向量与向量的加减法讲义教材

合集下载

向量的加减法课件

向量的加减法课件

题目2
已知向量$overset{longrightarrow}{a} = (2,3)$,$overset{longrightarrow}{b} = ( - 1,2)$,求$overset{longrightarrow}{a} overset{longrightarrow}{b}$。
进阶练习题
题目3
三角形法则的几何解释
向量减法的三角形法则可以理解为两个向量在起点和终点之间形成的闭合三角形,减数向量是三角形的一条边。
向量减法的向量场意义
向量场
向量场是由一组有序的向量所组成的集合,每个向量都有一个起点和一个终点。
向量场中向量的加减法
在向量场中,向量的加减法可以通过将减数的起点移动到被减数的起点来实现,然后按照向量的加法 法则进行计算。
感谢您的观看
THANKS
02 向量加法的几何意义

向量加法的平行四边形法则
总结词
向量加法的平行四边形法则是向量的基本运算法则之一,它 基于平行四边形的性质,将两个向量相加得到一个新的向量 。
详细描述
向量加法的平行四边形法则是通过构造一个平行四边形,其 中两个相邻的边分别表示要相加的向量,然后连接对角线来 表示这两个向量的和。
详细描述
在向量场中,向量加法运算可以看作 是将一个向量从一个点平移到另一个 点,这种平移过程可以用来描述物体 在空间中的运动和力的作用。
03 向量减法的几何意义
向量减法的三角形法则
三角形法则
向量减法可以通过作平行四边形并取对角线来实现,也可以通过连接两个向量的起点,并作与减数平行的向量来 实现。
答案3
$2overset{longrightarrow}{a} + overset{longrightarrow}{b} = (5,5)$

必修二《向量的加法和减法运算》课件

必修二《向量的加法和减法运算》课件
【向量加法的结合律】
+ + = + ( + )
多个向量的加法运算可以按照任意的次序与任意的组合进行,如:
+ + + = + + + , + + + = + ( + + )
1
向量的加法
向量加法的几何意义
+
【1】三角形法则:如图,已知非零向量 , ,在平面内任取一点,作
★向量加减法的结果还是向量.
在四边形ABCD中,AB=DC,且|AD-AB|=|AD+AB|,则四边形ABCD
是(

A. 平行四边形




B. 菱形
C. 矩形
D. 正方形
忽视向量共线、零向量等特殊情况
坑②
已知非零向量 , , 满足 + + = ,那么表示 , ,
第6章 平面向量及其应用
6.2.1 向量的加法和减法运算
1
向量的加法
向量加法的定义
★ 求两个向量的和的运算,叫做向量的加法;
★ 两个向量的和,仍然是一个向量;
★ 对于零向量 和任意向量 ,规定: + = + =
向量加法的交换律和结合律
【向量加法的交换律】 + = +
题①
如图,已知 , ,作出向量 + .
【解】如图所示
+ = − || ,有 − = | + | < || + ||

+
+

向量及向量的加减法(教学课件2019)

向量及向量的加减法(教学课件2019)

帷幄 征为博士 太中大夫 相以下举国大索 弓弩三不当一 常以十倍之地 韩 魏皆姬姓也 上悲哭 餔时 次卿用刑罚深 令天下县邑城 相三王 事未发 夫以眇眇之身 蛮荆来威 亲戚畔之 为秦博士 十丈为引 以从民望 信 耳以兵数万 而复还至其百骑中 饰厨 传 丞相司直李松将二千馀人至
湖 本起於黄钟之重 枯木朽株尽为难矣 佐助旋机 父勉其子 数使使尉黎 危须诸国 以弑死 由是颜家有泠 任之学 如故操 欲防民盗铸 雒出书 二十六年薨 今白鹤馆以四月乙未 上由是思之 多聚观者 赞谒称臣而不名 及宣帝寝疾 乐安 空内自罢敝 出则教民於应敌 元 西去候山 太子立
保妻子之臣随而媒糵其短 罪逆不道 斥之 建游章台宫 龙斗於郑时门之外洧渊 舅氏蘧蒢 故天下之士归於汉王 仰天拊缶而呼乌乌 竟免於刑戮 得亡变生 多至千数 沛公欲许之 白义可因随后行县送邓 闻莽死 计之过者 岂有不摧折者哉 假与犁 牛 种 食 夫一隅为不善 奉戴侯后 亦不罹咎
野王嗣父爵为关内侯 上天聪明 明不能烛 以骑驰蹂乃稼穑也 日夜教单于候利害处 至胶西面约之 知文王不欲以子临父 数逋荡 食甘露 有不忍移祸之诚 今空复多出将率 亡降匈奴 以观天变 恽诛 食邑如长信宫 中宫 追尊傅父为崇祖侯 丁父为褒德侯 莫善於乐 言圣王在上 进退异言 武
声谢我 因棜将军敖有罪 运天关 与连和 皆受官禄 田宅 财物 产气黄钟 因利乘便 用甄丰 甄邯以自助 子烈王偃嗣 赐钱二百万 为楚所败 复立戴王弟襄隄侯子愈为广德王 大昆弥治赤谷城 莫能有终 孝文即位 公移敕书曰 即各欲求索自快 臣愚以为非冠带之国 今规以为苑 外内骚动 吏
卒奉词焉 就国之后 罪一也 复为郅支遗虏所笑 愿吾子因循旧贯 合於古制 夫不素养士而欲求贤 贯黄龙 当伏重诛 谓螟螣之属也 以相约而后相谩 政缓则出晚 故用宦者 终有叔段篡国之祸 诸侯散落 功德茂盛 少傅周堪为诸吏光禄大夫 元帝不以为能 其上将军印绶 布恩施惠 胜兵二千人

9.2.1向量的加减法课件高中数学苏教版必修第二册

9.2.1向量的加减法课件高中数学苏教版必修第二册

量不共线时,两种加法法则在本质上是一致的.
微练习
(1)在平行四边形 ABCD 中,下列结论错误的是(
)
A. =
B. + =
C. = +
D. + =0
(2)化简 + + =
答案 (1)C
.
(2)0
解析 (1)因为 = + ≠ + ,所以 C 错误.
(2) + + = + + =( + )+ = + =0.
(3) + + + + = + + + + = + +
+ = + + = + =0.
(1)交换律:a+b=b+a.
(2)结合律:(a+b)+c=a+(b+c).
名师点析 |a+b|与|a|,|b|之间的关系
对任意两个向量a,b,有|a+b|≤|a|+|b|,当且仅当a,b方向相同时等号成立.
微练习
已知非零向量a,b,c,则向量(a+c)+b,b+(a+c),b+(c+a),c+(b+a),c+(a+b)中,
名师点析 向量加法的平行四边形法则和三角形法则的区分与联系
区分:(1)三角形法则中强调“首尾相接”,平行四边形法则中强调的是“共起
点”;(2)三角形法则适用于所有的两个非零向量求和,而平行四边形法则仅
适用于不共线的两个非零向量求和.

