垂径定理课件PPT

合集下载

《垂径定理推论》课件

《垂径定理推论》课件

04
答案4
圆上一点P(a,b)到圆心的距离公 式为sqrt((a - h)^2 + (b - k)^2) 。解析:利用两点之间的距离公 式,我们知道点P到圆心的距离 等于点P的横坐标与圆心横坐标 之差的平方和加上点P的纵坐标 与圆心纵坐标之差的平方和的平 方根。
06
总结与展望
本节课的总结
知识要点回顾 垂径定理推论的基本概念和定理表述。
能力目标
能够运用垂径定理及其推 论解决实际问题,提高数 学应用能力。
情感态度与价值观
培养学生对数学的兴趣和 热爱,增强数学学习的自 信心和成就感。
02
垂径定理推论的基本概念
定义与性质
定义
垂径定理推论是关于圆的定理, 它描述了从圆心到圆上任一点的 连线(即半径)与通过该点的圆 的切线之间的关系。
性质
对定理的深入理解
定理的证明过程
深入理解垂径定理推论的证明过程,可以帮助我们更好地掌握其内涵和应用。通 过逐步推导和解析,可以更清晰地理解定理的逻辑和严密性。
定理的几何意义
垂径定理推论不仅是一个数学定理,还具有深刻的几何意义。通过图形演示和实 例分析,可以更直观地理解其在解决实际问题中的应用。
对定理的推广与改进
05
习题与解答
习题
题目1
题目2
若圆心到直线的距离为d,圆的半径为r, 则直线被圆所截得的弦长为多少?
已知圆的方程为x^2 + y^2 = r^2,求圆 上一点P(a,b)到直线x=h的距离公式。
题目3
题目4
若直线l与圆相切于点A,且直线l的方程为 Ax + By + C = 0,求点A到直线l的距离公 式。
垂径定理推论在几何问题解决中的应用实例。

《垂径定理》PPT课件

《垂径定理》PPT课件

弦的距离(弦心距)为d,半径为r,弧的中点
到弦的距离(弓形高)为h,这四个变量中知
任意两个可求其他两个.
(2)两关系:①
a 2
2
+d2=r2;②h+d=r.
注意:计算时常作半径或过圆心作弦的垂线段来
构造直角三角形

推论:平分弦(不是直径)的直径垂直于弦,并且平 分弦所对的两条弧,如图,CD是⊙O的直径,AB 是弦(非直径),AB与CD相交于点E,且AE=BE, 那么可用几何语言表述为:
AE BE
CD是直径
CD⊥AB
AD BD
AC
BC
要点精析:(1)“垂直于弦的直径”中的“直径”,还可 以是垂直于弦的半径或过圆心垂直于弦的直线;其实质 是:过圆心且垂直于弦的线段、直线均可.
(2)垂径定理中的弦可以为直径. (3)垂径定理是证线段、弧相等的重要依据.
知1-讲
例1 已知:如图, CD为⊙O的直径,AB为弦,且AB⊥ CD,垂足为E. 若ED=2,AB=8,求直径CD的长.
知1-练
1 [中考·温州]如图,在⊙O中,OC垂直于弦AB 于点C,AB=4,OC=1,则OB的长是( ) A. 3 B. 5 C. 15 D. 17
知1-练
2 【中考·广元】如图,已知⊙O的直径AB⊥CD于点 E,则下列结论中错误的是( ) A.CE=DE B.AE=OE
C. BC BD
D.△OCE≌△ODE
弦,AM=BM,OM︰OC=3︰5,
则AB的长为( )
A.8 cm B. 91 cm
C.6 cm D.2 cm
3 如图,△ABC的三个顶点都在⊙O上,∠AOB=
60°,AB=AC=2,则弦BC
的长为( )

