河南省安阳市八校联考2017-2018学年高一下学期期末联考考试数学试题
河南省安阳市17学年高一数学下学期期末考试试题(含解析)
安阳市2016-2017学年第二学期期末考试高一数学试题卷一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知是第一象限角,那么是()A. 第一象限角B. 第二象限角C. 第二或第四象限角D. 第一或第三象限角【答案】D考点:象限角、轴线角.2. 半径为2,圆心角为的扇形的面积为()A. B. C. D.【答案】C【解析】由扇形面积公式得:=.故选C.3. 为了得到y = sin(x+),的图象,只需把曲线y=sinx上所有的点()A. 向左平行移动个单位长度B. 向左平行移动个单位长度C. 向右平行移动个单位长度D. 向右平行移动个单位长度【答案】B【解析】需把曲线y=sinx上所有的点向左平行移动个单位长度,得到y = sin(x+),的图象.故选B.4. 甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为()A. B. C. D.【答案】A【解析】∵甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,∴甲不输的概率为P= .故选项为:A.5. 如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称。
在正方形内随机取一点,则此点取自黑色部分的概率是()A. B.C. D.【答案】B【解析】根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2,则黑色部分的面积S=,则对应概率P==,故选:B点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.6. 设非零向量,满足,则( )A. B. C.∥ D.【答案】A【解析】∵非零向量,满足,∴,解得,∴.故选:A.7. 已知,则=()A. B.C. D.【答案】D【解析】由,得,,即故选D.8. 阅读右面的程序框图,运行相应的程序,若输入N的值为19,则输出N的值为()A. 0B. 1C. 2D. 3【答案】C【解析】第一次N=19,不能被3整除,N=19﹣1=18≤3不成立,第二次N=18,18能被3整除,N= =6,N=6≤3不成立,第三次N=6,能被3整除,N═=2≤3成立,输出N=2,故选:C点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括顺序结构、条件结构、循环结构,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.9. 已知,则的值是()A. 2B.C. D. - 2【答案】B【解析】因为,又,所以故选B.10. 如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为( )A. 3,5B. 5,5C. 3,7D. 5,7【答案】A【解析】由已知中甲组数据的中位数为,故乙数据的中位数为,即,可得乙数据的平均数为,即甲数据的平均数为,故,故选. 【方法点睛】本题主要考查茎叶图的应用、中位数、平均数的求法,属于难题.要解答本题首先要弄清中位数、平均数的定义,然后根据定义和公式求解,(1)中位数,如果样本容量是奇数中间的数既是中位数,如果样本容量为偶数中间两位数的平均数既是中位数;(2)众数是一组数据中出现次数最多的数据;(3)平均数既是样本数据的算数平均数.11. 袋内装有红、白、黑球分别为3、2、1个,从中任取两个,互斥而不对立的事件是()A. 至少一个白球;都是白球B. 至少一个白球;至少一个黑球C. 至少一个白球;一个白球一个黑球D. 至少一个白球;红球、黑球各一个【答案】D【解析】从3个红球,2个白球,1个黑球中任取2个球的取法有:2个红球,2个白球,1红1黑,1红1白,1黑1白共5类情况,所以至少有一个白球,至多有一个白球不互斥;至少有一个白球,至少有一个红球不互斥;至少有一个白球,没有白球互斥且对立;至少有一个白球,红球黑球各一个包括1红1白,1黑1白两类情况,为互斥而不对立事件,故选:D12. 已知函数=A tan(x+)(),y=的部分图象如右图示,则( )A. 2+B.C.D.【答案】C【解析】由题意可知T=,∴ω=2,函数的解析式为:f(x)=Atan(ωx+φ),∵函数过(,0),∴0=Atan(+φ),∴φ=,图象经过(0,1),∴1=Atan,则A=1,∴f(x)=tan(2x+),则=tan()=.故选项为:点睛:识图常用的方法(1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量的计算来分析解决问题;(3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题.二、填空题:本题共4小题,每小题5分,共20分。
【全国市级联考Word】河南省三门峡市2017-2018学年高一下学期期末考试数学(理)试题(无答案)
2017-2018学年度下学期期末调研考试高一数学(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.5cos 6π=( )A .12B .12- C .2.某产品分为A 、B 、C 三级,若生产中出现B 级品的概率为0.03,出现C 级品的概率为0.01,则对产品抽查一次抽得A 级品的概率是( )A .0.09B .0.98C .0.97D .0.963.某市交通局为了解机动车驾驶员对交通法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查,其中甲社区有驾驶员96人,若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则乙、丙丁三个社区驾驶员总人数是多少( )A .101B .808C .712D .894.已知O 是平面内一点,且OA OB OB OC OC OA ⋅=⋅=⋅,则O 一定是ABC ∆的( )A .垂心B .外心 C.重心 D .内心5.5张卡片上分别写着数字1,2,3,4,5,从中任意取三张,则所取3张卡片上的数字的中位数为3的概率为( )A .15B .310 C.25 D .126.已知角θ的终边经过点()(),30P x x <,且1cos 28θ=-,则x 的值为( )A B .5 C.5- D .7.为了得到函数3cos3y x x =+的图象,可以将函数2cos3y x =的图象( )A .向左平移9π个单位 B .向右平移9π个单位 C. 向左平移18π个单位 D .向右平移18π个单位 8.数学发展史中发现过许多求圆周率π的创意求法,如著名的蒲丰投针实验.受其启发,我们可以如下随机写正实数对的实验,来估计π的值:先请100名同学,每人随机写下一个正实数对(),P x y ,且,x y 都小于1.再统计出能与如图边长为1的正方形ABCD 的边AD 或AB 围成钝角是三角形的顶点P 的个数.若这样的顶点P 有65个,则可以估计π的值为:( )A .165B .227 C.3110 D .63209.下面是三个程序框图,若运行时三个图输入相同的正整数a ,相同的正整数b ,且a b ≠,则( )A .三个图的结果相同B .三个图的结果彼此不同C. 图①与图②的结果相同 D .图①与图③的结果相同10.函数()2log sin 44f x x ππ⎛⎫=- ⎪⎝⎭的单调增区间为( ) A .[)()38,78k k k Z ++∈ B .(]()58,78k k k Z ++∈C. [)()58,78k k k Z ++∈ D .(]()38,78k k k Z ++∈11.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭与函数()()6g x k x k =-+的部分图象如图所示,直线y A =与()g x 图象相交于y 轴,与()f x 相切于点N ,向量MN 在x 轴正方向上的投影为34π-且2A k ω+=,则函数()()()sin cos h x x x ωϕωϕ=-+-图象的一条对称轴的方程可以为( )A .1124x π=-B .1124x π= C.1324x π=- D .724x π= 12.已知向量,,a b c 满足2,3a b a b ==⋅=,若()2203c a c b ⎛⎫-⋅-= ⎪⎝⎭,则b c-的最小值是( ) A .2+B .2 C.1 D .2- 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知扇形的圆心角为2,周长为6,则这个扇形的面积为.14.运行右图所示的程序框图,输出S 的结果是 .15.在ABC ∆中,A 为最大角,34sin ,sin 55B C ==,O 为ABC ∆的内心,若AO AB AC λμ=+,则λμ+= .16.对于函数()[]()()sin ,0,212,2,2x x f x f x x π⎧∈⎪=⎨-∈+∞⎪⎩,有下列3个命题:①任取()12,0,x x ∈+∞,都有()()122f x f x -≤恒成立;②函数()()ln 1y f x x =--在()1,+∞上有3个零点;③()()()22*f x kf x k k N =+∈,对于一切[)0,x ∈+∞恒成立;则其中所有真命题的序号是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知向量()1,cos a α=,()2,sin b α=-,//a b .(1)求()tan πα-的值;(2)求23sin sin 2αα+的值.18. 下表提供了某厂节能降耗技术改造后生产甲产品过程记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据:(1)已知产量x 和能耗y 呈线性关系,请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程ˆˆˆybx a =+; (2)已知该厂技改前100吨甲产品的生产耗能为90吨标准煤,试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产耗能比技改前降低多少吨标准煤?参考公式:()()()11222211ˆn n i i i i i i n n i i i i x y nx y x x y y b xnx x x ====---==--∑∑∑∑,ˆˆay bx =-. 19.已知2a =3b =,()()239a b b a +⋅-=.(1)求a 与b 的夹角θ;(2)在ABC ∆中,若,AB a AC b ==,求ABC ∆三条中线的长度之和.20.已知函数()cos cos 2f x x x x π⎡⎤⎛⎫=- ⎪⎢⎥⎝⎭⎣⎦(1)求()f x 的最小正周期和最大值;(2)讨论()f x 在3,44ππ⎡⎤⎢⎥⎣⎦上的单调性.21.某市为了解各校《国学》课程的教学效果,组织全市各校高二年级全体学生参加了国学知识水平测试,测试成绩从高到低依次分为A 、B 、C 、D 四个等级,随机调阅了甲、乙两所学校各60名学生的成绩,得到如下的分布图:(1)试确定图中a 与b 的值;(2)若将等级A 、B 、C 、D 依次按照90分、80分、60分、50分转换成分数,试分别估计两校学生国学成绩的均值;(3)从两校获得A 等级的同学中按比例抽取5人参加集训,集训后由于成绩相当,决定从中随机选2人代表本市参加省级比赛,求两人来自同一学校的概率.22.已知函数()()()211,f x m x x m R =-++∈ (1)函数()()tan 2h x f x =-在0,2π⎡⎫⎪⎢⎣⎭上有两个不同的零点,求m 的取值范围; (2)当312m <<时,()cos f x 的最大值为94,求()f x 的最小值; (2)函数()()()cos sin g x f x f x =+,对于任意,02x π⎡⎤∈⎢⎥⎣⎦存在[]1,4t ∈,使得()()g x f x ≥,试求m 的取值范围.。
【优质文档】2017-2018年度高一年级期末综合检测(含参考答案)
⊥底面 ABC,垂足为 H,则点 H在 ( ).
A.直线 AC上 B .直线 AB上
C.直线 BC上 D .△ ABC内部
12. 已知 ab
0
,
点
P(a,b)
是圆
2
x
2
y
2
r 内一点 , 直线 m是以
点 P 为中点的弦所在的直线 , 直线 L 的方程是 ax by r 2 , 则下列结论正确的是 ( ).
1 D .m
2
3. 如图,矩形 O′ A′B′ C′是水平放置的一个平面图形的直观图,其中
O′ A′= 6 cm, C′D′= 2 cm,则原图形是 ( ).