向量的加法与减法教学课件

向量的加法与减法教学课件

向量减法的几何意义
向量减法的几何意义是两个向量的起点重合时,将其中一个 向量反向延长后与另一个向量相交,从起点沿着交点、原点 、终点方向得到的向量即为两向量的差。
向量减法可以用于表示速度和加速度的变化关系,例如在匀 变速直线运动中,速度的变化量可以表示为初速度和末速度 的差。
03
向量加法与减法的应用
THANKS
在物理中的应用
力的合成与分解
振动与波动
通过向量加法和减法,可以计算出多 个力的合力或分力,从而解决力学问 题。
在振动和波动的研究中,向量加法和 减法用于分析振幅、相位和方向等物 理量。
速度和加速度的计算
在运动学中,向量加法和减法用于计 算速度和加速度,分析物体的运动状 态。
在数学中的应用
01
02
等参数,优化出行路线。
航空航天
在航空航天领域,向量加法和减法 用于分析飞行器的速度、加速度、 方向等参数,确保安全和有效的飞 行。
经济学
在经济学中,向量加法和减法用于 分析经济数据,如GDP、就业率、 通货膨胀率等,预测经济发展趋势 。
04
向量的加法与减法运算规则
平行四边形法则
总结词
平行四边形法则是一种直观的向量加法方法,通过构造两个向量的平行四边形 ,利用对角线来表示它们的和。
向量加法的性质
1 2
3
交换律
向量加法满足交换律,即a+b=b+a。
结合律
向量加法满足结合律,即(a+b)+c=a+(b+c)。
零向量
任意向量与零向量的和等于该向量本身,即a+0=a。
向量加法的几何意义
表示两个有向线段首尾相接形成的向量。 表示位移或速度的合成。