垂径定理 ppt课件

垂径定理 ppt课件
复习回顾: 垂径定理:垂直于弦的直径平分
弦,并且平分弦所对的两条弧。
C
O E
CDC过D是圆直心径
CD AB
AE
BE
A
B
推论:平分弦(不是直径)的直径垂直
D 于弦,并且平分弦所对的两条弧。
CD是直径 CDAB AE BE (AB不是直径)
赵州桥主桥拱的半径是多少?
图24.1-6
问题 你知道赵州桥(图24.1-6)吗?它是1300多年前我国
隋代建造的石拱桥, 是我国古代人民勤劳与智慧的结晶.它 的主桥拱是圆弧形,它的跨度(弧所对的弦的长)为37.4m, 拱 高(弧的中点到弦的距离)为7.2m,你能求出赵洲桥主桥拱的 半径吗?
如图24.1-8,用 A︵B表示主桥拱,设 A所︵B 在圆的圆心
为O,半径为R.︵经过圆心O
AB 作弦 A
B
的垂线OC,D
O
解得 R≈27.9(m)
图24.1-8
因此,赵州桥的主桥拱半径约为27.9m.
• 例1.如图是一条排水管的截面。已知排 水管的半径10cm,水面宽AB=12cm。 求水的最大深度.
O
E
A
B
D
求圆中有关线段的长度时,常借助垂径定 理转化为直角三角形,从而利用勾股定理 来解决问题.
应用知识:
例2. 已知:以O为圆心的两个同心圆,大圆的弦AB 交小圆于C、D两点,求证:AC=BD .
方法:只要在圆
弧上任意取两条 a
弦,画这两条弦
的垂直平分线, 交点即为圆弧的
A
圆心.
C
b
B O
变式三.你能找到原来车轮的圆心吗?
提高练习:
1. 已知⊙O的半径为10,弦AB∥CD,

垂径定理PPT演示课件

垂径定理PPT演示课件
垂径定理
垂直于弦的直径平分这条弦,并且平分这条 弦所对的两条弧
如图 DC为直径 AB垂直于DC 则AE=EB 弧AC 等于弧BC,弧AD= 弧BD
•1
垂径定理证明
如图 ,在⊙O中,DC为直径, AB是弦,AB⊥DC,AB、CD 交于E,求证:AE=BE,弧AC=弧BC,弧AD= 弧BD
连OA、OB ∵OA、OB是半径 ∴OA=OB ∴△OAB是等腰三角形 ∵AB⊥DC ∴AE=BE,∠AOE=∠BOE
o
A
D
B
•6
已知如图:圆O中,0B=8, ∠B0C=450 ∠BCD=750 求DC=?
D
E
0
B
C
•7
小结
有关弦、半径、弦心距的问题常常利用它 们构造的直角三角形来研究
连半径、作弦心距是圆中的一种常见辅助 线添法。
•8
【例题】
如图,⊙O的直径AB和弦CD相交于E,若AE= 2cm,BE=6cm,∠CEA=300,求:
(等腰三角形三线合一) ∴弧AD=弧BD,∠AOC=∠BOC ∴弧AC=弧BC
•2
垂径定理及其推论
一条直线①过圆心;②垂直于一条弦;③ 平分这条弦;④平分弦所对的劣弧;⑤平 分弦所对的优弧。
这五个条件只须知道两个,即可得出另三 个注意Fra bibliotek平分弦时,直径除外
•3
判断
1.弦的垂直平分线一定经过圆心。 2.经过弦的中点的直径一定垂直于弦。 3.平分弦所对的一条弧的直径,平分这条弦
(1)CD的长; (2)C点到AB的距离与D点到AB的距离之比。
D
F
AG E O• H
B
C
•9
例1图
如图,半径为2的圆内有两条互相垂直的弦 AB和CD,它们的交点E到圆心O的距离等于1, 则 AB2+CD2=( )

