最新二氧化碳气提法生产尿素工艺流程
二氧化碳CO2氨气生产尿素工艺的设计
第一章1.1简介用原料二氧化碳或氨气在合成压力下,将尿素熔融物气提,使其中的氨基甲酸铵分解,返回合成系统。
如用氨进行汽提,称为氨汽提法[1]。
合成塔排出的合成反应液在合成压力和较高温度下,在汽提塔内与气提气逆流相遇,将氨和二氧化碳从尿液中分解出来,然后将气体导入高压甲铵冷凝器内,化合冷凝为甲铵液,放出热量用于副产蒸汽。
动力消耗较低,经济效果明显。
1.2工艺的优缺点⑴优点①高氨碳化,高转化率;由于合成塔采用高氨碳比操作,使合成塔中二氧化碳转化率提高,加上采用钛材的降膜式汽提塔,使汽提操作温度可以高达200℃。
在汽提塔内由于过剩氨的自汽提作用,使甲铵分解率提高,从而减少低压部分的负荷。
②采用甲铵喷射泵,使合成高压设备水平布置。
不仅节省了高框架,同时也方便了安装检修。
③热利用效率高,能耗低。
④操作弹性大,易于操作控制。
由于合成采用高氨碳比,汽提塔采用钛管,使封塔时间可以较长,有利于装置的开停车操作,也减少了因排放所需的贮槽容积。
⑤爆炸危险小,由于使用钛材,加入的钝化空气少,避免了爆炸混合物的生成。
⑥原料器损失少。
由于加入钝化空气量少,所以惰性气放空量少,原料损失少。
⑵缺点占地面积相对较大,流程长,设备多,相互制约性强,控制点多,技术素质要求高等。
1.3基本原理使尿液中的甲铵按下述反应分解为3NH 和2CO 过程,反应方程如下:Q CO NH COONH NH -+=气)气)液)((2(2324 (1-1)此反应为可逆吸热,体积增大的反应。
我们只要提供热量,降低压力或者降低气相中3NH 与2CO 某一组分的分压,都可以使反应向右进行,以达到分解甲铵的目的。
汽提法是在保持压力与合成塔相同的条件下,在供给热量的同时,采用降低气相中3NH 和2CO 某一组分(或3NH 与2CO 都降低)的分压的办法来分解甲铵的过程[2]。
当温度为t ℃时,纯态甲铵的离解总压力与各组分(3NH 与2CO )的分解压的关系,按以上化学方程式可作如下表示:设总压为S P ,则从反应式中可以看到氨分解压力为2/3S P ,二氧化碳分压为1/3S P ,如反应式在温度为t ℃时的平衡常数为t K ,则: 32274)31()32S S S t P P P K ==( (1-2) 假如氨和二氧化碳之比不是2:1状态存在,在温度仍为t ℃时,它的总压为P ,其各组分的分压为:分压3NH :3NH X P ⨯=⨯氨的分子分数总压分压2CO :22CO X P CO ⨯=⨯的分子分数总压3NH X ,2CO X 分别为气体中氨,二氧化碳的分子分数,这样反应式在温度为时的平衡常数应为:2323232)()CO NH CO NH t X X P X P X P K ⨯⨯=⨯⨯=( (1-3)温度相同,平衡常数相等,所以温度为时t ℃时23233274CO NH S X X P P ⨯⨯= (1-4) S CO NH P X X P 322353.0⨯= (1-5) 纯甲铵在某一固定温度下的离解压力为不变常数C ,所以 C X X P CO NH 322353.0⨯=(1-6)从此式可以看出,当2CO X 趋近于1时,则3NH X 必趋近于0,3223CO NH X X ⨯就趋近于0,则322353.0CO NH X X ⨯趋近于无穷大,即趋近于无限大,就是说甲铵液用2CO 通入,气相中几乎全为2CO 时(2CO X 1=),P 趋近于无限大,即甲铵的离解压力近于无限大。
尿素生产原理、工艺流程及工艺指标
1.生产原理尿素是通过液氨和气体二氧化碳的合成来完成的,在合成塔D201中,氨和二氧化碳反应生成氨基甲酸铵,氨基甲酸铵脱水生成尿素和水,这个过程分两步进行。
第一步:2NH3+CO2 NH2COONH4+Q第二步:NH4COONH2 CO(NH2)2+H2O-Q第一步是放热的快速反应,第二步是微吸热反应,反应速度较慢,它是合成尿素过程中的控制反应。
1、2工艺流程:尿素装置工艺主要包括:CO2压缩和脱氢、液氨升压、合成和气提、循环、蒸发、解吸和水解以及大颗粒造粒等工序。
1、2、1 二氧化碳压缩和脱氢从合成氨装置来的CO2气体,经过CO2液滴分离器与来自空压站的工艺空气混合(空气量为二氧化碳体积4%),进入二氧化碳压缩机。
二氧化碳出压缩机三段进脱硫、脱氢反应器,脱氢反应器内装铂系[wiki]催化剂[/wiki],操作温度:入口≥150℃,出口≤200℃。
脱氢的目的是防止高压洗涤器可燃气体积聚发生爆炸。
在脱氢反应器中H2被氧化为H2O,脱氢后二氧化碳含氢及其它可燃气体小于50ppm,经脱硫、脱氢后,进入压缩机四段、五段压缩,最终压缩到14.7MPa(绝)进入汽提塔。
二氧化碳压缩机设有中间冷凝器和分离器,二氧化碳压缩机压缩气体设有三个回路,以适应尿素生产负荷的变化,多余的二氧化碳由放空管放空。
1、2、2 液氨升压液氨来自合成氨装置氨库,压力为2.3 MPa(绝),温度为20℃,进入液氨过滤器,经过滤后进入高压氨泵的入口,液氨流量在一定的范围内可以自调,并设有副线以备开停车及倒泵用.主管上装有流量计.液氨经高压氨泵加压到18.34 MPa(绝),高压液氨泵是电动往复式柱塞泵,并带变频调速器,可在20—110%的范围内变化,在总控室有流量记录,从这个记录来判断进入系统的氨量,以维持正常生产时的原料N/C(摩尔比)为2.05:1。
高压液氨送到高压喷射器,作为喷射物料,将高压洗涤器来的甲铵带入高压冷凝器,高压液氨泵前后管线均设有安全阀,以保证装置设备安全。
二氧化碳气提法生产尿素工艺流程
二氧化碳气提法生产尿素工艺流程1.1二氧化碳气体的压缩从上道工序送来的CO2气体将所含液滴分离后进入CO2压缩机。
在压缩机各进出口设有若干温度、压力监测点,以便于监视压缩机的运行状况,压缩机的负荷是通过改变压缩机转速来控制的,经压缩后的气体(压力约为14.3MPa,温度为110℃左右)送去脱氢系统。