2024新人教A版高中数学第02讲 平面向量的加、减法运算(教师版)-高一数学同步精品讲义

2024新人教A版高中数学第02讲 平面向量的加、减法运算(教师版)-高一数学同步精品讲义

第02讲平面向量的加、减法运算目标导航课程标准课标解读1.理解向量加法的含义,会用向量加法的三角形法则和平行四边形法则作出两个向量的和.2.掌握向量加法的交换律与结合律,并会用它们进行向量运算.3.掌握向量减法的概念.理解两个向量的减法就是转化为向量加法来进行的.4.掌握相反向量.5.掌握向量加、减法的几何意义.通过本节课的学习,要求掌握现面向量的加法与减法的运算法则及相关的运算定律,掌握两种运算的几何意义,会进行平面向量的相关运算,注意两种运算的条件.知识精讲知识点1.向量的加法(1)向量的加法求两个向量和的运算,叫做向量的加法.(2)向量加法的三角形法则如图,已知向量a ,b ,在平面上任取一点A ,作AB = a ,BC = b ,则向量AC叫做a 与的b 和,记作+a b ,即AB BC AC +=+=a b ,上述求两个向量和的作图法则,叫做向量加法的三角形法则.【微点拨】当两个向量共线时,三角形法则同样适用,下图分别表示两个同向共线向量和的情形,及两个异向共线向量和的情形.(3)向量加法的平行四边形法则如图,已知两个不共线的向量a 和b ,作OA = a ,OB =b ,则O 、A 、B 三点不共线,以OA 、OB 为邻边作平行四边形OACB ,则对角线上的向量OC OA OB =+,此种作法称为向量加法的平行四边形法则.【微点拨】若n 个向量顺次首尾相接,则由起始向量的起点指向末向量的终点的向量就是它们的和,即1112233411n n n n n A A A A A A A A A A A A +-+=+++⋅⋅⋅+,如图.(4)和向量的模与原向量之间的关系一般地,我们有+≤+a b a b .当a 与b 共线且同向时,+=+a b a b ;当a 与b 共线且异向时,+=-a b a b ;当a 与b 不共线时,+<+a b a b .(5)向量加法的运算律交换律:+=+a b b a ;结合律:()()++=++a b c a b c .注意:①当a 、b 至少有一个为零向量时,交换律和结合律仍成立;②当a 、b 共线时,交换律和结合律也成立.(6)向量求和的多边形法则由两个向加法的定义可知,两个向量的和仍是一个向量,这样我们就能把三个、四个或任意多个向量相加,现以四个向量为例,如图,已知向量a ,b ,c ,d ,在平面上任选一点O ,作OA = a ,AB = b ,BC = c ,CD = d ,则OD OA AB BC CD =+++=+++a b c d .已知n 个向量,依次把这n 个向量首尾相连,以第一个向量的起点为起点、第n 个向量的终点为终点的向量叫做这n 个向量的和向量.这个法则叫做向量求和的多边形法则.(7)向量加法的实际应用向量的加法在三角形、四边形等平面几何知识,物理知识中都有着广泛的应用,在解决向量与平面几何知识相结合的题目时,要注意数形结合,这也体现了向量作为一种工具在几何学、物理学等知识领域的应用.2.向量的减法(1)相反向量我们把与向量a 长度相等、方向相反的向量,叫做a 的相反向量,记作-a .规定零向量的相反向量仍为零向量,且①()--=a a ;②()()0+-=-+=a a a a ;若a ,b 互为相反向量,则=-a b ,=-b a ,0+=a b .(2)向量减法的定义向量a 加上向量b 的相反向量,叫做a 与b 的差,即()-=+-a b a b ,求两个向量差的运算,叫做向量的减法,向量的减法实质上也是向量的加法.3.向量减法的几何意义(1)非零共线向量a ,b 的差-a b ;①若a ,b 反向,则-a b 与a 同向,且-=+a b a b .②若a ,b 同向,(ⅰ)若>a b ,则-a b 与a 同向,且-=-a b a b ;(ⅱ)若<a b ,则-a b 与a 反向,且-=-a b b a ;(ⅲ)若=a b ,则0-=a b .其几何意义分别如图(1)(2)(3)(4).(2)非零不共线向量a ,b 的差-a b :①如图,在平面内任取一点O ,作OA = a ,OB = b ,则向量BA为所求,即BA OA OB =-=-a b .即把两个向量的起点放在一起,则两个向量的差是以减向量的终点为起点、被减向量的终点为终点的向量.②如图,在平面内任取一点O ,作OA = a ,OB =b ,分别以OA ,OB 为边作平行四边形OACB ,连接BA ,则BA BC CA =+=-a b ,这种作差向量的方法实质上是利用向量减法的定义.4.向量减法的三角形法则和平行四边形法则-a b 从“相反向量”这个角度有两种作法:三角形法则和平行四边形法则.减法的三角形法则的作法:在平面内取一点O ,作OA = a ,OB = b ,则BA =-a b ,即-a b 可以表示从向量b 的终点指向向量a 的终点的向量(注意:差向量的“箭头”指向被减向量).具体作法如图(1)(a ,b 不共线)和图(2)、(3)(a ,b 共线)所示.减法的平行四边形法则的作法:当a ,b 不共线时.如图(1),在平面内任取一点O ,作OA = a ,OB =-b ,则由向量加法的平行四边形法则可得()OC =+-=- a b a b ,这是向量减法的平行四边形法则.若a ,b 同向共线,如图(2)所示;若a ,b 异向共线.如图(3)所示.5.向量的加法和减法的运算问题关于向量的加法和减法运算问题,一种解法就是依据三角形法则通过作图来解决,另一种解法就是通过表示向量的有向线段的字母符号运算来解决.具体地说,在一个用有向线段表示向量的运算式子中,将式子中的“−”改为“+”只需把表示向量的两个字母的顺序颠倒一下即可.如“AB - ”改为“BA +”.解用几个基本向量表示某向量问题的基本技巧是,第一步:观察各向量位置;第二步:寻找(或作)相应的平行四边形或三角形:第三步:运用法则找关系;第四步:化简结果.【微点拨】向量减法运算是加法的逆运算.在理解相反向量的基础上,结合向量的加法运算掌握向量的减法运算.【即学即练1】在△ABC 中,BC = a ,CA = b ,则AB等于()A .+a bB .--a bC .-a bD .-b a【答案】B【解析】AB CB CA =- =–BC CA -=--a b ,故选B .【即学即练2】如图,在矩形ABCD 中,AO OB AD ++=()A .ABB .ACC .ADD .BD【答案】B【解析】在矩形ABCD 中,AD BC = ,则AO OB AD AO ++= +OB +BC AC =,故选B .【名师点睛】(1)向量加法的多边形法则:n 个向量经过平移,顺次使前一个向量的终点与后一个向量的起点重合,组成组向量折线,这n 个向量的和等于折线起点到终点的向量.这个法则叫做向量加法的多边形法则.多边形法则实质就是三角形法则的连续应用.(2)|a +b |≤|a |+|b |.【即学即练3】向量()()AB MB BO BC OM ++++ 化简后等于()A .BCB .ABC .ACD .AM【答案】C【解析】()()AB MB BO BC OM AB ++++= +BO +OM +MB +BC AO = +OM +MB +BC =AM+MB +BC AB = +BC AC =.故选C .【名师点睛】(1)首先观察各向量字母的排列顺序,再进行恰当的组合,利用向量加法法则求解.(2)此类问题应根据三角形法则或平行四边形形法则,观察是否具备应用法则的条件,若不具备,应改变条件,以便使用法则求解.【即学即练4】在△ABC 中,BC = a ,CA = b ,则AB等于()A .+a bB .--a bC .-a bD .-b a【答案】B【解析】AB CB CA =- =–BC CA -=--a b ,故选B .【即学即练5】下列四式不能化简为PQ的是()A .()AB PA BQ ++B.()()AB PC BA QC ++- C .QC CQ QP+- D .PA AB BQ+- 【答案】D 【分析】由向量加减法法则计算各选项,即可得结论.【详解A 项中,()()AB PA BQ AB BQ AP AQ AP PQ ++=+-=-=;B 项中,()()()()AB PC BA QC AB AB PC CQ PQ ++-=-++= ;C 项中,QC CQ QP QP PQ +-=-=;D 项中,PA AB BQ PB BQ PQ +-=-≠.故选:D.【即学即练6】已知非零向量a 与b方向相反,则下列等式中成立的是()A .a b a b -=-B .a b a b+=- C .a b a b+=- D .a b a b+=+ 【答案】C 【分析】根据方向相反的两个向量的和或差的运算逐一判断.【详解】A.a b -可能等于零,大于零,小于零,0a b a b -=+> ,A 不成立B.a b a b +=-r r r r ,a b a b -=+,B 不成立C.a b a b -=+,C 成立D.a b a b a b +=-≠+,D 不成立.故选:C.【即学即练7】在平行四边形ABCD 中,BC CD BA -+等于()A .BCB .DAC .ABD .AC【答案】A【解析】∵在平行四边形ABCD 中,DC 与BA 是一对相反向量,∴DC BA =-,∴–BC CD BA BC -+= BA +BA BC =,故选A .【名师点睛】注意向量几何意义的应用,利用数形结合的思想解题.能力拓展考法011.向量加法运算及其几何意义(1)平行四边形法则的应用前提:两个向量是从同一点出发的不共线向量.三角形法则应用的前提:两个向量“首尾相接”.(2)当两个向量不共线时,三角形法则和平行四边形法则实质是一样的.三角形法则作出的图形是平行四边形法则作出图形的一半.但当两个向量共线时,平行四边形法则便不再适用.(3)向量加法的三角形法则和平行四边形法则是向量加法的几何意义.