(新)高中数学-公式-柯西不等式
(完整版)高中数学:柯西不等式
(完整版)高中数学:柯西不等式柯西不等式是十九世纪三十年代德国数学家柯西的一项重要贡献,它是组合数学中的重要理论,也是非线性规划中常用的工具。
柯西不等式是关于凸集的一种重要结构性性质,它可以被应用于最大值与最小值、优化以及多元函数定理的证明。
柯西不等式是通过一种特殊的方式来研究凸集内部结构的,这种方式叫做“凸组合”,它指的是将凸集分割成几部分,每一部分都是对凸集的一种模拟,两个凸组合直接组合在一起可以构成一个新的凸集。
柯西不等式的英文全称为“Carathéodory’s ConvexCousin Theorem”,它是开始于1909年提出的,是关于凸组合的数学定理,它的英文解释为“如果凸组合的所有子集的每一个子组合都存在相应的点中,那么它们包含的点总数也至少有相应的数量”。
柯西不等式可以用来证明给定凸多面体 $V_1,V_2,V_3,\ldots,V_n$ 中任意 $m$ 个多面体组合在一起构成的凸组合多面体 $K$ 的点数至少为 $m$。
柯西不等式的应用不仅仅是理论上的,它也广泛地被用于工程上,总结一下它在工程上可以用来做什么:1、共轭梯度下降法:共轭梯度下降法是一种求解最优化问题的数值方法,用柯西不等式可以得到一个凸集的边界,从而得到一个最优解;2、统计学:柯西不等式可以用来处理多元函数,进而可以用来应用到多重相关性分析方面,从而推出统计学中的相关概率论;3、V-S型模型:柯西不等式可以用来优化可变结构模型中的V型凸组合,从而得到更具有效性的可变结构模型;4、路径规划:柯西不等式可以通过函数将多余的点过滤掉,从而得到更优的路径规划结果。
以上就是柯西不等式的内容,由于它的重要性,它已经广泛地被应用到多个学科领域,有助于构建凸组合分割、优化以及路径规划等问题。
综上所述,柯西不等式是一个重要的数学定理,它在研究凸集内部结构,求解最优化问题和构建凸组合分割、优化以及路径规划等问题中皆有广泛的应用,也是高中数学中的一项重要知识点。
(完整版)高中历史-公式-柯西不等式
(完整版)高中历史-公式-柯西不等式介绍柯西不等式(Cauchy-Schwarz Inequality)是代数学和数学分析中的一项基本不等式。
它是由法国数学家奥古斯特·柯西(Augustin-Louis Cauchy)发现的,是描述内积空间性质的重要定理之一。
在高中数学中,柯西不等式经常被用于解决一元二次方程组、线性方程组、向量的运算和证明等问题。
公式表达柯西不等式可以用以下数学公式来表达:对于实数a1, a2, ..., an和b1, b2, ..., bn,有|∑(ai×bi)| ≤ √(∑(ai^2) × ∑(bi^2))其中,∑代表对所有i从1到n的求和。
这个公式的意义在于,两个向量的内积的绝对值小于等于它们的模的乘积。
证明思路证明柯西不等式的思路可以简化为以下几步:1. 将公式化简为一个关于t的一元二次方程。
2. 判断该方程的判别式是否小于等于0,如果是,则该方程无解,柯西不等式成立。
3. 如果判别式大于0,根据求解一元二次方程的公式可以得到两个解t1和t2。
4. 对求得的两个解进行讨论:- 如果t1和t2均在0到1之间,则柯西不等式成立。
- 如果t1和t2不全在0到1之间,则柯西不等式不成立。
应用示例柯西不等式可以在以下应用中发挥重要作用:1. 解决线性方程组:通过将线性方程组中的系数视为向量,使用柯西不等式可以对方程组求解。
2. 证明不等式:柯西不等式的证明思路可以应用于其他数学不等式的证明过程中,例如均值不等式、三角不等式等。
3. 向量运算:柯西不等式可以用于向量的模、向量夹角及向量的投影等问题的计算中。
小结柯西不等式是高中数学中常用的重要不等式之一,可以用于解决线性方程组、证明不等式和进行向量运算。
它的公式表达简洁清晰,证明思路相对简单。
熟练掌握柯西不等式的应用可以提高数学解题的能力,同时也有助于深入理解代数学和数学分析的相关知识。
柯西不等式公式四个
柯西不等式公式四个在数学中,柯西不等式是一组非常重要的公式,它们涉及到向量、序列、乃至实数和复数的不等式。
这些公式常常被用于解决各种数学问题,极大地推动了数学的发展和应用。
柯西不等式公式主要分为四类,下面我们逐一介绍。
一、向量内积柯西不等式向量内积柯西不等式是柯西不等式的最基本形式,它给出了两个向量内积的上界,即:|a·b|≤|a||b|其中,a和b是两个向量,·表示向量的内积(即点积),|a|和|b|表示它们的模长。
这个不等式的意义是:两个向量的内积的绝对值不会超过它们的模长的乘积。
这个不等式有很多重要应用,比如可以用来证明三角函数的单位圆定理,也可以用来推导出共振频率公式等。
二、平均值不等式平均值不等式是柯西不等式的推广形式,它给出了n个正实数的算术平均值与几何平均值之间的关系。
具体来说,对于任意n个正实数a1,a2,…,an,平均值不等式给出:(a1+a2+⋯+an)/n ≥√(a1a2⋯an)这个不等式的意义是:n个正实数的算术平均值不会小于它们的几何平均值。
这个不等式也有很多应用,比如在概率论中可以用来证明柯西-施瓦茨不等式,还可以用来证明熵的基本不等式等。
三、积分柯西不等式积分柯西不等式是柯西不等式在函数空间中的推广形式,它给出了两个函数的积分乘积的上界。
具体来说,对于两个Lebesgue可积函数f和g,积分柯西不等式给出:|∫fgdx| ≤ (∫f^2dx)^1/2 (∫g^2dx)^1/2这个不等式的意义是:两个函数f和g的积分的绝对值不会超过它们L^2范数的乘积。
这个不等式可以用来证明傅里叶分析、正交多项式等。
四、复数柯西不等式复数柯西不等式是柯西不等式在复数域中的推广形式,它给出了一个复数序列的绝对值平方序列与形如一个无限和的级数的关系。
具体来说,对于任意自然数n和一个复数序列c1,c2…cn,复数柯西不等式给出:|c1z1+c2z2+‧‧‧cnzn|²≤(|c1|+|c2|+‧‧‧+|cn|)×(|z1|²+|z2|²+‧‧‧+|zn|²)其中,zi是任意复数,|zi|表示它的模长。
柯西施瓦茨不等式公式
柯西施瓦茨不等式公式
柯西施瓦茨不等式是一个很重要的数学不等式,它可以用来描述一组数据的分布特征。
它是由德国数学家卡尔·柯西施
瓦茨(Karl Theodor Wilhelm Weierstrass)研究并发表于1867
年的。
柯西施瓦茨不等式的公式是:$$\sum_{i=1}^{n}f(x_i) \geq n[\min_{i=1}^{n}f(x_i)+\frac{1}{n}\sum_{i=1}^{n}[f(x_i)-
\min_{i=1}^{n}f(x_i)]]$$其中,n 为数据的数量,f(x_i) 为数据
的值,$\min_{i=1}^{n}f(x_i)$ 为数据的最小值。
该不等式可以用来表示一组数据的分布特征,它表明,任何一组数据的总和都应该大于它们的最小值加上它们的平均值,也就是说,任何一组数据的最小值都不能低于它们的平均值。
柯西施瓦茨不等式被广泛应用于统计学中,它可以用来评估一组数据的分布特征,如均值、中位数等。
此外,柯西施瓦茨不等式还可以用来解决最小二乘法的优化问题,它可以帮助我们求解最佳拟合参数。
总之,柯西施瓦茨不等式是一个非常重要的数学不等式,它可以用来表示一组数据的分布特征,也可以用来解决优化问题,因此,它在统计分析和优化方面具有重要的意义。
2024年高考数学高频考点(新高考通用)柯西不等式(精讲+精练)解析版
【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)
素养拓展01柯西不等式(精讲+精练)
1.二维形式的柯西不等式
.),,,,,()())((22222等号成立时当且仅当bc ad R d c b a bd ac d c b a =∈+≥++2.二维形式的柯西不等式的变式
bd ac d c b a +≥+⋅+2222)1( .),,,,,(等号成立时当且仅当bc ad R d c b a =∈bd ac d c b a +≥+⋅+2222)2(
.),,,,,(等号成立时当且仅当bc ad R d c b a =∈.)