A.正方形 B .矩形 C .菱形 D .梯形
4. 已知 A 2, 3 , B 3, 2 ,直线 l 过定点 P 1,1 ,且与线段 AB 相交,
C. 3x 6y 5 0
D
. x 3或3x 4 y 15 0
8. 三视图如图所示的几何体的表面积是 (
).
A.2+ 2 B .1+ 2 C .2+ 3 D .1+ 3
9. 设 x0 是方程 ln x+ x= 4 的解,则 x0 属于区间 ( ).A. (0 ,1)B . (1 ,2)C
. (2 , 3)
C.若 l ∥ β ,则 α∥ β D .若 α ∥ β,则 l ∥ m
6. 一个长方体去掉一个小长方体,所得几何体的
主视图与左视图分别如右图所示,则该几何
体的俯视图为 ( ).
7. 一条直线经过点
M ( 3,
3)
,
被圆
2
x
2
y
25 截得的弦长等于 8, 这条直线的方
2
程为 ( ).
河南省郑州市2017-2018学年高一下学期期末考试数学试题含答案
2017-2018学年下期期末考试高一数学试题卷 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.0sin585的值为( )A .2 B .2- C . D 2.已知向量a =(3,5-),b =(5,3),则a 与b ( )A .垂直B .不垂直也不平行C .平行且同向D .平行且反向3. ) A .002sin15cos15 B .2020cos 15sin 15- C .202sin 151- D .2020sin 15cos 15+4.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们所有比赛得分的情况用如下图所示的茎叶图表示,则运动员甲得分的中位数,乙得分的平均数分别为( )A .19,13B .13,19 C.19,18 D .18,195.从装有大小材质完全相同的3个红球和3个黑球的不透明口袋中,随机摸出两个小球,则两个小球同色的概率是( ) A .23 B .25 C. 12 D .136.函数cos sin cos sin 4444y x x x x ππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++∙+-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦在一个周期内的图像是( )A .B . C.D .7.设单位向量1e ,2e 的夹角为60°,则向量1234e e +与向量1e 的夹角的余弦值是( )A .34 B .537C.37 D .378.如果下面程序框图运行的结果1320s =,那么判断框中应填入( )A .10?k <B .10?k > C. 11?k < D .11?k >9.甲、乙两人各自在400米长的直线型跑道上跑步,则在任一时刻两人在跑道上相距不超过50米的概率是( ) A .18 B .1136 C.14 D .156410.已知函数()sin(2)f x x ϕ=+的图像关于直线6x π=对称,则ϕ可能取值是( )A .2π B .12π- C.6π D .6π- 11.如图所示,点A ,B ,C 是圆O 上的三点,线段OC 与线段AB 交于圈内一点P ,若3OC mOA mOB =+,AP AB λ=,则λ=( )A .56 B .45 C.34 D .2512.已知平面上的两个向量OA 和OB 满足cos OA α=,sin OB α=,[0,]2πα∈,0OA OB ⋅=,若向量(,)OC OA OB R λμλμ=+∈,且22221(21)cos 2(21)sin 4λαμα-+-=,则OC 的最大值是( ) A .32 B .34 C.35 D .37第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知tan 4α=,tan()3πβ-=,则tan()αβ+ .14.已知样本7,8,9,x ,y 的平均数是8xy = . 15.已知ABC ∆的三边长4AC =,3BC =,5AB =,P 为AB 边上的任意一点,则()CP BC BA -的最小值为 .16.将函数()2sin(2)6f x x π=+的图像向左平移12π个单位,再向下平移2个单位,得到()g x 的图像,若12()()16g x g x =,且1x ,2[2,2]x ππ∈-,则122x x -的最大值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知向量(1,2)a =,(3,4)b =-. (I )求向量a b -与向量b 夹角的余弦值 (II )若()a a b λ⊥-,求实数λ的值.18.某同学用“五点法”画函数()sin()(0,)2f x A x B πωϕωϕ=++><在某一个周期内的图像时,列表并填入了部分数据,如下表:(I )请将上表数据补充完整,并直接写出函数()f x 的解析式(II )将()f x 的图像上所有点向左平行移动6π个单位长度,得到()y g x =的图像,求()y g x =的图像离y 轴最近的对称中心.19. 某商场经营某种商品,在某周内获纯利y (元)与该周每天销售这种商品数x 之间的一组数据关系如表:(I )画出散点图;(II )求纯利y 与每天销售件数x 之间的回归直线方程;(III )估计当每天销售的件数为12件时,每周内获得的纯利为多少? 附注:721280ii x==∑,721()27i i x x =-=∑,713076i i i x y ==∑,72134992i i y ==∑,1122211()()()n niii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.20. 在矩形ABCD 中,点E 是BC 边上的中点,点F 在边CD 上.(I )若点F 是CD 上靠近C 的四等分点,设EF AB AD λμ=+,求λμ的值; (II )若3AB =,4BC =,当2AE BE =时,求DF 的长.21.某中学举行了数学测试,并从中随机抽取了60名学生的成绩(满分100分)作为样本,其中成绩不低于80分的学生被评为优秀生,得到成绩分布的频率分布直方图如图所示. (I )若该所中学共有3000名学生,试利用样本估计全校这次考试中优秀生人数; (II )若在样本中,利用分层抽样的方法从成绩不低于70分的学生中随机抽取6人,再从中抽取3人,试求恰好抽中1名优秀生的概率.22.已知函数21()sin cos 2f x x x x ωωω=+(0ω>),()y f x =的图象与直线2y =相交,且两相邻交点之间的距离为x .(I )求函数()f x 的解析式; (II )已知,2x ππ⎡⎤∈⎢⎥⎣⎦,求函数()f x 的值域; (III )求函数()f x 的单调区间并判断其单调性.试卷答案一、选择题1-5BABCB 6-10BDADC 11、12:CB 二、填空题 13.113 14.60 15.16- 16.5512π 三、解答题17.解:(1)()4,2a b -=-,设a b -与a 的夹角为θ,所以()()2(3)(2)4cos a a b bb b θ-⋅⨯-+-⨯===- , (2)()13,24a b λλλ-=+-()a ab λ⊥-,∴()0a a b λ⋅-= ()()1132240λλ∴⨯++⨯-=,解得1λ= 18....解:..(1)...根据表中已知数据,解得...........5A =,.2ω=,.6πϕ=-..数据补全如下表:........且函数表达式为.......f(x)=5sin 2+26x ⎛⎫- ⎪⎝⎭..(2)...由.(1)...知.f(x)=5sin 2+26x π⎛⎫- ⎪⎝⎭,. 因此..g(x)=5sin 2+2=5sin 2+2666x x πππ⎡⎤⎛⎫⎛⎫+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦..因为..y sinx =的对称中心为......(,2)k π ,.k Z ∈,令..2x+=k 6ππ,.k Z ∈,解得...x=212k ππ-,.k Z ∈,.即.()y g x =图象的对称中心为........222kx π(-,),.k Z ∈,其中离....y 轴最近的对称中心为.........(,2)12π-..19.解:(1)(2)712723456789675659637179808270730767670136 4.92807362813670640.928i ii iix y x y nx yb xnxa y bx =++++++==++++++==--⨯⨯∴===≈-⨯-∴=-=-⨯≈∑∑∴回归方程为: 4.940.9y x ∧=+(3)当12x -时 4.91240.999.7y ∧=⨯+=所以估计当每天销售的简述为12件时,周内获得的纯利润为99.7元.20.解:(1)EF EC CF =+,因为E 是BC 边的中点,点F 是CD 上靠近C 的四等分点,所以1124EF EC CF BC CD =+=+,在矩形ABCD 中,,BC AD CD AB ==-, 所以,1142EF AB AD =-+,即14λ=-,12μ=,则18λμ⋅=-. (2)设DF mDC =(0)m >,则(1)CF m DC =-,1122AE AB BC AB AD =+=+,(1)(1)BF CF BC m DC BC m AB AD =+=-+=-+,又0AB AD ⋅=, 所以1()2A E ⋅=221(1)2m AB AD =-+9m=, 解得13m =,所以DF 的长为1. 21.解:(1)由直方图可知,样本中数据落在[]80,100的频率为0.20.10.3+=,则估计全校这次考试中优秀生人数为30000.3900⨯=.(2)由分层抽样知识可知,成绩在[)70,80,[)80,90,[]90,100间分别抽取了3人,2人,1人.记成绩在[)70,80的3人为a ,b ,c ,成绩在[)80,90的2人为d ,e ,成绩在[]90,100的1人为f ,则从这6人中抽取3人的所有可能结果有(,,)a b c ,(,,)a b d ,(,,)a b e ,(,,)a b f ,(,,)a c d ,(,,)a c e ,(,,)a c f ,(,,)a d e ,(,,)a d f ,(,,)a e f ,(,,)b c d ,(,,)b c e ,(,,)b c f ,(,,)b d e ,(,,)b d f ,(,,)b e f ,(,,)c d f ,(,,)c e f ,(,,)d e f 共20种,其中恰好抽中1名优秀生的结果有(,,)a b d ,(,,)b c d ,(,,)c a d ,(,,)a b e ,(,,)b c e (,,)c a e ,(,,)a b f ,(,,)b c f ,(,,)c a f 共9种,所以恰好抽中1名优秀生的概率为920P =. 22.解:(1)()211cos2ωx 1sin 21sin(2)22226f x x xcos x sin x x πωωωωω-=-+==-+=-+与直线2y =的图象的两相邻交点之间的距离为π,则T π=,所以1ω=(2)7131[,]2[,]sin(2)[1,]266662x x x ππππππ∈∴+∈∴+∈-()f x ∴的值域是1[,2]2(3)令222()262kx x kx k Z πππ-≤+≤+∈,则()36kx x kx k Z ππ-≤≤+∈,所以函数()f x 的单调减区间为()ππk π-,k πk Z 63⎡⎤+∈⎢⎥⎣⎦令3222(),262kx x kx k Z πππ+≤+≤+∈则2()63kx x kx k Z ππ+≤≤+∈, 所以函数()f x 的单调增区间为()π2πk π,k πk Z 63⎡⎤++∈⎢⎥⎣⎦。