【典例1】如图,在正六边形ABCDEF 中,BA CD FB ++等于()A .0B .BEC .AD D .CF【答案】A 【分析】根据相等向量和向量加法运算直接计算即可.【详解】CD AF = ,∴0BA CD FB BA AF FB ++==++ .故选:A.考法022.向量加法的运算律(1)向量的加法与实数加法类似,都满足交换律和结合律.(2)由于向量的加法满足交换律与结合律,因此多个向量的加法运算就可按照任意的次序与任意组合来进行.例如,(a +b )+(c +d )=(b +d )+(a +c ),a +b +c +d +e =[d +(a +c )]+(b +e ).【典例2】化简下列各式:①AB BC CA ++ ;②()AB MB BO OM +++uu u r uuu r uu u r uuu r ;③OA OC BO CO +++;④AB CA BD DC +++.其中结果为0 的个数是()A .1B .2C .3D .4【答案】B 【分析】根据向量的加减运算法则计算,逐一判断①②③④的正确性,即可得正确答案.【详解】对于①:0AB BC CA AC CA ++=+=,对于②:()AB MB BO OM AB BO OM MB AM MB AB +++=+++=+=uu u r uuu r uu u r uuu r uu u r uu u r uuu r uuu r uuu r uuu r uu u r,对于③:()()0OA OC BO CO BO OA CO OC BA BA +++=+++=+=,对于④:()()0AB CA BD DC AB BD DC CA AD DA +++=+++=+= ,所以结果为0的个数是2,故选:B考法033.向量的減法运算及其几何意义(1)向量减法的实质是向量加法的逆运算.利用相反向量的定义可以把减法化为加法.在用三角形法则作向量减法时,只要记住“连接两向量的终点,箭头指向被减向量”即可.(2)以向量AB =a ,A 6=b 为邻边作平行四边形ABCD ,则两条对角线的向量为AC =a +b ,BD =b –a ,DB =a –b ,这一结论在以后应用非常广泛,应该牢记并加强理解.【典例3】已知85AB AC == ,,则BC的取值范围是__________.【答案】[3,13]【解析】∵–BC AC AB = ,∴BC =|–AC AB|,∴AB AC - ≤BC ≤AB AC + ,即3≤BC≤13.故答案为:[3,13].【名师点睛】本题考查的知识点是两向量的和或差的模的最值,两向量反向,差的模有最大值,两向量反向,差的模有最小值是解答本题的关键.|a –b |、|a |–|b |、|a |+|b |三者的大小关系(1)当向量a 与b 共线时,当两非零向量a 与b 同向时,|a –b |=|a |–|b |<|a |+|b |;当两非零向量a 与b 反向时,|a –b |=|a |+|b |>|a |–|b |;当a 与b 中至少有一个为零向量时,|a –b |=|a |–|b |=|a |+|b |.(2)当两非零向量a 与b 不共线时,如在△ABC 中,AC =a ,AB =b ,则BC =AC –AB =a –b ,根据三角形中任意两边之差总小于第三边,任意两边之和总大于第三边,可得||a |–|b ||<|a –b |<|a |+|b |.综合可知,对任意的向量a 与b 都有||a |–|b ||≤|a –b |≤|a |+|b |.只当a 与b 同向或a 与b 中至少有一个为零向量时||a |–|b ||≤|a –b |中的等号成立;当a 与b 反向或a 与b 中至少有一个为零向量时|a –b |≤|a |+|b |中的等号成立.考法044.向量加、减法的综合应用向量的几何意义及加、减法运算常用来解决平面几何问题,解题时要将所给向量式中各向量进行移项或重新组合,并灵活运用相反向量,把向量相等、平行、模的关系进行转化.【典例4】化简(1)()()AB CD AC BD --- (2)OA OD AD -+ ;(3)AB DA + +BD BC CA --.【答案】(1)0 ;(2)0 ;(3)AB.【分析】(1)方法一:将CD - 转化为DC,将AC - 转化为CA ,利用向量的加法法则,即可求得答案.方法二:利用向量的减法法则,化简整理,即可得答案.(2)利用向量的减法法则,化简整理,即可得答案.(3)根据向量的线性运算法则,即可求得答案.【详解】(1)方法一(统一成加法):()()AB CD AC BD AB AC CD BD ---=--+AB BD DC CA AD DA =+++=+= 方法二(利用OA OB BA -=uu r uu u r uu r):()()AB CD AC BD AB CD AC BD ---=--+ 0AB AC CD BD CB CD BD DB BD =--+=-+=+= (2)0OA OD AD DA AD -+=+=uu r uuu r uuu r uu u r uuu r r .(3)AB DA BD BC CA AB DA AC BD BC ++--=+++- AB DC CD AB=++= 【典例5】如图,M 、N 在线段BC 上,且BM CN =,试探求AB AC + 与AM AN +的关系,并证明之.【答案】相等,证明见解析【分析】求AB AC + 与AM AN +的关系为相等,利用向量加法的三角形法则即可证明.【详解】A A M C ANB A =++ 证明:由向量加法三角形法则知:,AB AM MB AC AN NC =+=+,所以AB AC AM MB AN NC +=+++ ,因为BM CN =,所以MB NC =- ,所以AB AC AM MB AN NC AM AN NC NC AM AN +=+++=++-=+ 【点睛】本题主要考查了向量的加法法则,相反向量,属于中档题.【典例6】如图所示,已知在矩形ABCD 中,3AD = ,8AB = .设,,AB a BC b BD c ===,求a b c -- .【答案】87a b c --=r r r【分析】延长直线AB ,使得直线AB 上一点B '满足AB BB '=,同理,延长直线AD ,使得直线AD 上一点D ¢满足AD DD '=,画出图形,则''a b c D B --=,进而求解即可【详解】延长直线AB ,使得直线AB 上一点B '满足AB BB '=,同理,延长直线AD ,使得直线AD 上一点D ¢满足AD DD '=,如图所示,则'b c BD += ,()'''''a b c a b c a BD BB BD D B --=-+=-=-=,则()()22''2432887a b c D B --==⨯+⨯=【点睛】本题考查向量的加法,减法在几何中的应用,考查向量的模.分层提分题组A 基础过关练1.向量AB CB BD BE DC ++++化简后等于()A .A EB .AC C .ADD .AB【答案】A 【分析】根据向量的线性运算求解即可.【详解】由AB CB BD BE DC AC CB BE AE →→++++=++= ,故选:A2.如图,向量AB a =,AC b = ,CD c = ,则向量BD 可以表示为()A .a b c ++B .a b c-+ C .b a c-+D .b a c-- 【答案】C 【分析】利用向量加法和减法的三角形法则计算即可.【详解】AD AB AC CD AB BD b a c=-=-+-=+ 故选:C.3..设D 为∆ABC 中BC 边上的中点,且O 为AD 边上靠近点A 的三等分点,则()A.5166BO AB AC=-+B.1162BO AB AC=-C.5166BO AB AC=- D.1162BO AB AC=-+【答案】A【解析】本题考点是平面向量的加减法运算法则,由题意可知在三角形BAO 中:()11513666BO AO AB AD AB AB AC AB AB AC =-=-=+-=-+,故选A.4.设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB FC +=().A .ADB .12ADC .BCD .12BC【答案】A【解析】本题的考点是平面向量的加法、减法法则,线段中点的性质,考查转化能力,用向量法表示三角形中线的性质要引起重视,由题意可知D ,E ,F 分别是BC ,CA ,AB 的中点,所以有以下结论:()()1122EB FC BA BC CA CB+=-+-+()()1112222BA CA AB AC AD AD =-+=+==,故选A.5.已知点G 是三角形ABC 所在平面内一点,满足0GA GB GC ++=,则G 点是三角形ABC的()A .垂心B .内心C .外心D .重心【答案】D 【分析】由题易得GA GB CG +=,以GA 、GB 为邻边作平行四边形GADB ,连接GD ,交AB 于点O ,进而可得CG GD =,进而可得13GO CO = ,所以CG 所在的直线CO 是AB 边上的中线,同理可证AG 所在的直线是BC 边上的中线,BG 所在的直线是AC 边上的中线,最后得出答案即可.【详解】因为0GA GB GC ++= ,所以GA GB GC CG +=-= ,以GA 、GB 为邻边作平行四边形GADB ,连接GD ,交AB 于点O ,如图所示:则CG GD =,所以13GO CO = ,点O 是AB 边的中点,所以CG 所在的直线CO 是AB 边上的中线,同理可证AG 所在的直线是BC 边上的中线,BG 所在的直线是AC 边上的中线,所以G 点是三角形ABC 的重心.故选:D .6.