,0,,,(())()(3(2等号成立,时当且仅当bc ad d c b a bd ac d c b a =≥+≥++3.
二维形式的柯西不等式的向量形式
.),,,(等号成立时使或存在实数是零向量当且仅当βαβk k =≤注:有条件要用;没有条件,创造条件也要用。
比如,对2
2
2
c b a ++,并不是不等式的形状,但变成
()()
2222221113
1
c b a ++∙++∙就可以用柯西不等式了。
4.扩展:()()233221122322212
2322
21)(n n n n b a b a b a b a b b b b a a a a ++++≥++++++++ ,当且仅当n n b a b a b a :::2211=== 时,等号成立.
【题型训练1-刷真题】
二、题型精讲精练
一、知识点梳理。
三元柯西不等式公式
三元柯西不等式公式三元柯西不等式(also known as Cauchy-Schwarz inequality in three terms)是数学中一种重要的不等式,用于描述向量空间中的内积关系。
在数学和物理学中有广泛的应用,其形式为:(a·b),≤√(a·a)√(b·b)√(c·c)其中,a、b、c表示三个向量,·表示内积运算,表示向量的模。
为了证明三元柯西不等式,我们可以利用内积的性质和乘法的乘法运算规则来推导。
首先,我们先来回顾一下向量的内积运算。
对于向量a=(a₁,a₂,a₃)和b=(b₁,b₂,b₃)的内积a·b,其计算方法为:a·b=a₁b₁+a₂b₂+a₃b₃接下来,我们使用三元柯西不等式的形式进行证明。
首先,我们首先将右侧的不等式取平方:(a·b),²≤(a·a)(b·b)(c·c)接下来,我们对原始的不等式两边分别进行平方,即:a·b,²=(a·b)·(a·b)=(a₁b₁+a₂b₂+a₃b₃)·(a₁b₁+a₂b₂+a₃b₃)=a₁²b₁²+a₂²b₂²+a₃²b₃²+2a₁a₂b₁b₂+2a₁a₃b₁b₃+2a₂a₃b₂b₃接下来,我们来研究右侧的每一项,我们发现有一项可以重写为向量的内积形式:2a₁a₂b₁b₂=(a₁b₂+a₂b₁)²=a₁²b₂²+2a₁a₂b₁b₂+a₂²b₁²将其代入式子中,我们有:a·b,²=a₁²b₁²+a₂²b₂²+a₃²b₃²+a₁²b₂²+2a₁a₃b₁b₃+2a₂a₃b₂b₃+a₂²b₁²=a₁²b₁²+a₂²b₂²+a₃²b₃²+a₁²b₂²+2a₁a₃b₁b₃+2a₂a₃b₂b₃+b₁²a₂²+b₁²a₃²然后,我们可以将这些项进行重新排序,即:a·b,²=(a₁²b₁²+2a₁a₃b₁b₃+b₁²a₃²)+(a₁²b₂²+2a₂a₃b₂b₃+b₁²a₂²)+(a₂²b₂²+2a₁a₃b₁b₃+b₁²a₃²)=(a₁b₁+a₃b₃)²+(a₁b₂+a₂b₁)²+(a₂b₂+a₃b₃)²现在,我们可以看到每一个括号内都是一个内积的平方项,即:a·b,²=(a·c)²+(a·b)²+(b·c)²最后,我们可以发现,右侧的项都大于等于零,所以整个不等式成立,即:a·b,≤√(a·a)√(b·b)√(c·c)这就是三元柯西不等式的证明过程。
柯基不等式高中公式
柯基不等式高中公式
柯西不等式公式:
√(a^2+b^2)≥(c^2+d^2)。
柯西不等式是由柯西在研究过程中发现的一个不等式,其在解决不等式证明的有关问题中有着十分广泛的应用,所以在高等数学提升中与研究中非常重要,是高等数学研究内容之一。
一般地,用纯粹的大于号“>”、小于号“,通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,…,z)≤G(x,y,…,z)(其中不等号也可以为中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。
柯西不等式是由柯西在研究过程中发现的一个不等式,其在解决不等式证明的有关问题中有着十分广泛的应用,所以在高等数学提升中与研究中非常重要,是高等数学研究内容之一。
据说,法国科学院《会刊》创刊的时候,由于柯西的作品实在太多,以致于科学院要负担很大的印刷费用,超出科学院的预算,因此,科学院后来规定论文最长的只能够到四页。
柯西较长的论文因而只得投稿到其它地方。
柯西不等式高中公式
柯西不等式高中公式柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。
但从历史的角度讲,该不等式应当称为Cauchy-Buniakowsky-Schwarz不等式,因为,正是后两位数学家彼此独立地在积分学中推而广之,才能将这一不等式应用到近乎完善的地步。
基本信息中文名:柯西不等式外文名:Cauchy-Buniakowsky-Schwarz Inequality应用学科:数学适用领域范围:数学-积分学推广者:维克托·布尼亚科夫斯基提出时间:18世纪提出者:奥古斯丁·路易·柯西柯西不等式[1]是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。
但从历史的角度讲,该不等式应当称为Cauchy-Buniakowsky-Schwarz不等式,因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。
柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。
柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用。
(a^2+b^2+c^2)*(1+1+1)>=(a+b+c)^2=1(柯西不等式)所以(a^2+b^2+c^2)>=1/3(1式)又a^3+b^3+c^3=(a^3+b^3+c^...(平方的和的乘积不小于乘积的和的平方)|a|*|b|≥|a*b|,a=(x1,y1),b=(x2,y2)(x1x2+y1y2)^2≤(x1^2+y1^2)(x2^2+y2^2)[1](a1·b1+a2·b2+a3·b3+...+an·bn)^2≤((a1^2)+(a2^2)+(a3^2)+...+(an^2))((b1^2)+(b2^2)+(b3^2)+...( bn^2))√(a^2+b^2)+√(c^2+d^2)≥√[(a+c)^2+(b+d)^2]等号成立条件:ad=bc注:“√”表示根|α||β|≥|α·β|,α=(a1,a2,…,an),β=(b1,b2,...,bn)(n∈N,n≥2)等号成立条件:β为零向量,或α=λβ(λ∈R)。
人教版高中数学选修4-5《3.1 柯西不等式》
2
k,使 得a i kbi ( i 1,2, , n)时, 等 号 成 立 。 2n 问题: 1、柯西不等式里一共涉及多少个实数? 个 2、柯西不等式的结构有何特征?