河南省郑州市2017-2018学年高一下学期期末考试数学试题含答案
2017-2018学年下期期末考试高一数学试题卷 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.0sin585的值为( )A .2 B .2- C . D 2.已知向量a =(3,5-),b =(5,3),则a 与b ( )A .垂直B .不垂直也不平行C .平行且同向D .平行且反向3. ) A .002sin15cos15 B .2020cos 15sin 15- C .202sin 151- D .2020sin 15cos 15+4.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们所有比赛得分的情况用如下图所示的茎叶图表示,则运动员甲得分的中位数,乙得分的平均数分别为( )A .19,13B .13,19 C.19,18 D .18,195.从装有大小材质完全相同的3个红球和3个黑球的不透明口袋中,随机摸出两个小球,则两个小球同色的概率是( ) A .23 B .25 C. 12 D .136.函数cos sin cos sin 4444y x x x x ππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++∙+-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦在一个周期内的图像是( )A .B . C.D .7.设单位向量1e ,2e 的夹角为60°,则向量1234e e +与向量1e 的夹角的余弦值是( )A .34 B .537C.37 D .378.如果下面程序框图运行的结果1320s =,那么判断框中应填入( )A .10?k <B .10?k > C. 11?k < D .11?k >9.甲、乙两人各自在400米长的直线型跑道上跑步,则在任一时刻两人在跑道上相距不超过50米的概率是( ) A .18 B .1136 C.14 D .156410.已知函数()sin(2)f x x ϕ=+的图像关于直线6x π=对称,则ϕ可能取值是( )A .2π B .12π- C.6π D .6π- 11.如图所示,点A ,B ,C 是圆O 上的三点,线段OC 与线段AB 交于圈内一点P ,若3OC mOA mOB =+,AP AB λ=,则λ=( )A .56 B .45 C.34 D .2512.已知平面上的两个向量OA 和OB 满足cos OA α=,sin OB α=,[0,]2πα∈,0OA OB ⋅=,若向量(,)OC OA OB R λμλμ=+∈,且22221(21)cos 2(21)sin 4λαμα-+-=,则OC 的最大值是( ) A .32 B .34 C.35 D .37第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知tan 4α=,tan()3πβ-=,则tan()αβ+ .14.已知样本7,8,9,x ,y 的平均数是8xy = . 15.已知ABC ∆的三边长4AC =,3BC =,5AB =,P 为AB 边上的任意一点,则()CP BC BA -的最小值为 .16.将函数()2sin(2)6f x x π=+的图像向左平移12π个单位,再向下平移2个单位,得到()g x 的图像,若12()()16g x g x =,且1x ,2[2,2]x ππ∈-,则122x x -的最大值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知向量(1,2)a =,(3,4)b =-. (I )求向量a b -与向量b 夹角的余弦值 (II )若()a a b λ⊥-,求实数λ的值.18.某同学用“五点法”画函数()sin()(0,)2f x A x B πωϕωϕ=++><在某一个周期内的图像时,列表并填入了部分数据,如下表:(I )请将上表数据补充完整,并直接写出函数()f x 的解析式(II )将()f x 的图像上所有点向左平行移动6π个单位长度,得到()y g x =的图像,求()y g x =的图像离y 轴最近的对称中心.19. 某商场经营某种商品,在某周内获纯利y (元)与该周每天销售这种商品数x 之间的一组数据关系如表:(I )画出散点图;(II )求纯利y 与每天销售件数x 之间的回归直线方程;(III )估计当每天销售的件数为12件时,每周内获得的纯利为多少? 附注:721280ii x==∑,721()27i i x x =-=∑,713076i i i x y ==∑,72134992i i y ==∑,1122211()()()n niii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.20. 在矩形ABCD 中,点E 是BC 边上的中点,点F 在边CD 上.(I )若点F 是CD 上靠近C 的四等分点,设EF AB AD λμ=+,求λμ的值; (II )若3AB =,4BC =,当2AE BE =时,求DF 的长.21.某中学举行了数学测试,并从中随机抽取了60名学生的成绩(满分100分)作为样本,其中成绩不低于80分的学生被评为优秀生,得到成绩分布的频率分布直方图如图所示. (I )若该所中学共有3000名学生,试利用样本估计全校这次考试中优秀生人数; (II )若在样本中,利用分层抽样的方法从成绩不低于70分的学生中随机抽取6人,再从中抽取3人,试求恰好抽中1名优秀生的概率.22.已知函数21()sin cos 2f x x x x ωωω=+(0ω>),()y f x =的图象与直线2y =相交,且两相邻交点之间的距离为x .(I )求函数()f x 的解析式; (II )已知,2x ππ⎡⎤∈⎢⎥⎣⎦,求函数()f x 的值域; (III )求函数()f x 的单调区间并判断其单调性.试卷答案一、选择题1-5BABCB 6-10BDADC 11、12:CB 二、填空题 13.113 14.60 15.16- 16.5512π 三、解答题17.解:(1)()4,2a b -=-,设a b -与a 的夹角为θ,所以()()2(3)(2)4cos a a b bb b θ-⋅⨯-+-⨯===- , (2)()13,24a b λλλ-=+-()a ab λ⊥-,∴()0a a b λ⋅-= ()()1132240λλ∴⨯++⨯-=,解得1λ= 18....解:..(1)...根据表中已知数据,解得...........5A =,.2ω=,.6πϕ=-..数据补全如下表:........且函数表达式为.......f(x)=5sin 2+26x ⎛⎫- ⎪⎝⎭..(2)...由.(1)...知.f(x)=5sin 2+26x π⎛⎫- ⎪⎝⎭,. 因此..g(x)=5sin 2+2=5sin 2+2666x x πππ⎡⎤⎛⎫⎛⎫+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦..因为..y sinx =的对称中心为......(,2)k π ,.k Z ∈,令..2x+=k 6ππ,.k Z ∈,解得...x=212k ππ-,.k Z ∈,.即.()y g x =图象的对称中心为........222kx π(-,),.k Z ∈,其中离....y 轴最近的对称中心为.........(,2)12π-..19.解:(1)(2)712723456789675659637179808270730767670136 4.92807362813670640.928i ii iix y x y nx yb xnxa y bx =++++++==++++++==--⨯⨯∴===≈-⨯-∴=-=-⨯≈∑∑∴回归方程为: 4.940.9y x ∧=+(3)当12x -时 4.91240.999.7y ∧=⨯+=所以估计当每天销售的简述为12件时,周内获得的纯利润为99.7元.20.解:(1)EF EC CF =+,因为E 是BC 边的中点,点F 是CD 上靠近C 的四等分点,所以1124EF EC CF BC CD =+=+,在矩形ABCD 中,,BC AD CD AB ==-, 所以,1142EF AB AD =-+,即14λ=-,12μ=,则18λμ⋅=-. (2)设DF mDC =(0)m >,则(1)CF m DC =-,1122AE AB BC AB AD =+=+,(1)(1)BF CF BC m DC BC m AB AD =+=-+=-+,又0AB AD ⋅=, 所以1()2A E ⋅=221(1)2m AB AD =-+9m=, 解得13m =,所以DF 的长为1. 21.解:(1)由直方图可知,样本中数据落在[]80,100的频率为0.20.10.3+=,则估计全校这次考试中优秀生人数为30000.3900⨯=.(2)由分层抽样知识可知,成绩在[)70,80,[)80,90,[]90,100间分别抽取了3人,2人,1人.记成绩在[)70,80的3人为a ,b ,c ,成绩在[)80,90的2人为d ,e ,成绩在[]90,100的1人为f ,则从这6人中抽取3人的所有可能结果有(,,)a b c ,(,,)a b d ,(,,)a b e ,(,,)a b f ,(,,)a c d ,(,,)a c e ,(,,)a c f ,(,,)a d e ,(,,)a d f ,(,,)a e f ,(,,)b c d ,(,,)b c e ,(,,)b c f ,(,,)b d e ,(,,)b d f ,(,,)b e f ,(,,)c d f ,(,,)c e f ,(,,)d e f 共20种,其中恰好抽中1名优秀生的结果有(,,)a b d ,(,,)b c d ,(,,)c a d ,(,,)a b e ,(,,)b c e (,,)c a e ,(,,)a b f ,(,,)b c f ,(,,)c a f 共9种,所以恰好抽中1名优秀生的概率为920P =. 22.解:(1)()211cos2ωx 1sin 21sin(2)22226f x x xcos x sin x x πωωωωω-=-+==-+=-+与直线2y =的图象的两相邻交点之间的距离为π,则T π=,所以1ω=(2)7131[,]2[,]sin(2)[1,]266662x x x ππππππ∈∴+∈∴+∈-()f x ∴的值域是1[,2]2(3)令222()262kx x kx k Z πππ-≤+≤+∈,则()36kx x kx k Z ππ-≤≤+∈,所以函数()f x 的单调减区间为()ππk π-,k πk Z 63⎡⎤+∈⎢⎥⎣⎦令3222(),262kx x kx k Z πππ+≤+≤+∈则2()63kx x kx k Z ππ+≤≤+∈, 所以函数()f x 的单调增区间为()π2πk π,k πk Z 63⎡⎤++∈⎢⎥⎣⎦。
精选河南省郑州市2017-2018学年高一下学期期末考试数学试题word版有答案
