结构动力学概念题

合集下载

结构动力学题解(1)

结构动力学题解(1)

题图
23 l 3 = 1536 EI
则系统的自振频率
ω=
1 1536 EI = mδ 23ml 3 1 1536 EI = 2 ω 1536 EI − 23ml 3ω 2 1− ω2 1536 EI 23l 3 ⋅ ⋅F 1536 EI − 23ml 3ω 2 1536 EI
2 2 1 l12 l2 l12 k1 + l2 k2 = 1 / m + 3 2 3EI (l + l ) (l + l ) k k mδ 1 2 1 2 1 2
(e) 解,考虑质体水平单位位移时的系统劲度。
k1 = k3 = k2 =
12 EI 2 h3
3EI 2 h3
令 δ t 为两支座弹簧无限刚度时单位力作用下质体的垂直位移
1 1 l1l2 2 l1l2 l12 l22 δt = × (l1 + l2 ) × × = 3 EI (l1 + l2 )2 3 (l1 + l2 )2 2 3EI (l1 + l2 )
总变形: δ = δ t + δ M 其自振频率: ω =
F (t ) = F sin ω t
y0 =
l3 3EI 3EI ml 3
题图
系统自振频率 ω =
动力系数 µ =
1 3EI = 2 ω 3EI − ml 3ω 2 1− ω2 3EI l3 Fl 3 ⋅ ⋅ F = 3EI − ml 3ω 2 3EI 3EI − ml 3ω 2
&& , Fi1 = Fi 2 = mY
两柱的侧移劲度相等为: k =
3i 3EI = 3 (单位位移下的水平剪力) l2 l

在线测试题试题库及解答(第十章)结构动力学

在线测试题试题库及解答(第十章)结构动力学

在线测试题试题库及解答第十章结构动力学基础一、单项选择题1、结构的主振型与什么有关?A、质量和刚度B、荷载C、初始位移D、初始速度标准答案A2、结构的自振频率与什么有关?A、质量和刚度B、荷载C、初始位移D、初始速度标准答案A3、单自由度体系在简谐荷载作用下,下列哪种情况内力与位移的动力系数相同?A、均布荷载作用B、荷载作用在质点上与质点运动方向垂直C、荷载不作用在质点上D、惯性力与运动方向共线标准答案D4、具有集中质量的体系,其动力计算自由度A、等于其集中质量数B、小于其集中质量数C、大于其集中质量数D、以上都有可能标准答案D5、具有集中质量的体系,其动力计算自由度A、等于其集中质量数B、小于其集中质量数C、大于其集中质量数D、以上都有可能标准答案D6、当简谐荷载作用于有阻尼的单自由度体系质点上时,若荷载频率远远大于体系的自振频率时,则此时与动荷载相平衡的主要是A、弹性恢复力B、重力C、阻尼力D、惯性力标准答案D7、设ω为结构的自振频率,θ为荷载频率,β为动力系数下列论述正确的是A、ω越大β也越大B、θ/ω越大β也越大C、θ越大β也越大D、θ/ω越接近1,β绝对值越大标准答案D8、如果体系的阻尼增大,下列论述错误的是A、自由振动的振幅衰减速度加快B、自振周期减小C、动力系数减小D、位移和简谐荷载的相位差变大标准答案B9、无阻尼单自由度体系在简谐荷载作用下,共振时与动荷载相平衡的是A、弹性恢复力B、惯性力C、惯性力与弹性力的合力D、没有力标准答案D10、有阻尼单自由度体系在简谐荷载作用下,共振时与动荷载相平衡的是A、弹性恢复力B、惯性力与弹性力的合力C、惯性力D、阻尼力标准答案D11、当简谐荷载作用于无阻尼的单自由度体系质点上时,若荷载频率远远小于体系的自振频率时,则此时与动荷载相平衡的主要是A、弹性恢复力B、阻尼力C、惯性力D、重力标准答案A12、一单自由度振动体系,其阻尼比为ξ,动力系数β,共振时下列结果正确的是A、ξ=0.05,β=10B、ξ=0.1,β=15C、ξ=0.15,β=20D、ξ=0.2,β=25标准答案A13、一单自由度振动体系,由初始位移0.685cm,初始速度为零产生自由振动,振动一个周期后最大位移为0.50cm,体系的阻尼比为A、ξ=0.05B、ξ=0.10C、ξ=0.15D、ξ=0.20标准答案A14、在低阻尼体系中不能忽略阻尼对什么的影响?A、频率B、主振型C、周期D、振幅标准答案D15、单自由度体系受简谐荷载作用,ω为体系自振频率,θ为荷载频率,动位移y(t)与荷载P(t)的关系是A、当θ/ω>1时,y(t)与P(t)同向,当θ/ω<1时,y(t)与P(t)反向。

结构动力学问题

结构动力学问题

结构动力学问题结构动力学问题问题一:什么是结构动力学问题?结构动力学问题是指在工程领域中研究建筑结构或其他物体在外力作用下的运动和响应的问题。

它涉及到结构的振动、应力分布、破坏等方面。

问题二:结构动力学问题的分类有哪些?1.自由振动问题:研究结构在无外界作用力下的振动情况。

2.强迫振动问题:研究结构在外界周期性或非周期性作用力下的振动情况。

3.破坏问题:研究结构在外界作用力超过其承载能力时的破坏过程。

4.随机振动问题:研究结构在随机激励下的振动情况,如地震荷载等。

5.稳定性问题:研究结构稳定性失效和局部失稳的问题。

问题三:结构动力学问题的解决方法有哪些?1.数值模拟方法:通过建立结构的数学模型,应用数值计算方法求解结构的动力响应。

常用的方法包括有限元法、边界元法等。

2.实验方法:通过搭建实验平台,对结构施加外力,测量结构的动态响应,从而得到结构的振动特性。

3.分析方法:通过对结构形状和材料特性进行分析,推导出结构的动态响应方程,并通过求解方程得到结构的动态特性。

问题四:结构动力学问题的应用领域有哪些?1.建筑工程:研究建筑结构在地震、风载等外界作用下的稳定性和安全性。

2.桥梁工程:研究桥梁结构在车辆荷载、风载、地震等作用下的动态响应和疲劳寿命。

3.航天航空工程:研究飞机、火箭等航空器的结构振动和疲劳寿命。

4.汽车工程:研究汽车车身和悬架等结构在行驶过程中的振动特性和稳定性。

问题五:为什么解决结构动力学问题很重要?解决结构动力学问题可以帮助工程师更好地设计和优化结构,确保结构的稳定性和安全性。

通过深入研究结构的动态响应和破坏过程,可以提高结构的抗震、抗风等能力,降低事故风险,保障人员和财产的安全。

此外,研究结构的振动特性也有助于改善结构的舒适性和使用性能,提升人们的生活质量。

问题六:结构动力学问题的挑战是什么?1.复杂性挑战:结构动力学问题涉及到多个因素的相互作用,如结构几何形状、材料特性、外界荷载等,因此求解过程复杂。

《结构动力学》考试复习题

《结构动力学》考试复习题

《结构动力学》考试复习题一、(概念题)(1) (填空题)某等效单自由度振动系统具有下列参数:17.5m kg =,70/k N cm =,阻尼比0.2ξ=,则系统的固有频率ω为 rad/s ,等效阻尼系数c 为 N. s/m 。