如图,D ,E ,F 分别为ABC 的边AB ,BC ,CA 的中点,则()A .0AD BE CF ++= B .0++= BD CF DF C .0++= AD CE CF D .0++= BD BE FC 【答案】A 【分析】根据平面向量的线性运算法则计算可得;【详解】解:D Q ,E ,F 分别是ABC 的边AB ,BC ,CA 的中点,∴12AD AB = ,12BE BC = ,12CF CA =,则1111()02222AD BE CF CA AB CA CA AB CA ++=++=++=,故A 正确;()1111122222BD CF DF BA CA BA CA BA BC BC ++=++=++=,故B 错误;()1111122222AD CE CF AB CB CA CA AB CB CB ++=++=++=,故C 错误;()1111122222BD BE FC BA BC AC BA AC BC BC ++=++=++=,故D 错误;故选:A .7.在ABC 中,点P 满足2AP AB AC =-,则()A .点P 不在直线BC 上B .点P 在CB 的延长线上C .点P 在线段BC 上D .点P 在BC 的延长线上【答案】B 【分析】由已知条件可得BP CB = ,从而可得BP 与CB共线,进而可得结论【详解】因为2AP AB AC =-,得AP AB AB AC =-- ,所以BP CB = ,所以,,B P C 三点共线,且点P 在CB 的延长线上,故选:B8.五角星是指有五只尖角、并以五条直线画成的星星图形,有许多国家的国旗设计都包含五角星,如中华人民共和国国旗.如图在正五角星中,每个角的角尖为36°,则下列说法正确的是()A .0CH ID += B .AB FE∥ C .2AF FG HG+= D .AF AB AJ=+ 【答案】D 【分析】利用相反向量可判断A ;利用向量共线可判断B ,利用向量的加法可判断C 、D.【详解】A ,由图可知CH 与ID 相交,所以CH 与ID不是相反向量,故A 错误;B ,AB 与DE 共线,所以DE 与FE 不共线,所以AB 与FE不共线,故B 错误;C ,2AF FG AG HG +=≠,故C 错误;D ,连接,BF JF ,由五角星的性质可得ABJF 为平行四边形,根据平行四边形法则可得AF AB AJ =+,故D 正确.故选:D9.已知A ,B ,C 为三个不共线的点,P 为△ABC 所在平面内一点,若PA PB PC AB +=+,则下列结论正确的是()A .点P 在△ABC 内部B .点P 在△ABC 外部C .点P 在直线AB 上D .点P 在直线AC 上【答案】D 【分析】由向量的运算可得CA AP =,进而可得解.【详解】∵PA PB PC AB +=+ ,∴PB PC AB PA -=- ,∴CB AB AP CB AB AP =+-= ,,即CA AP = .故点P 在边AC 所在的直线上.故选:D.10.平面上有三点A ,B ,C ,设m AB BC =+ ,n AB BC =-,若,m n 的长度恰好相等,则有()A .A ,B ,C 三点必在同一条直线上B . ABC 必为等腰三角形,且∠B 为顶角C . ABC 必为直角三角形,且∠B=90°D . ABC 必为等腰直角三角形【答案】C【分析】根据,m n 的长度相等,由|AC |=|BD|得到ABCD 是矩形判断.【详解】如图:因为,m n的长度相等,所以|AB BC + |=|AB BC - |,即|AC |=|BD |,所以ABCD 是矩形,故 ABC 是直角三角形,且∠B=90°.故选:C11.在平行四边形ABCD 中,设M 为线段BC 的中点,N 为线段AB 上靠近A 的三等分点,AB a = ,AD b = ,则向量NM =()A .1132a b+B .2132a b+C .1132a b-D .2132a b-【答案】B【分析】根据题意作出图形,将AM 用a 、b的表达式加以表示,再利用平面向量的减法法则可得出结果.【详解】解:由题意作出图形:在平行四边形ABCD 中, M 为BC 的中点,则12AM AB BM a b =+=+又 N 为线段AB 上靠近A 的三等分点,则1133AN AB ==11212332NM AM AN a b a a b∴=-=+-=+故选:B12.若O 是平面上的定点,A ,B ,C 是平面上不共线的三点,且满足()OP OC CB CAλ=++(R λ∈),则P 点的轨迹一定过ABC 的()A .外心B .内心C .重心D .垂心【答案】C【分析】由()OP OC CB CA λ=++ (R λ∈),得到()CP CB CA λ=+ ,再根据CB CA +经过在ABC 的重心判断.【详解】因为()OP OC CB CA λ=++(R λ∈),所以()CP CB CA λ=+,所以CB CA +在ABC 的边AB 上的中线所在直线上,则()CB CA λ+ 在ABC 的中线所在直线上,所以P 点的轨迹一定过ABC 的重心,故选:C13.下列命题中正确的是()A .如果非零向量a 与b 的方向相同或相反,那么a b + 的方向必与a ,b之一的方向相同B .在ABC 中,必有0AB BC CA ++=C .若0AB BC CA ++=,则A ,B ,C 为一个三角形的三个顶点D .若a ,b均为非零向量,则||a b + 与||||a b + 一定相等【答案】B 【分析】根据向量的线性运算法则,逐一分析各个选项,即可得答案.【详解】对于A :当a 与b 为相反向量时,0a b +=,方向任意,故A 错误;对于B :在ABC 中,0AB BC CA ++=,故B 正确;对于C :当A 、B 、C 三点共线时,满足0AB BC CA ++=,但不能构成三角形,故C 错误;对于D :若a ,b 均为非零向量,则a b a b +≤+ ,当且仅当a 与b同向时等号成立,故D错误.故选:B14.如右图,D ,E ,P 分别是ABC 的边AB ,BC ,CA 的中点,则()A .0AD BE CF ++= B .0BD CF DF -+=uu u r uu u r uuu r r C .0AD CE CF +-=uuu r uur uu u r r D .0BD BE FC --= 【答案】A 【分析】根据向量加法和减法的运算法则结合图像逐一运算即可得出答案.【详解】解:0AD BE CF DB BE ED DE ED ++=++=+=,故A 正确;BD CF DF BD FC DF BC -+=++=,故B 错误;AD CE CF AD FE AD DB AB +-=+=+=,故C 错误;2BD BE FC ED FC ED DE ED --=-=-=,故D 错误.故选:A.15.如图,在ABC 中,3BC BD →→=,23AE AD →→=,则CE →=()A .4599AB AC→→+B .4799AB AC→→-C .4133AB AC→→-D .4799AB AC→→-+【答案】B 【分析】利用向量定义,22()33CE AE AC AD AC AB BD AC →→→→→→→→=-=-=+-,最后化简为,AB AC →→来表示向量即可.【详解】22()33CE AE AC AD AC AB BD AC→→→→→→→→=-=-=+-2122()()3339AB BC AC AB AC AB AC →→→→→→→=+-=+--4799AB AC →→=-故选:B题组B 能力提升练1.在等腰梯形ABCD 中,//AB DC ,2AB DC =,E 为BC 的中点,则()A .3142AE AB AD→→→=+B .3122AE AB AD→→→=+C .1142AE AB AD →→→=+D .3144AE AB AD →→→=+【答案】A 【分析】作出示意图,利用数形结合,在梯形ABCD 中,利用三角形法则即可求解.【详解】如图所示:在三角形ABE 中,12AE AB BE AB BC→→→→→=+=+12AB BA AD DC →→→→⎛⎫=+++ ⎪⎝⎭1122AB AB AD AB →→→→⎛⎫=+-++ ⎪⎝⎭1122AB AB AD →→→⎛⎫ ⎪=+-+ ⎪⎝⎭3142AB AD →→=+.故选:A.2.已知O 是三角形ABC 内部的一点,230OA OB OC ++=,则OAC 的面积与OAB 的面积之比是()A .32B .23C .2D .1【答案】B 【分析】取D 、E 分别是BC 、AC 中点,根据向量的加法运算以及向量共线可得2OE OD =,再由三角形的相似比即可求解.【详解】如下图所示,D 、E 分别是BC 、AC 中点,由230OA OB OC ++=得()2OA OC OB OC +=-+ 即2OE OD =- ,所以2OE OD =,由COE AOE S S = ,COD BOD S S =△△,设1AOC S S = ,2BOC S S = ,则12COE AOE S S S ==,22COD BOD SS S == ,由三角形相似比可得1212122322AOB S S S S S +=++ ,解得12AOB S S S += ,因为:2:1AOE BOD S S = ,所以12:2:1S S =,即122S S =,所以112AOB S S S += ,所以123AOB S S = ,即OAC 的面积与OAB 的面积之比是23故选:B.3.已知平面向量a ,b ,c满足222a c a b b c ==-=-= ,则b 的取值范围为()A .[]1,3B .7⎡⎣C .[]2,3D .7⎡⎣【答案】C 【分析】由复数的几何意义画出简图,数形结合可得结果.【详解】令a OA =,由2a = 知点A 在以O 为圆心,2为半径的圆上;令2a OD =,由2a = 知点D 在以O 为圆心,4为半径的圆上;令c OC =,由2c = 知点C 在以O 为圆心,2为半径的圆上;令b OB =,由22a b -= 知点B 在以D 为圆心,2为半径的圆上,由1b c -= 知点B 也在以C为圆心,1为半径的圆上,所以点B 在以O 为圆心,内径为2,外径为3的圆环上,如图阴影部分,从而[]2,3b ∈.故选:C.4.