1.2氨气的加压合成氨装置送来的液氨经流量计量后引入高压氨泵,液氨在泵内加压至16.0MPa(A)左右。
液氨的流量根据系统的负荷,通过控制氨泵的转速来调节。
加压后的液氨经高压喷射器与来自高压洗涤器中的甲铵液,一起由顶部进入高压甲铵冷凝器。
1.3液氨的加压高压合成与CO2气提回收合成塔、气提塔、高压冷凝器和高压洗涤器这四个设备组成高压圈,这是二氧化碳气提法的核心部分,这四个设备的操作条件是统一考虑的,以达到尿素的最大产率和热量的最大回收。
从高压冷凝器底部导出的液体甲铵和少量的未冷凝的氨和二氧化碳,分别用两条管线送入合成塔底,合成塔内设有筛板,形成类似几个串联的反应器,塔板的作用是防止物料在塔内返混。
尿素合成反应液从塔内上升到正常液位,经过溢流管从塔下出口排出,经过液位控制阀进入气提塔上部,再经塔内液体分配器均匀地分配到每根气提管中。
液体沿管壁成液膜下降,分配器液位高低起着自动调节各管内流量的作用。
由塔下部导入的二氧化碳气体,在管内与合成反应液逆流相遇。
管间以蒸汽加热,合成反应液中过剩氨及未转化的甲铵将被蒸出和分解,从塔顶排出,尿液及少量未分解的甲铵从塔底排出。
从气提塔顶排出的高温气体,与新鲜氨及高压洗涤器来的甲铵液在约高压下一起进入高压甲铵冷凝器顶部。
高压甲铵冷凝器是一个管壳式换热器,物料走管内,管间走水用以副产低压蒸汽。
为了使进入高压甲铵冷凝器上部的气相和液相得到更好的混合,增加其接触时间,在高压甲铵冷凝器上部设有一个液体分布器。
在分布器上维持一定的液位,就可以保证气-液的良好分布。
合成塔顶排出的气体进入高压洗涤器,在这里将气体中的氨和二氧化碳用加压后的低压吸收段的甲铵液冷凝吸收,然后经高压甲铵冷凝器再返回合成塔。
co2气提尿素工艺
• 2.1.4循环系统 • 来自气提塔底部的尿素——甲铵溶液,经过气提塔的液位控 制阀减压到0.25—0.35MPa,溶液中41.5%的二氧化碳和69%的 氨得到闪蒸,并使溶液温度从170℃降到107 ℃,气液混合物进 入精馏塔顶,精馏塔上部为填料塔,起着气体精馏作用,下部为 分离器,经过填料段下落的尿素——甲铵流入循环加,用 0.4MPa蒸汽加热,温度升高到141℃,甲铵进一步分解,而后进 入精馏塔下部的分离器分离,尿液经控制阀流入闪蒸槽,气体上 升到精馏塔填料段与顶部溶液逆流传质传热后的气体导出精馏塔, 送到低压甲铵冷凝器,与解吸、水解的回流液、并流向上进行吸 收,吸收时产生的热量,被低压甲铵冷凝器中的低调水带走,此 低调水经低压甲铵冷凝器循环水泵送低压甲铵冷凝器循环冷却器 冷却,汽液混合物从浸没式低压甲铵冷凝器上部溢流到液位槽底 部导出,经高压甲铵泵升压到14.1MPa以上,送入高压洗涤器顶 部,高压甲铵泵为往复泵,采用变频调速调节甲铵流量,液位槽 分离出的气体,经减压阀减压与回流槽尾气去常压吸收塔进一步 回收气相中的氨。吸收液用常压吸收循环泵加压部分循环,部分 经排气筒去氨水槽。
3#4号尿素工艺介绍
然后经过高压冷凝器再返回合成塔,不冷凝的 惰性气体和一定数量的氨气,自高压洗涤器, 减压后排出系统,进入低压吸收塔吸收后直接 放空,甲铵吸收冷凝的热量被管间调温水冷却 水带走,调温水冷却器调节到110-120℃,经 高压洗涤器循环水泵循环使用。 从合成塔至高压洗涤器管道,除设由安全 阀外,还装有分析取样阀,通过对气相的分析, 测得气相中氨、二氧化碳和惰性气体含量,从 而可以判断合成塔操作是否正常。
3#4号尿素工艺介绍
• 塔底液位控制在80%左右去低压系统,以防止二氧化 碳气体随液体流入低压分解工段造成低压设备超压, 从气提塔顶排出的180—185 ℃的气体,与新鲜氨及 高压洗涤器来的甲铵在14.1MPa下混合一起,一起进 入高压冷凝器上部,高压冷凝器是一个管壳式换热器, 物料走管内,管间走水,用于副产蒸汽,根据付产蒸 汽压力的高低,可以调节氨和二氧化碳的冷凝程度, 但要保留一部分气体在合成塔内冷凝,以便补偿在合 成塔内甲铵转化为尿素所需热量,以达到自热平衡, 从合成塔顶排出的气体,温度183℃左右进入高压洗 涤器,在这里将气体中的氨和二氧化碳用加压后的低 压吸收段合成塔 高压冷凝器 • 操作压力13.8-14.4MPa 操作压力13.814.5Mpa • 操作温度(顶)180-183℃ 操作温度167 ℃ • 出口氨碳比 3.0-3.5 水碳比0.4~0.6 • 付产蒸汽压力 0.35-0.55Mpa(绝) • 塔内液相氨碳比 2.9-3.5 • CO2转化率 55-59% • 防腐空气(v﹪)0.5—0.8﹪(体积)
二氧化碳汽提尿素培训教材
二)日本的ACES工艺
日本三井东压化学公司(Mitsui Toatsu Chemicals,MTC)是 1968年由原东洋高压工业公司和三井化学工业公司合并组成。
电
20KWh
二氧化碳(100%) 770kg
冷却水(温升按13℃) 88m3
3.8MPa(绝)蒸汽 1530kg
3)工艺指标
(1)二氧化碳压缩
操作压力
一段入口 0.165MPa(绝)
四段出口 13.8 ~ 14.1 MPa(绝)
原料CO2组成 CO2 >98.5%(体积)
CO <0.2% (体积)
催化剂层阻力: 正常<0.1 MPa
最大<0.2: 入口 2.3MPa(绝) 出口16 ~ 16.3MPa(绝)
操作温度: 入口 30 ~ 40℃
液氨组成: NH3 ≥99.5% (质量) H2O<0.5%(质量)
H2+N2 < 0.02 %(质量) 油 <10PPm
东洋工程公司(TOYO engineering corporation,TEC)创立于 1961年5月。
东洋工程-三井东压,最先于60年代开发了水溶液全循环A法,随 后又开发了B法、C法、改良C法、D法。
1983年开发的ACES工艺(及Advanced Cost Energy Saving Process的缩写,意思是“节约投资降低能耗”的工艺,实质是CO2 汽提尿素与水溶液全循环尿素的结合,也属于CO2汽提尿素的一种工 艺),该工艺的主要特点是高压系统采用了两个高压甲铵冷,一个高 压甲铵冷副产蒸汽,一个高压甲铵冷用于加热汽提塔出来的尿液,分 解回收部分采用中压、低压分解与回收,蒸发工艺采用预浓缩工艺。