(2) (填空题)某振动系统具有下列参数:17.5m kg =,70/k N cm =,0.7/c N s cm =⋅,则系统的固有频率ω为 ,阻尼比ξ为 ,对数衰减率n 为 。

(3) (简单计算题)一弹簧悬挂某质量块,弹簧产生了静变形mm 4=∆st ,试确定系统作自由振动的固有频率 (重力加速度取2s m /10=g )。

(10分)(4) (填空题)当系统受简谐力作用发生共振时,系统所受的外力是由 来平衡。

(5) (问答题)某单自由度系统具有非线性的弹簧,其运动方程为:()()mx cx f x F t ++=,能否用杜哈美积分计算该系统的受迫振动响应?并说明理由。

(6) (填空题)同种材料的弦承受相同的张力,如果长度增加到原来的4倍,截面积减小到原来的4倍,则作该弦横向振动的各阶固有频率将 。

(7) (填空题)图示两个系统,已知各质点的质量 i m ,刚架的质量不计,忽略杆的轴向变形,试分别确定两系统的动力自由度: (1) n = ; (2) n = 。

(8) (作图题) 0.1ξ=时单自由度系统受迫振动的相频曲线如图所示,其中ω为系统的固有频率,p 为激振力的频率,ϕ为位移响应滞后于激振力的相位角。

试大致绘出0.05ξ=和0.2ξ=时相频曲线的形状。

(9) (问答题)模态分析法能否求解多自由度系统的弹塑性地震响应?并说明理由。

(10) (选择题) 对于一个单自由度系统而言,其临界阻尼与系统的固有特性参数 ,与系统所受的阻尼力 。

(a) 有关,有关;(b) 无关,无关;(c) 有关,无关;(d) 无关,有关2ωpππ二、(计算题)(1) 图示两个系统,已知EI 和M ,弹簧刚度316k EI l =,不计梁的质量,试确定:(1) 简支梁的等效刚度L k ;(2)两个系统的等效刚度a k 和b k ;(3) 两个系统的固有频率a ω和b ω。

高等结构动力学简单题

高等结构动力学简单题

高等结构动力学简单题1. 什么是高等结构动力学高等结构动力学是研究物体在外界作用下的运动和响应的学科。

它主要关注物体的振动、变形和应力等方面,旨在揭示物体内部力学行为的规律和原理。

高等结构动力学的研究范围包括弹性力学、振动力学、失稳和破裂力学等。

2. 什么是弹性力学弹性力学是研究物体在外力作用下发生弹性形变的学科。

它研究物体的变形与应力之间的关系,通过建立弹性体的应力-应变关系来描述物体的弹性响应。

弹性力学的主要目标是确定物体在外力作用下能否恢复到原始状态并保持其完整性。

3. 什么是振动力学振动力学是研究物体在外界作用下发生周期性运动的学科。

它主要关注物体的振幅、频率、周期和模态等振动特征,通过建立振动系统的运动方程来描述物体的振动行为。

振动力学的应用广泛,包括建筑结构的地震响应、机械系统的振动控制等。

4. 什么是失稳和破裂力学失稳和破裂力学是研究物体在外力作用下失去稳定性和发生破裂的学科。

失稳力学研究物体在压力或拉力作用下的失稳现象,例如杆件的屈曲现象。

而破裂力学研究物体在外力超过其承载能力时发生断裂的现象,例如材料的断裂行为。

失稳和破裂力学的研究对于预防事故和提高结构的安全性具有重要意义。

5. 高等结构动力学的应用领域有哪些高等结构动力学的应用领域非常广泛。

在工程领域,它被用于设计和优化建筑物、桥梁、飞机、汽车等结构的安全性和稳定性。

在地震工程中,它被用于预测地震对建筑物的影响,从而提供抗震设计和结构改进的依据。

在航空航天领域,高等结构动力学被用于研究飞行器的振动和疲劳,以确保其安全运行。

此外,高等结构动力学还被应用于材料科学、生物医学工程等领域。

6. 高等结构动力学的研究方法有哪些高等结构动力学的研究方法包括理论分析、数值模拟和实验测试等。

理论分析是基于物理原理和数学模型对结构动力学问题进行推导和求解的方法,它可以得到精确的解析解。

数值模拟是通过计算机建立结构的数学模型,利用数值方法进行计算和仿真,可以得到结构的动态响应和行为。

结构动力学试题及答案

结构动力学试题及答案

结构动力学试题及答案(本文按试题和答案格式进行编写)试题一:1. 请问什么是结构动力学?2. 简述结构动力学的研究对象和主要内容。

3. 结构动力学分析常用的方法有哪些?4. 结构动力学分析中常用的数学模型有哪些?5. 结构动力学的应用领域有哪些?答案一:1. 结构动力学是研究结构在外力作用下的动态响应及其稳定性的学科。

2. 结构动力学的研究对象是各种工程结构,主要内容包括结构的振动、冲击响应、瞬态响应和稳态响应等。

3. 结构动力学分析常用的方法有模态分析法、频率响应分析法、时程分析法等。

4. 结构动力学分析中常用的数学模型有单自由度体系、多自由度体系、连续体系等。

5. 结构动力学的应用领域广泛,包括建筑结构工程、桥梁工程、风力发电机组、地震工程等。

试题二:1. 结构动力学分析中,模态分析的基本原理是什么?2. 简述模态分析的步骤和计算方法。

3. 常用的模态分析软件有哪些?4. 请问什么是结构的固有频率和阻尼比?5. 结构的模态振型对结构动力响应有什么影响?答案二:1. 模态分析是基于结构的振动特性,通过求解结构的固有频率、模态振型和阻尼比等参数,来研究结构的动力响应。

2. 模态分析的步骤包括建立结构有限元模型、求解结构的固有频率和模态振型、计算结构的阻尼比等。

常用的计算方法有有限元法、拉普拉斯变换法等。

3. 常用的模态分析软件有ANSYS、ABAQUS、MSC.NASTRAN等。

4. 结构的固有频率是结构在无外力作用下自由振动的频率,阻尼比是结构振动过程中能量耗散的程度。

5. 结构的模态振型对结构动力响应有很大影响,不同的模态振型会导致不同的振动特性和反应。

试题三:1. 结构动力学分析中,频率响应分析的基本原理是什么?2. 简述频率响应分析的步骤和计算方法。

3. 频率响应分析和模态分析有什么区别?4. 结构的频率响应函数和传递函数有什么区别?5. 频率响应分析在结构设计中的应用有哪些?答案三:1. 频率响应分析是研究结构在单频激励下的响应特性,通过求解结构的频率响应函数,来获得结构的响应。