高一下期期末考试数学试题卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.0sin 585的值为( ) A .22 B .22- C .32- D .322.已知向量a =(3,5-),b =(5,3),则a 与b ( )A .垂直B .不垂直也不平行C .平行且同向D .平行且反向 3.下列各式中,值为32的是( ) A .002sin15cos15 B .2020cos 15sin 15- C .202sin 151- D .2020sin 15cos 15+ 4.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们所有比赛得分的情况用如下图所示的茎叶图表示,则运动员甲得分的中位数,乙得分的平均数分别为( )A .19,13B .13,19 C.19,18 D .18,195.从装有大小材质完全相同的3个红球和3个黑球的不透明口袋中,随机摸出两个小球,则两个小球同色的概率是( ) A .23 B .25 C. 12 D .136.函数cos sin cos sin 4444y x x x x ππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++•+-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦在一个周期内的图像是( ) A . B . C. D .7.设单位向量1e ,2e 的夹角为60°,则向量1234e e +与向量1e 的夹角的余弦值是( ) A .34 B .53725375378.如果下面程序框图运行的结果1320s =,那么判断框中应填入( )A .10?k <B .10?k > C. 11?k < D .11?k >9.甲、乙两人各自在400米长的直线型跑道上跑步,则在任一时刻两人在跑道上相距不超过50米的概率是( ) A .18 B .1136 C.14 D .156410.已知函数()sin(2)f x x ϕ=+的图像关于直线6x π=对称,则ϕ可能取值是( )A .2π B .12π- C.6π D .6π- 11.如图所示,点A ,B ,C 是圆O 上的三点,线段OC 与线段AB 交于圈内一点P ,若3OC mOA mOB =+u u u r u u u r u u u r ,AP AB λ=u u u r u u u r,则λ=( )A .56B .45 C.34 D .2512.已知平面上的两个向量OA u u u r 和OB uuu r 满足cos OA α=u u u r ,sin OB α=u u u r ,[0,]2πα∈,0OA OB ⋅=u u u r u u u r ,若向量(,)OC OA OB R λμλμ=+∈u u u r u u u r u u u r ,且22221(21)cos 2(21)sin 4λαμα-+-=,则OC u u u r 的最大值是( )A .32 B .34 C.35 D .37第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知tan 4α=,tan()3πβ-=,则tan()αβ+ .14.已知样本7,8,9,x ,y 的平均数是8,标准差是2,则xy = .15.已知ABC ∆的三边长4AC =,3BC =,5AB =,P 为AB 边上的任意一点,则()CP BC BA -u u u r u u u r u u u rg的最小值为 . 16.将函数()2sin(2)6f x x π=+的图像向左平移12π个单位,再向下平移2个单位,得到()g x 的图像,若12()()16g x g x =,且1x ,2[2,2]x ππ∈-,则122x x -的最大值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知向量(1,2)a =,(3,4)b =-. (I )求向量a b -与向量b 夹角的余弦值 (II )若()a a b λ⊥-,求实数λ的值.18.某同学用“五点法”画函数()sin()(0,)2f x A x B πωϕωϕ=++><在某一个周期内的图像时,列表并填入了部分数据,如下表:(I )请将上表数据补充完整,并直接写出函数()f x 的解析式 (II )将()f x 的图像上所有点向左平行移动6π个单位长度,得到()y g x =的图像,求()y g x =的图像离y 轴最近的对称中心.19. 某商场经营某种商品,在某周内获纯利y (元)与该周每天销售这种商品数x 之间的一组数据关系如表:(I )画出散点图;(II )求纯利y 与每天销售件数x 之间的回归直线方程;(III )估计当每天销售的件数为12件时,每周内获得的纯利为多少? 附注:721280ii x==∑,721()27i i x x =-=∑,713076i i i x y ==∑,72134992i i y ==∑,1122211()()()n niii ii i nni i i i x x y y x y nx yb x x x nx====---==--∑∑∑∑,$ay bx =-.20. 在矩形ABCD 中,点E 是BC 边上的中点,点F 在边CD 上.(I )若点F 是CD 上靠近C 的四等分点,设EF AB AD λμ=+u u u r u u u r u u u r,求λμg 的值;(II )若3AB =,4BC =,当2AE BE =u u u r u u u rg 时,求DF 的长.21.某中学举行了数学测试,并从中随机抽取了60名学生的成绩(满分100分)作为样本,其中成绩不低于80分的学生被评为优秀生,得到成绩分布的频率分布直方图如图所示. (I )若该所中学共有3000名学生,试利用样本估计全校这次考试中优秀生人数;(II )若在样本中,利用分层抽样的方法从成绩不低于70分的学生中随机抽取6人,再从中抽取3人,试求恰好抽中1名优秀生的概率.22.已知函数21()sin 3cos 2f x x x x ωωω=+(0ω>),()y f x =的图象与直线2y =相交,且两相邻交点之间的距离为x . (I )求函数()f x 的解析式; (II )已知,2x ππ⎡⎤∈⎢⎥⎣⎦,求函数()f x 的值域; (III )求函数()f x 的单调区间并判断其单调性.试卷答案一、选择题1-5:BABCB 6-10:BDADC 11、12:CB 二、填空题 13.113 14.60 15.16- 16.5512π 三、解答题17.解:(1)()4,2a b -=-vv ,设a b -vv 与a v的夹角为θ,所以()cos 5a a bbbb θ-⋅===--vv r r vv , (2)()13,24a b λλλ-=+-vv ()a a b λ⊥-v v Q v ,∴()0a a b λ⋅-=v v v()()1132240λλ∴⨯++⨯-=,解得1λ=18....解:..(1)...根据表中已知数据,解得...........5A =,.2ω=,.6πϕ=-..数据补全如下表:........且函数表达式为.......f(x)=5sin 2+26x ⎛⎫- ⎪⎝⎭..(2)...由.(1)...知.f(x)=5sin 2+26x π⎛⎫- ⎪⎝⎭,. 因此..g(x)=5sin 2+2=5sin 2+2666x x πππ⎡⎤⎛⎫⎛⎫+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.. 因为..y sinx =的对称中心为......(,2)k π ,.k Z ∈,令..2x+=k 6ππ,.k Z ∈,解得...x=212k ππ-,.k Z ∈,.即.()y g x =图象的对称中心为........222kx π(-,),.k Z ∈,其中离....y 轴最近的对称中心为.........(,2)12π-..19.解:(1)(2)$712723456789675659637179808270730767670136 4.92807362813670640.928i ii iix y x y nx ybxnxay bx =++++++==++++++==--⨯⨯∴===≈-⨯-∴=-=-⨯≈∑∑$$∴回归方程为: 4.940.9y x ∧=+(3)当12x -时 4.91240.999.7y ∧=⨯+=所以估计当每天销售的简述为12件时,周内获得的纯利润为99.7元. 20.解:(1)EF EC CF =+u u u r u u u r u u u r,因为E 是BC 边的中点,点F 是CD 上靠近C 的四等分点,所以1124EF EC CF BC CD =+=+u u u r u u u r u u u r u u u r u u u r ,在矩形ABCD 中,,BC AD CD AB ==-u u u r u u u r u u u r u u u r ,所以,1142EF AB AD =-+u u u r u u u r u u u r ,即14λ=-,12μ=,则18λμ⋅=-.(2)设DF mDC =u u u r u u u r(0)m >,则(1)CF m DC =-u u u r u u u r ,1122AE AB BC AB AD =+=+u u u r u u u r u u u r u u u r u u u r ,(1)(1)BF CF BC m DC BC m AB AD =+=-+=-+u u u r u u u r u u u r u u u r u u u r u u u r u u u r ,又0AB AD ⋅=u u u r u u u r,所以1()[(m 1)]2AE BF AB AD AB AD ⋅=+-+u u u r u u u r u u u r u u u r u u u r u u u r 221(1)2m AB AD =-+u u u r u u u r 9(1)82m =-+=,解得13m =,所以DF 的长为1. 21.解:(1)由直方图可知,样本中数据落在[]80,100的频率为0.20.10.3+=,则估计全校这次考试中优秀生人数为30000.3900⨯=.(2)由分层抽样知识可知,成绩在[)70,80,[)80,90,[]90,100间分别抽取了3人,2人,1人. 记成绩在[)70,80的3人为a ,b ,c ,成绩在[)80,90的2人为d ,e ,成绩在[]90,100的1人为f ,则从这6人中抽取3人的所有可能结果有(,,)a b c ,(,,)a b d ,(,,)a b e ,(,,)a b f ,(,,)a c d ,(,,)a c e ,(,,)a c f ,(,,)a d e ,(,,)a d f ,(,,)a e f ,(,,)b c d ,(,,)b c e ,(,,)b c f ,(,,)b d e ,(,,)b d f ,(,,)b e f ,(,,)c d f ,(,,)c e f ,(,,)d e f 共20种,其中恰好抽中1名优秀生的结果有(,,)a b d ,(,,)b c d ,(,,)c a d ,(,,)a b e ,(,,)b c e (,,)c a e ,(,,)a b f ,(,,)b c f ,(,,)c a f 共9种,所以恰好抽中1名优秀生的概率为920P =.22.解:(1)()211cos2ωx 1sin 21sin(2)2226f x x xcos x sin x x πωωωωω-=+==+=-+与直线2y =的图象的两相邻交点之间的距离为π,则T π=,所以1ω=(2)7131[,]2[,]sin(2)[1,]266662x x x ππππππ∈∴+∈∴+∈-Q ()f x ∴的值域是1[,2]2(3)令222()262kx x kx k Z πππ-≤+≤+∈,则()36kx x kx k Z ππ-≤≤+∈,所以函数()f x 的单调减区间为()ππk π-,k πk Z 63⎡⎤+∈⎢⎥⎣⎦令3222(),262kx x kx k Z πππ+≤+≤+∈则2()63kx x kx k Z ππ+≤≤+∈, 所以函数()f x 的单调增区间为()π2πk π,k πk Z 63⎡⎤++∈⎢⎥⎣⎦。
【全国市级联考】河南省2017-2018学年高一下学期期末考试数学试题+答案