二氧化碳气提法生产尿素工艺流程教学文案
二氧化碳气提法生产尿素工艺流程1.1二氧化碳气体的压缩从上道工序送来的CO2气体将所含液滴分离后进入CO2压缩机。
在压缩机各进出口设有若干温度、压力监测点,以便于监视压缩机的运行状况,压缩机的负荷是通过改变压缩机转速来控制的,经压缩后的气体(压力约为14.3MPa,温度为110℃左右)送去脱氢系统。
1.2氨气的加压合成氨装置送来的液氨经流量计量后引入高压氨泵,液氨在泵内加压至16.0MPa(A)左右。
液氨的流量根据系统的负荷,通过控制氨泵的转速来调节。
加压后的液氨经高压喷射器与来自高压洗涤器中的甲铵液,一起由顶部进入高压甲铵冷凝器。
1.3液氨的加压高压合成与CO2气提回收合成塔、气提塔、高压冷凝器和高压洗涤器这四个设备组成高压圈,这是二氧化碳气提法的核心部分,这四个设备的操作条件是统一考虑的,以达到尿素的最大产率和热量的最大回收。
从高压冷凝器底部导出的液体甲铵和少量的未冷凝的氨和二氧化碳,分别用两条管线送入合成塔底,合成塔内设有筛板,形成类似几个串联的反应器,塔板的作用是防止物料在塔内返混。
尿素合成反应液从塔内上升到正常液位,经过溢流管从塔下出口排出,经过液位控制阀进入气提塔上部,再经塔内液体分配器均匀地分配到每根气提管中。
液体沿管壁成液膜下降,分配器液位高低起着自动调节各管内流量的作用。
由塔下部导入的二氧化碳气体,在管内与合成反应液逆流相遇。
管间以蒸汽加热,合成反应液中过剩氨及未转化的甲铵将被蒸出和分解,从塔顶排出,尿液及少量未分解的甲铵从塔底排出。
从气提塔顶排出的高温气体,与新鲜氨及高压洗涤器来的甲铵液在约高压下一起进入高压甲铵冷凝器顶部。
高压甲铵冷凝器是一个管壳式换热器,物料走管内,管间走水用以副产低压蒸汽。
为了使进入高压甲铵冷凝器上部的气相和液相得到更好的混合,增加其接触时间,在高压甲铵冷凝器上部设有一个液体分布器。
在分布器上维持一定的液位,就可以保证气-液的良好分布。
合成塔顶排出的气体进入高压洗涤器,在这里将气体中的氨和二氧化碳用加压后的低压吸收段的甲铵液冷凝吸收,然后经高压甲铵冷凝器再返回合成塔。
尿素工艺流程
一、原料的压缩和净化1、二氧化碳(CO2)的压缩和净化二氧化碳来自脱碳,其浓度为65.7%(V),含氧量0. 5 %(V),硫化物<15mg/M3,CO2通过一分离器后进入CO2压缩机一段,由二段出口去脱硫槽,降低CO2气中的含量至10 mg/M3以下,回到压缩机三段出入,再经三、四、五段压缩达到20.7Mpa,送到尿素合成塔。
2、液体的净化和输送原料液氨从合成车间氨冷冻岗位氨贮槽送来,温度≤30℃,压力≥2.05Mpa,先进入液氨过滤器,除去固体杂质和油类,再进入液氨缓冲槽,进入尿素系统的氨由调节阀开度的大小来控制流量。
二、尿素的合成CO2压缩机出口气体压力约为Mpa,温度约125℃,进入两尿素合成塔,进入尿塔的CO2量决定整个系统的生产负荷大小。
从一吸塔来的氨基甲酸溶液约85—90℃,经一甲泵加压至20.69Mpa,送入尿素合成塔。
从液氨缓冲槽来液氨进入氨泵入口加压至20.7Mpa,经氨预热器加热至45℃左右,送入尿塔。
入尿塔的氨量根据塔顶部温度决定,其顶部温度控制在188—190℃;尿素合成塔的压力由塔出口的调节阀自行控制,一般维持在19.6Mpa。
三、循环回收1、一段分解合成塔出来的合成液中含有尿素、氨基甲酸铵(甲胺)、过剩氨和水。
通过压力调节阀减压至1.7Mpa,进入一段分解塔及一分加热器,由1.10Mpa 的蒸汽加热至155—160℃,使甲胺的分解率达到88%以上,总氨蒸出率达90%,在分离段进行气液分离后通过一减压调节阀后送至二段加热分离器(二分塔)。
2、二段分解出一段分解塔的流体经减压至0.4Mpa后,进入二分塔,在上部闪蒸,经填料精馏段,二段加热器加热至135—140后进行气液分离,气相进入二段吸收,液相经一减压调节阀进入蒸发系统的闪蒸槽。
3、一段循环系统从一分塔气相出来的气体约120℃,是NH3、CO2 、H2O的混合物,经热能利用段换热降温至100℃,进入一吸冷却器,由循环脱盐水冷却,然后进入一吸塔下部,利用塔顶部加入的液氨和氨水进行吸收,控制出一吸塔气相温度≤50℃,CO2含量≤100PPM。
二氧化碳气提法生产尿素工艺研究
二氧化碳气提法生产尿素工艺研究二氧化碳气提法尿素生产工艺由荷兰斯塔米卡邦公司于1964年开始中试试验,1967年建成第一套工业装置,在20世纪70年代初期得到迅速发展,现在已成为世界上建厂最多、生产装备能力最大的尿素生产工艺。
一、二氧化碳气提法尿素生产工艺流程1、原料的压缩、合成与气提从低温甲醇洗工序来的CO2气体,经液滴分离器分离后,在一段入口与一定量的空气混合(空气量为CO2体积的4%)进入CO2压缩机,经过一~三段压缩进入脱硫槽,脱去CO2气体中硫等杂质后,进入四段气缸压缩;经四、五段压缩后,首先进入高压CO2加热器,将CO2温度提高到150℃。
进入脱氢反应器脱氢,H2被氧化为水,脱氢后二氧化碳含氢及其它可燃气体小于50ppm。
脱氢后气体经二氧化碳冷却器冷却至120℃后进入二氧化碳气提塔底部,对由尿素合成塔来的尿液进行气提,使尿液中的甲铵分解成氨和二氧化碳,溶解在尿液中的氨和二氧化碳也解吸出来。
解吸出来的气体与二氧化碳气体一道从气提塔顶部排出,进人高压甲铵冷凝器。
液氨来自液氨球罐,经液氨升压泵进入高压液氨泵的入口。
液氨经高压液氨泵加压后,送往高压喷射器作为喷射物料,将由高压洗涤器来的浓甲铵液带人高压甲铵冷凝器。
在高压甲铵冷凝器中,氨与二氧化碳反应生成甲铵,甲铵液和少量未冷凝的氨和CO2从高压甲铵冷凝器底部出来,分成两条管线送入合成塔的底部,在合成塔内甲铵发生脱水反应生成尿素和水。
合成塔内设有筛板,目的是为了防止物料在合成塔内返混,保证物料在塔内的停留时间约1h。