工程力学结构动力学复习题

工程力学结构动力学复习题

工程力学结构动力学复习题一、简答题1、结构的动力特性主要指什么?对结构做动力分析可分为哪几个阶段?2、何谓结构的振动自由度?它与机动分析中的自由度有何异同?3、何谓动力系数?简谐荷载下动力系数与哪些因素有关?4、动力荷载与静力荷载有什么区别?动力计算与静力计算的主要差别是什么?5、为什么说结构的自振频率和周期是结构的固有性质?怎样改变他们?6、简述振型分解法是如何将耦联的运动方程解耦的.7、时域法求解与频域法求解振动问题各有何特点?8、什么叫动力系数,动力系数大小与哪些因素有关?单自由度体系位移动力系数与内力动力系数是否一样?答:动力放大系数是指动荷载引起的响应幅值与动荷载幅值作为静荷载所引起的结构静响应之比值。

简谐荷载下的动力放大系数与频率比、阻尼比有关。

当惯性力与动荷载作用线重合时,位移动力系数与内力动力系数相等;否则不相等。

原因是:当把动荷载换成作用于质量的等效荷载时,引起的质量位移相等,但内力并不等效,根据动力系数的概念可知不会相等。

9、振型正交性的物理意义是什么?振型正交性有何应用?答:由振型关于质量、刚度正交性公式可知,i振型上的惯性力在,振型上作的虚功为0。

由此可知,既然每一主振型相应的惯性力在其他主振型上不做功,那么它的振动能量就不会转移到别的主振型上去。

换句话说,当一个体系只按某一主振型振动时,不会激起其他主振型的振动。

这说明各个主振型都能单独出现,彼此线性无关。

这就是振型正交的物理意义。

一是可用于校核振型的正确性;二是在已知振型的条件下,可以通过折算质量与折算刚度计算对应的频率。

而更主要的是任一同阶向量均可用振型的线性组合来表示,在受迫振动分析中,利用振型的正交性,在阻尼矩阵正交的假设下可使运动方程解藕。

10、什么是阻尼、阻尼力,产生阻尼的原因一般有哪些?什么是等效粘滞阻尼?答:振动过程的能量耗散称为阻尼。

产生阻尼的原因主要有:材料的内摩擦、构件间接触面的摩擦、介质的阻力等等。

结构动力学习题答案

结构动力学习题答案

结构动力学习题答案在结构动力学中,习题答案通常涉及对结构在动态载荷下的行为进行分析和计算。

这些习题可能包括自由振动分析、受迫振动分析、随机振动分析、模态分析、响应谱分析等。

以下是一些典型的结构动力学习题答案示例。

习题一:单自由度系统的自由振动问题:一个单自由度系统具有质量m=2kg,阻尼系数c=0.5N·s/m,弹簧刚度k=800N/m。

初始条件为位移x(0)=0.1m,速度v(0)=0。

求该系统自由振动的位移时间历程。

答案:首先,确定系统的自然频率ωn:\[ \omega_n = \sqrt{\frac{k}{m}} = \sqrt{\frac{800}{2}}\text{ rad/s} \]然后,计算阻尼比ζ:\[ \zeta = \frac{c}{2\sqrt{mk}} = \frac{0.5}{2\sqrt{2 \cdot 800}} \]由于ζ < 1,系统将进行衰减振动。

可以使用以下公式计算位移时间历程:\[ x(t) = A e^{-\zeta \omega_n t} \cos(\omega_d t + \phi) \] 其中,\( \omega_d = \sqrt{\omega_n^2 - \zeta^2 \omega_n^2} \) 是阻尼频率,A是振幅,\( \phi \)是相位角。

初始条件给出x(0)=0.1m,v(0)=0,可以解出A和\( \phi \)。

最终位移时间历程的表达式为:\[ x(t) = 0.1 e^{-\zeta \omega_n t} \cos(\omega_d t) \]习题二:单自由度系统的受迫振动问题:考虑上述单自由度系统,现在施加一个简谐力F(t)=F_0sin(ωt),其中F_0=100N,ω=10 ra d/s。

求系统的稳态响应。

答案:稳态响应可以通过傅里叶级数或直接应用受迫振动的公式来求解。

对于简谐力,系统的稳态响应为:\[ x_{ss}(t) = \frac{F_0}{k - m\omega^2} \sin(\omega t + \phi) \]其中,\( \phi \) 是相位差,可以通过以下公式计算:\[ \phi = \arctan\left(\frac{2\zeta\omega}{\omega_n^2 -\omega^2}\right) \]习题三:多自由度系统的模态分析问题:考虑一个二自由度系统,其质量矩阵M和刚度矩阵K如下:\[ M = \begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix},\quad K = \begin{bmatrix} k_1 & -k_c \\ -k_c & k_2\end{bmatrix} \]其中,\( m_1 = 2kg \),\( m_2 = 1kg \),\( k_1 = 800N/m \),\( k_2 = 1600N/m \),\( k_c = 200N/m \)。

结构动力学与应用考试试题

结构动力学与应用考试试题

结构动力学与应用考试试题一、选择题1. 结构动力学是研究结构在______时的力学响应和形态相互关系的学科。

A. 静力学B. 动力学C. 热力学D. 光力学2. 结构的固有频率是指结构在______下产生共振的频率。

A. 外加荷载B. 自激振动C. 静力平衡D. 温度变化3. 结构动力学分析中常用的求解方法包括有限元法、模态超级法和______法等。

A. 静力平衡法B. 频率响应法C. 换能法D. 变位法4. 结构动力学分析常用的传递函数表示为______。

A. H(ω) = X(ω) / F(ω)B. H(ω) = F(ω) / X(ω)C. X(ω) = F(ω) / H(ω)D. F(ω) = X(ω) / H(ω)5. 结构的阻尼比对于结构动力学响应的影响是______。

A. 提高结构的刚度和强度B. 减小结构的固有频率C. 显著改变结构的失稳现象D. 不影响结构的动力响应6. 结构在动力荷载作用下的振动响应可以通过______分析得到。

A. 弹性力学理论B. 弹塑性力学理论C. 塑性力学理论D. 极限平衡理论7. 结构地震反应的计算方法一般可以分为几种类型?A. 1种B. 2种C. 3种D. 4种8. 结构地震反应计算中常用的几种简化方法包括等效静力法、反应谱法和______法。

A. 位移反应法B. 达比法C. 传递函数法D. 干涉法9. 结构动力学与应用在哪些领域具有广泛的应用?A. 建筑结构设计B. 地震工程C. 桥梁工程D. 所有选项都正确10. 结构动力学的研究对于提高建筑物和桥梁的______具有重要意义。