《圆的垂径定理》课件

《圆的垂径定理》课件

第四步
综合第二步和第三步的结论, 得出垂径定理。
定理的应用
01
02
03
计算弦长
已知圆的半径和弦所对的 圆心角,利用垂径定理可 以计算出弦的长度。
计算弧长
已知圆的半径和弧所对的 圆心角,利用垂径定理可 以计算出弧的长度。
计算圆心角
已知圆的半径和弦长,利 用垂径定理可以计算出圆 心角的度数。
03
垂径定理的应用
02
垂径定理在解析几何中可以用于 解决一些实际应用问题,例如计 算桥梁的承重能力、设计圆形工 件等。
垂径定理在实际问题中的应用
在实际生活中,垂径定理的应用非常 广泛,例如在建筑设计、机械制造、 航空航天等领域中,垂径定理都发挥 着重要的作用。
垂径定理在物理学中也有应用,例如 在研究光的反射和折射、地球的重力 场等。
垂径定理在几何问题中的应用
垂径定理在证明圆的性质时发挥了重要作用,例如证明圆周角定 理、圆内接四边形的性质等。
垂径定理是解决几何问题中关于圆的问题的基础,例如求圆的面 积、周长、圆心角等。
垂径定理在解析几何中的应用
01
在解析几何中,垂径定理可以与 其他数学知识结合使用,例如与 三角函数、坐标系等结合,解决 更复杂的几何问题。
详细描述
弦切角定理指出,在圆中,连接弦与切线的交点的线段与弦所夹的角等于该弦 所对应的圆心角。这个定理在解决与弦、切线和圆心角相关的问题时非常有用 。
切线长定理
总结词
切线长定理是关于圆的切线长度的重 要定理。
详细描述
切线长定理指出,过圆外一点向圆作 两条切线,则该点到两切点的线段长 度相等。这个定理在解决与圆的切线 和相关长度相关的问题时非常有用。
定理的应用

28.4 垂径定理 课件(共20张PPT) 数学冀教版九年级上册

28.4 垂径定理 课件(共20张PPT) 数学冀教版九年级上册
28.4 垂径定理
第二十八章 圆
1.理解并掌握垂径定理及其推论的推导过程. (重点)2.能够运用垂径定理及其推论解决实际问题. (难点)
学习目标
问题 赵州桥的半径是多少?
它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37.4 m,拱高(弧的中点到弦的距离)为7.2 m,你能求出赵州桥主桥拱的半径吗?
情景导入
知识点一:垂径定理
问题1 如图,AB是⊙O的一条弦,做直径CD,使CD⊥AB,垂足为E.沿着CD所在的直线折叠,你能发现图中有哪些相等的线段和弧?为什么?

线段:AE=BE
·
O
A
B
C
E
D
证明:如图所示,连接OA,OB.
在△OAB中,∵OA=OB,OE⊥AB,
∴AE=BE,∠AOE=∠BOE.
解:如图,连接OA.设⊙O的半径为r. ∴ CD为⊙O的直径,AB⊥CD, ∴ AE=BE. ∴AB=8,∴ AE=BE=4, 在 Rt△OAE 中,OA2=OE2+AE2, OE=OD-ED,即r2 = (r-2)2+42. 解得r=5,从而2r=10. 所以直径CD的长为10.
例2 解决求赵州桥拱半径的问题:
如图,用弧AB表示主桥拱,设弧AB所在圆的圆心为O,半径为R.经过圆心O作弦AB的垂线OC,D为垂足,OC与弧AB相交于点C.根据前面的结论可知,D是弦AB的中点,C是弧AB的中点,CD就是拱高.它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37.4 m,拱高(弧的中点到弦的距离)为7.2 m
平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
垂径定理推论1
几何语言:
你还有其他的结论吗?你发现了什么?
∵ CD是直径,AE=BE,

