=2,用一个黄球换一个红球,数字和可增加5-4=1;为了使红球尽可能地多,应该多用绿球换红球,现在7÷2=3……1,因此可用3个绿球换红球,再用一个黄球换红球,这样8个球的数字之和正好等于39;所以要使8个球的数字之和为39,其中最多可能有8-3-1=4个是红球;题目2.有13个不同正整数,它们的和是100;问其中偶数最多有多少个最少有多少个解:①2+4+6+8+10+12+14+16=72还要有5个奇数,但和是奇数,100是偶数,所以只能少一个偶数,2+4+6+8+10+12+14=56100-56=4242=1+3+5+7+9+17,最多有7个偶数;②1+3+5+7+9+11+13+15=64还要5个偶数,100-64=3636=2+4+6+8+16 最少有5个偶数;题目3.一种小型天平称备有1克、3克、5克、7克、9克5种砝码;为了能称出1克到91克的任意一种整数克重量,如果只允许在天平的一端放砝码,那么最少需要准备砝码多少个; 解:要能称出1克到91克的任意一种整数克重量,要有9个9克、1个5克、1个3克、2个1克,它们的和是91,这样即可;需要9+1+1+2=13个;题目4.一台计算器大部分按键失灵,只有数字“7”和“0”以及加法键尚能使用,因此可以输入77,707这样只含数字7和0的数,并且进行加法运算;为了显示出222222,最少要按“7”键多少次222222-700003=12222按下了3个7 12222-70001=5222按下了1个75222-7007=322 按下了7个7 322-704=42按下了4个7 42-76=0 按下了6个7;3+1+7+4+6=21次二、枚举法与逐步调整当我们在有限数中求最大或最小值时,枚举法是常用基本方法之一;这种方法的大意是:将问题所涉及的对象一一列出,逐一比较从中找出最值;或者将与问题相关的各种情况逐一考察,最后归纳出需要的结论;题目5.将6,7,8,9,10按任意次序写在一个圆周上,每相邻两数相乘,并将所得得5个乘积相加,那么所得和数的最小值是多少解:要使乘积最小,就要每个数尽可能小;对于10,旁边添6和7,这样积小一些;于是有两种添法:----------------------------------------------题目6.某公共汽车从起点开往终点站,中途共有13个停车站;如果这辆公共汽车从起点站开出,除终点站外,每一站上车的乘客中,正好各有一位乘客从这一站到以后的每一站,那么为了使每位乘客都有座位,这辆公共汽车至少应有多少个座位解法1:只需求车上最多有多少人;依题意列表如下:由上表可见,车上最多有56人,这就是说至少应有56个座位;说明:本题问句出现了“至少”二字是就座位而言的,座位最少有多少,取决于什么时候车上人数最多,要保证乘客中每人都有座位,应准备的座位至少应当等于乘客最多时的人数;所以,我们不能只看表面现象,误认为有了“至少”就是求最小数,而应该把题意分析清楚后再作判断;解法2:因为车从某一站开出时,以前各站都有同样多的人数到以后各站每站1人,这一人数也和本站上车的人数一样多,因此车开出时人数=以前的站数+1×以后站数=站号×15-站号;因此只要比较下列数的大小:1×14, 2×13, 3×12, 4×11, 5×10,6×9, 7×8, 8×7, 9×6, 10×5,11×4, 12×3, 13×2, 14×1;由这些数,得知7×8和8×7是最大值,也就是车上乘客最多时的人数是56人,所以它应有56个座位;说明:此题的两种解法都是采用的枚举法,枚举法是求解离散最值问题的基本方法;这种方法的大意是:将问题所涉及的对象一一列出,逐一比较从中找出最值;或者将与问题相关的各种情况逐一考察,最后归纳出需要的结论;题目7.在如图18-2所示得28方格表中,第一行得8个方格内依次写着1、2、3、4、5、6、7、8;如果再把1、2、3、4、5、6、7、8按适当得顺序分别填入第二行的8个方格内,使得每列两数的8个差数两两不同,那么第二行所显示的八位数最大可能值是多少三、从简单情形入手解决复杂问题可以从简单问题入手,经过分析得出规律,也就找到了解决复杂问题的方法;题目8.分析与解题目9.