A. 施工速度B. 建筑安全性C. 建筑造价D. 建筑使用寿命二、填空题1. 结构动力学研究的核心是研究______和______之间的相互关系。

2. 结构固有频率是由结构的______和______决定的。

3. 结构在动力荷载作用下的振动分析可以采用______方法。

4. 结构地震反应计算中的等效静力法是通过将______引入到结构动力方程中进行计算的。

结构动力学试题

结构动力学试题

结构动力学试题一、选择题1. 结构动力学中的“动力响应”是指:A. 结构在静态载荷下的变形B. 结构在动态载荷下的变形C. 结构的自然频率D. 结构的阻尼比2. 单自由度系统的周期公式为:A. T = 2π√(m/k)B. T = 2π√(k/m)C. T = 2π/mD. T = π√(m/k)3. 多自由度系统的振型分解法是基于以下哪个原理?A. 结构的对称性B. 结构的不确定性C. 结构的线性叠加原理D. 结构的能量守恒原理4. 在地震分析中,反应谱方法的主要优点是:A. 考虑了地震动作用的非线性B. 可以处理任意形状的地震波形C. 能够直接给出结构的响应结果D. 适用于快速评估结构的地震安全性5. 结构阻尼比的增大通常会导致:A. 自然频率的提高B. 振幅的减小C. 周期的延长D. 响应的不稳定二、填空题1. 在结构动力学中,________是用来描述结构在动态载荷作用下的运动状态。

2. 动态载荷下,结构的响应可以通过________方法进行求解,该方法基于结构振动的线性叠加原理。

3. 地震波的________特性对结构的响应有显著影响,因此在进行地震分析时需要特别考虑。

4. 结构的阻尼比可以通过________方法进行实验测定,以评估结构的能量耗散能力。

5. 在进行结构动力分析时,通常需要将结构简化为________自由度系统,以便于计算和分析。

三、简答题1. 请简述单自由度系统与多自由度系统的区别及其各自的适用场景。

2. 描述地震波的基本特性,并解释为什么需要对其进行频谱分析。

3. 说明结构阻尼对动力响应的影响,并讨论如何通过设计来提高结构的阻尼性能。

四、计算题1. 一个单自由度系统的质量为500 kg,刚度为2000 N/m。

请计算该系统的自然频率和阻尼比为0.05时的周期。

2. 假设一个结构在地震作用下的最大加速度为0.3g,其中g为重力加速度(9.81 m/s²),请使用反应谱方法计算该结构在自然频率为2Hz时的响应加速度。

最新结构动力学(硕)答案

最新结构动力学(硕)答案

《结构动力学》试题(硕)一、名词解释:(每题3分,共15分)约束 动力系数 广义力 虚功原理 达朗贝原理 二、简答:(每题5分,共20分)1. 为什么说自振周期是结构的固有性质?它与结构哪些固有量有关?2. 阻尼对自由振动有什么影响?减幅系数的物理意义是什么?3. 简述用振型叠加法求解多自由度体系动力响应的基本原理及适用条件分别是什么?答:振型叠加法的基本原理是利用了振型的正交性,既对于多自由度体系,必有:T m n m φφ=,Tm n k φφ=(式中m φ、n φ为结构的第m 、n 阶振型,m 、k 为结构的质量矩阵和刚度矩阵)。

利用正交性和正规坐标,将质量与刚度矩阵有非对角项耦合的N 个联立运动微分方程转换成为N 个独立的正规坐标方程(解耦)。

分别求解每一个正规坐标的反应,然后根据叠加V=ΦY 即得出用原始坐标表示的反应。

由于在计算中应用了叠加原理,所以振型叠加法只适用于线性体系的动力分析。

若体系为非线性,可采用逐步积分法进行反应分析。

4. 什么是结构的动力自由度?动力自由度与静力自由度的区别何在?答:动力自由度是指结构体系在任意瞬时的一切可能变形中,决定全部质量位置所需的独立参数的数目。

静力自由度是指确定体系在空间中的位置所需的独立参数的数目。

前者是由于系统的弹性变形而引起各质点的位移分量;而后者则是指结构中的刚体由于约束不够而产生的刚体运动。

三、计算(每题13分,共65分)1. 图1所示两质点动力体系,用D ’Alembert 原理求运动方程。

图12.图2所示,一长为l,弯曲刚度为EI的悬臂梁自由端有一质量为m的小球,小球又被支承在刚度为k2的弹簧上,忽略梁的质量,求系统的固有频率。

图23.图3所示,一重mg的圆柱体,其半径为r,在一半径为R的弧表面上作无滑动的滚动,求在平衡位置(最低点)附近作微振动的固有频率。

图34.图4所示三层钢架结构,假定结构无阻尼,计算下述给定初始条件产生的自由振动。

结构动力学试题及答案

结构动力学试题及答案

结构动力学试题及答案一、选择题1. 在结构动力学中,下列哪项不是描述结构动力响应的参数?A. 自然频率B. 阻尼比C. 静力平衡D. 模态阻尼2. 以下哪个不是结构动力学分析中的常用方法?A. 模态分析B. 时域分析C. 频域分析D. 静力分析二、简答题1. 简述结构动力学中模态分析的目的和重要性。

2. 描述阻尼对结构动力响应的影响。

三、计算题1. 假设一个单自由度系统,其质量为m,刚度为k,初始位移为x0,初始速度为v0。

若外力为F(t) = F0 * sin(ωt),求该系统在任意时间t的位移响应。

答案一、选择题1. 正确答案:C. 静力平衡解析:静力平衡是静力学的概念,与结构动力学无关。

2. 正确答案:D. 静力分析解析:静力分析是分析结构在静载荷作用下的响应,而结构动力学分析动态载荷下的结构响应。

二、简答题1. 模态分析的目的在于识别结构的自然振动特性,包括自然频率、阻尼比和模态形状。

它的重要性在于:- 预测结构在动态载荷下的响应。

- 为控制结构的振动提供基础数据。

- 优化设计,提高结构的抗震性能。

2. 阻尼对结构动力响应的影响主要表现在:- 减少振动幅度,提高结构的稳定性。

- 改变系统的自然频率和模态形状。

- 影响系统的动态响应时间。

三、计算题1. 单自由度系统的位移响应可以通过以下步骤求解:- 写出系统的动力学方程:m * d²x/dt² + c * dx/dt + k * x = F(t)- 应用初始条件:x(0) = x0, v(0) = v0- 应用外力:F(t) = F0 * sin(ωt)- 通过傅里叶变换或拉普拉斯变换求解方程。

- 应用逆变换得到位移响应的解析解或数值解。

位移响应的一般形式为:x(t) = X * cos(ωt - φ) + Y *sin(ωt - φ),其中X和Y是与系统参数和初始条件有关的常数,φ是相位角。

具体的数值需要根据系统参数和初始条件进行计算。

《结构动力学》考试复习题

《结构动力学》考试复习题

《结构动力学》考试复习题一、(概念题)(1) (填空题)某等效单自由度振动系统具有下列参数:17.5m kg =,70/k N cm =,阻尼比0.2ξ=,则系统的固有频率ω为 rad/s ,等效阻尼系数c 为 N. s/m 。