尿液经合成塔上部的溢流管从塔底出口出来,经过液位调节阀,进入气提塔的上部。
尿液经气提塔内液体分配器均匀地分配到每根气提管中,沿管壁成液膜状下降。
由气提塔下部通入的来自二氧化碳压缩机的CO2气体,在管内与尿液逆流接触,气提管外用蒸汽加热。
尿液中未转化的甲铵发生分解生成氨和二氧化碳,与未转化的氨和二氧化碳一同被二氧化碳气提出来。
气提气从气提塔顶排出,去高压甲铵冷凝器,气提后的尿液从气提塔底部排出。
二氧化碳气提法尿素工艺学习笔记
二氧化碳气提法尿素工艺学习笔记第一章概述一、尿素的情况:尿素的化学名称:碳酰二胺,分子式:CO(NH2)2 分子量60.056 易溶于水和液氨,熔点132.7是无色或白色的针状结晶,含氮量46.65%,高温高压下生成缩二脲,缩三脲,三聚氰酸,三聚氰胺。
生成尿素的反应方程式:2NH3+CO2=CO(NH2)2+H2O吨耗理论值为NH3566kg CO2733kg实际吨耗值为NH3580kg CO2770kg二、生产方法:辽化:CO2汽提全循环法锦西:NH3汽提全循环法三、工厂情况:引进荷兰大陆公司日产1620吨,年产48万吨的尿素生产装置,现有设备157台,静设备82台,动设备75台。
第二章二氧化碳汽提法尿素工艺一、常用的仪表符号1、第一个字母一般表示参数T:温度P:压力F:流量L:液面H:手动A:分析S:速度D:密度V:粘度Z:定位C:电导X:信号2、后面的字母A:报警C:控制I:指示R:记录X:信号H:高限L:低限T:变送E:元件G:视镜S:开关Q:累计Y:转换V:阀O:节流小孔例:TRC-207:温度记录控制FI-303:流量指示ZRC-201:位置记录控制3、工序号及设备的类型工序号:100号:压缩200号:合成及汽提300:号循环400:号蒸发600号:造粒700号:冷凝解吸900号:公用工程设备类别:A:基础类指造粒塔C:换热设备D:反应设备E:传质设备F:槽和罐J:泵和压缩机JS:备用泵)V:机械JT:透平L:特殊设备(喷头、喷射器)例:102JT:二氧化碳压缩机(透平)601A:造粒塔201D:合成塔301E:精馏塔401F:蒸发分离器601L:喷头701F:氨水槽902F:蒸汽饱和器二、工艺说明:1、尿素的生成是由CO2和氨在一定温度和压力条件下反应而得到的,具体反应分为两步:第一步:CO2与氨反应生成氨基甲酸铵(甲铵)故称为甲铵生成反应:2NH3(液)+CO2(气)=NH4COONH2(液)+119.2KJ/mol第二步:甲铵脱水反应得到尿素:NH4COONH2(液) CO(NH2)(液)+H2O(液)-15.5KJ/mol2、生产方法:CO2汽提法(1967年荷兰斯达米卡帮公司)(1)反应温度:181℃~189℃; (2)反应压力:13.5 MPa~15MPa;(3)反应时间:45~60分钟 (4)有效反应容积:177m3 ;(5)NH3/CO2=2.89(设计值) 3.0~3.3(实际值);(6)H2O/CO2=0.37(设计值) 0.5左右(实际值)(7)转化率:58%(设计值)61%~62%(实际值);(8)汽提效率:83%(设计值) 78%~83%(实际值)3、尿液浓度变化:(1)尿素合成后的尿液:34.43%(2)汽提后的尿液:57.89%(3)精馏后的尿液:69.313%(4)闪蒸后的尿液:72%(5)一段蒸发后的尿液:95%(6)二段蒸发后的尿液:99.7%4、尿素工艺流程方框图:三、流程分解1 氨的输送:氨和CO2是尿素生产的两大原料,保证供给十分重要。
浅析CO2汽提法尿素生产工艺
浅析CO2汽提法尿素生产工艺摘要:目前,世界上最常用的尿素生产工艺是气提。
中国是尿素生产大国,尿素厂数量居世界第一,产量和产能居世界第一。
然而,目前我国能源工业面临着来自外部世界的各种压力,这就要求尿素合成工业的节能增产技术需要得到有效的改进。
本文对CO2汽提生产尿素技术进行了研究和分析,以供参考。
关键词:CO2汽提法;尿素;制造技术1.简述CO2汽提尿素生产工艺CO2汽提尿素生产技术获得荷兰stamiccarbon公司专利。
在一定压力下,用CO2汽提氨基甲酸铵溶液,汽提过程中分解产生的NH3和CO2在相应压力下冷凝。
冷凝过程中产生的热源用于一次蒸发加热和二次分解,也可作为蒸汽喷射器的动力能源和整个系统的保温能源。
CO2汽提工艺包括合成塔、汽提塔、池式冷凝器、高压洗涤器和高压喷射器。
CO2汽提尿素生产工艺主要包括CO2压缩、液氨加压、高压合成、CO2汽提回收和低压分解回收。
2.工艺流程CO2汽提尿素工艺的高压回路包括尿素合成塔、汽提塔、氨基甲酸铵冷凝器、高压洗涤器和高压喷射器;采用高压液氨作为氨基甲酸铵喷射器的驱动液,将氨基甲酸铵溶液加压返回合成塔。
CO2由CO2压缩机加压并进入汽提器。
汽提塔出口的液相送至低压分解系统,汽提塔进口的汽提气体与来自氨基甲酸铵喷射器的氨基甲酸铵液体一起进入氨基甲酸铵冷凝器。
氨基甲酸铵冷凝器将气体和液体分别通过气体和液体管道输送至尿素合成塔,合成塔中的尿液自流至汽提塔。
合成塔的气相出口被送至高压洗涤器。
高压洗涤器出口的气体含有少量氨和CO2,这些气体被送往低压吸收塔,并被工艺冷凝液和蒸汽冷凝液吸收。
吸收的尾气排入大气。
后处理仅设置低压分解吸收系统;真空蒸发系统包括真空蒸发和冷凝两个阶段,并建立了工艺冷凝处理工艺。
蒸发的尿液被送往最终的造粒过程。
图1CO2汽提尿素生产工艺3.CO2汽提工艺的显著特点CO2溶解度低,可用作去除剂。
氨的回收相对容易,在许多方面优于传统的水溶性方法。
二氧化碳汽提尿素培训教材
(2) 简化了流程,减少了设备。高压系统的合成塔、汽提塔、高压冷 凝器等三个设备的物料是靠重力自行流动循环,减少了动力设备。 (3)提高了热能和塔的利用率。
二氧化碳汽提法实质上是采用两段合成,即液氨和气体二氧化碳生 产甲铵的放热反应在高压甲铵冷里进行,可以回收反应热而副产蒸汽。 甲铵脱水反应在尿塔内进行,由于生成甲铵的热量在甲铵冷里被导出, 所以合成塔不需要加入过剩氨来维持自热平衡,而合成塔内物料的较少, 也使合成塔的容积得到充分的利用。 (4)热利用好。