在平行四边形ABCD 中,设CB a = ,CD b =,E 为AD 的靠近D 的三等分点,CE 与BD交于F ,则AF =()A .3144a b--B .3144a b-+C .1344a b--D .1344a b-【答案】A 【分析】找到AD 、BC 上的三等分点,则////AK GH EC ,结合图形易得4DBDF =,由AF AD DF =+ 即可知正确选项.【详解】如图,在AD 上取G 点,使得AG GE ED ==,在BC 上由左到右取K ,H ,使得BK KH HC ==,连接AK ,GH ,则////AK GH EC ,∵//DE BC 且13DE BC =,∴由相似比可知:4DBDF =,∴()131444AF AD DF a a b a b =+=-+-=-- .故选:A5.在ABC 中,D 、E 、F 分别是边BC 、CA 、AB 的中点,AD 、BE 、CF 交于点G ,则:①1122EF CA BC =- ;②1122BE AB BC =-+ ;③AD BE FC += ;④0GA GB GC ++= .上述结论中,正确的是()A .①②B .②③C .②③④D .①③④【答案】C 【分析】作出图形,利用平面向量的加法法则可判断①②③④的正误.【详解】如下图所示:对于①,F 、E 分别为AB 、AC 的中点,111222FE BC CA BC ∴=≠-,①错误;对于②,以BA 、BC 为邻边作平行四边形ABCO ,由平面向量加法的平行四边形法则可得2BE BO BA BC AB BC ==+=-+,1122BE AB BC ∴=-+,②正确;对于③,由②同理可得2AD AB AC =+uuu r uu u r uuu r,1122AD AB AC ∴=+ ,同理可得1122CF CA CB =+ ,()102AD BE CF AB AC BA BC CA CB ∴++=+++++=,AD BE CF FC ∴+=-=,③正确;对于④,易知点G 为ABC 的重心,所以,23GA AD =- ,23GB BE =- ,23GC CF =-,因此,()203GA GB GC AD BE CF ++=-++=,④正确.故选:C.【点睛】本题考查平面向量加法运算的相关判断,考查平面向量加法法则的应用,考查计算能力,属于中等题.6.八卦是中国文化中的哲学概念,如图1是八卦模型图,其平面图形记为图2中的正八边形ABCDEFGH ,其中1OA =,则给出下列结论:①0BF HF HD -+= ;②2OA OC OF +=- ;③AE FC GE AB +-=.其中正确的结论为()A .①②B .①③C .②③D .①②③【答案】C 【分析】根据平面向量的线性运算逐项进行化简计算,由此确定出正确选项.【详解】对于①:因为BF HF HD BF FH HD BH HD BD -+=++=+=,故①错误;对于②:因为3602908AOC ︒∠=⨯=︒,则以,OA OC 为邻边的平行四边形为正方形,又因为OB 平分AOC ∠,所以22OA OC +=-,故②正确;对于③:因为AE FC GE AE FC G EG A FC +-=++=+ ,且FC GB =,所以AE FC GE AG GB AB +-=+=,故③正确,故选:C.【点睛】关键点点睛:解答本题的关键利用合适的转化对向量的减法运算进行化简,由此验证关于向量的等式是否正确.7.ABC 中,AD DC =,点M 在BD 上,且满足37AM AB t AC =+ ,则实数t 的值为()A .67B .47C .27D .59【答案】C 【分析】由题意,可设DM k DB =,结合条件整理可得11(1)22AM AC DM k AC k AB =+=-+ ,得到关于k 与t 的方程组,解出t 即可.【详解】如图,因为AD DC =,所以12AD AC= 则12AM AD DM AC DM =+=+ ,因为M 在BD 上,不妨设1()()2DM k DB k AB AD k AB AC ==-=- ,则1111()(1)2222AM AC DM AC k AB AC k AC k AB =+=+-=-+ ,因为37AM AB t AC =+,所以371(1)2⎧⎪⎪⎨⎪⎩=-=⎪k k t ,解得27t =,故选:C【点睛】本题主要考查了平面向量的线性运算的应用及平面向量基本定理的应用,意在考查学生对这些知识的理解掌握水平.8.(多选题)下列各式结果为零向量的有()A .AB CA BC→→→++B .AB AC BD CD+++ C .OA OD AD-+ D .NQ QP MN MP++- 【答案】ACD 【分析】根据平面向量的线性运算逐个求解即可【详解】对A ,0AB CA BC CA AB BC CB BC ++=++=+=,故A 正确;对B ,()()2AB AC BD CD AB BD AC CD AD AD AD +++=+++=+=,故B 错误;对C ,0OA OD AD DA AD -+=+=,故C 正确;对D ,0NQ QP MN MP NP PN ++-=+=,故D 正确;故选:ACD 【点睛】本题主要考查了平面向量的线性运算9.(多选题)在平行四边形ABCD 中,点E ,F 分别是边BC 和DC 的中点,P 是DE 与BF 的交点,则有()A .12AE AB AD=+uu u r uu u r uuu rB .1122AF AB AD=+ C .2233AP AB AD=+ D .1122CP CD CB=+【答案】AC 【分析】对A ,B ,由向量的加法法则即可判断;对C ,D ,由向量的加法法则以及三角形重心的性质即可判断.【详解】解:如图所示:对A ,12AE AB BE AB BC =+=+,又BC AD = ,即12AE AB AD =+uu u r uu u r uuu r,故A 正确;对B ,1122AF AD DC AB AD =+=+,故B 错误;对C ,设O 为AC 与BD 的交点,由题意可得:P 是CBD 的重心,故2CP PO = ,222333AP AO OP AC AB AD =+==+,故C 正确;对D ,221111332233CP CO CB CD CB CD ⎛⎫==⨯+=+ ⎪⎝⎭,故D 错误.故选:AC.10.(多选题)设P 是OAB 内部(不含边界)的一点,以下可能成立的是()A .2155OP OA OB =+B .2455OP OA OB =+C .2155OP OA AB=+ D .2455OP OA AB=+【答案】AC 【分析】作出图示,根据向量的平行四边形法则逐项进行判断即可.【详解】对于A :如下图所示,可知P 在OAB 内部,故成立;对于B :如下图所示,可知P 在OAB 外部,故不成立;对于C :因为21211115555555OP OA AB OA AO OB OA OB =+=++=+,如下图所示,可知P 在OAB 内部,故成立;对于D :因为24244245555555OP OA AB OA AO OB OA OB =+=++=-+ ,如下图所示,可知P 在OAB 外部,故不成立;故选:AC.【点睛】关键点点睛:解答本题的关键是采用图示结合向量的平行四边形法则进行说明,其中CD 选项中的向量关系式要根据AB AO OB =+进行化简.11.(多选题)设点D 是ABC 所在平面内一点,则下列说法正确的有()A .若()12AD AB AC =+,则点D 是边BC 的中点B .若()13AD AB AC =+,则点D 是ABC 的重心C .若2AD AB AC =-,则点D 在边BC 的延长线上D .若AD xAB y AC =+ ,且12x y +=,则BCD △是ABC 面积的一半【答案】ABD 【分析】对A ,根据中点的性质即可判断;对B ,根据重心的性质即可判断;对C ,根据向量的运算得到BD CB =,即可判断;对D ,根据三点共线的性质即可求解.【详解】解:对A ,()12AD AB AC =+,即11112222AD AB AC AD -=-,即BD DC = ,即点D 是边BC 的中点,故A 正确;对B ,设BC 的中点为M ,()1122333AD AB AC AM AM =+=⨯= ,即点D 是ABC 的重心,故B 正确;对C ,2AD AB AC =-,即AD AB AB AC -=- ,即BD CB = ,即点D 在边CB 的延长线上,故C 错误;对D ,AD xAB y AC =+,且12x y +=,故222AD xAB y AC =+,且221x y +=,设2AM AD =,则22AM xAB y AC =+,且221x y +=,故,,M B C 三点共线,且2AM AD =,即BCD △是ABC 面积的一半,故D 正确.故选:ABD.12.对于菱形ABCD ,给出下列各式,其中结论正确的为()A .AB BC =B .AB BC = C .AB CD AD BC-=+D .AD CD CD CB+=- 【答案】BCD 【分析】由向量的加法减法法则及菱形的几何性质即可求解.【详解】菱形中向量AB 与BC的方向是不同的,但它们的模是相等的,所以B 结论正确,A 结论错误;因为2AB CD AB DC AB -=+= ,2AD BC BC +=,且AB BC = ,所以AB CD AD BC -=+ ,即C 结论正确;因为AD CD BC CD BD +=+= ,||||CD CB CD BC BD -=+=,所以D 结论正确.故选:BCD【点睛】本题主要考查了向量加法、减法的运算,菱形的性质,属于中档题.13..四边形ABCD 中,若BD BC BA =+,则四边形ABCD 的形状为_____.【答案】平行四边形【分析】由平面向量的加法法则直接可得答案【详解】解:因为四边形ABCD 中,BD BC BA =+,所以BC CD BC BA +=+ ,所以CD BA = ,所以CD BA = ,且CD ‖BA ,所以四边形ABCD 为平行四边形,故答案为:平行四边形。