垂径定理的应用课件

垂径定理的应用课件
定理内容
若一条直线过圆心且垂直于给定 直径,则该直线被直径分为两段 ,其中一段长度是另一段长度的 两倍。
定理的证明
证明方法一
利用圆的性质和勾股定理进行证 明。
证明方法二
利用相似三角形的性质进行证明。
证明方法三
利用三角形的中线性质进行证明。
定理的重要性
01
在几何学中,垂径定理是基础且 重要的定理之一,广泛应用于解 决与圆和直线相关的问题。
在椭圆中的应用
总结词:推广应用
详细描述:在椭圆中,垂径定理也有其应用。我们可以利用垂径定理找到椭圆的中心和长轴、短轴。这对于解决与椭圆相关 的几何问题非常有帮助,如求面积、周长等。
在其他图形中的应用
总结词:拓展应用
详细描述:除了圆和椭圆,垂径定理还可以应用于其他一些图形中。例如,在抛物线、双曲线等中, 垂径定理可以帮助我们找到与图形中心相关的信息,从而解决一些复杂的几何问题。此外,在一些更 复杂的组合图形中,垂径定理也可以发挥重要作用。
案例三:机械制造中的垂径定理应用
总结词
机械零件的精确性与垂径定理
详细描述
在机械制造中,垂径定理被广泛应用于确定机械零件 的位置和尺寸,以确保机械零件的精确性和稳定性。 通过应用垂径定理,可以计算出零件的最佳位置和尺 寸,从而提高机械设备的效率和精度。
THANKS FOR WATCHING
感谢您的观看
详细描述
在解决与圆相关的几何问题时,垂径定理与 三角函数经常一起使用。垂径定理可以确定 直径与弦的关系,而三角函数则可以用于计 算角度和弧长等几何量。通过结合这两个知 识点,可以方便地计算出圆上任意两点之间 的角度、弧长等几何量。
与解析几何的结合应用
总结词
解析几何提供了一种用代数方法研究几何的 方法,垂径定理与解析几何的结合,使得几 何问题可以通过代数方法求解。

垂径定理PPT课件(人教版)

垂径定理PPT课件(人教版)
37.4m
7.2m
A
C
D
B
R
O
ห้องสมุดไป่ตู้广探索 二
⊙O半径为10,弦AB=12,CD=16, 且AB∥CD.求AB与CD之间的距离.
A C
B D
.
A
B
.
C
D
课堂小结
C
O
A
A
E
B
D
A
O
D
B
D
B
O
C
A
C
CB
D
A
O
O
C
B
• 两条辅助线:
半径 弦心距
A
• 一个Rt△:半径 半弦 弦心距
r2 d 2 (a)2 2
在⊙O中,直径CD⊥弦AB
A
① AB是直径 ② CD⊥AB
C
P

D
③ CP=DP
可推得

⌒ AC
=
⌒ AD
O

⌒⌒ BC = BD
B
垂径定理的变式图形一
在⊙O中,半径 OB⊥弦CD
C
① OB是半径 可推得 ② OB⊥CD
③CP=DP,
④ ⌒BC=⌒BD.
O P
D
B
垂径定理的变式图形二
在⊙O中,OP⊥弦CD于P点 C
O P
D
① OP过圆心 ② OP⊥CD
可推得
③CP=DP,
在下列图形中,你能否利用垂径定理找到相等的线 段或相等的圆弧
C
C
B
E
A
O
A
E
B
D C
O
A
E
B
D
A

《垂径定理》课件

《垂径定理》课件

答案:3cm
解析:根据垂径定理,圆心到弦的垂线段就是圆心到弦中点的距离,再根据勾股定 理求解。
习题二
题目:已知圆O的半径为5cm,弦AB的长为6cm,则圆心O到弦AB的距 离为 _______.
答案:4cm
解析:根据垂径定理,圆心到弦的垂线段就是圆心到弦中点的距离,再 根据勾股定理求解。
习题三
01
02
CATALOGUE
垂径定理的表述
定理的文字表述
垂径定理
垂直于弦的直径平分该弦,并且 平分弦所对的两条弧。
解释
如果一条直径垂直于一条弦,那 么这条直径会平分这条弦,并且 平分弦所对的两条弧。
定理的图形表述
图形示例
可以画出一个圆和经过圆心的一条弦 ,然后画一条垂直于该弦的直径,用 以展示垂径定理。
03
这种方法需要学生掌握相似三角形的 性质和判定方法,适合数学基础较好 的学生理解和掌握。
04
CATALOGUE
垂径定理的应用
在几何作图中的应用
确定圆的中心
利用垂径定理,我们可以确定一个圆 的中心,只需在圆上任取两点,然后 通过这两点作垂直平分线,两条垂直 平分线的交点即为圆心。
作圆的切线
利用垂径定理,我们可以找到一个圆 的切线。在圆上任取一点,然后通过 这一点作圆的切线,切线与过圆心的 垂线交于一点,该点即为切点。
《垂径定理》ppt课 件
目录
• 引言 • 垂径定理的表述 • 垂径定理的证明 • 垂径定理的应用 • 垂径定理的变式 • 习题与解答
01
CATALOGUE
引言
什么是垂径定理
垂径定理
垂径定理是平面几何中一个重要的定理,它描述了垂直于弦的直径与弦之间的 关系。具体来说,如果一条直径垂直于一条弦,则这条直径将该弦平分,并且 平分该弦所对的弧。