2017-2018学年下期教学质量调研测试高一数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若,且是第四象限角,则( )A. B. C. D.2. 进制数,则可能是( )A. 2B. 4C. 6D. 83. 已知向量,,若,则( )A. B. C. D.4. 中,若,,则等于( )A. B. C. D.5. 某小组有2名男生和2名女生,从中任选2名同学去参加演讲比赛,在下列选项中,互斥而不对立的两个事件是( )A. “至少有1名女生”与“都是女生”B. “至少有1名女生”与“至多有1名女生”C. “恰有1名女生”与“恰有2名女生”D. “至少有1名男生”与“都是女生”6. 用秦九韶算法求多项式当的函数值时,先算的是( )A. B. C. D.7. 已知,又,,则等于( )A. B. C. D. 或08. 元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经三处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的,则一开始输入的的值为( )A. B. C. D. 49. 某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为,则应从一年级本科生中抽取( )名学生.A. 60B. 75C. 90D. 4510. 已知函数的部分图象如图所示,下面结论正确的个数是( )①函数的最小正周期是;②函数在区间上是增函数;③函数的图象关于直线对称;④函数的图象可由函数的图象向左平移个单位长度得到A. 3B. 2C. 1D. 011. 若向量,,满足,,若,则与的夹角为( )A. B. C. D.12. 已知函数,若对恒成立,则的单调递减区间是( )A. B.C. D.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 我国南宋数学家秦九韶所著《数学九章》中有“米谷粒分”问题:粮仓开仓收粮,粮农送来米1512石,验得米内夹谷,抽样取米一把,数得216粒内夹谷27粒,则这批米内夹谷约__________石.14. 在上任取两数和组成有序数对,记事件为“”,则__________.15. 设的内角,已知,若向量与向量共线,则的内角__________.16. 下列4个命题:①为了了解800名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔为40;②四边形为长方形,,,为中点,在长方形内随机取一点,取得的点到的距离大于1的概率为;③把函数的图象向右平移个单位,可得到的图象;④已知回归直线的斜率的估计值为,样本点的中心为,则回归直线方程为. 其中正确的命题有__________.(填上所有正确命题的编号)三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知平面内三个向量,,.(1)若,求实数的值;(2)设,且满足,,求.18. 某中学团委组织了“文明礼仪伴我行”的知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六段,,…,后画出如下部分频率分布直方图,观察图形给出的信息,回答下列问题:(1)求第四小组的频率,并补全这个频率分布直方图;(2)估计这次考试的及格率(60分及以上为及格)和平均分.19. 如图,在平面直角坐标系中,锐角的终边分别与单位圆交于两点.(1)如果点的纵坐标为,点的横坐标为,求;(2)已知点,,求.20. 长时间用手机上网严重影响着学生的身体健康,某校为了解、两班学生手机上网的时长,分别从这两个班中随机抽取5名同学进行调查,将他们平均每周手机上网的时间作为样本,绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).(1)分别求出图中所给两组样本数据的平均值,并据此估计,哪个班的学生平均上网时间较长;(2)从班的样本数据中随机抽取一个不超过19的数据记为,从班的样本中随机抽取一个不超过21的数据记为,求的概率.21. 已知函数的部分图象如图,是图象的最高点,为图象与轴的交点,为原点,且点坐标为,.(1)求函数的解析式;(2)将函数图象向右平移1个单位后得到函数的图象,当时,求函数的最大值.第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若,且是第四象限角,则( )A. B. C. D.【答案】D【解析】∵sin a=,且a为第四象限角,∴,则,故选:D.2. 进制数,则可能是( )A. 2B. 4C. 6D. 8【答案】D【解析】因为k进制数3651(k)中出现的最大数字为6,可得:k>6,故选:D.3. 已知向量,,若,则( )A. B. C. D.【答案】A【解析】向量,,.故选A.4. 中,若,,则等于( )A. B. C. D.【答案】C【解析】∵,∴),∴3,∴,∴λ=故选C.5. 某小组有2名男生和2名女生,从中任选2名同学去参加演讲比赛,在下列选项中,互斥而不对立的两个事件是( )A. “至少有1名女生”与“都是女生”B. “至少有1名女生”与“至多有1名女生”C. “恰有1名女生”与“恰有2名女生”D. “至少有1名男生”与“都是女生”【答案】C【解析】试题分析:“至少有1名女生”包含“都是女生”,所以A错误;“至少有1名女生”包含“(男,女)”这种情况,所以与“至多有1名女生”不互斥,所以B错误;“恰有1名女生”与“恰有2名女生”互斥,但不对立,C正确;“至少有1名男生”与“都是女生”既互斥又对立,所以D错误。
河南省郑州市2017-2018学年高一下学期期末考试数学试题含答案
2017-2018学年下期期末考试高一数学试题卷 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.0sin585的值为( )A .2 B .2- C . D 2.已知向量a =(3,5-),b =(5,3),则a 与b ( )A .垂直B .不垂直也不平行C .平行且同向D .平行且反向3. ) A .002sin15cos15 B .2020cos 15sin 15- C .202sin 151- D .2020sin 15cos 15+4.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们所有比赛得分的情况用如下图所示的茎叶图表示,则运动员甲得分的中位数,乙得分的平均数分别为( )A .19,13B .13,19 C.19,18 D .18,195.从装有大小材质完全相同的3个红球和3个黑球的不透明口袋中,随机摸出两个小球,则两个小球同色的概率是( ) A .23 B .25 C. 12 D .136.函数cos sin cos sin 4444y x x x x ππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++∙+-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦在一个周期内的图像是( )A .B . C.D .7.设单位向量1e ,2e 的夹角为60°,则向量1234e e +与向量1e 的夹角的余弦值是( )A .34 B .537C.37 D .378.如果下面程序框图运行的结果1320s =,那么判断框中应填入( )A .10?k <B .10?k > C. 11?k < D .11?k >9.甲、乙两人各自在400米长的直线型跑道上跑步,则在任一时刻两人在跑道上相距不超过50米的概率是( ) A .18 B .1136 C.14 D .156410.已知函数()sin(2)f x x ϕ=+的图像关于直线6x π=对称,则ϕ可能取值是( )A .2π B .12π- C.6π D .6π- 11.如图所示,点A ,B ,C 是圆O 上的三点,线段OC 与线段AB 交于圈内一点P ,若3OC mOA mOB =+,AP AB λ=,则λ=( )A .56 B .45 C.34 D .2512.已知平面上的两个向量OA 和OB 满足cos OA α=,sin OB α=,[0,]2πα∈,0OA OB ⋅=,若向量(,)OC OA OB R λμλμ=+∈,且22221(21)cos 2(21)sin 4λαμα-+-=,则OC 的最大值是( ) A .32 B .34 C.35 D .37第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知tan 4α=,tan()3πβ-=,则tan()αβ+ .14.已知样本7,8,9,x ,y 的平均数是8,则xy = . 15.已知ABC ∆的三边长4AC =,3BC =,5AB =,P 为AB 边上的任意一点,则()CP BC BA -的最小值为 .16.将函数()2sin(2)6f x x π=+的图像向左平移12π个单位,再向下平移2个单位,得到()g x 的图像,若12()()16g x g x =,且1x ,2[2,2]x ππ∈-,则122x x -的最大值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知向量(1,2)a =,(3,4)b =-. (I )求向量a b -与向量b 夹角的余弦值 (II )若()a a b λ⊥-,求实数λ的值.18.某同学用“五点法”画函数()sin()(0,)2f x A x B πωϕωϕ=++><在某一个周期内的图像时,列表并填入了部分数据,如下表:(I )请将上表数据补充完整,并直接写出函数()f x 的解析式(II )将()f x 的图像上所有点向左平行移动6π个单位长度,得到()y g x =的图像,求()y g x =的图像离y 轴最近的对称中心.19. 某商场经营某种商品,在某周内获纯利y (元)与该周每天销售这种商品数x 之间的一组数据关系如表:(I )画出散点图;(II )求纯利y 与每天销售件数x 之间的回归直线方程;(III )估计当每天销售的件数为12件时,每周内获得的纯利为多少? 附注:721280ii x==∑,721()27i i x x =-=∑,713076i i i x y ==∑,72134992i i y ==∑,1122211()()()n niii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.20. 在矩形ABCD 中,点E 是BC 边上的中点,点F 在边CD 上.(I )若点F 是CD 上靠近C 的四等分点,设EF AB AD λμ=+,求λμ的值; (II )若3AB =,4BC =,当2AE BE =时,求DF 的长.21.某中学举行了数学测试,并从中随机抽取了60名学生的成绩(满分100分)作为样本,其中成绩不低于80分的学生被评为优秀生,得到成绩分布的频率分布直方图如图所示. (I )若该所中学共有3000名学生,试利用样本估计全校这次考试中优秀生人数; (II )若在样本中,利用分层抽样的方法从成绩不低于70分的学生中随机抽取6人,再从中抽取3人,试求恰好抽中1名优秀生的概率.22.已知函数21()sin cos 2f x x x x ωωω=+(0ω>),()y f x =的图象与直线2y =相交,且两相邻交点之间的距离为x .(I )求函数()f x 的解析式; (II )已知,2x ππ⎡⎤∈⎢⎥⎣⎦,求函数()f x 的值域; (III )求函数()f x 的单调区间并判断其单调性.试卷答案一、选择题1-5BABCB 6-10BDADC 11、12:CB 二、填空题 13.113 14.60 15.16- 16.5512π 三、解答题17.