向量的加法与减法(课件)

向量的加法与减法(课件)

5.2 向量的加法与减法
向量的运算律: 向量的运算律:
结合律: 结合律:(a+b)+c=a+(b+c)
D a+b+c b+c A a B b a+b C c
5.2 向量的加法与减法
口答: 口答: (1)一架飞机向西飞行 100 km ,然后改 ) 变方向向南飞行 100 km , 则飞机两次位 移的和为 . 一定成立吗? (2)|a+b|<|a|+|b|一定成立吗? ) 一定成立吗 (3)在四边形 )在四边形ABCD,CB+AD+BA= , .
(2)(AB+MB)+BO+OM= ) (3)OA+OC+BO+CO= )
5.2 向量的加法与减法
练习: 练习: 飞机从甲地按北偏西15 飞机从甲地按北偏西 0的方向飞行 1400km到达乙地,再从乙地按南偏东 到达乙地, 到达乙地 750的方向飞行 的方向飞行1400km到达丙地,那 到达丙地, 到达丙地 么丙地在甲地的什么方向? 么丙地在甲地的什么方向?丙地距甲 地多远? 地多远?
5.2 向量的加法与减法
向量的加法: 向量的加法:
C a O b A a+b a b B
平行四边形法则 向量的运算律: 向量的运算律:
交换律: 交换律:a+b=b+a
验证:若向量 与 是不共线向量 是不共线向量, 验证:若向量a与b是不共线向量,将向 的起点平移到同一点O, 量a与b的起点平移到同一点 ,作平行 与 的起点平移到同一点 四边形OABC. 四边形 .
(2)下列各等式或不等式中一定不能成立的个数( A ) )下列各等式或不等式中一定不能成立的个数( ① a − b < a+b = a + b ② a − b < a+b < a + b ③ a − b = a+b < a + b A.0 . B.1 . C.2 . ④ a − b = a+b = a + b D.3 .

《向量的加减法》课件

《向量的加减法》课件

03 向量的数乘
数乘的定义
定义
对于向量$overset{longrightarrow}{a}$ 和实数$k$,数乘 $koverset{longrightarrow}{a}$是一个 向量,其长度为 $|k||overset{longrightarrow}{a}|$,方 向与$overset{longrightarrow}{a}$相同 或相反,取决于$k$的正负。
向量加法的性质
向量加法满足结合律
即$(overset{longrightarrow}{a} + overset{longrightarrow}{b}) + overset{longrightarrow}{c} = overset{longrightarrow}{a} + (overset{longrightarrow}{b} + overset{longrightarrow}{c})$。
谢谢聆听
02
当$k < 0$时,$koverset{longrightarrow}{a}$表示向 量$overset{longrightarrow}{a}$按比例缩小$-k$倍。
03
当$k = 0$时,$0overset{longrightarrow}{a} = mathbf{0}$,即零向量。
数乘的性质
箭头表示法
详细描述
向量通常用带箭头的线段表示,箭头指向代表方向,长度代表大小。
向量的模
总结词
向量的长度
详细描述
向量的模表示向量的长度,记作$|overrightarrow{AB}|$,计算公式为$sqrt{x^2+y^2}$。
02 向量的加法
向量加法的定义
定义
向量加法是指将两个向量首尾相接,以第一个向量的起点为 共同起点,以第二个向量的终点为共同终点,连接第一个向 量的终点与第二个向量的起点的向量。

向量的加法与减法ppt课件

向量的加法与减法ppt课件
向量的加法与减法(1)
1
复习回顾
1.向量的概念:有大小,有方向的量
2.向量的表示:
B
有向线段 A
黑体小写字母 a
记作AB
手写体 a
向量的长度:向量AB的大小即为向量AB的长度(或称模).
记作:|AB|
2
特殊向量:
零向量 :长度为 0的向量. 记作 0 .
规定:零向量的方向是任意的
单位向量 : 长度等于 1 个单位长度的向量.
向量的加法与减法(2)
16
向量的减法 相反向量:长度相等方向相反的向量.
a的相反向量,记作- a,a 与 a 互为相反向量.
于是 (a ) a , a (a ) 0 . 规定, 0 0 .
如果 a 、b 互为相反的向量,那么
a b,b a,a b 0 . 定义:求两个向量差的运算叫向量的减法.
3
3.三个重要概念 1)平行向量 方向相同或相反的非零向量
规定:零向量与任一向量平行
共线向量 平行向量 任一组平行向量 均可平移到同一直线上
2)相等向量 长度相等且方向相同的向量.
3) 相反向量:长度相等且方向相反的向量. 4
数能进行运算,因为有了运算而使数的 威力无穷. 与数的运算类比 ,向量是否也能进 行运算呢?人们从向量的物理背景和数的运 算中得到启发,引进了向量的运算.
CA
B
AC a b
方向相同
AC a b 方向相反
对于零向量与任一向量a,有 a 0 0 a a
8
练习1.如图,已知 a b 用向量加法的三角形
法则作出 a b
(1)
ab
(2)
b

《向量的加法与减法》课件

《向量的加法与减法》课件
结果向量的方向由输入向量的相对位 置决定,结果向量的大小则由输入向 量的长度和夹角决定。
THANKS
感谢观看
向量加法的几何意义
总结词
向量加法的几何意义是表示两个向量在平面或空间中的相对 位置关系。
详细描述
向量加法的几何意义在于表示两个向量在平面或空间中的相 对位置关系。通过向量加法,我们可以理解一个向量是如何 由另一个向量产生的,以及它们之间的角度和长度关系。
向量加法的性质
总结词
向量加法满足交换律和结合律,不满足消去律。
向量减法的性质
总结词
向量减法的性质
详细描述
向量减法具有一些重要的性质,包括交换律、结合律和反身性。交换律指的是向量减法 的结果不依赖于减数向量的顺序,结合律指的是向量的加减运算满足结合律,反身性指
的是任意向量减去其自身等于零向量。
03 向量的加法与减 法的应用
在物理中的应用
力的合成与分解
在物理中,向量加法和减法常用于表 示力的合成与分解。通过向量加法, 可以将多个力合成一个力;通过向量 减法,可以将一个力分解成多个分力 。
速度和加速度的计算
在运动学中,向量的加法和减法用于 计算速度和加速度。例如,在平抛运 动中,水平和垂直方向的速度可以通 过向量加法和减法计算出物体的最终 速度和加速度。
在数学中的应用
向量模的计算
向量的加法和减法可以用于计算向量的 模。通过向量加法,可以计算两个向量 的和的模;通过向量减法,可以计算两 个向量的差的模。
详细描述
向量加法满足交换律,即向量a加向量b等于向量b加向量a。同时,向量加法也 满足结合律,即(a+b)+c=a+(b+c)。但是,向量加法不满足消去律,即 a+b=b+a并不意味着a=b。这是因为向量的加法不具有唯一性,与实数加法不 同。