《垂径定理》优秀ppt课件2024新版

《垂径定理》优秀ppt课件2024新版

判断四边形形状问题
判断平行四边形
利用垂径定理证明四边形两组对 边分别平行,从而判断四边形为
平行四边形。
判断矩形和正方形
在平行四边形基础上,利用垂径定 理证明两组对角相等或邻边相等, 进而判断四边形为矩形或正方形。
判断梯形
通过垂径定理证明四边形一组对边 平行且另一组对边不平行,从而判 断四边形为梯形。
利用垂径定理将方程转化为标准形式 判别式判断根的情况
求解根的具体数值
判断二次函数图像与x轴交点问题
利用垂径定理判断交点个数 确定交点的横坐标
结合图像分析交点性质
解决不等式组解集问题
利用垂径定理确定不 等式组的解集范围
结合图像直观展示解 集
分析解集的端点情况
05
垂径定理拓展与延伸
推广到三维空间中直线与平面关系
《垂径定理》优 秀ppt课件
目录
• 垂径定理基本概念与性质 • 垂径定理证明方法 • 垂径定理在几何问题中应用 • 垂径定理在代数问题中应用 • 垂径定理拓展与延伸 • 总结回顾与课堂互动环节
01
垂径定理基本概念与性质
垂径定义及性质
垂径定义
从圆上一点向直径作垂线,垂足 将直径分成的两条线段相等,且 垂线段等于半径与直径之差的平 方根。
在直角三角形中,利用勾 股定理和已知条件进行推 导和证明。
解析法证明
建立坐标系
以圆心为原点建立平面直角坐标系, 将圆的方程表示为$x^2+y^2=r^2$ 。
求解交点
联立垂径方程和圆的方程,求解交点 坐标,进而证明垂径定理。
垂径表示
设垂径的两个端点分别为$(x_1, y_1)$ 和$(x_2, y_2)$,则垂径的方程可表示 为$y-y_1=frac{y_2-y_1}{x_2-x_1}(xx_1)$。

垂径定理ppt课件

垂径定理ppt课件
连接OA,如图所示,则OA=OD=250,
1
AC=BC= AB=150,
2
∴OC= 2 − 2 = 2502 − 1502 =200,
∴CD=OD-OC=250-200=50,即这些钢索中最长的一根为50 m,
故选B.
数学
返回目录
2.如图,☉O的弦AB垂直于CD,点E为垂足,连接OE,若
2
∵AC垂直平分OD,垂足为E,
1
∴∠AEO=90°,OE= OD,
2
1
∴OE= OA,设OE=x,则OA=OB=2x,
2
在Rt△AEO中,AE2+EO2=AO2,
即:32+x2=(2x)2,解得x= 3.
∴BE=OE+OB=x+2x=3x=3 3.
返回目录
谢谢观看
This is the last of the postings.
Thank you for watching.
北师大版 九年级数学下册
4.《九章算术》是我国古代数学成就的杰出
代表作,其中《方田》章给出计算弧田
(即弓形)面积所用的公式为:弧田面积
1
= (弦×矢+矢2),弧田(如图)由圆弧和其所对弦所围成,公式中
2
“弦”指圆弧所对弦长AB,“矢”指弓形高,在如图所示的弧田中,
半径为5,“矢”为2,则弧田面积为
10
.
数学
返回目录
5.如图,已知OC是☉O的半径,点P在☉O的直径BA的延长线上,
弦的一半和圆心到弦的垂线段构成的直角三角形),利用直角
三角形的相关知识进行解题.
数学
返回目录
知识点二 垂径定理的逆定理
平分弦(不是直径)的直径垂直于弦,并且平分弦所对的 弧 .