(2) (填空题)某振动系统具有下列参数:17.5m kg =,70/k N cm =,0.7/c N s cm =⋅,则系统的固有频率ω为 ,阻尼比ξ为 ,对数衰减率n 为 。

(3) (简单计算题)一弹簧悬挂某质量块,弹簧产生了静变形mm 4=∆st ,试确定系统作自由振动的固有频率 (重力加速度取2s m /10=g )。

(10分)(4) (填空题)当系统受简谐力作用发生共振时,系统所受的外力是由 来平衡。

(5) (问答题)某单自由度系统具有非线性的弹簧,其运动方程为:()()mx cx f x F t ++=,能否用杜哈美积分计算该系统的受迫振动响应?并说明理由。

(6) (填空题)同种材料的弦承受相同的张力,如果长度增加到原来的4倍,截面积减小到原来的4倍,则作该弦横向振动的各阶固有频率将 。

(7) (填空题)图示两个系统,已知各质点的质量 i m ,刚架的质量不计,忽略杆的轴向变形,试分别确定两系统的动力自由度: (1) n = ; (2) n = 。

(8) (作图题) 0.1ξ=时单自由度系统受迫振动的相频曲线如图所示,其中ω为系统的固有频率,p 为激振力的频率,ϕ为位移响应滞后于激振力的相位角。

试大致绘出0.05ξ=和0.2ξ=时相频曲线的形状。

(9) (问答题)模态分析法能否求解多自由度系统的弹塑性地震响应?并说明理由。

(10) (选择题) 对于一个单自由度系统而言,其临界阻尼与系统的固有特性参数 ,与系统所受的阻尼力 。

(a) 有关,有关;(b) 无关,无关;(c) 有关,无关;(d) 无关,有关2ωpππ二、(计算题)(1) 图示两个系统,已知EI 和M ,弹簧刚度316k EI l =,不计梁的质量,试确定:(1) 简支梁的等效刚度L k ;(2)两个系统的等效刚度a k 和b k ;(3) 两个系统的固有频率a ω和b ω。

中国大学MOOC结构动力学习题含答案-精品

中国大学MOOC结构动力学习题含答案-精品

中国大学MOOC结构动力学习题(含答案)1、忽略杆件的轴向变形和分布质量,图示结构动力自由度的个数()oA、1B、2C、3D、4答案:22、忽略杆件的轴向变形和分布质量,图示结构动力自由度的个数()oA、1B、2C、3D、4答案:23、忽略杆件的轴向变形和分布质量,图示结构动力自由度的个数()oA、0B、1C、2D、3答案:24、在很短时间内,荷载值急剧增大或急剧减小的荷载是()oA、可变荷载B、偶然荷载C、冲击荷载D、爆炸答案:冲击荷载5、动力自由度的个数()集中质量的个数。

图所示刚架结构,不计分布质量,动力自由度个数为()o 此题为多项选择题。

请帮忙给出正确答案和分析,谢谢! •日目•2EI:一.c(A)2个(B)3个(C)4个(D)5个答案:B自由度个数有3个,因此正确答案为(B)。

1、一、单项选择题(每题2分,共6分)答案:ABDAC二.实验探究题(共20分)2、二、填空题(每题2分,共4分)1.相比静力计算,动力计算列平衡方程时,在所考虑的力系中要包括。

2. 爆炸荷载属于。

答案:1、从力系平衡角度建立自由振动微分方程的方法是()oA、刚度法B、柔度法C、静力法D、动力法答案:刚度法2、忽略杆件的轴向变形和均布质量,各图质点的质量、杆长、质点位置相同,杆件EI相同且为常数。

结构自振频率最大的是()oA、coaB、3bC、3cD、3d答案:3a3、与单自由度体系自由振动的频率有关的量是()oA、初速度vOB、初位移yOC、相位角aD、质量m答案:阻尼越大,振幅越大4、按照GB50009-2012《建筑结构荷载规范》,高度为2001Tl的高耸钢筋混凝土结构的基本周期一般为()0A、0.14sB、1.4sC、14sD、140s答案:1.4s5、yst是指()oA.自然伽码与电阻率B.方位与井斜C.工具与井斜D.工具面与方位答案:A1、一、填空题(每题5分,共20分)答案:【计分规贝":Am=K/c2.72X10-268.41X10- 4437.82X10-4;145.94X10-42、二、计算题(每题20分,共80分)答案:【计分规则】:一、回答问题(每题2分、共10分)二、分析(每题10分、共30分)三、计算题(第1题40分, 第2题20分、共60分)1、当。

结构动力学课后答案

结构动力学课后答案

结构动力学课后答案1.结构动力学是什么?结构动力学是力学领域中实验和理论上探讨结构动态行为方面的分支。

它讨论物体及其某种结构体系的运动特性,以洞察内部活动以及如何令该结构体系受到外力的影响,从而确定结构的性质,推断出其可能存在的破坏模式,以及分析出它将如何受到外力和其他外来因素的影响。

2.结构动力学主要包括哪些内容?结构动力学主要包括:(1)动力学方程——研究结构在外力作用下的运动情况;(2)振型理论:研究结构被动力激励时发生的振动行为;(3)稳定分析:研究结构稳定性;(4)低频动力学:完善弹性动力学;(5)控制力学:考虑施加力的时间变化,以便更准确的研究结构的动态行为。

3.什么是动力学方程?动力学方程是由牛顿第二定律推出的,用于描述结构受到力学影响时的动态行为,主要是用于定义影响结构的外力矩,内力矩以及外力与内力之间的相互作用,以及结构运动的加速度等因素。

根据力学方程,我们能够确定结构对外力的反应,从而有助于推测出可能存在的破坏模式以及抗破坏做出相应的措施。

4.什么是振型理论?振型理论是一种实验和理论研究,用于探讨结构被动力激励的情况下,结构的振动行为。

振型研究的目的是为了确定激励结构的物理特性,如其固有振型,以及自激振型在特定频率下的振幅。

振型理论可以作为一种鉴定有关领域物理属性的重要工具,其研究成果在工程中有着重要的应用,如结构安全性的分析,隔震技术的应用等。

5.什么是稳定分析?稳定分析是指对结构的稳定性进行多维度分析的过程,以期深入地研究结构的力学性质以及受到外力的影响,从而可以准确地预计出特定条件下结构的动态性能,从而设计出满足特定力学要求的合理结构。

其常用技术包括稳振型矩阵法、最大振幅法、偶联杆法、稳定椭圆法等。

6.什么是低频动力学?低频动力学是一种补充性弹性动力学理论,它完善了一般弹性动力学理论在低频谱中所提出的不准确性,它完善了原始方程,能够很好地模拟结构在低频范围内的动力行为,是结构动力学分析的重要补充,在结构设计和控制方向具有多重应用。