《向量的加法和减法》 讲义

《向量的加法和减法》 讲义

《向量的加法和减法》讲义一、向量的基本概念在数学中,向量是一个既有大小又有方向的量。

它可以用有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。

比如,一个物体在平面上的位移就是一个向量,它不仅告诉我们移动了多远,还告诉我们移动的方向。

又如力、速度等,都是向量的常见例子。

为了方便表示,我们通常用小写字母加上箭头来表示向量,如\(\vec{a}\)、\(\vec{b}\)等。

二、向量的加法1、三角形法则设有两个向量\(\vec{a}\)和\(\vec{b}\),将向量\(\vec{b}\)的起点移动到向量\(\vec{a}\)的终点,那么从向量\(\vec{a}\)的起点到向量\(\vec{b}\)的终点所形成的向量,就是向量\(\vec{a}\)与\(\vec{b}\)的和,记作\(\vec{a} +\vec{b}\)。

举个例子,假设一个人先向东走了 5 米(用向量\(\vec{a}\)表示),然后向北走了 3 米(用向量\(\vec{b}\)表示),那么他最终的位移就是这两个向量的和\(\vec{a} +\vec{b}\)。

2、平行四边形法则以同一点 O 为起点的两个已知向量\(\vec{a}\)、\(\vec{b}\),以\(\vec{a}\)、\(\vec{b}\)为邻边作平行四边形OACB,则从 O 点出发的对角线\(\overrightarrow{OC}\)就是\(\vec{a}\)与\(\vec{b}\)的和,记作\(\vec{a} +\vec{b}\)。

这个法则在解决一些几何问题时非常有用。

向量加法的运算律:(1)交换律:\(\vec{a} +\vec{b} =\vec{b} +\vec{a}\)(2)结合律:\((\vec{a} +\vec{b})+\vec{c} =\vec{a} +(\vec{b} +\vec{c})\)三、向量的减法1、定义向量\(\vec{a}\)与向量\(\vec{b}\)的差仍是一个向量,记作\(\vec{a} \vec{b}\)。

第1课时向量与向量的加减法名师课件

第1课时向量与向量的加减法名师课件

F
E
C
北京大峪中学高三数学组 2020年1月26日星期日
9.下面给出的五个命题, ①单位向量都相等;
②若AB=CD,则|AB|=|CD|且AB//CD; ③若四边形ABCD是平行四边形,则AB=CD; ④a=b,b=c,则a=c; ⑤若a//b, b//c, 则 a//c. 真命题的是_____④____
北京大峪中学高三数学组 2020年1月26日星期日
能力·思维·方法
第五章 平面向量
10.设D、E、F分别是△ABC三边的中点,求证:
EA FB DC 0
A
证明:EA FB DC
D
EC CA FA AB DB BC

1 2
BC

CA

1 2
CA

AB
பைடு நூலகம்
1 2
AB

BC
B
3 (AB BC CA) 0 2
的模等于( C )
(A)0
(B)3
(C)22
(D)2
北京大峪中学高三数学组 2020年1月26日星期日
基础题例题
第五章 平面向量
6.已知平行四边形ABCD中,可以用一条有向线段表示的向
量是
( B)
(A) DA 与 BC
(B) DC 与 AB
(C) DC 与 BC
(D) DC 与 DA
7.把所有的单位向量的起点平移到一起来,则终点组成的图 形是______圆_________
(A)a=b
(B)a∥b
(C)a⊥b
(D)|a|=|b|
北京大峪中学高三数学组 2020年1月26日星期日
基础题例题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1课时 向量与向量的加减法
要点·疑点·考点 课 前 热 身 能力·思维·方法 延伸·拓展 误 解 分 析
2020/8/1
向量与向量的加减法
1
要点·疑点·考点
1.向量的有关概念
(1)既有大小又有方向的量叫向量,长度为0的向量叫零向 量,长度为1个单位长的向量,叫单位向量.
(2)方向相同或相反的非零向量叫平行向量,也叫共线向量. 规定零向量与任一向量平行.
示AB,BC.
【解题回顾】解法1系应用向量加、减法的定义直接求解;解 法2则运用了求解含有未知向量x,y的方程组的方法
2020/8/1
向量与向量的加减法
6
3.如果M是线段AB的中点,求证:对于任意一点O,有
1
OM= (OA+OB)
2
2020/8/1
向量与向量的加减法
7
2020/8/1
向量与向量的加减法
向量与向量的加减法
返回 12
8
【解题回顾】选用本例的意图有二,其一,复习向量加法的
平行四边形法则,向量减法的三角形法则;其二,向量内容
中蕴涵了丰富的数学思想,如模型思想、形数结合思想、分
类讨论思想、对应思想、化归思想等,复习中要注意梳理和
领悟.本例深刻蕴涵了形数结合思想与分类讨论思想.
2020/8/1
向量与向量的加减法
返回 9
(A)a=b
(B)a∥b
(C)a⊥b
(D)|a|=|b|
2020/8/1
向量与向量的加减法
3
能力·思维·方法
1.给出下列命题:①若|a|=|b|,则a=b;②若A,B,C,D
是不共线的四点,则AB= DC是四边形ABCD为平行四边 形的充要条件;③若a=b,b=c,则a=c;④a=b的充要条件 是|a|=|b|且a∥b量叫相等向量. 2.向量的加法与减法
(1)求两个向量和的运算,叫向量的加法,向量加法按平行 四边形法则或三角形法则进行.加法满足交换律和结合律.
(2)求两个向量差的运算,叫向量的减法.作法是连结两向
量的终点,方向指向被减向量.
2020/8/1
向量与向量的加减法
返回 2
课前热身
求向量BC、AC
【解题回顾】充分利用等腰直角三角形这两个条件,转化 为|AB|=|BC|,AB⊥BC
2020/8/1
向量与向量的加减法
返回 11
误解分析
1.在向量的有关习题中,零向量常被忽略(如能力·思维·方 法1.⑤中),从而导致错误
2.需要分类讨论的问题一定要层次清楚,不重复,不遗漏.
2020/8/1
其中,正确命题的序号是_②__,__③_
【解题回顾】本例主要复习向量的基本概念.向量的基本概 念较多,因而容易遗忘.为此,复习时一方面要构建良好的 知识结构,另一方面要善于与物理中、生活中的模型进行 类比和联想.引导学生在理解的基础上加以记忆.
2020/8/1
向量与向量的加减法
5
2.在平行四边形ABCD中,设对角线AC=a,BD=b,试用a,b表
4.对任意非零向量a,b,求证:||a|-|b||≤|a±b|≤|a|+|b|.
【解题回顾】(1)以上证明实际上给出了所证不等式的几何 解释;
(2)注意本题证明中所涉猎的分类讨论思想、化归思想.
2020/8/1
向量与向量的加减法
返回 10
延伸·拓展
5.在等腰直角三角形ABC中,∠B=90°,AB=(1,3),分别
1.已知a,b方向相同,且|a|=3,|b|=7,则|2a-b|=__1___.
2.如果AB=a,CD=b,则a=b是四点A、B、D、C构成平行四
边形的( B )
(A)充分不必要条件
(B)必要不充分条件
(C)充要条件
(D)既不充分也不必要条件
3.a与b为非零向量,|a+b|=|a-b|成立的充要条件是( C )
相关文档
最新文档