将1,2,3,…,49,50任意分成10组,每组5个数;在每一组中,数值居中的那个数称为“中位数”;求这10个中位数之和的最大值与最小值;解:{1,2,3,49,50} {4,5,6,47,48} …… {28,29,30,31,32}3+6+……+30=165最小值{1,2,48,49,50} {3,4,45,46,47} …… {19,20,21,22,23}48+45+……+21=345最大值四、和一定问题为10的自然数共有5对,每对自然数乘积后又得到5个不同的数,如下表:由此我们得到,当这两个自然数都取5时积有最大值 25;成立;也就是和一定时差最小乘积越大;题目10.有3条线段a,b,c,线段a长米,线段b场米,线段c长米;如图18-1,以它们作为上底、下底和高,可以作出3个相同的梯形;问第几号梯形的面积最大解:由于梯形体积=上底+下底高/2在和一定的情况下,要使乘积最大,让两个数越接近;可见a+b与c十分接近,所以③的面积最大;题目11.如果将进货单价为40元的商品按50元售出,那么每个的利润是10元,但只能卖出500个;当这种商品每个涨价1元时,其销售量就减少10个;为了赚得最多的利润,售价应定为多少解:设每个商品售价为50+x元,则销量为500-10X个;总共可以获利50+x-40×500-10x=10×10+X×50-X元;因10+x+50-x=60为一定值,故当10+X=50-X即X=20时,它们的积最大;此时,每个的销售价为50+20=70元题目12.用3,4,5,6,7,8六个数字排成三个两位数相乘,要求它们的乘积最大;应该怎样排列分析与解十位数字分别是8、7、6,8>7>6,个位数字分别是5,4,3,5>4>3,依据“接近原则”,大小搭配可得83×74×65,三个数最接近因而它们的乘积最大;综上数例,可以归纳出这样的规律: 较大数后配较小的数,较小的数后配较大的数,这样才能使数之间更为接近,从而保证乘积最大;简单地说就是:数越接近..,.乘积越大....;.综上数例,可以归纳出这样的规律: 较大数后配较小的数,较小的数后配较大的数,这样才能使数之间更为接近,从而保证乘积最大;简单地说就是:数越接近..,乘积越大;五、积一定的问题两个变化着的量,如果在变化的过程中,它们的乘积始终保持不变,那么它们的差与和之间有什么关系呢观察下面的表:我们不难得出如下的规律:两个变化着的量,如果在变化的过程中,乘积始终保持不变,那么它们的差越小,和就越小;若它们能够相等,则当它们相等时,和最小;题目13. 长方形的面积为 144 cm2,当它的长和宽分别为多少时,它的周长最短解:设长方形的长和宽分别为 xcm和 ycm,则有xy=144;故当x=y=12时,x+y有最小值,从而长方形周长2x+y也有最小值;题目14.农场计划挖一个面积为432 m2的长方形养鱼池,鱼池周围两侧分别有3m和4m的堤堰如下图所示,要想占地总面积最小,水池的长和宽应为多少解:如图所示,设水池的长和宽分别为xm和ym,则有xy=432;占地总面积为 S=x+6y+8cm2;于是S=Xy+6y+8X+48=6y+8X+480;我们知道6y ×8X=48×432为一定值,故当6y=8X时,S最小,此时有6y=8X=144,故y=24,x=18;六、从整体入手从整体抓住数据的本质特征进行分析,较易突破难点;题目15.在10,9,8,7,6,5,4,3,2,1这10个数的每相邻两个数之间都添上一个加号或一个减号,组成一个算式;要求:1算式的结果等于37;2这个算式中的所有减数前面添了减号的数的乘积尽可能地大;那么,这些减数的最大乘积是多少题目16.在10,9,8,7,6,5,4,3,2,1这10个数的每相邻两个数之间都添上一个加号或一个减号,组成一个算式;要求:1算式的结果等于37;2这个算式中的所有减数前面添了减号的数的乘积尽可能地大;那么,这些减数的最大乘积是多少解:把10个数都添上加号,它们的和是55,如果把其中一个数的前面的加号换成减号,使这个数成为减数,那么和数将要减少这个数的2倍;因为55-37=18,所以我们变成减数的这些数之和是18÷2=9;对于大于2的数来说,两数之和总是比两数乘积小,为了使这些减数的乘积尽可能大,减数越多越好不包括1;9最多可拆成三数之和2+3+4=9,因此这些减数的最大乘积是2×3×4=24,添上加、减号的算式是10 + 9+ 8+ 7 + 6+ 5- 4- 3- 2 +1=37;七、抓不等关系题目17.某校决定出版“作文集”,费用是30册以内为80元,超过30册的每册增加元;当印刷多少册以上时,每册费用在元以内解:显然印刷的册数应该大于30;设印刷了30+x册,于是总用费为80+元;故有80+≤ ×30+x,答案:117+30= 147以内;题目18.