平方和的乘积不小于乘积和的平方
1、柯西是什么人?
• 法一:问柯西本人;
2、他是怎么发现该不等式的?
4 4 2 2 3 3 2
(2)复杂问题:变形后运用柯西不等式。
例3 求函数 y 5 x 1 10 2 x的最大值
思考:该题目用了哪些变形技巧? 凑配系数,平方。
2.已知x y 1, 那么2 x 2 3 y 2的最小值是( 5 A. 6 6 B. 5 25 C. 36 36 D. 25 )
( 2) a b c d ac bd2 ຫໍສະໝຸດ 2 2222
2
自主探究: 1、这两个变式 怎么来的呢? 2、这三个不等 式取“=” 的条 件分别是什么?
进一步—理解—柯西不等式
• 1、代数理解。
2 2 2 2
• 2、几何理解。
(1) a b c d ac bd
小组讨论:根据变式一,你能给出柯西不 等式的几何解释吗?
柯西不等式
选修4-5 不等式选讲
定 理(一 般 形 式 的 柯 西 不 等 ) 式 设a1 , a 2 , a 3 , , a n , b1 , b2 , b3 , , bn是 实 数 ,则
(a a a )( b b b ) (a1b1 a2b2 anbb ) 当且仅当 bi 0( i 1,2, , n)或 存 在 一 个 数
教学目标:
• 1、发现、推导
柯西不等式
高中数学新人教A版选修4-5二维形式的柯西不等式
ItEsS /柚西祜站排酥福茂1. 二维形式的柯西不等式⑴定理1:若a, b, c, d都是实数,则(a2+ b2)(c2+ d2)>(ac+ bd)2,当且仅当ad= be时,等号成立.二维形式的柯西不等式(2)二维形式的柯西不等式的推论:(a + b)(c+ d) > ( ac+ bd)2(a, b, c, d 为非负实数);a2+ b2• c2+ d2> |ac+ bd|(a, b, c, d€ R);a2+ b2• c2+ d2> |ac| + |bd|(a, b, c, d€ R).2. 柯西不等式的向量形式定理2:设a, B是两个向量,则|a •澤| ” |件当且仅当B是零向量,或存在实数k, 使a= k B时,等号成立.[注意]柯西不等式的向量形式中a•其| a|B,取等号“=”的条件是B= 0或存在实数k,使a= k •3. 二维形式的三角不等式(1)定理3:也2+ y + v x2+ y2Z(X i —X2 2+ (y i —y2$(x i, y i, X2, R).当且仅当三点P i, P2与O共线,并且P i, P2点在原点O异侧时,等号成立.(2)推论:对于任意的X i, X2, X3, y i, y2,涉 R,有7 (x i —x3 2 +(y i —y3 2 +P(X2 - X3 f +( y2 - y3 2(x i —x?2+ (y i —y?2.事实上,在平面直角坐标系中,设点P i, P2, P3的坐标分别为(X i, y i), (X2, y2), (X3,y3),根据△ P i P2P3的边长关系有|P i P31+ |P2P3|> |P i P2|,当且仅当三点P i,卩2 ,卩3共线,并且点P i, P2在P3点的异侧时,等号成立.利用柯西不等式证明不等式a b2[例1]已知B为锐角,a, b€ R+,求证:一(a+ b)2.cos 0 sin 0[思路点拨]可结合柯西不等式,将左侧构造成乘积形式,利用“ 1 = sin20+ cos0”,然后用柯西不等式证明.a2b2[证明]J破+诙=為+滸0(8孑0+引『0》爲cos 0+盒sin 00=(a + b)2,2 b2:(a+b)2<cOs i+亦[右法-规律…卜结]----------------------------利用柯西不等式证明不等式的关键在于利用已知条件和所证不等式,把已知条件利用添项、拆项、分解、组合、配方、变量代换等,将条件构造成柯西不等式的基本形式,从而利用柯西不等式证明,但应注意等号成立的条件.1.已知a i, a2,切,b2为正实数.求证:(a i b i+ a2b2)畫+ 舊》(a i+ a?)2.证明:J (叭 + a2b2)b1+b•••原不等式成立.2.设a, b, c为正数,求证:a2+ b2+ b2+ c2+ a2+ c2> 2(a+ b+ c).证明:由柯西不等式,得a2+ b2• i2+ 12>a+ b,即 _ 2 • a2+ b2> a+ b.同理:,2 • b2+ c2> b+ c,2 • a2+ c2> a+ c,将上面三个同向不等式相加得:2(、J a 2+ b 2+ 工/b 2 + c 2 + --J a 2 + c 2) > 2(a + b + c)订a 2+ b 2 + p,b 2+ c 2 +、.../a 2+ c 2》;2(a + b +c).2 2a b+ > 2.2— a 2 — b证明:根据柯西不等式,有2 .2丄 +_b _2— a 2 — b声+戸厲丿2 =(a + b)2= 4. 2 2••亠 + 亠 > 4 = 2.2— a 2— b 2 — a + 2 — b 原不等式成立.[例2] 求函数y = 3sin a+ 4cos a 的最大值.[思路点拨]函数的解析式是两部分的和,若能化为 ac + bd 的形式就能用柯西不等式求其最大值.[解]由柯西不等式得(3sin a+ 4cos a)2<(32+ 42)(sin 2 a+ cos a)= 25,• 3sin a+ 4cos a< 5.当且仅当sj y a= c os a>0即sin a= 5, cos a= 4时取等号,即函数的最大值为5.[方法•规律•小结〕利用柯西不等式求最值的注意点(1) 变形凑成柯西不等式的结构特征,是利用柯西不等式求解的先决条件;(2) 有些最值问题从表面上看不能利用柯西不等式,但只要适当添加上常数项或和为常 数的各项,就可以利用柯西不等式来解,这也是运用柯西不等式解题的技巧;(3)有些最值问题的解决需要反复利用柯西不等式才能达到目的,但在运用过程中,每 运用一次前后等号成立的条件必须一致,不能自相矛盾,否则就会出现错误.多次反复运 用柯西不等式的方法也是常用技巧之一.4.已知2x 2+ y 2 = 1,求2x + y 的最大值.3.设 a , b € R + ,且 a + b = 2.求证: [(2 — a + (2 - b )] 利用二维形式的柯西不等式求最值+解:••• 2x+ y= 2X 2x + 1X y w 厂22+ 12x 一2x 2+ y2= 3X 2x2+ y2= 3,当且仅当x= y=¥时取等号••• 2x+ y的最大值为 3.5.求函数y = x2—2x + 3+ x2—6x + 14的最小值.解:y= x— 1 2+ 2+ 3 —x 2+ 5,y2= (x—1)2+ 2 + (3 —x)2+ 5+ 2X 寸[(X—1 :+ 2][(3—x$+ 5]》(x —1)2+ 2+ (3 —x)2 + 5 + 2X [(x—1)(3 —x) + 10]= [(x—1)+ (3 —x)]2+ (7 + 2 10) = 11 + 2 10.当且仅当即x=骰时等号成立.此时y min= 11+ 2一10= 10+ 1.1.已知a, b€ R +且a + b= 1,贝U P = (ax+ by)2与Q = ax2+ by2的大小关系是(A. P< QB. P v QC. P>QD. P>Q解析:选 A 设m= ( ax, , by), n = ( a, . b),则|ax + by| = |m-n|< |m||n| =旨上ax 2+ . by 2• a 2+ b 2= ax2+ by2• a + b = ax2+ by2,•(ax+ by)2w ax2+ by2,即P w Q.2. 