解:(1)()4,2a b -=-,设a b -与a 的夹角为θ,所以()()2(3)(2)4cos a a b bb b θ-⋅⨯-+-⨯===- , (2)()13,24a b λλλ-=+-()a ab λ⊥-,∴()0a a b λ⋅-= ()()1132240λλ∴⨯++⨯-=,解得1λ= 18....解:..(1)...根据表中已知数据,解得...........5A =,.2ω=,.6πϕ=-..数据补全如下表:........且函数表达式为.......f(x)=5sin 2+26x ⎛⎫- ⎪⎝⎭..(2)...由.(1)...知.f(x)=5sin 2+26x π⎛⎫- ⎪⎝⎭,. 因此..g(x)=5sin 2+2=5sin 2+2666x x πππ⎡⎤⎛⎫⎛⎫+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦..因为..y sinx =的对称中心为......(,2)k π ,.k Z ∈,令..2x+=k 6ππ,.k Z ∈,解得...x=212k ππ-,.k Z ∈,.即.()y g x =图象的对称中心为........222kx π(-,),.k Z ∈,其中离....y 轴最近的对称中心为.........(,2)12π-..19.解:(1)(2)712723456789675659637179808270730767670136 4.92807362813670640.928i ii iix y x y nx yb xnxa y bx =++++++==++++++==--⨯⨯∴===≈-⨯-∴=-=-⨯≈∑∑∴回归方程为: 4.940.9y x ∧=+(3)当12x -时 4.91240.999.7y ∧=⨯+=所以估计当每天销售的简述为12件时,周内获得的纯利润为99.7元.20.解:(1)EF EC CF =+,因为E 是BC 边的中点,点F 是CD 上靠近C 的四等分点,所以1124EF EC CF BC CD =+=+,在矩形ABCD 中,,BC AD CD AB ==-, 所以,1142EF AB AD =-+,即14λ=-,12μ=,则18λμ⋅=-. (2)设DF mDC =(0)m >,则(1)CF m DC =-,1122AE AB BC AB AD =+=+,(1)(1)BF CF BC m DC BC m AB AD =+=-+=-+,又0AB AD ⋅=, 所以1()2A E ⋅=221(1)2m AB AD =-+9m=, 解得13m =,所以DF 的长为1. 21.解:(1)由直方图可知,样本中数据落在[]80,100的频率为0.20.10.3+=,则估计全校这次考试中优秀生人数为30000.3900⨯=.(2)由分层抽样知识可知,成绩在[)70,80,[)80,90,[]90,100间分别抽取了3人,2人,1人.记成绩在[)70,80的3人为a ,b ,c ,成绩在[)80,90的2人为d ,e ,成绩在[]90,100的1人为f ,则从这6人中抽取3人的所有可能结果有(,,)a b c ,(,,)a b d ,(,,)a b e ,(,,)a b f ,(,,)a c d ,(,,)a c e ,(,,)a c f ,(,,)a d e ,(,,)a d f ,(,,)a e f ,(,,)b c d ,(,,)b c e ,(,,)b c f ,(,,)b d e ,(,,)b d f ,(,,)b e f ,(,,)c d f ,(,,)c e f ,(,,)d e f 共20种,其中恰好抽中1名优秀生的结果有(,,)a b d ,(,,)b c d ,(,,)c a d ,(,,)a b e ,(,,)b c e (,,)c a e ,(,,)a b f ,(,,)b c f ,(,,)c a f 共9种,所以恰好抽中1名优秀生的概率为920P =. 22.解:(1)()211cos2ωx 1sin 21sin(2)22226f x x xcos x sin x x πωωωωω-=-+==-+=-+与直线2y =的图象的两相邻交点之间的距离为π,则T π=,所以1ω=(2)7131[,]2[,]sin(2)[1,]266662x x x ππππππ∈∴+∈∴+∈-()f x ∴的值域是1[,2]2(3)令222()262kx x kx k Z πππ-≤+≤+∈,则()36kx x kx k Z ππ-≤≤+∈,所以函数()f x 的单调减区间为()ππk π-,k πk Z 63⎡⎤+∈⎢⎥⎣⎦令3222(),262kx x kx k Z πππ+≤+≤+∈则2()63kx x kx k Z ππ+≤≤+∈, 所以函数()f x 的单调增区间为()π2πk π,k πk Z 63⎡⎤++∈⎢⎥⎣⎦。
2017-2018年河南省郑州市高一(下)期末数学试卷[精品解析版]
2017-2018学年河南省郑州市高一(下)期末数学试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)sin585°的值为()A.B.C.D.2.(5分)已知向量=(﹣3,5),=(5,3),则与()A.垂直B.不垂直也不平行C.平行且同向D.平行且反向3.(5分)下列各式中,值为的是()A.2sin15°cos15°B.cos215°﹣sin215°C.2sin215°﹣1D.sin215°+cos215°4.(5分)某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们所有比赛得分的情况用如图所示的茎叶图表示,则运动员甲得分的中位数,乙得分的平均数分别为()A.19,13B.13,19C.19,18D.18,195.(5分)从装有大小材质完全相同的3个红球和3个黑球的不透明口袋中,随机摸出两个小球,则两个小球同色的概率是()A.B.C.D.6.(5分)函数y=[cos(x+)+sin(x+)][cos(x+)﹣sin(x+)]在一个周期内的图象是()A.B.C.D.7.(5分)设单位向量,的夹角为60°,则向量3+4与向量的夹角的余弦值是()A.B.C.D.8.(5分)如图下面程序框图运行的结果s=1320,那么判断框中应填入()A.k<10?B.k>10?C.k<11?D.k>11?9.(5分)甲、乙两人各自在400米长的直线形跑道上跑步,则在任一时刻两人在跑道上相距不超过50米的概率是()A.B.C.D.10.(5分)已知函数f(x)=sin(2x+φ)的图象关于直线x=对称,则φ可能取值是()A.B.C.D.11.(5分)如图所示,点A,B,C是圆O上的三点,线段OC与线段AB交于圈内一点P,若=m,=,则λ=()A.B.C.D.12.(5分)已知平面上的两个向量和满足||=cosα,||=sinα,α∈[0,],=0,若向量=+(λ,μ∈R),且(2λ﹣1)2 cos2α+(2μ﹣1)2 sin2α=,则||的最大值是()A.B.C.D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知tanα=4,tan(π﹣β)=3,则tan(α+β)=.14.(5分)已知样本7,8,9,x,y的平均数是8,标准差为,则xy的值是.15.(5分)已知△ABC的三边长AC=4,BC=3,AB=5,P为AB边上的任意一点,则•()的最小值为.16.(5分)将函数f(x)=2sin(2x+)的图象向左平移个单位,再向下平移2个单位,得到g(x)的图象,若g(x1)g(x2)=16,且x1,x2∈[﹣2π,2π],则2x1﹣x2的最大值为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知向量=(1,2),=(﹣3,4).(I)求向量与向量夹角的余弦值(II)若⊥(),求实数λ的值.18.(12分)某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:123 (1)求出实数m ,n ,p ; (2)求出函数f (x )的解析式; (3)将y =f (x )图象上所有点向左平移个单位长度,得到y =g (x )图象,求y =g(x )的图象离原点O 最近的对称中心.x之间的一组数据关系如表:x 3 4 5 6之间的回归直线方程;件时,每周内获得的纯利为多少? 附注:=280,(x i)2=28,x i y i =3076,=34992,b ==,=.20.(12分)在矩形ABCD中,点E是BC边上的中点,点F在边CD上.(I)若点F是CD上靠近C的四等分点,设=,求λ•μ的值;(II)若AB=3,BC=4,当=2时,求DF的长.21.(12分)某中学举行了数学测试,并从中随机抽取了60名学生的成绩作为样本,其中成绩不低于80分的学生被评为优秀生,得到成绩分布的频率分布直方图如图所示.(I)若该所中学共有3000名学生,试利用样本估计全校这次考试中优秀生人数;(II)若在样本中,利用分层抽样的方法从成绩不低于70分的学生中随机抽取6人,再从中抽取3人,试求恰好抽中1名优秀生的概率.22.(12分)已知函数f(x)=sin2ωx﹣sinωx cosωx+(ω>0),y=f(x)的图象与直线y=2相交,且两相邻交点之间的距离为π.(I)求函数f(x)的解析式;(II)已知x∈[],求函数f(x)的值域;(III)求函数f(x)的单调区间并判断其单调性.2017-2018学年河南省郑州市高一(下)期末数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【考点】GE:诱导公式.【解答】解:sin585°=sin(585°﹣360°)=sin225°=sin(45°+180°)=﹣sin45°=﹣,故选:A.【点评】本题考查诱导公式及特殊角三角函数值.2.【考点】9T:数量积判断两个平面向量的垂直关系.【解答】解:向量=(﹣3,5),=(5,3),则•=﹣3×5+5×3=0,∴⊥,A正确.故选:A.【点评】本题考查了利用数量积判断平面向量垂直的应用问题,是基础题.3.【考点】GS:二倍角的三角函数.【解答】解:∵.故选:B.【点评】能将要求的值化为一个角的一个三角函数式,培养学生逆向思维的意识和习惯;培养学生的观察能力,逻辑推理能力和合作学习能力.4.【考点】BA:茎叶图.【解答】解:由茎叶图知,甲运动员的得分按照从小到大排列是6,8,9,15,17,19,23,24,26,32,41共有11 个数字,中间一个是19,即中位数是19;乙运动员得分按照从小到大的顺序排列是5,7,8,11,11,13,20,22,30,31,40,计算平均数是=×(5+7+8+11+11+13+20+22+30+31+40)=18.所以甲得分的中位数是19,乙得分的平均数是18.故选:C.【点评】本题考查了利用茎叶图求中位数和平均数的应用问题,是基础题.5.【考点】CB:古典概型及其概率计算公式.【解答】解:从装有大小材质完全相同的3个红球和3个黑球的不透明口袋中,随机摸出两个小球,基本事件总数n==15,两个小球同色包含的基本事件个数m==6,∴两个小球同色的概率是p===.故选:C.【点评】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.6.【考点】GL:三角函数中的恒等变换应用;H2:正弦函数的图象.【解答】解:∵函数y=[cos(x+)+sin(x+)][cos(x+)﹣sin(x+)]=cos2(x+)﹣sin2(x+)=cos(2x+)=﹣sin2x,∴函数y的一个周期为π,且与y=sin2x的图象关于x轴对称;∴满足条件的是选项B.故选:B.