有4袋糖块,其中任意3袋的总和都超过60块;那么这4袋糖块的总和最少有多少块解:要使其中任意3袋的总和都超过60块,那么至少也是61,先在每袋中放20个糖块,但任意3袋中至少一个21,否则就无法超过60;要使任意3袋中至少一个21,这4个袋子的糖块分别是20,20,21,21;和为20+20+21+21=82八、抓相等关系题目19.10位小学生的平均身高是米;其中有一些低于米的,他们的平均身高是米;另一些高于米的平均身高是米;那么最多有多少位同学的身高恰好是米解:要最多有多少位同学的身高恰好是米,就要使低于和高于米的人越少,设高于和低于的人分别为a,b;可得:+=a+b 2b=3a至少是5人那么最多有10-5=5位同学的身高恰好是米; ----------------------------------------------题目20.4个不同的真分数的分子都是1,它们的分母只有2个奇数、2个是偶数,而且2个分母是奇数的分数之和与2个分母是偶数的分数之和相等;这样的奇数和偶数很多,小明希望这样的偶数尽量地小,那么这个和的最小可能值是多少解:1/奇+1/奇=1/偶+1/偶偶/奇=偶+偶/偶×偶奇偶+偶=偶偶偶;因为偶偶偶是8的倍数所以偶+偶是8的倍数若是8,只能为2和6则1/2+1/6=1/3+1/3不符合题意,因为奇相等;若是16,有1/6+1/10=1/5+1/15因此本题答案是16;九、位值展开式题目21.一个两位数被它的各位数字之和去除,问余数最大是多少解:设两位数位aba表示十位数字,b表示个位数字ab=10a+b/a+b=9a/a+b+1a+b最大是18,此时余数为9当a+b=17,若a=9 余数为13若b=9余数为4题目22.当a+b=16,若a=9 余数为1 若b=9余数为15 此时余数最大;由3个非零数字组成的三位数与这3个数字之和的商记为K;如果K是整数,那么K的最大值是多少解:设这个数为abca表示百位数字,b表示十位数字,c表示个位数字那么abc/a+b+c=K 100a+10b+c/a+b+c=K 要使这个算式最大,就要让a尽可能大,b,c尽可能的小;试一下:911/9+1+1=82……9,811/8+1+1=81……1,711/7+1+1=79,所以K最大是79; 题目23.用1,3,5,7,9这5个数组成一个三位数ABC和一个两位数DE,再用0,2,4,6,8这5个数组成一个三位数FGH和一个两位数IJ;求算式ABC×DE—FGH×IJ的计算结果的最大值; 解:要使ABCDE-FGHIJ这个算式最大就要使ABCDE最大,FGHIJ最小;那么前面最大是75193;后面最小是46820;那么算式的最小值是75193-46820=60483十、“估计+构造”“估计+构造”是解离散最值问题的一种常用方法,要求某个离散最值,先估计该量的上界或下界,然后构造出一个实例说明此上界或下界能够达到,这样便求出了这个量的最大值或最小值;题目24.把1,2,3,…,12填在左下图的12个圆圈里,然后将任意两个相邻的数相加,得到一些和,要使这些和都不超过整数n,n至少是多少为什么并请你设计一种填法,满足你的结论;解:因为1+2+3+…+12=78, 78×2÷12=13,所以n≥13;又考虑到与12相邻的数最小是1和2,所以n至少是14;右上图是一种满足要求的填法;十一、转化与对称思想转化思想是数学思想之一,把复杂问题转化成简单问题,从而达到解决问题的目的.在平面上有两个点A、B,把A、B用线连结起来有许多种方法,可用线段、弧线、折线等.在这无穷多种连结方法中,线段最短,因而我们也称线段AB的长叫A、B两点间的距离;我们可以做一个有趣的实验:在一个长方体的上面N点放上食品,在长方体侧面ABCD上M点放一只蚂蚁如图3,蚂蚁从侧面经过棱AD到N有无穷多种走法如图4,我们关心的问题是蚂蚁怎样走路程最短在这个立体图形中找出答案是很困难的,直接连结MN则不经过棱AD,与条件不符.为了使问题简化,我们将长方体展成平面图形,连结MN交AD于P.由公理,两点之间线段最短,可知蚂蚁从M点沿直线MP爬到P后,再由P点沿直线PN爬到N时走过的路程最短;题目25.如图11某次划船比赛规定从A点出发,先到左岸然后到右岸然后再到B点,时间少者取胜.