若a, b€ R,且a2+ b2= 10,则a—b的取值范围是()A. [—2 5, 2 5 ]B. [—2 10, 2 10 ]C. [—10, 10 ]D. (—5, 5)解析:选 A (a2+ b2)[i2+ (—I)2] > (a—b)2,•/ a2+ b2= 10,•(a —b)2w 20.•••—2 5 w a —b w 25.3. 已知x+ y= 1,那么2x2+ 3,的最小值是()5A"625解析:选 B (2X 1 2+ 3y 2)[( 3)2+ ( 2)2]>( 6x + 6y)2=[ 6(x + y)]2= 6, 3 2当且仅当X = 5, y = 2时取等号, 即 2X 2 + 3y 2> 6.5故2X 2 + 3y 2的最小值为6.5 4. 函数y = X - 5+ 26 — x 的最大值是()A.3B. 5 C . 3D . 5解析:选B 根据柯西不等式,知y = 1X X — 5 + 2X 6— X <12+ 22x 寸&X —5 2 +(V 6 - x 2 = <5,当且仅当X = 26时取等号.5.设 xy>0,则 |x 2 + ___________ i'|y 2 + X 2 的最小值为 . 解析:原式=X 2+ £:+ y 2x £+ y y 2= 9,当且仅当xy=/2时取等号.答案:96. ______________________________________________ 设 a = (-2,1,2), |b|= 6,贝U a b 的最小值为 ________________________________________________ ,此时 b= ________ .解析:根据柯西不等式的向量形式,有 |a b|w |a| |b|,•••|a b|w - 2 2+ 12+ 22x 6= 18, 当且仅当存在实数 k , 使a = kb 时,等号成立.•••— 18W a b w 18,• a b 的最小值为一18, 此时 b =- 2a = (4, - 2,- 4). 答案:—18(4,- 2,- 4)7. _________________________________________________________ 设实数X , y 满足3X 2 + 2y 2w 6,贝V P = 2X + y 的最大值为 _______________________________ .解析:由柯西不等式得(2x + y)2w[( .3X )2+ ( 2y)2] • : 2+ : 2 = (3x 2+ 2y 2) £+ 1 w 6X f= 11,当且仅当C.3636 D.25y =爲时取等号,故P = 2x + y 的最大值为 11.4所以1 +丄》2.x y9.若x 2 + 4y 3 4= 5,求x + y 的最大值及此时 x , y 的值. 解:由柯西不等式得 [x 2+ (2y )2] 12+ j 1/ l> (x + y)2, 即(x + y)2w 5x 5 =严,x + y < 2.4 4 2 当且仅当x =空,即x = 4y 时取等号. 1 125••• x + y 的最大值为5, 1此时 x = 2, y = 2.10.求函数f(x)= 3cosx + 4, 1 + sin 2x 的最大值,并求出相应的 x 的值. 解:设 m = (3,4), n = (cosx , 1 + sin 2x),则 f(x) = 3cosx + 4 1 + sin 2x=|m n|w |m| |n|f(x)= 3cos x + 4 ・J 1 + sin 2x 取最大值 5 2.=^co&x + 1 + sin 2x • 32 + 42 =5 2,当且仅当m// n 时,上式取“=”. 此时,3 叮 1 + sin 2x — 4cos x = 0. 解得 sin x=-^, cosx = ^t^.5 5 故当 sin x =」,cosx = ^2时. 5 5「心=血 当且仅当 y .x' 时等号成立,此时 x = 1, y = 1. x + y = 2丄 x 2+ 4y 2= 5, 由彳x = 4y ,x = 2,得i 1l y= 1x — 2, 或丫 1 l y =- 1(舍去).。
高中数学柯西不等式公式
高中数学柯西不等式公式
柯西不等式公式是高中数学中重要的数学工具,被广泛用于解决数学问题。
柯西不等式公式的数学表示形式为:
对于任意的 a₁, a₂, b₁, b₂∈ R,柯西不等式公式可以表示为:
(a₁b₁ + a₂b₂)² ≤ (a₁² + a₂²)(b₁² + b₂²)
其中,a₁, a₂分别为向量 A = (a₁, a₂) 的分量,b₁, b₂分别为向量 B = (b₁, b₂) 的分量,符号"≤" 表示小于等于。
从几何上来看,柯西不等式公式表示了两个向量点乘的平方不大于它们各自长度平方的乘积。
柯西不等式公式的重要性在于它为我们提供了判断两个向量之间的关系的数学工具。
当两个向量的点积的平方小于等于它们各自长度平方的乘积时,即(a₁b₁ + a₂b₂)² ≤ (a₁² + a₂²)(b₁² + b₂²)
我们可以得出结论,向量 A 与向量 B 之间满足柯西不等式,这样的结论在数学证明中常常被使用。
柯西不等式公式的应用非常广泛,例如在几何中,可以用来证明三角形的边长关系;在代数中,可以用来证明不等式问题。
它还与内积空间和内积范数有着密切的关系,是这些概念的基础。
总之,柯西不等式公式是高中数学中重要的数学工具,用于判断两个向量之间的关系。
了解和掌握柯西不等式公式的用法,有助于解决各种数学问题,并拓展数学思维。
4个不等式的公式高中连一起的
4个不等式的公式高中连一起的摘要:1.引言:介绍4 个不等式的公式2.主体:详细解释每个不等式的公式及其应用3.结论:总结4 个不等式的公式在高中数学中的重要性正文:在高中数学中,有4 个非常重要的不等式的公式,它们分别是:1.均值不等式:如果a,b 是实数,那么(a+b)/2 >= sqrt(ab)。
这个公式告诉我们,两个实数的算术平均数大于等于它们的几何平均数。
这个公式在求解一些与平均数相关的问题时非常有用。
2.柯西不等式:如果a1,a2,b1,b2 是实数,那么(a1^2+b1^2)(a2^2+b2^2) >= (a1a2+b1b2)^2。
这个公式告诉我们,两个向量的模长的乘积大于等于这两个向量的数量积的平方。
这个公式在求解向量相关的问题时非常有用。
3.排序不等式:如果a1,a2,...,an 是实数,且a1<=a2<=...<=an,那么对于任意的实数x,有(x-a1)(x-a2)...(x-an) >= 0。
这个公式告诉我们,对于任意的实数x,如果一个实数的序列是严格递增的,那么x 与这个序列中每个元素的乘积的符号与x 与序列中最大元素的乘积的符号相同。
这个公式在求解排序相关的问题时非常有用。
4.切比雪夫不等式:如果x1,x2,...,xn 是实数,且x1<=x2<=...<=xn,那么对于任意的实数k,有(x1^k+x2^k+...+xn^k)/n >= (x1+x2+...+xn)/n。
这个公式告诉我们,对于任意的实数k,如果一个实数的序列是严格递增的,那么这个序列中每个元素的k 次方的算术平均数大于等于这个序列的算术平均数。
这个公式在求解与最大最小值相关的问题时非常有用。
柯西不等式6个基本公式和例题
柯西不等式是一个重要的数学不等式,广泛应用于数学分析、概率论和其他领域。
它由法国数学家奥古斯丁·路易·柯西在1821年提出,是数学分析中的一项重要成果。
柯西不等式在实际问题中具有重要的应用价值,特别是在概率论和统计学中的应用,能够帮助人们更好地理解和解决实际问题。
一、柯西不等式的基本原理1. 柯西不等式是数学分析中的一个重要定理,它描述了内积空间中向量的长度和夹角之间的关系。