【点评】本题考查了三角恒等变换与三角函数的图象与性质的应用问题,是基础题目.7.【考点】9S:数量积表示两个向量的夹角.【解答】解:,,,,,.故选:D.【点评】本题考查向量的数量积公式并利用此公式求向量的夹角余弦、考查向量模的平方等于向量的平方并利用此性质解决与模有关的问题.8.【考点】EF:程序框图.【解答】解:经过第一次循环得到s=1×12=12,k=12﹣1=11不输出,即k的值不满足判断框的条件经过第二次循环得到s=12×11=132,k=11﹣1=10不输出,即k的值不满足判断框的条件经过第三次循环得到s=132×10=1320,k=10﹣1=9输出,即k的值满足判断框的条件故判断框中的条件是k<10?.故选:A.【点评】本题考查了程序框图的三种结构,解题的关键是列出每次执行循环体后得到的s 与k值.9.【考点】CF:几何概型.【解答】解:设甲、乙两人各自跑的路程为xm,ym,则,表示的区域如图所示,面积为160000m2,相距不超过50米,满足|x﹣y|≤50,表示的区域如图阴影所示,其面积为(160000﹣122500)m2=37500m2,∴在任一时刻两人在跑道相距不超过50米的概率是=.故选:C.【点评】本题考查几何概型,明确测度比为面积比是关键,是中档题.10.【考点】H6:正弦函数的奇偶性和对称性.【解答】解:函数f(x)=sin(2x+φ),令2x+φ=kπ+,k∈Z;f(x)的图象关于直线x=对称,∴2×+φ=kπ+,k∈Z;解得φ=kπ+,k∈Z;∴φ的可能取值是.故选:C.【点评】本题考查了正弦函数的图象与对称性应用问题,是基础题.11.【考点】9H:平面向量的基本定理.【解答】解:设=μ(m).又=,则=.∴μ(m)﹣═.∴⇒λ=故选:C.【点评】本题考查了向量的线性运算,共线定理,共面定理的应用问题,是基础题.12.【考点】9H:平面向量的基本定理;9O:平面向量数量积的性质及其运算.【解答】解:根据条件||=cosα,||=sinα,可得|AB|=1,OA⊥OB,如图,取AB中点D,则:=+.==()+()(λ,μ∈R),=()2cos2α+()2sin2α=[(2λ﹣1)2 cos2α+(2μ﹣1)2 sin2α]=.∴C在以D为圆心,为半径的圆上;∴当OC过圆D的圆心时,则||最大,∴||的最大值为+=.故选:B.【点评】考查向量垂直的充要条件,向量加法的平行四边形法则,向量减法的几何意义,以及向量的数乘运算,属于难题.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.【考点】GP:两角和与差的三角函数.【解答】解:∵tan(π﹣β)=3,∴﹣tanβ=3,即tanβ=﹣3,又tanα=4,∴tan(α+β)=.故答案为:.【点评】本题考查三角函数的化简求值,考查诱导公式及两角和的正切,是基础题.14.【考点】BB:众数、中位数、平均数;BC:极差、方差与标准差.【解答】解:∵,∴x+y=16,①∵②,由①得x=16﹣y③把③代入②得xy=60,故答案为:60.【点评】本题考查平均数和方差的公式的应用,在解题过程中主要是数字的运算,只要数字的运算不出错,就是一个得分题目.15.【考点】9O:平面向量数量积的性质及其运算.【解答】解:∵△ABC的三边长AC=4,BC=3,AB=5,∴AC2+BC2=AB2,∴AC⊥BC,∴△ABC为直角三角形,且∠C为直角,以CA为x轴,CB为y轴,建立直角坐标系,则C(0,0),A(4,0),B(0,3),设P(x,y)则=(x,y).=(0,﹣3),=(4,﹣3),∴•()=(x,y)•(﹣4,0)=﹣4x,∵0≤x≤4,∴﹣16≤﹣4x≤0,∴•()的最小值为﹣16.故答案为:﹣16.【点评】本题考查向量的数量积的最小值的求法,考查向量的坐标运算、向量的数量积公式等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.16.【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【解答】解:将函数f(x)=2sin(2x+)的图象向左平移个单位,再向下平移2个单位,得到g(x)=f(x+)﹣2=2sin(2x+)﹣2 的图象,若g(x1)g(x2)=16,则g(x1)=g(x2)=﹣4,则sin(2x1+)=﹣1=sin(2x2+),∵x1,x2∈[﹣2π,2π],2x1+∈[﹣,],2x2+∈∈[﹣,],2x2+的最小值为﹣,2x1+的最大值为,故2x1的最大值为,x2的最小值为﹣,则2x1﹣x2的最大值为﹣(﹣)=,故答案为:.【点评】本题主要考查函数y=A sin(ωx+φ)的图象变换规律,正弦函数的图象和性质,属于中档题.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.【考点】9O:平面向量数量积的性质及其运算.【解答】解:(Ⅰ)﹣=(4,﹣2),=(﹣3,4)∴==;=5;(﹣)=4×(﹣3)+(﹣2)×4=﹣20,∴设向量与向量夹角为θ,则cosθ===﹣;(Ⅱ)由题知﹣)=0∴﹣λ•=0;又•=﹣3+8=5,=5.∴5﹣5λ=0,∴λ=1.【点评】本题考查平面向量数量积的运算.18.【考点】HJ:函数y=Asin(ωx+φ)的图象变换;HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【解答】解(1)由五点法得f(x)的周期T=2×(﹣)=π,则=,则m=﹣=,n=+=,p=+=π.(2)根据表中已知数据,解得A=5,由表格得,得ω=2,φ=﹣所以函数表达式f(x)=5sin(2x﹣).(3)将y=f(x)图象上所有点向左平移个单位长度,得到y=g(x)图象,即g(x)=5sin[2(x+)﹣]=5sin(2x+),由2x+=kπ,k∈Z,得x=﹣即g(x)图象的对称中心为(﹣,0),k∈Z其离原点O最近的对称中心为(﹣,0).【点评】本题主要考查三角函数解析式的求解,五点法的对应关系以及三角函数的性质的应用,根据条件求出函数的解析式是解决本题的关键.19.【考点】BK:线性回归方程.【解答】解:(I)由表中数据,画出散点图如图所示;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)(II)由表中数据,计算=×(3+4+5+6+7+8+9)=6,=×(56+59+63+71+79+80+82)=70;==≈4.9,==70﹣×6=40.9∴y与x之间的回归直线方程为=4.9x+40.9;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)(III)当x=12时,=4.9×12+40.9=99.7;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(11分)∴估计当每天销售的件数为12件时,周内获得的纯利约为99.7元.﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)【点评】本题考查了线性回归直线方程的求法与应用问题,是基础题.20.【考点】9O:平面向量数量积的性质及其运算.【解答】解:(Ⅰ)∵在矩形ABCD中,点E是BC边上的中点,点F在边CD上,∴==,在矩形ABCD中,,,∴,∴,∴λ•μ=﹣.(Ⅱ)设=m(m>0),则=(m﹣1),=,==(m﹣1)=(m﹣1),又=0,∴=()[(m﹣1)]=(m﹣1)=9(m﹣1)+8=2,解得m=,∴DF的长为1.【点评】本题考查实数值的求法,考查线段长的求法,考查向量的数量积公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.21.【考点】B8:频率分布直方图;CB:古典概型及其概率计算公式;CC:列举法计算基本事件数及事件发生的概率.【解答】解:(1)由直方图可知,样本中数据落在[80,100]的频率为0.2+0.1=0.3,则估计全校这次考试中优秀生人数为3000×0.3=900.(2)由分层抽样知识可知,成绩在[70,80),[80,90),[90,100]间分别抽取了3人,2人,1人.记成绩在[70,80)的3人为a,b,c,成绩在[80,90)的2人为d,e,成绩在[90,100]的1人为f,则从这6人中抽取3人的所有可能结果有20种,分别为:(a,b,c),(a,b,d),(a,b,e),(a,b,f),(a,c,d),(a,c,e),(a,c,f),(a,d,e),(a,d,f),(a,e,f),(b,c,d),(b,c,e),(b,c,f),(b,d,e),(b,d,f),(b,e,f),(c,d,f),(c,e,f),(d,e,f),其中恰好抽中1名优秀生的结果有(a,b,d),(b,c,d),(c,a,d),(a,b,e),(b,c,e),(c,a,e),(a,b,f),(b,c,f),(c,a,f)共9种,所以恰好抽中1名优秀生的概率为p=.【点评】本题考查频率分布直方图的应用,考查概率的求法,考查列举法、古典概型等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.22.【考点】GP:两角和与差的三角函数.【解答】解:(1)函数f(x)=sin2ωx﹣sinωx cosωx+=﹣sin2ωx+=1﹣sin(2ωx+),它的图象与直线y=2相交,且两相邻交点之间的距离为π,∴=π,ω=1.∴f(x)=1﹣sin(2x+).(II)∵x∈[],∴2x+∈[,],sin(2ωx+)∈[﹣1,],即函数f(x)的值域为[﹣1,].(III)∵f(x)=1﹣sin(2ωx+),令2kπ﹣≤2x+≤2kπ+,求得kπ﹣≤x≤kπ+,故函数f(x)的单调减区间为[kπ﹣,kπ+],k∈Z.令2kπ+≤2x+≤2kπ+,求得kπ+≤x≤kπ+,故函数f(x)的单调增区间为[kπ+,kπ+],k∈Z.【点评】本题主要考查三角恒等变换,正弦函数的定义域和值域,正弦函数的单调性,属于基础题.书写方面,字迹要清楚,能单独辨认绝不能连续写下去,切忌将方程、答案淹没在文字之中这是相当多考生所忽视的). 要全部用字母符号表示方程,主干方程单独占一行,按首行格式放置;式子要编号,号码要对齐。
河南省八市重点高中2017-2018学年高一上学期12月联考数学试卷 Word版含解析