结构动力学试题及答案20180602

结构动力学试题及答案20180602

结 构 动 力 学 试 题(2018年上半年硕士研究生考试课程)参考公式:(式中ξ为阻尼比,β为频率比) (1) 单自由度体系动力放大系数0d stu R u ==(2) 单自由度体系传递率TR()()()22222121ξββξβ+-+=TR1(15’)建立题1图所示的三个弹簧-质点体系的运动方程。

❍☎♦✆◆❍♍♋✆♌✆♍✆♍♍❍☎♦✆◆❍◆☎♦✆◆❍◆题1图2(20’)汽车在多跨连续梁桥梁上行驶,桥梁跨度均为L=32m,桥面由于长时徐变效应而产生12cm 的挠度(如题2图所示)。

桥面可以用振幅为12.0cm 的正弦曲线来近似,汽车可以用一个单质点体系模拟,如果汽车重m=2.8tf ,等效弹簧刚度k=280E3 N/m ,等效阻尼比5.0=ξ,求:(1)汽车以72km/h ν=行驶时,汽车的竖向运动()t u t 的振幅t u 0;(2)发生共振时汽车的行驶速度(此处指使振幅最大时的速度)。

题2图3(15’)如题3图所示,一总质量为m 的刚性梁两端由弹簧支撑,梁的质量均匀分布、两弹簧的刚度分别为k 和2k 。

定义的两个自由度u 1和u 2示于图中,建立结构体系的运动方程,并求出的振型和自振频率。

题3图4(15’)题4图所示动力体系为:AB 、BC 杆件都为均布质量刚杆,单位均布质量分别为m 1 、m 2,M 为集中质量,C1及C2为阻尼系数,K1及K2为刚度系数,在C 点作用有压力N 。

以B 点竖向位移B u u =为广义坐标,试求: (1)列出体系的运动方程 (2)求出体系的自振频率 (3)求出临界压力N 。

题4图5(15’)工程场地竖向加速度为0.10g u g =,振动频率为10f Hz =,安放一个质量50m kg =的敏感仪器。

仪器固定在刚度14/k kN m =,阻尼比10%ξ=的橡胶隔振垫上,求: (1) 传递到仪器上的加速度是多少?(2) 如果仪器只能承受0.0038g 的加速度,给出解决方案。

结构力学概念题较全

结构力学概念题较全

1.自由度:确立体系几何位置所需的独立坐标数;2.稳定:结构保持原有的平衡形式;稳定自由度:确定结构失稳时所有可能所变形状态所需独立参数数目;结构动力自由度:为了确定运动过程中任意时候全部质量的位置所需的独立几何参数的数目;结构静力自由度:指结构独立运动方式的个数;2.几何组成分析的目的和意义:3.梁、刚架、桁架、拱、索这些结构的目的、特点、联系和区别?(主要从他们的内力、受力特点出发)4.虚功原理和能量原理的联系与区别?5.图乘法与积分法联系与区别?6.影响线的概念:单位位移荷载作用下某一位置变化规律的图形;性质:起点至终点,荷载不经过处不绘制弯矩图;静定结构的内力(反力)影响线是直线或折线,位移影响线是曲线;超静定结构的内力和位移影响线都是曲线;影响线应用(最值内力和位移)(静力法和机动法)7.[K]物理意义:Kij表示Δj=1单独作用下引起的沿Δi方向的结点力(考法:求总刚)8.动力计算:①单自由度:W=(1/mδ)1/2=(k/m)1/2②2个自由度:刚:︳k-w2M︳=0 柔度:|uδ-I/w2|=0 9.强迫振动的概念:10.极限荷载(考点塑性变形,最终破坏是由于结构由几何不变—>几何可变)极限分析方法,塑性铰,破坏结构,三个定理在结构极限荷载的分析中,上限定理指:平衡条件所求得的荷载≥极限荷载(破坏)下限定理:所求荷载≤极限荷载结构处于极限状态下应满足平衡、屈服、单向机构三条件。

11.超静定结构的特点:①内力不能由平衡条件唯一确定,需考虑变形条件②非荷载因素只有引起结构变形时才能产生内力③荷载下内力与EI的相对值有关,非荷载下内力与EI的绝对值有关;12.静定结构的特性:静定结构只有在荷载作用下产生内力,其他作用时只引起位移和变形。

静定结构有弹性支座和弹性结点时,内力与刚性支座和刚性结点一样,但位移不同;13.W≤0 ﹤=﹥无多余约束的几何不变14.M=EIy″ M=P(δ-y)15.位移法可以静定也可以超静定;16.单刚中Kij的物理意义等效结点荷载的等效原则:结构在等效荷载作用下,结构的结点位移与实际荷载作用下的结点位移相等;(几何不变体系:结构;几何可变体系:机构)17.静定结构在小变形G=Eε条件下适用静定结构位移计算:Δ=Δp﹢Δt﹢Δc Δp= Δt= Δc=18.力矩分配法的概念:几年真题中出现过的简答题1.简要说明稳定和稳定自由度的概念2.极限分析的目的是什么?极限分析是否一定要采用塑性铰模型?3.试分析“虚功原理”中“虚功”的物理含义,与采用“实功”的能量方法相比,“虚功原理”有何优势?4.支座位移对静定结构和超静定结构内力和位移有何影响?5.拱和索结构特性有何联系和区别?6.力法、位移法、力矩分配法、矩阵位移法各适用于什么情况?2011.选取不同的力法结构体系可得到不同的基本方程,试分析其物理含义。

结构动力学试题及答案

结构动力学试题及答案

结构动力学试题及答案一、选择题(每题2分,共10分)1. 结构动力学中,动力响应分析通常不包括以下哪一项?A. 自振频率分析B. 模态分析C. 静力分析D. 动力放大系数分析答案:C2. 在结构动力学中,下列哪一项不是确定结构动力特性的基本参数?A. 质量B. 刚度C. 阻尼D. 材料强度答案:D3. 单自由度振动系统的动力平衡方程中,下列哪一项是正确的?A. m\(\ddot{x}\) + c\(\dot{x}\) + kx = F(t)B. m\(\ddot{x}\) + c\(\dot{x}\) + kx = 0C. m\(\ddot{x}\) + c\(\dot{x}\) + kx = FD. m\(\ddot{x}\) + c\(\dot{x}\) + kx = F(t) - F答案:A4. 对于多自由度振动系统,下列哪一项不是求解动力响应的方法?A. 模态叠加法B. 直接积分法C. 能量守恒法D. 振型分解法答案:C5. 在结构动力学中,阻尼比通常用来描述阻尼的相对大小,其定义为:A. 临界阻尼比B. 阻尼比C. 阻尼比的倒数D. 阻尼比的平方答案:B二、填空题(每题2分,共10分)1. 结构动力学中,当外力作用频率与结构的_________相等时,结构会发生共振。