具体来说,对于内积空间中的任意两个向量a和b,柯西不等式可以表达为:|⟨a, b⟨| ≤ ||a|| ||b||2. 其中,⟨a, b⟨表示向量a和b的内积(或称点积),||a||和||b||分别表示向量a和b的长度。
柯西不等式告诉我们,两个向量的内积的绝对值不会大于它们长度的乘积。
二、柯西不等式的六个基本公式3. 柯西不等式有许多不同的形式和推广,但最基本的形式是针对实数向量空间的柯西不等式。
具体来说,对于实数向量空间中的任意两个向量a=(a1, a2, ..., an)和b=(b1, b2, ..., bn),柯西不等式可以表达为:|a1b1 + a2b2 + ... + anbn| ≤ √(a1^2 + a2^2 + ... + an^2)√(b1^2 + b2^2 + ... + bn^2)4. 在复数向量空间中,柯西不等式的形式稍有不同。
对于复数向量空间中的任意两个向量a=(a1, a2, ..., an)和b=(b1, b2, ..., bn),柯西不等式可以表达为:|a1b1* + a2b2* + ... + anbn*| ≤ √(|a1|^2 + |a2|^2 + ... + |an|^2) √(|b1|^2 + |b2|^2 + ... + |bn|^2)5. 在积分的应用中,柯西不等式的形式也有所不同。
对于连续函数f和g,柯西不等式可以表达为:|∫(f*g)dx| ≤ √(∫f^2 dx) √(∫g^2 dx)6. 这些是柯西不等式的基本形式,它们描述了向量的长度和夹角之间的关系,以及函数的积分之间的关系。
柯西不等式二级公式
柯西不等式二级公式柯西不等式是数学中一种重要的不等式,可用于证明和推导多种数学定理。
该不等式有两个版本,一级版本是最为基本的形式,而二级公式是在一级基础上进行推导得到的。
柯西不等式的一级公式表述如下:对于任意实数a₁, a₂,...,aₙ和b₁, b₂,...,bₙ,有以下关系成立:(a₁b₁ + a₂b₂ + ... + aₙbₙ)² ≤ (a₁² + a₂² + ... + aₙ²)(b₁² + b₂² + ... + bₙ²)其中,等号成立的条件是存在一个实数k,使得a₁:b₁=a₂:b₂=⋯=aₙ:bₙ=k。
柯西不等式的二级公式是在一级公式的基础上进行推导和扩展得到的。
二级公式的表述如下:对于任意实数a₁, a₂,...,aₙ和b₁, b₂,...,bₙ,则有以下关系成立:(a₁b₁ + a₂b₂ + ... + aₙbₙ)² ≤ (a₁² + a₂² + ... + aₙ²)(b₁² + b₂² + ... + bₙ²) +2(a₁a₂ + a₁a₃ + ... + a_{n-1}aₙ)(b₁b₂ + b₁b₃ + ... + b_{n-1}bₙ)二级公式的证明较一级公式更为复杂,但其结果可以用于更广泛的数学推导和证明中。
在二级公式中,等号成立的条件是存在一组实数α₁, α₂,...,αₙ和β₁,β₂,...,βₙ,使得α₁/β₁=α₂/β₂=⋯=αₙ/βₙ。
柯西不等式的重要性在于它涉及到多个变量之间的关系,并可应用于各种数学分支中。
它在线性代数、实分析、概率论等领域中被广泛运用。
其推广形式也可以扩展到内积空间和希尔伯特空间等更为抽象的数学结构中。
总结起来,柯西不等式的一级公式和二级公式都是重要的数学工具,用于描述和推导多变量之间的关系。
在解决各种数学问题和证明定理时,这些不等式发挥着重要的作用。
柯西不等式一般公式
柯西不等式一般公式
柯西不等式是一个关于不等式的强大理论,被广泛用于数学和统计学的研究中。
它由英国数学家和物理学家约翰·柯西于1822年提出,其一般公式如下:
f(x)-f(y)≤K | x-y |
其中,f(x)和f(y)是关于x,y的函数,K为常数,| x-y |
为x和y的绝对值。
柯西不等式在数学研究中应用十分广泛,扮演着一个重要的角色。
主要有以下几类应用:
一、空间维度上的应用:柯西不等式可以用来确定各种类型的几何图形的分类如圆,椭圆等,也可以用来证明一些几何定理,例如勾股定理。
二、概率论上的应用:在概率论中,柯西不等式可以表明将某些事件分类时,它们最大概率之和不会超过一定的值。
三、决策论上的应用:柯西不等式可以用来证明一些决策问题,从而提高决策的准确性和改善决策效率。
总之,柯西不等式是一个重要的数学理论,它成为一个解决一
般数学问题,以及数学计算中的问题的重要工具,因此受到广泛的认可和应用。
柯西不等式高中公式
柯西不等式高中公式柯西不等式是数学中的一种重要的不等式,它由法国数学家Augustin Louis Cauchy于1821年提出。
柯西不等式在初等数学中具有广泛的应用,特别在高中数学课程中经常用到。
本文将介绍柯西不等式的公式及其应用。
柯西不等式的公式表达为:(a1^2 + a2^2 + ... + an^2)(b1^2 + b2^2 + ... + bn^2) ≥ (a1b1 + a2b2 + ... + anbn)^2其中,a1, a2, ..., an和b1, b2, ..., bn为任意实数。
这个公式说明了一个重要的性质:两个向量的内积的平方,不会超过这两个向量长度的乘积。
更具体地说,左边的乘积是两个向量的模的平方之和,而右边的乘积是这两个向量的内积的平方。
柯西不等式的证明也很简单。
我们可以通过向量的几何性质来理解柯西不等式,假设有两个向量a和b,它们之间的夹角为θ。
我们可以将向量a和b进行单位化,即将其长度除以模来得到单位向量A和B。
假设A和B的坐标分别为(a1/||a||, a2/||a||, ..., an/||a||)和(b1/||b||, b2/||b||, ..., bn/||b||)。
根据两个向量的定义,它们的内积为:a·b = ||a|| ||b|| cos(θ)而向量A和B的长度为1,所以:A·B = (a1/||a||)(b1/||b||) + (a2/||a||)(b2/||b||) + ... +(an/||a||)(bn/||b||) = (a1b1 + a2b2 + ... + anbn)/(||a|| ||b||)根据三角函数的性质,cos(θ)的取值范围是[-1, 1]。
所以,a·b的取值范围也是[-||a|| ||b||, ||a|| ||b||]。
平方后即得:(a·b)^2 ≤ (||a|| ||b||)^2由于a·b是一个实数,所以(a·b)^2 ≥ 0。
高中数学-公式-柯西不等式
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载高中数学-公式-柯西不等式地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容第一课时 3.1 二维形式的柯西不等式(一)2. 练习:已知a、b、c、d为实数,求证① 提出定理1:若a、b、c、d为实数,则.证法一:(比较法)=….=证法二:(综合法). (要点:展开→配方)证法三:(向量法)设向量,,则,.∵ ,且,则. ∴…..证法四:(函数法)设,则≥0恒成立.∴ ≤0,即…..③二维形式的柯西不等式的一些变式:或或.④ 提出定理2:设是两个向量,则.即柯西不等式的向量形式(由向量法提出)→ 讨论:上面时候等号成立?(是零向量,或者共线)⑤ 练习:已知a、b、c、d为实数,求证.证法:(分析法)平方→ 应用柯西不等式→ 讨论:其几何意义?(构造三角形)2. 教学三角不等式:出示定理3:设,则.分析其几何意义→ 如何利用柯西不等式证明→ 变式:若,则结合以上几何意义,可得到怎样的三角不等式?3. 小结:二维柯西不等式的代数形式、向量形式;三角不等式的两种形式(两点、三点)第二课时 3.1 二维形式的柯西不等式(二)教学过程:;3. 