⑶公用工程消耗
蒸汽:输入2.5MPa(绝)570Kg, 输出0.5MPa(绝)90Kg
电耗:121KWh,
冷却水:51t
二氧化碳汽提尿素培训教材
三)荷兰斯塔米卡帮公司的二氧化碳汽提法尿素工艺
斯塔米卡帮公司是荷兰国营矿业公司(DSM)的子公司,在40年代 后期开始研究尿素生产工艺,早期尿素生产因为尿塔等设备的严重腐蚀 问题,影响生产的正常运行和生产技术的推广。直到1953年,斯塔米卡 帮公司提出在二氧化碳原料气中加入少量氧气的办法,解决了尿素设备 的腐蚀问题,为后来尿素生产的大规模发展开辟了道路,由该公司设计 的第一个工业规模的尿素厂于1956年投产。
H2+N2 < 0.02 %(质量) 油 <10PPm
(4)合成系统
①合成塔
操作压力: 13.5 ~ 14.5MPa(绝) 操作温度(顶部): 180 ~ 183℃
出口气相氨碳比:3.0 ~ 3.5
塔内液相氨碳比: 2.8 ~ 2.85
CO2转化率:55~58%
②汽提塔
操作压力: 13.5 ~ 14.5MPa(绝) 操作温度: 160 ~ 170 ℃
1983年开发的ACES工艺(及Advanced Cost Energy Saving Process的缩写,意思是“节约投资降低能耗”的工艺,实质是CO2 汽提尿素与水溶液全循环尿素的结合,也属于CO2汽提尿素的一种工 艺),该工艺的主要特点是高压系统采用了两个高压甲铵冷,一个高 压甲铵冷副产蒸汽,一个高压甲铵冷用于加热汽提塔出来的尿液,分 解回收部分采用中压、低压分解与回收,蒸发工艺采用预浓缩工艺。
二氧化碳气提法生产尿素工艺流程
二氧化碳气提法生产尿素工艺流程1.1二氧化碳气体的压缩从上道工序送来的CO2气体将所含液滴分离后进入CO2压缩机。
在压缩机各进出口设有若干温度、压力监测点,以便于监视压缩机的运行状况,压缩机的负荷是通过改变压缩机转速来控制的,经压缩后的气体(压力约为14.3MPa,温度为110℃左右)送去脱氢系统。
1.2氨气的加压合成氨装置送来的液氨经流量计量后引入高压氨泵,液氨在泵内加压至16.0MPa(A)左右。
液氨的流量根据系统的负荷,通过控制氨泵的转速来调节。
加压后的液氨经高压喷射器与来自高压洗涤器中的甲铵液,一起由顶部进入高压甲铵冷凝器。
1.3液氨的加压高压合成与CO2气提回收合成塔、气提塔、高压冷凝器和高压洗涤器这四个设备组成高压圈,这是二氧化碳气提法的核心部分,这四个设备的操作条件是统一考虑的,以达到尿素的最大产率和热量的最大回收。
从高压冷凝器底部导出的液体甲铵和少量的未冷凝的氨和二氧化碳,分别用两条管线送入合成塔底,合成塔内设有筛板,形成类似几个串联的反应器,塔板的作用是防止物料在塔内返混。
尿素合成反应液从塔内上升到正常液位,经过溢流管从塔下出口排出,经过液位控制阀进入气提塔上部,再经塔内液体分配器均匀地分配到每根气提管中。
液体沿管壁成液膜下降,分配器液位高低起着自动调节各管内流量的作用。
由塔下部导入的二氧化碳气体,在管内与合成反应液逆流相遇。
管间以蒸汽加热,合成反应液中过剩氨及未转化的甲铵将被蒸出和分解,从塔顶排出,尿液及少量未分解的甲铵从塔底排出。
从气提塔顶排出的高温气体,与新鲜氨及高压洗涤器来的甲铵液在约高压下一起进入高压甲铵冷凝器顶部。
高压甲铵冷凝器是一个管壳式换热器,物料走管内,管间走水用以副产低压蒸汽。
为了使进入高压甲铵冷凝器上部的气相和液相得到更好的混合,增加其接触时间,在高压甲铵冷凝器上部设有一个液体分布器。
在分布器上维持一定的液位,就可以保证气-液的良好分布。
合成塔顶排出的气体进入高压洗涤器,在这里将气体中的氨和二氧化碳用加压后的低压吸收段的甲铵液冷凝吸收,然后经高压甲铵冷凝器再返回合成塔。
co2汽提法尿素总控岗位工艺操作规程 (1)
二氧化碳汽提法尿素总控岗位工艺操作规程〈一〉岗位任务:在外界条件符合指标(水、电、汽、气、NH3 、CO2)的情况下,将原料NH3 ,CO2和循环回收的甲铵溶液以一定的组成条件送入尿素合成塔,在14.0MPa和184℃±1℃的条件下合成尿素。
未反应的NH3和CO2及未转化为尿素的甲铵经分解回收为甲铵液循环返回尿素合成塔。
〈二〉岗位职责:本岗位应对设备、工艺条件总控室内微机所属仪表、调节阀及各运转设备的调整、联锁等的开停和正常调节及维护负责,并严格执行各项生产工艺指标。
本岗位要经常与本车间各个岗位联系,通报和了解生产情况,并发出相应的操作指令,在特殊情况下,有权发出停车指令并向有关单位及时汇报〈三〉工艺流程叙述(一)氨和二氧化碳1、氨从合成车间氨罐岗位来的压力≥2.0Mpa(绝),温度为30℃以下的液氨,经过液氨过滤器,除去液氨中夹带的固体杂质和油类后进入高压氨泵(103J/JA),为了避免高压氨泵的气缚,液氨温度至少比操作压力下的沸点低5℃,用高压氨泵把液氨增压到16.0MPa,然后经过高压喷射器(201L),送入高压甲铵冷凝器(202C)。
液氨的流量由高压氨泵变频调节,并由泵入口的流量计(FQI-101)来计量。
2、二氧化碳从净化车间脱碳岗位来的约含有0.6%~1.2%(V)氧气和其它微量气体(总硫、一氧化碳、甲烷、氢气等)的二氧化碳气体在带有水封的二氧化碳液滴分离器(101F)中把液体分离掉,在表压力(2.94~4.94KPa或300~500mmH2O) ,温度约40℃的状态下,进入往复式二氧化碳压缩机(102J/JA)进行压缩。
二氧化碳压缩机是由四列五缸对称平衡型活塞式压缩机(4M22-153/15.3),二氧化碳经过一、二段压缩后,压力约为0.8MPa,进入活性炭脱硫槽,使二氧化碳气中的总硫含量降至1mg/Nm3以下。
净化后二氧化碳气体进入二氧化碳压缩机,经三、四、五段压缩后,最终压力14.3MPa温度为120℃。
二氧化碳汽提工艺在尿素生产中的应用