答案:自振频率2. 多自由度振动系统的振型是指系统在自由振动时的_________。

答案:位移分布模式3. 动力响应分析中,_________是指在给定的外力作用下,结构的响应随时间变化的过程。

答案:动力响应4. 在结构动力学中,_________是指结构在动力作用下,其响应与外力作用的关系。

答案:动力特性5. 阻尼比越大,结构的_________越小,振动衰减越快。

答案:振幅三、简答题(每题5分,共20分)1. 简述结构动力学中模态分析的目的和意义。

答案:模态分析的目的是确定结构的自振频率和振型,意义在于了解结构的动力特性,为结构设计提供依据,以及评估结构在动力作用下的安全性和稳定性。

结构动力学问题(一)

结构动力学问题(一)

结构动力学问题(一)
结构动力学问题
1. 什么是结构动力学问题?
•结构动力学问题是指在工程结构体系中,因为外界的荷载作用或结构自身的振动等因素导致的结构反应、结构稳定性、结构振动
等相关问题。

2. 结构的响应问题
•各种荷载作用下,结构的应力、应变等响应特性是结构动力学研究的关键内容之一。

•结构的响应问题可以包括结构强度、刚度、振动特性等。

3. 结构稳定性问题
•结构稳定性是指结构在荷载作用下能够保持原有的强度和刚度,不发生失稳的能力。

•结构稳定性问题主要包括屈曲、扭转和稳定失效等。

4. 结构振动问题
•结构振动是指结构在自然频率下受到的激励而发生的周期性振动。

•结构振动问题包括自由振动、受迫振动以及结构的阻尼等。

5. 结构动力学分析方法
•结构动力学分析方法用于解决结构动力学问题,包括有限元法、动力试验法、模态分析法等。

•这些方法可以用来计算结构的响应、稳定性和振动情况,并提供结构设计和改进的依据。

6. 结构动力学问题的应用
•结构动力学问题的研究和解决对于工程领域非常重要,涉及建筑物、桥梁、飞机、船舶等领域。

•在工程设计和施工中,需要考虑结构的动力学特性,以确保结构的安全性和可靠性。

7. 结论
•结构动力学问题是工程结构领域中一个重要且广泛的研究方向,涉及结构响应、稳定性和振动等问题。

•通过合适的分析方法和工程实践,可以解决和优化结构动力学问题,提高结构的性能和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概念题1.1 结构动力计算与静力计算的主要区别是什么?答:主要区别表现在:(1) 在动力分析中要计入惯性力,静力分析中无惯性力;(2) 在动力分析中,结构的内力、位移等是时间的函数,静力分析中则是不随时间变化的量;(3) 动力分析方法常与荷载类型有关,而静力分析方法一般与荷载类型无关。

1.2 什么是动力自由度,确定体系动力自由度的目的是什么?答:确定体系在振动过程中任一时刻体系全部质量位置或变形形态所需要的独立参数的个数,称为体系的动力自由度(质点处的基本位移未知量)。

确定动力自由度的目的是:(1) 根据自由度的数目确定所需建立的方程个数(运动方程数=自由度数),自由度不同所用的分析方法也不同;(2) 因为结构的动力响应(动力内力和动位移)与结构的动力特性有密切关系,而动力特性又与质量的可能位置有关。

1.3 结构动力自由度与体系几何分析中的自由度有何区别?答:二者的区别是:几何组成分析中的自由度是确定刚体系位置所需独立参数的数目,分析的目的是要确定体系能否发生刚体运动。

结构动力分析自由度是确定结构上各质量位置所需的独立参数数目,分析的目的是要确定结构振动形状。

1.4 结构的动力特性一般指什么?答:结构的动力特性是指:频率(周期)、振型和阻尼。

动力特性是结构固有的,这是因为它们是由体系的基本参数(质量、刚度)所确定的、表征结构动力响应特性的量。

动力特性不同,在振动中的响应特点亦不同。

1.5 什么是阻尼、阻尼力,产生阻尼的原因一般有哪些?什么是等效粘滞阻尼?答:振动过程的能量耗散称为阻尼。

产生阻尼的原因主要有:材料的内摩擦、构件间接触面的摩擦、介质的阻力等等。

当然,也包括结构中安装的各种阻尼器、耗能器。

阻尼力是根据所假设的阻尼理论作用于质量上用于代替能量耗散的一种假想力。

粘滞阻尼理论假定阻尼力与质量的速度成比例。

粘滞阻尼理论的优点是便于求解,但其缺点是与往往实际不符,为扬长避短,按能量等效原则将实际的阻尼耗能换算成粘滞阻尼理论的相关参数,这种阻尼假设称为等效粘滞阻尼。

1.6 采用集中质量法、广义位移法(坐标法)和有限元法都可使无限自由度体系简化为有限自由度体系,它们采用的手法有何不同?答:集中质量法:将结构的分布质量按一定规则集中到结构的某个或某些位置上,认为其他地方没有质量。

质量集中后,结构杆件仍具有可变形性质,称为“无重杆”。

广义坐标法:在数学中常采用级数展开法求解微分方程,在结构动力分析中,也可采用相同的方法求解,这就是广义坐标法的理论依据。

所假设的形状曲线数目代表在这个理想化形式中所考虑的自由度个数。

考虑了质点间均匀分布质量的影响(形状函数),一般来说,对于一个给定自由度数目的动力分析,用理想化的形状函数法比用集中质量法更为精确。

有限元法:有限元法可以看成是广义坐标法的一种特殊的应用。

一般的广义坐标中,广义坐标是形函数的幅值,有时没有明确的物理意义,并且在广义坐标中,形状函数是针对整个结构定义的。

而有限元法则采用具有明确物理意义的参数作为广义坐标,且形函数是定义在分片区域的。

在有限元分析中,形函数被称为插值函数。

综上所述,有限元法综合了集中质量法和广义坐标法的特点:(l) 与广义坐标法相似,有限元法采用了形函数的概念。

但不同于广义坐标法在整体结构上插值(即定义形函数),而是采用了分片的插值,因此形函数的表达式(形状)可以相对简单。

(2) 与集中质量法相比,有限元法中的广义坐标也采用了真实的物理量,具有直接、直观的优点,这与集中质量法相同。

———————————————————————————————————————2.1 建立运动微分方程有哪几种基本方法?各种方法的适用条件是什么?答:常用的有3种:直接动力平衡法、虚功原理、变分法(哈密顿原理)。