垂径定理推论ppt课件

垂径定理推论ppt课件

④A⌒C = B⌒C,

A⌒D
=

BD.
C
A
B
M└
●O
只要具备其中两个条件, 就可推出其余三个结论.
D
精品课件
6
判断
⑴垂直于弦的直径线平分弦,并且平分弦所对的弧( × )
⑵弦所对的两弧中点的连线,垂直于弦,并且经过圆心 (√ )
⑶圆的不与直径两垂条直直的径弦必不被这条直径平分 ( × ) 不是直径
⑷平分弦的直径垂直于弦,并且平分弦所对的两条弧 (× )
⑸圆内两条非直径的弦不能互相平分( √ )
精品课件
7
(1)平分不弦是的直直径径,平分这条弦所对的弧。
(2)平分弦的直线,必定过圆心。
(3)一条直直径线平分弦(这条弦不是直径),那么这
条直线垂直这条弦。
A
C
C
C
O
D
(1) B
•O
A
B
(2) D
精品课件
•O
A
B
(3) D
8
1.平分弧的直线,平分这条弧所对的弦. 2.弦垂直于直径,这条直径就被弦平分. B•O来自DCA
(5)
精品课件
C
•O
E
A
B
D (6)
9
平分已知弧AB
已知:弧AB 求作:弧AB的中点
A
C
E
B
作法:
⒈ 连结AB.
⒉作AB的垂直平分线 CD,交弧AB于点E.
D
点E就是所求弧AB的中点。
⊙O的直径为15cm,则弦AB,CD间的距离为(
)C
A
C
A.1.5cm
B
D
O

《垂径定理》PPT教学课件

《垂径定理》PPT教学课件
D.圆是轴对称图形,每条直径都是它的对称轴
2.⊙O的弦AB垂直于半径OC,垂足为D,则下列结论中错误的是( C )
A.∠AOD=∠BOD
B.AD=BD
C.OD=DC D.
AC BC
3.半径为5的⊙O内有一点P,且OP=4,则过点P的最
长弦的长是10,最短弦的长是
6 .
4.已知⊙O中,弦AB=8 cm,圆心到AB的距离为3 cm,
28.4 垂径定理
学习目标
1.理解垂径定理的证明过程,掌握垂径定理及其
推论.(重点)
2.会用垂径定理进行简单的证明和计算.(难点)
新课导入
操作:在纸上画一个圆,并把这个圆剪下来,再沿着圆的一
条直径所在直线对折,重复做几次,你发现了什么?由此你
能得到什么结论?
问题 :圆是轴对称图形吗?如果是,它的对称轴是什么?
课堂小结
定 理




推论
辅助线
垂直于弦的直径平分弦,
并且平分弦所对的弧
推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.
推论2:平分弧的直径垂直平分弧所对的弦.
两 类 辅 助 线 :
连半径,作弦心距
构造Rt△,利用勾股定理计算或建立方程
·O
A
E
D
B
想一想:下列图形是否具备垂径定理的条件?如果不是,请说明
为什么?
C
C
A
O
C
B
O
A
A
E
D

B
不是,因为
没有垂直
O
O
E

B
A
E
D
B
不是,因为CD

垂径定理ppt课件

垂径定理ppt课件
28.4 垂径定理 *
28.4 垂径定理 *
● 考点清单解读
● 重难题型突破
■考点一
垂径定理


内容



读 垂直于弦的直径
平分这条弦,并
且平分这条弦所
对的两条弧
符号语言
图形
28.4 垂径定理 *
归纳总结


(1)定理中的“垂径”可以是直径、半径或过圆心的直

单 线(线段),其本质是“过圆心”;(2)该定理中的弦为
[答案] 解:在题图上连接 OA,∵⊙O 的直径 CD=20


清 ,0M∶OC=3∶5,∴OC=10,OM=6.∴OA=OC=10.∵AB⊥CD,

− =8,∴AB=2AM=16.
∴AM=



28.4 垂径定理 *






■考点二
垂径定理的推论
定义
内容

平分弦(不是直径)的

m;
28.4 垂径定理 *
(2)如答案图,过点 O 作 OH⊥FE,交 FE 的延长线


题 于点 H,由题意知 EF⊥AB,∴∠CEH=∠ECO=∠OHE=90°,
型 ∴ 四边形 OHEC 是矩形,∴OH=CE=BC-4=12 m ,OF = r =