二氧化碳汽提工艺在尿素生产中的应用摘要:在之前的尿素生产期间,二氧化碳汽提法就得到了普遍的应用.根据之前的经验,通过加热蒸汽量的科学调节以及汽提塔液位的科学布置,进而让尿素生产具有操作容易,节省原料损耗的特征,受到尿素生产厂家的普遍认可.基于此,对传统的二氧化碳汽提法的实际操作进行概述,并引入二氧化碳汽提法的新工艺方法,以提高尿素生产的整体水平及降低消耗节能环保。
关键词:二氧化碳气提法;生产过程;节能工艺;工艺特征;降低氨耗一、CO2汽提法工艺流程第一,液氨升压。
液氨升压是把从球罐过来的液氨进行升压,把液氨压力从2.3MPa提升到16.0~17.5MPa,然后通过高压液氨泵把它输送到高压喷射器,以作喷射物料。
第二,CO2气体压缩与净化。
自低温甲醇清洗后的CO2原料气通过CO2压缩机组进行气体压缩后使其压力升到14.4MPa左右,然后对CO2进行净化,包括在脱硫塔以干法脱硫除去CO2气中H2S杂质以及在脱氢塔催化脱氢除去CO2气中的H2杂质,然后将CO2输送到汽提塔。
第三,合成和汽提。
本工序是CO2汽提法关键环节。
液体甲铵和少量还没冷凝的氨气和二氧化碳气体从高压冷凝器底部出来被送入到合成塔底部,物料从合成塔底上升到塔顶并生成反应液(其温度为180~185℃),反应液从塔顶流入到汽提塔顶部,液体分配器将反应液均匀地分布到每根汽提管中,并沿着汽提管壁呈液膜状流下,流下的过程与来自汽提塔底部的二氧化碳气体接触,反应液中剩余的NH3和还没转化的NH2COONH4被蒸发并分解后从汽提塔顶排出,尿液及小部分NH2COONH4从塔底排出。
从汽提塔顶排出的气体、来自高压洗涤器的甲铵液、液氨经混合后进入到高压冷凝器顶部,生成的甲铵和NH3、CO2进入到合成塔底部。
第四,循环。
从汽提塔底部出来的汽提液在精馏塔中将还没有分解的NH2COONH4进行加热分解,再通过闪蒸槽把游离氨、CO2蒸出,然后再把尿液(温度90~95℃)输送到尿液槽。
1二氧化碳气提法制取尿素
二氧化碳气提法制取尿素目录一.概述 .......................................... 二.方法比较 ...................................... 三.发展历史 . (2)四.工艺原理 ..................... 错误!未定义书签。
五.工艺条件 . (3)1.温度 (3)2.氨碳比 (3)3.水碳比 (4)4.压力 (4)5.反应时间 (5)6.原料纯度 (5)六.工艺流程 (5)七.主要设备 (6)1.合成塔 (6)2.喷射泵 (7)3.汽提塔 (8)4.洗涤器 (8)5.精馏塔 (9)八.总结 (9)九.参考文献 (10)二氧化碳气提法制取尿素一.概述1.尿素的性质:尿素又称为脲,分子是为:CO(NH2)2,相对分子质量为60.06,熔点为132.7℃。
在室温下是无色、无味、无嗅的针状晶体,在一定条件下,也呈斜方棱柱结晶状,尿素易溶于水和液氨,也溶于甲醇、乙醇、甘油、不溶于乙醚和氯仿。
2.尿素的用途:主要分为工业和农业两类:农业:尿素总产量中90%以上主要用作化学肥料,除了做化学肥料外,还可作牛、羊等反刍动物的辅助饲料(46%左右)。
工业:尿素在工业上主要用作合成高聚物材料,其中一半以上用作生产尿素甲醛树脂和三聚氰胺;除此之外尿素作为添加剂应用于多种化工产品的生产中,同时尿素还用于医药和试剂的生产中。
3.尿素的生产方法:不循环法、半循环法、全循环法全循环法:(水溶液全循环法、气提法)4.尿素生产原料:二氧化碳、氨二.方法比较1.水溶液全循环法与汽提法相比能量利用不合理,消耗较高,流程较长,近几年新建的大中型厂已很少采用该工艺。
2. CO2汽提法高压圈操作压力最低,无中压系统,流程短,设备少,生产稳定,消耗较低,投资较少,在国内有丰富的设计、设备制造和生产经验,且采用脱氢技术,从根本上杜绝了生产中的爆炸危险性,故选用该工艺。
汽提法尿素工艺流程简述
汽提法尿素工艺流程简述1、CO2压缩来自低温甲醇洗的CO2气体进入CO2 压缩机,经压缩到1.43Mpa(A绝压)后冷却到80℃,进入CO2 脱硫槽,在脱硫槽中脱除CO2气中的无机硫和有机硫。
脱硫后的CO2气加入来自工艺空气压缩机的防腐空气后进入中压CO2冷却器,冷却到40℃送入CO2压缩机的三段入口,经三、四、五段压缩后的CO2气体压力为15.9Mpa(A),约125℃进入高压CO2加热器,加热至200℃进入脱氢反应器,在脱氢反应器中可燃烧气体与氧气燃烧,脱除其中的可燃气体。
脱除可燃气体后的CO2温度将升至250℃左右。
进入高压CO2冷却器冷却到120℃送入尿素装置。
1)脱硫由于脱氢触媒对硫中毒十分敏感,要求气体中的总硫含量小于0.1ppm,因此需配套设置精脱硫。
从目前开发成功的干法精脱离硫技术比较,最为成功的首选湖北化学所JTL-1,其特点如下:(1)采用常温脱硫+水解有机硫分层装填“夹心饼”式组合型式。
开发的精脱硫剂均可在低常温下(5~100℃)使用,脱硫精度高(<0.03ppm)。
常温脱硫剂用T101,中间采用有机硫水解剂(T504),最后再装T102精脱硫剂。
最终出口气体达到Ts≤0.03ppm。
(2)开发由上述各种精脱硫的剂组合的JTL-1常温精脱硫新工艺。
JTL-1新工艺可以解决以煤、重油制气的各种工况下的精脱硫。
与传统的高温精脱硫工艺(Co-Mo加氢催化剂串ZnO)相比较,它们有显著的优势:几乎无能耗价格低廉,不需硫化或还原,操作简单、2)脱氢脱H2过程的原理是CO2中的可燃气体在铂催化剂的作用下,在150℃下可与氧气发生燃烧反应:H2 + 1/2 O2 = H2O + 57798cal/molCO + 1/2 O2 = CO2 + 67786cal/mol以上反应均为放热反应,反应后的CO2气体温度升到180℃左右,必须冷却到120℃才能进入系统。
2、尿素装置尿素是通过液氨和气体二氧化碳在约170~185℃ 13.5~14.5MPa 下按下列反应合成的:2NH3 + CO2 = NH2COONH4NH2COONH4 = NH2CONH2 + H2O反应首先生成氨基甲酸铵(简称甲铵),该反应迅速,为放热反应;第二个反应很慢,为吸热反应,甲铵脱水生成尿素。