直接动力平衡法是在达朗贝尔原理和所设阻尼理论下,通过静力分析来建立体系运动方程的方法,也就是静力法的扩展,适用于比较简单的结构。

利用虚功原理的优点是:虚功为标量,可以按代数方式相加。

而作用于结构上的力是矢量,它只能按矢量叠加。

因此,对于不便于列平衡方程的复杂体系,虚功方法较平衡法方便。

哈密顿原理的优点:不明显使用惯性力和弹性力,而分别采用对动能和势能的变分代替。

因而对这两项来讲,仅涉及标量处理,即能量。

而在虚功原理中,尽管虚功本身是标量,但用来计算虚功的力和虚位移则都是矢量。

2.2 直接动力平衡法中常用的有哪些具体方法?它们所建立的方程各代表什么条件?答:常用方法有两种:刚度法和柔度法。

刚度法方程代表的是体系在满足变形协调条件下所应满足的动平衡条件;而柔度法方程则代表体系在满足动平衡条件下所应满足的变形协调条件。

2.3 刚度法与柔度法所建立的体系运动方程间有何联系?各在什么情况下使用方便?答:刚度法与柔度法建立的运动方程在所反映的各量值之间的关系上是完全一致的。

由于刚度矩阵与柔度矩阵互逆,刚度法建立的运动方程可转化为柔度法建立的方程。

一般说来,对于单自由度体系,求[δ]和求[k]的难易程度是相同的,因为它们互为倒数,都可以用同一方法求得,不同的是一个已知力求位移,一个已知位移求力。

对于多自由度体系,若是静定结构,一般情况下求柔度系数容易些,但对于超静定结构就要根据具体情况而定。

若仅从建立运动方程来看,当刚度系数容易求时用刚度法,柔度系数容易求时用柔度法。

2.4 计重力与不计重力所得到的运动方程是一样的吗?答:如果计与不计重力时都相对于无位移的位置来建立运动方程,则两者是不一样的。

但如果计重力时相对静力平衡位置来建立运动方程,不计重力仍相对于无位移位置来建立,则两者是一样的。

———————————————————————————————————————3.1 为什么说结构的自振频率是结构的重要动力特征,它与哪些量有关,怎样修改它?答:动荷载(或初位移、初速度)确定后,结构的动力响应由结构的自振频率控制。

从计算公式看,自振频率和质量与刚度有关。

质量与刚度确定后自振频率就确定了,不随外部作用而改变,是体系固有的属性。

为了减小动力响应一般要调整结构的周期(自振频率),只能通过改变体系的质量、刚度来达到。

总的来说增加质量将使自振频率降低,而增加刚度将使自振频率增加。

3.2 自由振动的振幅与哪些量有关?答:振幅是体系动力响应的幅值,动力响应由外部作用和体系的动力特性确定。

对于自由振动,引起振动的外部作用是初位移和初速度。

因此,振幅应该与初位移、初速度以及体系的质量和刚度的大小与分布(也即频率等特性)有关。

当计及体系阻尼时,则还与阻尼有关。

3.3 阻尼对频率、振幅有何影响?答:按粘滞阻尼假定分析出的体系自振频率计阻尼与不计阻尼是不一样的,二者之间的关系为此=山厂萝,计阻尼自振频率此小于不计阻尼频率。

,计阻尼时的自振周期会长于不计阻尼的周期。

由于相差不大,通常不考虑阻尼对自振频率的影响。

阻尼对振幅的影响在频率比不同时大小不同,当频率比在1附近(接近共振)时影响大,远离1时影响小。

为了简化计算在频率比远离1时可不计阻尼影响。

3.4 什么叫动力系数,动力系数大小与哪些因素有关?单自由度体系位移动力系数与内力动力系数是否一样?答:动力放大系数是指动荷载引起的响应幅值与动荷载幅值作为静荷载所引起的结构静响应之比值。

简谐荷载下的动力放大系数与频率比、阻尼比有关。

当惯性力与动荷载作用线重合时,位移动力系数与内力动力系数相等;否则不相等。

原因是:当把动荷载换成作用于质量的等效荷载时,引起的质量位移相等,但内力并不等效,根据动力系数的概念可知不会相等。

3.5 什么叫临界阻尼?什么叫阻尼比?怎样量测体系振动过程中的阻尼比?答:并不是所有体系都能发生自由振动的,当体系中的阻尼大到一定程度时,体系在初位移和初速度作用下并不产生振动,将这时的体系阻尼系数称为临界阻尼系数,其值为2mω。

当阻尼系数小于该值时(称为小阻尼),可以发生自由振动。

阻尼比是表示体系中阻尼大小的一个量,它为体系中实际阻尼系数与临界阻尼系数之比。

若阻尼比为0.05,则意味着体系阻尼是临界阻尼的5%。

阻尼比可通过实测获得,方法有多种,振幅法是其中之一。

3.6 若要避开共振应采取何种措施?答:共振是指体系自振频率与动荷载频率相同而使振幅变得很大的一种现象(无阻尼时趋于无穷)。

为避开共振,需使体系自振频率与动荷载频率远离。

由于动荷载通常是不能改变的,只能改变体系的自振频率。

改变体系的自振频率可通过改变体系的质量和刚度来实现。

3.7 增加体系的刚度一定能减小受迫振动的振幅吗?答:增加体系的刚度不一定能减小受迫振动的振幅。

对于简谐荷载作用下的振幅除与荷载有关以外,还与动力放大系数有关。

动力放大系数与频率比有关,频率比小于1时动力放大系数是增函数,这时增加刚度会使自振频率增加,从而使频率比减小,动力放大系数减小,振幅会相应减小;频率比大于1时动力放大系数是减函数,这时增加刚度会使自振频率增加,从而使频率比减小,动力放大系数增大,振幅会相应增大。

可见,减小体系的动位移不能一味增加刚度,要区分体系是在共振前区工作还是在共振后区工作。

3.8 突加荷载与矩形脉冲荷载有何差别。

答:这两种荷载的主要区别是在结构上停留的时间长短。

与结构的周期相比,停留较长的为突加荷载,较短的是矩形脉冲荷载。

矩形脉冲荷载属于冲击荷载,在它的作用下,结构的最大动力响应出现较早,分析时应考虑非稳态响应。

此外,由于最大响应出现时结构阻尼还未起多大作用,故在分析最大响应时可不计阻尼影响。

而突加荷载则不然。

3.9 杜哈迈积分中的变量τ 与t 有何差别?答:杜哈迈积分是变上限积分,积分上限t 是原函数的自变量;τ是积分变量。

t 是动力响应发生时刻,τ是瞬时冲量作用的时刻。

3.10 什么是稳态响应?通过杜哈迈积分确定的简谐荷载的动力响应是稳态响应吗?答:稳态响应是指:由于阻尼影响,动力响应中按自振频率振动的分量消失后,剩下的按动荷载频率振动的部分。

通过杜哈迈积分确定的简谐荷载动力响应是非稳态响应,积分中并没有略去荷载所激起的按结构自振频率变化的伴随自由振动部分。

———————————————————————————————————————4.1什么是振型,它与哪些量有关?答:振型是多自由度体系所固有的属性,是体系上所有质量按相同频率作自由振动时的振动形状。

它仅与体系的质量和刚度的大小、分布有关,与外界激励无关。

4.2对称体系的振型都是对称的吗?答:像静力问题对称结构既可产生对称变形,也能产生反对称变形一样,究竟受外界作用产生什么变形要取决于外界作用。

对称体系的振型既有对称的,也有反对称的。

4.3满足对质量矩阵、刚度矩阵正交的向量组一定是振型吗?答:体系的某一振型是按其对应频率振动时各质点的固定振动形式,是各质点间振动位移的比例关系,具体的振动位移值是不确定的。

相关文档
最新文档