请你设计一条航线,使船走的路程最短.由于两点间的距离线段最短,我们想办法把问题转化为求两点距离问题;如图,找到A点关于左岸的轴对称点,B点关于右岸的轴对称点,连结A′B′,与左岸、右岸分别有交点C、D,沿折线ACDB航行就是最短航线;十二、学写说理题题目26.23个不同的自然数的和是4845;问:这23个数的最大公约数可能达到的最大的值是多少写出你的结论,并说明理由;.17;解:设这23个彼此不同的自然数为a1,a2,…,a22,a23,并且它们的最大公约数是d,则a1=db1,a2=db2,…,a22=db22,a23=db23;依题意,有4845=a1+a2+…+a22+a23=db1+b2+…+b22+b23;因为b1,b2,…,b22,b23也是彼此不等的自然数,所以b1+b2+…+b23≥1+2+…+23=276;因为4845=db1+b2+…+b22+b23≥276×d,所以又因为4845=19×17×15,因此d的最大值可能是17;当a1=17,a2=17×2,a3=17×3,…,a21=17×21,a22=17×22,a23=17×32时,得a1+a2+…+a22+a23=17×1+2+…+22+17×32=17×253+17×32=17×285=4845;而a1,a2,…,a22,a23=17;所以d的最大值等于17;解题在于实践:题目27.设a1,a2,a3,a4,a5,a6是1到9中任意6个不同的正整数,并且a1<a2<a3<a4<a5<a6;试用这6个数分别组成2个三位数,使它们的乘积最大;分析与解:由于a1,…,a6具体大小不清楚,因此先取特殊数1,2,3,4,5,6这6个不同的数考虑;要使2个三位数的乘积最大,必须使这2个数的百位数最大,应分别是6,5;而十位数次大,应分别为4,3,个位数最小,应分别为2,1;因为当2个数之和一定时,这2个数之差越小,它们的乘积越大,所以这2个数是631和542;题目28.8个互不相同的正整数的总和是56,如果去掉最大的数及最小的数,那么剩下的数的总和是44;问:剩下的数中,最小的数是多少解:因为最大数与最小数的和是56-44=12,所以最大数不会超过11;去掉最大和最小数后剩下的6个互不相同的自然数在2~10之间,且总和为44,这6个数只能是4,6,7,8,9,10;题目29.采石场采出了200块花岗石料,其中有120块各重7吨,其余的每块各重9吨,每节火车车皮至多载重40吨,为了运出这批石料,至少需要多少节车皮解:每节车皮所装石料不能超出5块,故车皮数不能少于200÷5=40节,而40节车皮可按如下办法分装石料:每节装运3块7吨的和两块9吨的石料,故知40节可以满足要求;题目30.一个水池,底部安有一个常开的排水管,上部安有若干个同样粗细的进水管,当打开4个进水管时需要5小时才能注满水池;当打开2个进水管时,需要15小时才能注满水池;现在需要在2小时内将水池注满,那么至少要打开多少个进水管分析本题没给出排水管的排水速度,因此必须找出排水管与进水管之间的数量关系,才能确定至少要打开多少个进水管.解:本题是具有实际意义的工程问题,因没给出注水速度和排水速度,故需引入参数.设每个进水管1小时注水量为a,排水管1小时排水量为b,根据水池的容量不变,我们得方程4a-b×5=2a-b×15,化简,得:4a-b=6a-3b,即a=b.这就是说,每个进水管1小时的注水量等于排水管1小时的排水量.再设2小时注满水池需要打开x个进水管,根据水池的容量列方程,得xa-a×2=2a-a×15,化简,得 2ax-2a=15a,即2xa=17a.a≠0所以x=因此至少要打开9个进水管,才能在2小时内将水池注满.注意:x=,这里若开8个水管达不到2小时内将水池注满的要求;开个水管不切实际.因此至少开9个进水管才行.题目31.用1,2,3,4,5,6,7,8,9这九个数字各一次,组成一个被减数,减数,差都是三位数的正确的减法算式,那么这个减法算式的差最大是多少解:要想差最大必须考虑被减数取最大,那么先考虑百位为9,同样考虑减数最小,百位为1,再通过试算得出936-152=784,此时差为最大既784;题目32.有一个正整数的平方,它的最后三位数字相同但不为零,试求满足上述条件的最小正整数;1444;解:平方数末位只能为0,1,4,5,6,9;因为111,444,555,666,999均非平方数,而1000,1111也不是平方数,但1444=382,故满足题设条件的最小正整数是1444;题目33.