尿素工艺流程和结论
化肥厂尿素生产工艺流程(co2汽提法)•第一步由氨与二氧化碳生成中间产物甲铵,其反应式为:2NH3(液)+CO2(气) NH2COONH4(液)+ 119.2KJ/molA•第二步由甲铵脱水生成尿素,其反应式为(合成尿素过程中的控制反应):NH2COONH4(液) CO(NH2)2(液)+H2O(液)- 15.5KJ/mol B•总的反应方程式:•2NH3(液)+CO2(气) CO(NH2)2(液)+H2O(液)+103.7KJ/mol•从气提塔201C底部出来的液体经减压进入精馏塔顶部,均匀地喷洒在精馏塔的填料层上,然后自上而下和上升的135℃分解气逆流接触,温度上升至120℃左右,尿液从301E底部送到底部和中部、顶部循环加热器,在此分别用高调水和0.6MPa蒸汽将其温度提高到约140℃,使甲铵再次发生分解。
•用精馏塔出口调节阀TIC301来调节进入顶部循环加热器的蒸汽压力,在循环分离段中气液相发生分离,气体通过精馏塔填料段进行热质交换后,从精馏塔301E塔顶出口管进入低甲冷,冷凝吸收。
•离开精馏塔分离段的尿液位液位调节阀LV301送至闪蒸槽,闪蒸槽301F真空度由HV701控制,闪蒸使尿液中部分氨、CO2、H2O挥发,尿液由135℃降至90~95℃,浓度增加到约72~74%,流入尿液小槽,闪蒸气相去闪蒸冷凝器冷凝。
•精馏气回流泵来回流液及工艺液在低甲冷进行浸没式冷凝吸收,为了移走冷凝热,低甲冷用低调水进行冷却,现低调水是由化水送来的脱盐水与系统换热后热脱盐水混合后温度控制在50~55℃,一部分热脱盐水送至电厂,出301C的汽液混合物进入低压液位槽进行气液分离,气相及回流冷气相同时进入鼓泡塔,经吸收塔给料泵打来的解吸液吸收后再进入常压吸收塔,液相返回氨水槽,气体至放空总管,循环气相管前设有吹扫蒸汽,以防此管线结晶。
循环系统甲铵液经甲铵泵加压至15MPa送至高压洗涤器作吸收剂。
.精馏塔的精馏过程•高压圈合成的合成液,经气提塔气提后,由气提塔出料调节阀压力由14.6MPa减压至0.25~0.3MPa,使气提液中的部分甲铵分解成为氨和二氧化碳气体。
谈尿素生产的原理及工艺流程
谈尿素生产的原理及工艺流程摘要:在尿素的生产过程中应该尽量避免造成设备的腐蚀,防止发生安全事故,节约成本,实现企业生产长期稳定的进行,促进企业更好地发展。
关键词:尿素;生产;原理;工艺流程1尿素生产的基本原理1.1尿素合成的反应机理。
由氨和二氧化碳合成尿素的总反应式为:2NH3(l)+CO2(g)=CO(NH2)2(l)+H2O(l)(1)式(1)是一个可逆的放热反映,因受化学平衡的限制,NH3 和CO2 合成只能部分转化为尿素。
关于合成尿素的反应机理有多重说法,但一般认为反应是在液相中分两步进行的。
第一步,液氨与二氧化碳反应生成液态氨基甲酸铵,故称为甲胺生成反应:2NH3(l)+CO2(g)=NH4COONH2(l)+119.2kJ·mol-1 (2)式(2)是一个快速、强放热的可逆反应,如果具有足够的冷却条件,不断地将反应热取走,并保持反应进行过程的温度低到足以使甲胺冷凝为液体,这个反应容易达到化学平衡,而且平衡条件下转化为甲胺的程度很高。
压力对甲胺的生成速率有很大影响,加压有利于提高反应速率。
第二步,甲胺脱水反应,生产尿素: NH4COONH2(l)=CO(NH2)2(l)+H2O (l)-15.5kJ·mol-1 (3)式(3)是一个吸热的可逆反应,甲胺在固相中脱水速率极慢,只是在熔融的液相中才有较快的速率。
因此甲胺脱水主要是在液相中进行的,并且是尿素合成中的控制步骤。
脱水反应达到平衡时,甲胺的转化率只有 50%~70%,有相当数量的反应物未能反应生成尿素。
1.2尿素合成反应速率。
尿素合成反应过程是一个复杂的气液两相过程,在液相中进行着化学反应。
体系中既有传质过程,也有化学反应。
传质过程包括:气相中的氨与二氧化碳转入液相和水由液相转入气相。
液相的化学反应包括:氯与二氧化碳化合生成甲铵及甲铵转化为尿素和水。
当反应物系建立平衡时,气液和相间存在着平衡,同时液相内存在着化学平衡。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二氧化碳气提法生产尿素工艺流程1
1.1二氧化碳气体的压缩
2
3
从上道工序送来的CO
2气体将所含液滴分离后进入CO
2
压缩机。
在压缩机各
4
进出口设有若干温度、压力监测点,以便于监视压缩机的运行状况,压缩机的5
负荷是通过改变压缩机转速来控制的,经压缩后的气体(压力约为14.3MPa,温6
度为110℃左右)送去脱氢系统。
7
1.2氨气的加压
8
合成氨装置送来的液氨经流量计量后引入高压氨泵,液氨在泵内加压至9
16.0MPa(A)左右。
液氨的流量根据系统的负荷,通过控制氨泵的转速来调节。
10
加压后的液氨经高压喷射器与来自高压洗涤器中的甲铵液,一起由顶部进入高11
压甲铵冷凝器。
12
1.3液氨的加压高压合成与CO
2气提回收
13
合成塔、气提塔、高压冷凝器和高压洗涤器这四个设备组成高压圈,这14
是二氧化碳气提法的核心部分,这四个设备的操作条件是统一考虑的,以达到15
尿素的最大产率和热量的最大回收。
16
从高压冷凝器底部导出的液体甲铵和少量的未冷凝的氨和二氧化碳,分17
别用两条管线送入合成塔底,合成塔内设有筛板,形成类似几个串联的反应器,18
塔板的作用是防止物料在塔内返混。
尿素合成反应液从塔内上升到正常液位,19
经过溢流管从塔下出口排出,经过液位控制阀进入气提塔上部,再经塔内液体20
分配器均匀地分配到每根气提管中。
液体沿管壁成液膜下降,分配器液位高低21
起着自动调节各管内流量的作用。
由塔下部导入的二氧化碳气体,在管内与合22
成反应液逆流相遇。
管间以蒸汽加热,合成反应液中过剩氨及未转化的甲铵将23
被蒸出和分解,从塔顶排出,尿液及少量未分解的甲铵从塔底排出。