如何利用二维柯西不等式求函数的最大值?要点:利用变式.二、讲授新课:1. 教学最大(小)值:① 出示例1:求函数的最大值?分析:如何变形?→ 构造柯西不等式的形式→ 板演→ 变式:→ 推广:② 练习:已知,求的最小值.解答要点:(凑配法).2. 教学不等式的证明:① 出示例2:若,,求证:.分析:如何变形后利用柯西不等式?(注意对比→ 构造)要点:…讨论:其它证法(利用基本不等式)② 练习:已知、,求证:.3. 练习:① 已知,且,则的最小值.要点:…. → 其它证法② 若,且,求的最小值. (要点:利用三维柯西不等式)变式:若,且,求的最大值.第三课时 3.2 一般形式的柯西不等式2. 提问:二维形式的柯西不等式?如何将二维形式的柯西不等式拓广到三维?答案:;二、讲授新课:1. 教学一般形式的柯西不等式:① 提问:由平面向量的柯西不等式,如果得到空间向量的柯西不等式及代数形式?② 猜想:n维向量的坐标?n维向量的柯西不等式及代数形式?结论:设,则讨论:什么时候取等号?(当且仅当时取等号,假设)联想:设,,,则有,可联想到一些什么?③ 讨论:如何构造二次函数证明n维形式的柯西不等式?(注意分类)要点:令,则.又,从而结合二次函数的图像可知,≤0即有要证明的结论成立. (注意:分析什么时候等号成立.)④ 变式:. (讨论如何证明)2. 教学柯西不等式的应用:① 出示例1:已知,求的最小值.分析:如何变形后构造柯西不等式?→ 板演→ 变式:② 练习:若,且,求的最小值.③ 出示例2:若>>,求证:.要点:② 提出排序不等式(即排序原理):设有两个有序实数组:···;···.···是,···的任一排列,则有···+ (同序和)+···+ (乱序和)+···+ (反序和)当且仅当···=或···=时,反序和等于同序和.(要点:理解其思想,记住其形式)2. 教学排序不等式的应用:① 出示例1:设是n个互不相同的正整数,求证:.分析:如何构造有序排列?如何运用套用排序不等式?证明过程:设是的一个排列,且,则.又,由排序不等式,得…小结:分析目标,构造有序排列.② 练习:已知为正数,求证:.解答要点:由对称性,假设,则,于是,,两式相加即得.。
最新人教版高中数学选修4-5《一般形式的柯西不等式》教材梳理
庖丁巧解牛知识·巧学一、二维形式的柯西不等式定理1 (二维形式的柯西不等式)已知a 1,a 2,b 1,b 2∈R ,则(a 1b 1+a 2b 2)2≤(a 12+a 22)2(b 12+b 22)2,当且仅当a 1b 2-a 2b 1=0时取等号.由二维形式的柯西不等式推导出两个非常有用的不等式: 对于任何实数a 1,a 2,b 1,b 2,以下不等式成立:22212221b b a a +∙+≥|a 1b 1+a 2b 2|; 22212221b b a a +∙+≥|a 1b 1|+|a 2b 2|.联想发散不等式中等号成立⇔a 1b 2-a 2b 1=0.这时我们称(a 1,a 2),(b 1,b 2)成比例,如果b 1≠0,b 2≠0,那么a 1b 2-a 2b 1=0⇔2211b a b a =.若b 1·b 2=0,我们分情况说明:①b 1=b 2=0,则原不等式两边都是0,自然成立;②b 1=0,b 2≠0,原不等式化为(a 12+a 22)b 22≥a 22b 22,也是自然成立的;③b 1≠0,b 2=0,原不等式和②的道理一样,自然成立.正是因为b 1·b 2=0时,不等式恒成立,因此我们研究柯西不等式时,总是假定b 1b 2≠0,等号成立的条件可以写成2211b a b a =,这种写法在表示一般形式(n 维)的柯西不等式等号成立的条件时更是方便、简洁的.定理2 (柯西不等式的向量形式)设α,β是两个向量,则|α·β|≤|α||β|,当且仅当β是零向量,或存在实数k ,使α=k β时,等号成立. 学法一得定理2 中等号成立的充分必要条件是向量α和β平行(如α,β为非零向量,则定理2中等号成立的充分必要条件为向量α与β的夹角为0或π,即α与β对应的坐标分量成比例),从而可以推知定理1中等号成立的充分必要条件为2211b a b a =(b i 为零时,a i 为零,i=1,2). 定理3 (二维形式的三角不等式)设x 1,x 2,y 1,y 2∈R ,那么22122122222121)()(y y x x y x y x -+-≥+++.二维形式的三角不等式的变式:用x 1-x 3代替x 1,用y 1-y 3代替y 1,用x 2-x 3代替x 2,用y 2-y 3代替y 2,代入定理3,得232231231231)()()()(y y x x y y x x -+-+-+-221221)()(y y x x -+-≥二、一般形式的柯西不等式 定理 设a i ,b i ∈R (i=1,2, …,n),则(∑∑∑===≤ni i ni in i i i b a b a 121212)(.当数组a 1,a 2,…,a n ,b 1,b 2,…,b n 不全为0时,等号成立当且仅当b i =λa i (1≤i≤n).即(a 1b 1+a 2b 2+…+a n b n )2≤(a 12+a 22+…+a n 2)2(b 12+b 22+…+b n 2)2(a i ,b i ∈R ,i=1,2,…,n )中等号成立的条件是2211b a b a ==…=n n b a. 记忆要诀这个式子在竞赛中极为常用,只需简记为“积和方小于和方积”.等号成立的条件比较特殊,要牢记.此外应注意在这个式子里不要求各项均是正数,因此应用范围较广. 一般形式的柯西不等式有两个很好的变式:变式1 设a i ∈R ,bc>0(i=1,2, …,n),则∑∑∑≥=i i ni iib a b a 212)(,等号成立当且仅当b i =λa i (1≤i≤n). 变式2 设a i ,b i 同号且不为0(i=1,2,…,n ),则∑∑∑≥=i i i ni iib a a b a 212)(,等号成立当且仅当b 1=b 2=…=b n .深化升华要求a i ,b i 均为正数.当然,这两个式子虽常用,但是记不记住并不太重要,只要将柯西不等式原始的式子记得很熟,这两个式子其实是一眼就能看出来的,这就要求我们对柯西不等式要做到活学活用.柯西不等式经常用到的几个特例(下面出现的a 1, …,a n ;b 1, …,b n 都表示实数)是: (1)a 12+a 22+…+a n 2=1,b 12+b 22+…+b n 2=1,则|a 1b 1+a 2b 2+…+a n b n |≤1; (2)a 1a 2+a 2a 3+a 3a 1≤a 12+a 22+a 32;(3)(a 1+a 2+…+a n )2≤n(a 12+a 22+…+a n 2);(4)(a+b)(a 1+b1)≥4=(1+1)2,其中a 、b ∈R +; (5)(a+b+c)(a 1+b 1+c1)≥9=(1+1+1)2,其中a 、b 、c ∈R +.柯西不等式是一个重要的不等式,有许多应用和推广,与柯西不等式有关的竞赛题也频频出现,这充分显示了它的独特地位. 典题·热题知识点一: 用柯西不等式证明不等式 例1 设a 1>a 2>…>a n >a n+1,求证:11132211111a a a a a a a a n n n -+-++-=-++ >0. 思路分析:这道题初看起来似乎无法使用柯西不等式,但改变其结构就可以使用了,我们不妨改为证: (a 1-a n+1)·[13221111+-++-+-n n a a a a a a ]>1.证明:为了运用柯西不等式,我们将a 1-a n+1写成a 1-a n+1=(a 1-a 2)+(a 2-a 3)+ …+(a n -a n+1),于是 [(a 1-a 2)+(a 2-a 3)+…+(a n -a n+1)]·(13221111+-++-+-n n a a a a a a )≥n 2>1.