从1、2、3、4、5、6、7、8、9、10这10个数中,任取5个数相加的和与其余5个数相加的和相乘,能得到多少个不同的乘积;13. 从整体考虑分两组和不变:1+2+3+4+5+6+7+8+9+10=55从极端考虑分成最小和最大的两组为1+2+3+4+5+6+7+8+9+10=15+40=55最接近的两组为27+28所以共有27-15+1=13个不同的积;另从15到27的任意一数是可以组合的;自我评价:还成不错得意酷日积月累:______________________________________________________________________________ ____________________________________________________________________________________________________________________________________________________________ _________________________________________________________________精神快餐:遇到难题题要尽力思考 ,一时答不上来绝不要灰心、沮丧,也不要急于翻看答案,因为反复思考的过程比得到正确的答案更重要;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
故图(3)的面积最大。
例4. 某商店有一天,估计将进货 单价为90元的某商品100元 售出后,能卖出500个。已 知这种商品每个涨价1元,其 销售量就减少10个。为了使 这一天能赚得更多利润,售 价应定为每个______元。
解析
卖价110时,利润为110-90=20元,售出500-10×10=400个,盈利20×400=8000元; 卖价120时,利润为120-90=30元,售出500-20×10=300个,盈利30×300=9000元; 卖价130时,利润为130-90=40元,售出500-30×10=200个,盈利40×200=8000元; 卖价150时,利润为150-90=60元,售出500-50×10=0,可以盈利60×0=0; 综上所述得,当售价为120时,获得最大利润9000元。
例2. 如图所示,在一个正方体表面上,三
只蚂蚁分别处在A、B、C的位置上,
它们爬行的速度相等。若要求它们同
时出发会面,那么,应选择哪点会 A
面最省时?
(小学数学奥林匹克预赛试题)
C
B
解析
我们可将正方体表面展开,如图,则A、B、C三点在同一平面上。这
样,便将问题转化为在同一平面内找出一点O,使O到这三点的距离
解析
前轮位置每千米磨损 1 ,后轮位置每千米磨损 1
9000
7000
尽量满足前后轮同时损坏,即两个轮胎在前后位置行驶的千米数完全一致 。
1Байду номын сангаас
1
8
1
(
+ 9000 7000
)÷ 2=
63000
= 7875
交换前后两个车胎的平均磨损率为 1
7875
即共行驶7875千米,两个轮胎同时损坏.
一辆自行车同时换上一对新轮胎,最多可行驶(7875)千米
例7.8个互不相等的非零自然数的 和为56,如果去掉最大的数和 最小的数,那么剩下的数的和 为44。问剩下的数中,最小的 数是多少?
解析
8个不相同的非零自然数之和为56,平均数是56÷ 8=7, 2个数和为14。 去掉最大数和最小数的和44,大数和小数之和是 56-44=12 ,所有自然数在 1-12之间,即可能是:1 2 3 4 5 6 7 8 9 10 11 以上11个数中,8个数加起来和为56,并且和为12,小数和大数{只能是1 和11}, 44÷ 6=7……2 ,就是说其它的6个数平均为7点多, 2个数和为14的有:10和4, 9和5, 8和6 ,它们的和是42,比44少2 , 把5 换7 即可,这8个数是:1 4 6 7 8 9 10 11。
例5. 有10个人各拿一只水桶,同时到 一个水龙头下接水。水龙头注满 第一、第二、……九、十个人的 桶,分别需要1、2、3、……、9、 10分钟。问:如何安排这10个人 的排队顺序,可使每个人所费时 间的总和尽可能少?这个总费时 至少是多少分钟?