破 20 m,在 Rt△OHF 中,HF= − =16m,∵HE=OC

C


A.5 cm
B.7 cm
C.8 cm
D.10 cm
28.4 垂径定理 *
解题通法 解决此类问题的关键是从实际问题中抽象出
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

练习1 D
A
B
E
A
O
A
E
C A
CE
O
B B
C
O
O
E
C
D
AE
B
B
Da
O
D D
O
AE
B
C
8
C
O
A
A
E
B
A
O
D
B
D
B
O
D
C
A
A
O
C
B
C
C
B
D
O
a
9
判断下列图形,能否使用垂径定理?
B
B
B
O
O
C
DC
DC
A
A
O E DC
O D
A
注意:定理中的两个条件 (直径,垂直于弦)缺一 不可!
a
10
垂径定理的推论1:
条弦增加”不是直径”的限制.
a
12
垂径定理的推论
如图,在下列五个条件中:
① CD是直径, ② CD⊥AB, ③ AM=BM, ④A⌒C=B⌒C,
⑤A⌒D=B⌒D. 只要具备其中两个条件,就可推出其余三个结论.
C
A M└
B
●O
你可以写出相应的命题吗? 相信自己是最棒的!
D
a
13
垂径定理及推论
如图:圆O中,AB是圆O 中的一条弦,其中
OC⊥AB
圆心到弦的距离用d表示, 半径用r表示,弦长用a 表示,则d,r,2 a之间满 足什么样的关系呢?
r2
d2
a
2
2
A
a
O
C
B
17
垂径定理的应用
练习 1
1.半径为4cm的⊙O中,弦AB=4cm,
O
那么圆心O到弦AB的距离是 2 3cm。
AE B
2.⊙O的直径为10cm,圆心O到弦AB的
O
距离为3cm,则弦AB的长是 8cm 。 A E B
3.半径为2cm的圆中,过半径中点且
O
垂直于这条半径的弦长是 2 3cm 。 A E
B
a
18
练习 2: 1.如图,在⊙O中,弦AB的长为8cm,圆心到AB 的距离为3cm,则⊙O的半径为5cm .
2.弓形的弦长AB为24cm,弓形的高CD为 8cm,则这弓形所在圆的半径为 13cm .
C
A M└ ●O
∵ CD是直径,
B
CD⊥AB,
∴AM=BM,
A⌒C =B⌒C,
A⌒D