即(a 1-a n+1)·(13221111+-++-+-n n a a a a a a )>1, ∴11132211111++->-++-+-n n n a a a a a a a a , 故11132211111a a a a a a a a n n n -+-++-+-++ >0. 方法归纳我们进一步观察柯西不等式,可以发现其特点是:不等式左边是两个因式之和,其中每一个因式都是项平方和,右边是左边中对立的两两乘积之和的平方,证题时,只要能将原题凑成此种形式,就可以引用柯西不等式来证明. 知识点二: 用柯西不等式证明条件不等式 例2 (经典回放)设x 1,x 2, …,x n ∈R +,求证:123221x x x x x x x x nn ++++ ≥x 1+x 2+…+x n . 思路分析:在不等式的左端嵌乘以因式(x 2+x 3+…+x n +x 1),也即嵌以因式(x 1+x 2+…+x n ),由柯西不等式即可得证.证明:(123221x x x x x x x x nn ++++ )·(x 2+x 3+…+x n +x 1) =[(21x x )2+(22x x )2+…+(nn x x 1-)2+(1x x n )2] [(2x )2+(3x )2+…+(n x )2+(1x )2] ≥(21x x ·2x +22x x ·3x +…+nn x x 1-·n x +1x x n ·1x ) =(x 1+x 2+…+x n )2,于是123221x x x x x x x x nn ++++ ≥x 1+x 2+…+x n . 巧解提示柯西不等式中有三个因式∑∑∑===ni ii ni ini iba b a 11212,,,而一般题目中只有一个或两个因式,为了运用柯西不等式,我们需要设法嵌入一个因式(嵌入的因式之和往往是定值),这也是利用柯西不等式的技巧之一.知识点三: 用柯西不等式求函数的极值例3 已知实数a,b,c,d 满足a+b+c+d=3,a 2+2b 2+3c 2+6d 2=5,试求a 的最值. 思路分析:本题求极值问题从表面上看不能利用柯西不等式,但只要适当添加上常数项或和为常数的各项,就可以应用柯西不等式来解. 解:由柯西不等式得,有 (2b 2+3c 2+6d 2)(613121++)≥(b +c+d)2, 即2b 2+3c 2+6d 2≥(b+c+d)2. 由条件可得,5-a 2≥(3-a)2. 解得,1≤a≤2,当且仅当6/163/132/12dc b ==时等号成立. 代入b=1,c=31,d=61时,a max =2; b=1,c=32,d=31时,a min =1.巧妙变式为了给运用柯西不等式创造条件,经常引进一些待定的参数,其值的确定由题设或者由等号成立的充要条件共同确定,也有一些三角极值问题我们可以反复运用柯西不等式进行解决.而有些极值问题的解决需要反复利用柯西不等式才能达到目的,但在运用过程中,每运用一次前后等号成立的条件必须一致,不能自相矛盾,否则就会出现错误.这多次反复运用柯西不等式的方法也是常用技巧之一. 如:已知a,b 为正常数,且0<x<2π,求y=x bx a cos sin +的最小值. 解:利用柯西不等式,得)(32323232b a b a +=+(sin 2x+cos 2x)≥(3a sinx+3b cosx)2. 当且仅当33cos sin bxax=时等号成立.于是33232a b a ≥+sinx+3b cosx.再由柯西不等式,得3232b a +(xbx a cos sin +) ≥(3a sinx+3b cosx)(xb x a cos sin +) ≥(xb xb x a x a cos cos sin sin 66+)2=(a 32+b 32)2. 当且仅当33cos sin bxax=时等号成立.从而y=xb x a cos sin +≥(a 32+b 32)32.于是y=xb x a cos sin +的最小值是(a 32+b 32)32. 问题·探究 思想方法探究问题 试探究用柯西不等式导出重要公式.如n 个实数平方平均数不小于这n 个数的算术平均数,即若a 1,a 2,…,a n ∈R ,则na a a n a a a nn 2222121+++≤+++ . 探究过程:由柯西不等式可知(a 1+a 2+…+a n )2≤(a 1·1+a 2·1+…+a n ·1)2≤(a 12+a 22+…+a n 2)·(12+12+…+12)=(a 12+a 22+…+a n 2)·n,所以n a a a n 221)(+++ ≤a 12+a 22+…+a n 2,故na a a na a a nn2222121+++≤+++ .不等式na a a n a a a nn 2222121+++≤+++ ,把中学教材中仅有关于两个正数的“算术平均”,“几何平均”问题拓广到了“二次幂平均”问题,即nn a a a 21≤na a a n a a a nn 2222121+++≤+++ ,这不仅拓宽了中学生的眼界,而且为解决许多不等式的问题开辟了一条新路.探究结论:柯西不等式不仅在高等数学中是一个十分重要的不等式,而且它对初等数学也有很好的指导作用,利用它能方便地解决一些中学数学中的有关问题. 交流讨论探究问题 柯西不等式在求某些函数最值中和证明某些不等式时是经常使用的理论根据,试交流讨论使用柯西不等式的技巧,试举例归纳.探究过程:人物甲:构造符合柯西不等式的形式及条件可以巧拆常数,如:设a 、b 、c 为正数且各不相等.求证cb a ac c b b a ++>+++++9222.我们可以如此分析:∵a 、b 、c 均为正,∴为证结论正确只需证2(a+b+c)[ac c b b a +++++111]>9.而2(a+b+d)=(a+b)+(b+c)+(c+a),又9=(1+1+1)2.人物乙:构造符合柯西不等式的形式及条件可以重新安排某些项的次序,如:a 、b 为非负数,a+b=1,x 1,x 2∈R +,求证(ax 1+bx 2)(bx 1+ax 2)≥x 1x 2.我们可以如此分析:不等号左边为两个二项式积,a,b ∈R -,x 1,x 2∈R +,直接用柯西不等式做得不到预想结论,当把第二个小括号的两项前后调换一下位置,就能证明结论了.人物丙:构造符合柯西不等式的形式及条件可以改变结构,从而能够使用柯西不等式,如:若a>b>c ,求证c b b a -+-11≥ca -4.我们可以如此分析:初式并不能使用柯西不等式,改造结构后便可使用柯西不等式了.∵a-c=(a-b)+(b-c),a>c,∴a-c>0,∴结论改为(a-c)(cb b a -+-11)≥4.人物丁:构造符合柯西不等式的形式及条件可以添项,如:若a,b,c ∈R +,求证b ac a c b c b a +++++≥23.我们可以如此分析:左端变形c b a ++1+ac b ++1+b a c ++1=(a+b+c)(b a a c c b +++++111),∴只需证此式≥29即可.探究结论:使用柯西不等式的技巧主要就是使用一些方法(巧拆常数、重新安排某些项的次序、添项等)构造符合柯西不等式的形式及条件.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一课时 3.1 二维形式的柯西不等式(一)
2. 练习:已知a 、b 、c 、d 为实数,求证22222()()()a b c d ac bd ++≥+
① 提出定理1:若a 、b 、c 、d 为实数,则22222()()()a b c d ac bd ++≥+.