解析
第一个人接水时,包括他本人在内,共有10个人等候,第二个人接水时,有9个人 等候;第三个人接水时有8个人等候… 第10个人接水时,只有他1个人等候。可见, 等候的人越多(一开始时),接水时间应当越短,这样总的等候时间才会最少。因此, 应当把接水时间按从少到多顺序 排列等候接水。 每人水桶注满时间从少到多排
解析
现在甲、乙、丙、丁和甲乙、乙丙、丙丁各处中点各有一位民警,共有7位民警。 他们将上面的线段分为了2个2500米,2个4000米,2个2000米。现要在他们各 自的中间插入若干名民警,要求每两人之间距离相等,这实际上是要求将2500、 4000、2000分成尽可能长的同样长的小路。
由于2500、4000、2000的最大公约数是500,所以,整段路最少需要的民警数 是(5000+8000+4000)÷500+1=35(名)。
结论(2 ):在三度(长、宽、高)的和一定的长方体中,以正方体的体积为 最大。
(二)将给定的自然数N,分拆成若干个(不定)的自然数的和,只有当这些自然 数全是2或3,并且2至多为两个时,这些自然数的积最大,而且不要出现1。
例如:当和是14时 (1) 14=2+2+2+2+2+2+2 2×2×2×2×2×2×2=128 (2)14=3+3+3+5 3×3×3×5=135
例如:面积为64的长方形和正方形
8× 8=64 32× 2=64
16× 4=64
推论: 由“和最小规律”可以推出,在所有面积相等的封闭图形中,以圆
的周长为最小。
典型例题精讲
例1. 外宾由甲地经乙地、丙地去丁地参观。甲、乙、丙、丁四地和甲乙、 乙丙、丙丁的中点,原来就各有一位民警值勤。为了保证安全,上级 决定在沿途增加值勤民警,并规定每相邻的两位民警(包括原有的民 警)之间的距离都相等。现知甲乙相距5000米,乙丙相距8000米,丙 丁相距4000米,那么至少要增加______位民警
第二十讲 最值问题
知识点梳理
一、积最大的规律
(一)多个数的和一定(为一个不变的常数),当这几个数均相 等时,它们的积最大。用字母表示,就是: 如果a1+a2+…+an=b(b为一常数), 那么,当a1=a2=…=an时,a1× a2× …× an有最大值。
由“积最大规律”,可以推出以下的结论:
结论(1): 所有周长相等的n边形,以正n边形(各角相等,各边也相等的n 边形)的面积为最大。
序:1分,2分,3分,4分,5分,6分,7分,8分,9分,10分。 1× 10+2× 9+3× 8+4× 7+5× 6+6× 5+7× 4+8× 3+9× 2+10× 1 =(1× 10+2× 9+3× 8+4× 7+5× 6)×2 =220(分)
例6. 自行车的前轮胎行驶9000千米 后报废,后轮胎行驶7000千米 后报废,前后轮胎可在适当时候 交换位置,一辆自行车同时换上 一对新轮胎,最多可行驶多少千 米?
相等且最短。 所以,连接A和C,它与正方体的一条棱交于O;再连
接OB,不难得出AO=OC=OB。
故,O点即为三只蚂蚁会面之处。 A
0
B
C
例3. 有三条线段a、b、c,并且a<b<c。判断:图5.94的三个 梯形中,第几个图形面积最大?
三个图的面积分别是:
解析
三个面积数变化的部分是两数和与另一数的乘积,不变量是(a+b+c) 的和一定。其问题实质上是把这个定值拆成两个数,求这两个数为何值 时,乘积最大。由等周长的长方形面积最大原理可知,(a+b)×c这 组数的值最接近。
(3)14=3+3+3+3+2 3×3×3×3×2=162
(4)14=5+5+2+2 5×5×2×2=100
二、和最小的规律
几个数的积一定,当这几个数相等时,它们的和相等。用字母表达就是: 如果a1× a2× …× an=c(c为常数),
那么,当a1=a2=…=an时,a1+a2+…+an,有最小值。
相关文档
最新文档