=BD.
D
a
6
引申定理
定理中的径可以是直径、半径、弦心距等过 圆心的直线或线段。从而得到垂径定理的变 式:
一条直线具有:
经过圆心 垂直于弦
可推得
平分弦
平分弦所对的劣 (优)弧
a
7
在下列图形,符合垂径定理的条件吗?
a
22
活 动 三 练习
1.如图,在⊙O中,弦AB的长为8cm,圆心O到 AB的距离为3cm,求⊙O的半径.
解: OEAB
A
AE1AB184
22
在Rt△AOE中
E
B
·
O
A O 2O E2A E2
平分弦(不是直径)的直径垂直于弦,并且平分
弦所对的两条弧.
CD⊥AB吗?
CD为直径 条件
ACDE⊥=BABE
CD⊥AB
结论
⌒⌒ A⌒C=B⌒C
C
AD=BD
D
O·
A
·O
(E)
B
E
A
B
D
C
a
11
“知二推三” (1)垂直于弦 (2)过圆心 (3)平分弦 (4)平分弦所对的优弧 (5)平分弦所对的劣弧 注意:当具备了(1)(3)时,应对另一
(1) B
C
•O
A
B
(2) D
a
C
•O
A
B
(3) D
15
(4)弦的垂直平分线一定是圆的直径。
(5)平分弧的直线,平分这条弧所对的 弦。 (6)弦垂直于直径,这条直径就被弦平分。 (7)平分弦的直径垂直于弦
•O ACB
(4)
B
•O D
C
A
(5)
a
C
•O A EB
D (6)
16
弦心距:过一个圆的圆心作弦的垂线,圆心与垂足之间 的距离叫做弦心距
圆是轴对称图形,任何一条直径所在的直线都是对称轴。
判断:任意一条直径都是圆的对称轴(X )
a
3
思考
如图,AB是⊙O的一条弦,做直径CD,使CD⊥AB,垂足为E. (1)这个图形是轴对称图形吗?如果是,它的对称轴是什么? (2)你能发现图中有哪些相等的线段和弧?为什么?
(1)是轴对称图形.直径CD所在的 直线是它的对称轴
关于弦的问题,常常需 要过圆心作弦心距,这
B
MA
P
是一条非常重要的辅助 线。
O
弦心距、半径、半弦长 构成直角三角形,便将
问题转化为直角三角形
的问题。
a
21
再逛赵州石拱桥
赵州桥主桥拱的跨度(弧所对的弦的长)为37.4m,
主桥拱的半径吗?
37.4
解:如图,设半径为R,
C
A M└
B
●O
垂直于弦的直径平分弦,并且平分弦所的两条弧. 平分弦(不是直径)的直径垂直于弦,并且平 分弦所对的两D条弧.
平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的 另一条弧. 弦的垂直平分线经过圆心,并且平分这条弦所对的两条弧.
垂直于弦并且平分弦所对的一条弧的直线经过圆心,并且 平分弦和所对的另一条弧.
(2) 线段: AE=BE
弧:A⌒C=B⌒C ,A⌒D=B⌒D A a
C
·O
E B
D
4
总结: 条件
结论
CD为⊙O的直径 C CD⊥AB
AE=BE ⌒⌒ AC=BC
⌒⌒ AD=BD
.O
垂径定理:
垂直于弦的直径平分弦,
A
E
B 并且平分弦对的两条弧。
D
a
5
应用垂径定理的书写步骤
定理 垂直于弦的直径平分弦,并且平分弦所对的两条弧.
AB=37.4,CD=7.
7.2
A
C
18.7
AD 1 AB2 137.418.7, 22
D
R
R-7.2
B
O DO CDC R7.2.
在Rt⊿AOD中,由勾股定理,得
O
O2AAD 2OD 2,
即 R 2 1.7 8 2(R 7 .2 )2.
解得 R≈27.9(m). 答:赵州桥的主桥拱半径约为27.9m.
赵州石拱桥
1300多年前,我国隋朝建造的赵州石拱桥(如图)的桥拱是圆 弧形,它的跨度(弧所对的弦的长)为37.4m,拱高(弧的中点 到弦的距离,也叫弓形高)为7.2m,求桥拱的半径(精确到 0.1m).
a
1
垂直于弦的直径 ———(垂径定理)
a
2
实践探究
把一个圆沿着它的任意一条直径对折,重 复几次,你发现了什么?由此你能得到什 么结论?
平分弦并且平分弦所对的一条弧的直线经过圆心,垂直于 弦,并且平分弦所对的另一条弧.
平分弦所对的两条弧的直线经过圆心,并且垂直平分弦.
a
14
一、判断是非:
(1)平分弦的直径,平分这条弦所对的弧。
(2)平分弦的直线,必定过圆心。
(3)一条直线平分弦(这条弦不是直径),
那么这 条直线垂直这条弦。
A
C
OD
· A
4C
∟3
B
O
C
A
8
D
12
B
O
(1)题
(2)题
a
19
方法归纳:
A
B
.
O
O.
E AC
D
B
解决有关弦的问题时,经常连接半径; 过圆心作一条与弦垂直的线段等辅助线,为 应用垂径定理创造条件。
垂径定理经常和勾股定理结合使用。
a
20
3、如图,P为⊙O的弦BA延长线上一点,PA=AB =2,PO=5,求⊙O的半径。
相关文档
最新文档