证法一:(比较法)22222()()()a b c d ac bd ++-+=….=2()0ad bc -≥
证法二:(综合法)222222222222()()a b c d a c a d b c b d ++=+++
222()()()ac bd ad bc ac bd =++-≥+. (要点:展开→配方)
证法三:(向量法)设向量(,)m a b =,(,)n c d =,则22||m a b =+,2||n c d =+.
∵ m n ac bd •=+,且||||cos ,m n m n m n =<>,则||||||m n m n ≤. ∴ …..
证法四:(函数法)设22222()()2()f x a b x ac bd x c d =+-+++,则
22()()()f x ax c bx d =-+-≥0恒成立. ∴ 22222[2()]4()()ac bd a b c d ∆=-+-++≤0,即…..
③二维形式的柯西不等式的一些变式:
222||c d ac bd +≥+ 或 222||||c d ac bd +≥+ 222c d ac bd +≥+. ④ 提出定理2:设,αβ是两个向量,则||||||αβαβ≤.
即柯西不等式的向量形式(由向量法提出 )
→ 讨论:上面时候等号成立?(β是零向量,或者,αβ共线)
⑤ 练习:已知a 、b 、c 、d ≥ 证法:(分析法)平方 → 应用柯西不等式 → 讨论:其几何意义?(构造三角形)
2. 教学三角不等式:
① 出示定理3:设1122,,,x y x y R ∈≥分析其几何意义 → 如何利用柯西不等式证明
→ 变式:若112233,,,,,x y x y x y R ∈,则结合以上几何意义,可得到怎样的三角不等式?
3. 小结:二维柯西不等式的代数形式、向量形式;三角不等式的两种形式(两点、三点)
第二课时 3.1 二维形式的柯西不等式(二)
教学过程:
22222()()()a b c d ac bd ++≥+≥
3. 如何利用二维柯西不等式求函数y =?
要点:利用变式222||ac bd c d ++.
二、讲授新课:
1. 教学最大(小)值:
① 出示例1:求函数y =
分析:如何变形? → 构造柯西不等式的形式 → 板演
→ 变式:y = → 推广:,,,,,)y a b c d e f R +=∈ ② 练习:已知321x y +=,求22x y +的最小值.
解答要点:(凑配法)2222222111()(32)(32)131313x y x y x y +=
++≥+=. 2. 教学不等式的证明: ① 出示例2:若,x y R +∈,2x y +=,求证:
112x y
+≥. 分析:如何变形后利用柯西不等式? (注意对比 → 构造)
要点:2222111111()()]
22x y x y x y +=++=++≥…
讨论:其它证法(利用基本不等式)
② 练习:已知a 、b R +∈,求证:11()()4a b a b
++≥. 3. 练习:
① 已知,,,x y a b R +∈,且1a b x y
+=,则x y +的最小值. 要点:()()a b x y x y x y
+=++=…. → 其它证法 ② 若,,x y z R +∈,且1x y z ++=,求222x y z ++的最小值. (要点:利用三维柯西不等式) 变式:若,,x y z R +∈,且1x y z ++=
.
第三课时 3.2 一般形式的柯西不等式
2. 提问:二维形式的柯西不等式?如何将二维形式的柯西不等式拓广到三维?
答案:22222()()()a b c d ac bd ++≥+;2222222()()()a b c d e f ad be cf ++++≥++
二、讲授新课:
1. 教学一般形式的柯西不等式:
① 提问:由平面向量的柯西不等式||||||αβαβ≤,如果得到空间向量的柯西不等式及代数形式? ② 猜想:n 维向量的坐标?n 维向量的柯西不等式及代数形式?
结论:设1212,,,,,,,n n a a a b b b R ∈,则
222222212121122()()()n n n n a a a b b b a b a b a b +++++≥+++
讨论:什么时候取等号?(当且仅当1212n n
a a a
b b b ===时取等号,假设0i b ≠) 联想:设1122n n B a b a b a b =+++,22212n A a a a =++,22212n C b b b =+++,则有20B AC -≥,可联想到一些什么?
③ 讨论:如何构造二次函数证明n 维形式的柯西不等式? (注意分类)
要点:令2222121122)2()n n n f x a a a x a b a b a b x =++⋅⋅⋅++++⋅⋅⋅+(
)(22212()n b b b +++⋅⋅⋅+ ,则 2221122()()())0n n f x a x b a x b a x b =++++⋅⋅⋅+≥+(.
又222120n a a a ++⋅⋅⋅+>,从而结合二次函数的图像可知,
[]22221122122()4()n n n a b a b a b a a a ∆=+++-++22212()n b b b +++≤0
即有要证明的结论成立. (注意:分析什么时候等号成立.)
④ 变式:222212121()n n a a a a a a n
++≥++⋅⋅⋅+. (讨论如何证明) 2. 教学柯西不等式的应用:
① 出示例1:已知321x y z ++=,求222x y z ++的最小值.
分析:如何变形后构造柯西不等式? → 板演 → 变式:
② 练习:若,,x y z R +∈,且1111x y z ++=,求23y z x ++的最小值. ③ 出示例2:若a >b >c ,求证:c a c b b a -≥-+-411. 要点:21111()()[()()]()(11)4a c a b b c a b b c a b b c
-+=-+-+≥+=---- ② 提出排序不等式(即排序原理):
设有两个有序实数组:12a a ≤≤···n a ≤;12b b ≤≤···n b ≤.12,,c c ···n c 是12,b b ,···,n b 的任一排列,则有 1122a b a b ++···+n n a b (同序和)
1122a c a c ≥++·
··+n n a c (乱序和) 121n n a b a b -≥++·
··+1n a b (反序和)
当且仅当12a a ==···=n a 或12b b ==···=n b 时,反序和等于同序和. (要点:理解其思想,记住其形式)
2. 教学排序不等式的应用:
① 出示例1:设12,,,n a a a ⋅⋅⋅是n 个互不相同的正整数,求证:
32
1222111
12323n
a a a a n n +++⋅⋅⋅+≤+++⋅⋅⋅+.
分析:如何构造有序排列? 如何运用套用排序不等式?
证明过程:
设12,,,n b b b ⋅⋅⋅是12,,,n a a a ⋅⋅⋅的一个排列,且12n b b b <<⋅⋅⋅<,则121,2,,n b b b n ≥≥⋅⋅⋅≥. 又222111
123n >>>⋅⋅⋅>,由排序不等式,得
332
2112222222323n n
a a
b b a b a b n n +++⋅⋅⋅+≥+++⋅⋅⋅+≥…
小结:分析目标,构造有序排列.
② 练习:
已知,,a b c 为正数,求证:3332222()()()()a b c a b c b a c c a b ++≥+++++. 解答要点:由对称性,假设a b c ≤≤,则222a b c ≤≤,
于是 222222a a b b c c a c b a c b ++≥++,222222a a b b c c a b b c c a ++≥++, 两式相加即得.。