24
从气提塔顶排出的高温气体,与新鲜氨及高压洗涤器来的甲铵液在约高25
压下一起进入高压甲铵冷凝器顶部。
高压甲铵冷凝器是一个管壳式换热器,物26
料走管内,管间走水用以副产低压蒸汽。
为了使进入高压甲铵冷凝器上部的气27
相和液相得到更好的混合,增加其接触时间,在高压甲铵冷凝器上部设有一个28
液体分布器。
在分布器上维持一定的液位,就可以保证气-液的良好分布。
29
合成塔顶排出的气体进入高压洗涤器,在这里将气体中的氨和二氧化碳用30
加压后的低压吸收段的甲铵液冷凝吸收,然后经高压甲铵冷凝器再返回合成塔。
31
高压洗涤器分为三个部分:上部为防爆空腔,中部为鼓泡吸收段,下部为管式32
浸没式冷凝段。
从合成塔导入的气体先进入上部空腔,然后导入下部浸没式冷33
凝段,与从中心管流下的甲铵液在底部混合,在列管内并流上升并进行吸收。
34
采用并流上升的冷凝方式,是为了使塔底不会形成太浓的溶液而析出结晶。
35
1.4低压分解与循环回收
36
从气提塔出来的反应混合物经液位控制阀减压到约0.3MPa,减压膨胀,37
使溶液中甲铵分解气化,气-液混合物进入精馏塔顶部,喷洒到精馏塔鲍尔环填38
料上。
液体从底部流出,进行甲铵的分解和游离NH
3及CO
2
的解吸,离开循环加
39
热器的气液混合物在精馏塔分离段中气液相发生分离,分离后的尿液经液位调40
节阀进入闪蒸槽,分离出来的气体进入填料段与喷淋液逆流接触,进行传热传41
质,进一步吸收NH
3及CO
2。
离开精馏塔顶部的气体以及解吸回流泵送来的解吸
42
冷凝液分别进入低压甲铵冷凝器冷凝。
来自低压甲铵冷凝器的气液混合物,进43
入低压甲铵冷凝器液位槽进行气液分离。
分离出来的气体在低压洗涤器的填料44
层与工艺冷凝液泵运送来的氨水逆流相遇洗涤,经低压洗涤器循环冷却器冷却45
后喷洒在低压洗涤器填料层上。
在低压洗涤器顶部出口管线上装有压力调节阀,46
用来控制压力,未冷凝吸收的气体通过此阀与解吸水解系统回流冷凝器中未冷47
凝的气体一起送入常压吸收塔底部,在吸收塔填料层与吸收塔给料泵送上来来48
的氨水逆流接触,气体中少量的NH
3、CO
2
被进一步吸收,未吸收的气体从顶部通
49
过排气筒排入大气,吸收塔中的液体从塔底排至氨水槽。
50
1.5真空蒸发与造粒
51
进入闪蒸槽的尿素溶液在闪蒸槽内继续减压,使甲铵再一次得到分解,52
NH
3、CO
2
及相当数量的水从尿液中分离出来。
分离所需的热量由溶液本身提供,
53
至此,气提塔出来的溶液经两次减压和循环加热处理,其中的NH
3和CO
2
已基本
54
被分离出来,尿液中尿素含量基本达到了成产要求送入尿液贮槽。
尿液槽中的55
尿液经尿液泵送到一段蒸发加热器,尿液流量由设置在管道上的调节阀控制。
56
一段蒸发加热器是直立管式加热器,尿液自下而上在管内流动,在真空抽吸下57
形成升膜式蒸发。
一段蒸发出来的尿液通过“U”型管进入二段蒸发加热器,它58
也是一个直立管式换热器。
尿液在管内进行升膜式蒸发,离开二段蒸发分离器59
的熔融尿素经熔融尿素泵送到造粒塔顶部的造粒喷头进行造粒。
所造好的尿素60
颗粒由刮料机将输送至下料槽,由塔底皮带机直接输送到包装工序。
61
解吸与水解系统
62
解吸与水解系统用来处理冷凝液,其目的在于回收其中的NH
3和CO
2
使其
63
返回尿素合成系统做原料。
将来自真空浓缩系统的工艺冷凝液经水解塔给料泵64
加压后与水解塔底部出来的水解液换热后进入水解塔顶部塔板。
在水解塔内,65
液体自上而下流动,而加热蒸汽由塔底送入提供水解反应所需热量。
蒸汽量由66
流量调节阀阀位来控制。
溶液与蒸汽逆流相遇,进行水解与解吸,然后将回收67
的气体送入尿素合成系统继续反应,残余气体经排气筒排入大气。
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
所涉及到的所涉及到的单元操作和设备
88
89
90
91
92
93
94
单元操作典型设备及其应用
95
96
冷凝与蒸发式传热过程中的典型单元操作,其中所用到的设备本质上都是97
换热器的一种。
按照用途可以把换热器分为加热器、预热器、过热器、蒸发器、再沸器、冷却器、冷凝器。
98
99
加热器主要用来把流体加热到所需温度以满足下道工序的需要,蒸发器用100
于加热液体,使之蒸发汽化,冷却器用于冷却流体,使之达到所需的温度,冷凝器用来冷却凝结性饱和蒸汽,使之放出潜热而凝结液化。
101
102
板式换热器以其突出优点如传热效率高、节能、经济、结构紧凑、拆装、103
清洗、操作灵活方便等,广泛应用于化工、石油、冶金、电力、食品饮料、医104
药、等工业领域。
在无机化工有机化工化工方面用于各种无机酸、盐的加热、105
冷却、蒸发、冷凝、硫酸的冷却、各种浓度的液电解液的加热和冷却、脱盐工106
艺等。
闭路冷却水系统传热液体的加热、冷却、冷凝和再沸、吸收(洗涤)系107
统各种聚合物的加热、冷却在石油工业中用于各种油品的加热及冷却塔顶气体108
的冷却、冷凝工厂冷却水系统、工厂气体净化系统、工厂酸性水的处理、石油、109
天燃气输送系统中原油加热、气体脱水、海水冷却循环淡水或乙二醇、粗油冷110
却等。
在冶金工业中用于炼焦炉直接或间接一次冷却器、闭环冷却系统的冷却器、冷却炉子和各种机器、电弧炉体、水冷盖板的冷却、铁合金炉的炉体、电111
112
板支座、变压器的冷却。
电度锡生产线电解液的冷却、炼铝厂、氧化铝厂、炼
铜厂、闭路冷却系统、洗涤液冷却器、电解液的加热和冷却等。
在造纸工业中113
114
主要用于黑液的冷却、木浆的凝缩、水加热、热回收系统、用于回收喷放蒸气、115
排出气体、出口蒸汽在食品饮料工业中主要用于各种食品、饮料、果汁、啤酒116
等工艺过程中的加热、冷却、蒸发、结晶、杀菌、制糖等。
制药工业应用中主117
要用于各种药液、纯水的加热、冷却蒸发、冷凝及杀菌等
118
119
120
121
122
123。