2017-2018学年河南省八市重点高中高一(上)12月联考数学试卷一、选择题(共12小题,每小题5分,满分60分)1.若集合A={x||x|≤1,x∈R},B={y|y=x2,x∈R},则A∩B=()A.{x|﹣1≤x≤1}B.{x|x≥0} C.{x|0≤x≤1}D.∅2.函数y=f(x)的图象与y轴的交点个数是()A.至多一个 B.至少一个C.必有一个 D.一个、两个或无烽个3.已知a,b是两条不同的直线,α、β是两个不同的平面,下列说法中正确的是()A.若a∥b,a∥α,则b∥αB.若a⊥b,a⊥α,b⊥β,则α⊥βC.若α⊥β,a⊥β,则a∥αD.若α⊥β,a∥α,则a⊥β4.已知函数f(x)的定义域为(﹣∞,0)∪(0,+∞)且对定义域中任意x均有:f(x)•f(﹣x)=1,g(x)=,则g(x)()A.是奇函数 B.是偶函数C.既是奇函数又是偶函数 D.既非奇函数又非偶函数5.若a=ln2,b=log3,c=20.6,则a,b,c的大小关系为()A.a<b<c B.c<b<a C.c<a<b D.b<a<c6.如果一个水平放置的图形的斜二测直观图是一个边长为2的正三角形,那么原平面图形的面积是()A.B. C.D.7.已知函数f(x)=log0.5(x2﹣ax+3a)在[2,+∞)单调递减,则a的取值范围()A.(﹣∞,4]B.[4,+∞)C.[﹣4,4] D.(﹣4,4]8.一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为()A.B.(4+π)C.D.9.已知x3<x,则x的取值范围是()A.(﹣∞,﹣1)B.(1,+∞)C.(﹣∞,﹣1)∪(0,1)D.(﹣∞,0)10.一水池有2个进水口,1个出水口,进出水速度如图甲.乙所示.某天0点到6点,该水池的蓄水量如图丙所示.(至少打开一个水口),给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.则一定能确定正确的论断是()A.①B.①②C.①③D.①②③11.已知一个半径为1的小球在一个内壁棱长为5的正方体密闭容器内可以向各个方向自由运动,则该小球永远不可能接触到的容器内壁的面积是()A.100 B.96 C.54 D.9212.已知定义在R上的函数y=f(x)满足f(x+2)=f(x),当﹣1<x≤1时,f(x)=x3.若函数g(x)=f(x)﹣log a|x|至少有6个零点,则a的取值范围是()A.(1,5)B.C.D.二、填空题(共4小题,每小题5分,满分20分)13.=.14.已知奇函数f(x)是定义在(﹣3,3)上的减函数,且满足不等式f(x﹣3)+f(x2﹣3)<0,则不等式解集.15.如图是一几何体的平面展开图,其中ABCD为正方形,E,F分别为PA,PD的中点,在此几何体中,给出下面四个结论:①直线BE与直线CF异面;②直线BE与直线AF异面;③直线EF∥平面PBC;④平面BCE⊥平面PAD;其中正确的是.16.设关于x 的方程x 2﹣ax ﹣1=0和x 2﹣x ﹣2a=0的实根分别为x 1、x 2和x 3、x 4,若x 1<x 3<x 2<x 4,则实数a 的取值范围为 .三、解答题(共6小题,满分70分)17.已知集合A={x |x 2﹣6x +8<0},B={x |(x ﹣a )(x ﹣3a )<0}. (1)若A ⊆(A ∩B ),求a 的取值范围; (2)若A ∩B=∅,求a 的取值范围.18.已知函数f (x )=是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[﹣1,a ﹣2]上单调递增,求实数a 的取值范围.19.如图,在四棱锥P ﹣ABCD 中,底面ABCD 为菱形,其中PA=PD=AD=2,∠BAD=60°,Q 为AD 的中点.(1)求证:AD ⊥平面PQB ;(2)若平面PAD ⊥平面ABCD ,且,求四棱锥M ﹣ABCD 的体积.20.我县某种蔬菜从二月一日起开始上市,通过市场调查,得到西红柿种植成本Q (单位:2Q 与上市时间t 的变化关系.Q=at +b ,Q=at 2+bt +c ,Q=a •b t ,Q=a •log b t .(2)利用你选取的函数,求西红柿种植成本最低时的上市天数及最低种植成本.21.已知等腰梯形PDCB 中,PB=3,DC=1,PD=BC=,A 为PB 边上一点,且PA=1,将△PAD 沿AD 折起,使平面PAD ⊥平面ABCD . (1)求证:平面PAD ⊥平面PCD .(2)在线段PB 上是否存在一点M ,使截面AMC 把几何体分成的两部分的体积之比为V 多面体PDCMA :V 三棱锥M ﹣ACB =2:1?(3)在M 满足(2)的条件下,判断PD 是否平行于平面AMC .22.已知幂函数f (x )=x (2﹣k )(1+k ),k ∈Z ,且f (x )在(0,+∞)上单调递增.(1)求实数k的值,并写出相应的函数f(x)的解析式;(2)若F(x)=2f(x)﹣4x+3在区间[2a,a+1]上不单调,求实数a的取值范围;(3)试判断是否存在正数q,使函数g(x)=1﹣qf(x)+(2q﹣1)x在区间[﹣1,2]上的值域为.若存在,求出q的值;若不存在,请说明理由.2015-2016学年河南省八市重点高中高一(上)12月联考数学试卷参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.若集合A={x||x|≤1,x∈R},B={y|y=x2,x∈R},则A∩B=()A.{x|﹣1≤x≤1}B.{x|x≥0} C.{x|0≤x≤1}D.∅【考点】交集及其运算.【分析】考查集合的性质与交集以及绝对值不等式运算.常见的解法为计算出集合A、B的最简单形式再运算.【解答】解:由题得:A={x|﹣1≤x≤1},B={y|y≥0},∴A∩B={x|0≤x≤1}.故选C.2.函数y=f(x)的图象与y轴的交点个数是()A.至多一个 B.至少一个C.必有一个 D.一个、两个或无烽个【考点】函数的概念及其构成要素.【分析】由函数的定义,对任意一个x,有且只有一个y与之对应,从而可知若x可以等于0,则有且只有一个y与之对应.【解答】解:由函数的定义,对任意一个x,有且只有一个y与之对应,若x可以等于0,则有且只有一个y与之对应,故函数y=f(x)的图象与y轴的交点个数至多有一个;故选A.3.已知a,b是两条不同的直线,α、β是两个不同的平面,下列说法中正确的是()A.若a∥b,a∥α,则b∥αB.若a⊥b,a⊥α,b⊥β,则α⊥βC.若α⊥β,a⊥β,则a∥αD.若α⊥β,a∥α,则a⊥β【考点】空间中直线与平面之间的位置关系.【分析】A选项a∥b,a∥α,则b∥α,可由线面平行的判定定理进行判断;B选项a⊥b,a⊥α,b⊥β,则α⊥β,可由面面垂直的判定定理进行判断;C选项α⊥β,a⊥β,则a∥α可由线面的位置关系进行判断;D选项α⊥β,a∥α,则a⊥β,可由面面垂直的性质定理进行判断.【解答】解:A选项不正确,因为b⊂α是可能的;B选项正确,可由面面垂直的判定定理证明其是正确的;C选项不正确,因为α⊥β,a⊥β时,可能有a⊂α;D选项不正确,因为α⊥β,a∥α时,a∥β,a⊂β都是可能的.故选:B.4.已知函数f(x)的定义域为(﹣∞,0)∪(0,+∞)且对定义域中任意x均有:f(x)•f(﹣x)=1,g(x)=,则g(x)()A.是奇函数 B.是偶函数C.既是奇函数又是偶函数 D.既非奇函数又非偶函数【考点】函数奇偶性的判断.【分析】由题意先判断函数g(x)的定义域关于原点对称,再求出g(﹣x)与g(x)的关系,判断出其奇偶性.【解答】解:由题意,要使函数g(x)有意义,则f(x)+1≠0,即f(x)≠﹣1,∵对定义域中任意x均有:f(x)•f(﹣x)=1,∴若f(a)=﹣1时,则有f(﹣a)=﹣1,∵函数f(x)的定义域为(﹣∞,0)∪(0,+∞),∴函数g(x)的定义域也关于原点对称,∵g(﹣x)===﹣=﹣g(x),∴函数g(x)是奇函数.故选A.5.若a=ln2,b=log3,c=20.6,则a,b,c的大小关系为()A.a<b<c B.c<b<a C.c<a<b D.b<a<c【考点】对数值大小的比较.【分析】利用指数函数和对数函数的单调性求解.【解答】解:∵0=ln1<a=ln2<lne=1,b=log3<log31=0,c=20.6>20=1,∴b<a<c.故选:D.6.如果一个水平放置的图形的斜二测直观图是一个边长为2的正三角形,那么原平面图形的面积是()A.B. C.D.【考点】斜二测法画直观图.【分析】根据图形的斜二测直观图是一个边长为2的正三角形,求出直观图的面积,利用原图和直观图的面积关系得到答案.【解答】解:∵图形的斜二测直观图是一个边长为2的正三角形,则直观图的面积S==则原图的面积S′=2S=2故选B7.已知函数f(x)=log0.5(x2﹣ax+3a)在[2,+∞)单调递减,则a的取值范围()A.(﹣∞,4]B.[4,+∞)C.[﹣4,4] D.(﹣4,4]【考点】对数函数的单调性与特殊点.【分析】令g(x)=x2﹣ax+3a,则函数g(x)在区间[2,+∞)内单调递增,且恒大于0,可得不等式,从而可求a的取值范围.【解答】解:令g(x)=x2﹣ax+3a,∵f(x)=log0.5(x2﹣ax+3a)在[2,+∞)单调递减∴函数g(x)在区间[2,+∞)内单调递增,且恒大于0∴a≤2且g(2)>0∴a≤4且4+a>0∴﹣4<a≤4故选D8.一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为()A.B.(4+π)C.D.【考点】由三视图求面积、体积.【分析】几何体是一个组合体,是由半个圆锥和一个四棱锥组合成的几何体,圆柱的底面直径和母线长都是2,四棱锥的底面是一个边长是2的正方形,做出圆锥的高,根据圆锥和圆柱的体积公式得到结果.【解答】解:由三视图知,几何体是一个组合体,是由半个圆锥和一个四棱锥组合成的几何体,圆柱的底面直径和母线长都是2,四棱锥的底面是一个边长是2的正方形,四棱锥的高与圆锥的高相同,高是=,∴几何体的体积是=,故选D.9.已知x3<x,则x的取值范围是()A.(﹣∞,﹣1)B.(1,+∞)C.(﹣∞,﹣1)∪(0,1)D.(﹣∞,0)【考点】指、对数不等式的解法.【分析】在同一坐标系中画出函数y=x3和y=的图象,结合图象即可得出不等式x3<x的解集.【解答】解:在同一坐标系中画出函数y=x3和y=的图象,如图所示;根据函数的图象知,函数y=的图象在函数y=x3图象的上边部分对应x的取值范围是{x|x<﹣1或0<x<1};故不等式x3<x的解集是{x|x<﹣1或0<x<1}.故选:C.10.一水池有2个进水口,1个出水口,进出水速度如图甲.乙所示.某天0点到6点,该水池的蓄水量如图丙所示.(至少打开一个水口),给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.则一定能确定正确的论断是()A.①B.①②C.①③D.①②③【考点】函数的图象.【分析】由甲,乙图得进水速度1,出水速度2,图中直线的斜率即为蓄水量的变化率,比如,0点到3点时的蓄水量的变化率为2.根据进水出水的情况,结合丙图中直线的斜率解答.【解答】解:由甲,乙图得进水速度1,出水速度2,结合丙图中直线的斜率解答∴只进水不出水时,蓄水量增加是2,故①对;∴不进水只出水时,蓄水量减少是2,故②不对;∴二个进水一个出水时,蓄水量减少也是0,故③不对;只有①满足题意.故选A.11.已知一个半径为1的小球在一个内壁棱长为5的正方体密闭容器内可以向各个方向自由运动,则该小球永远不可能接触到的容器内壁的面积是()A.100 B.96 C.54 D.92【考点】棱柱的结构特征.【分析】分别计算不可接触到的面积,重复部分面积,即可得到结论.【解答】解:当小球运动到同时接触到正方体容器的两面内壁时,小球与该两面内壁的接触点相距这两面内壁的棱必有一段距离,且这两接触点到棱的距离相等.不可接触到的面积是:1×5×2×12=120;其中重复部分面积为3×8=24,∴该小球永远不可能接触到的容器内壁的面积是120﹣24=96,故选B.12.已知定义在R上的函数y=f(x)满足f(x+2)=f(x),当﹣1<x≤1时,f(x)=x3.若函数g(x)=f(x)﹣log a|x|至少有6个零点,则a的取值范围是()A.(1,5)B.C.D.【考点】根的存在性及根的个数判断.【分析】函数g(x)=f(x)﹣log a|x|的零点个数,即函数y=f(x)与y=log5|x|的交点的个数,由函数图象的变换,分别做出y=f(x)与y=log a|x|的图象,结合图象可得log a5≤1 或log a5>﹣1,由此求得a的取值范围.【解答】解:根据题意,函数g(x)=f(x)﹣log a|x|的零点个数,即函数y=f(x)与y=log a|x|的交点的个数;f(x+2)=f(x),函数f(x)是周期为2的周期函数,又由当﹣1<x≤1时,f(x)=x3,据此可以做出f(x)的图象,y=log a|x|是偶函数,当x>0时,y=log a x,则当x<0时,y=log a(﹣x),做出y=log a|x|的图象,结合图象分析可得:要使函数y=f(x)与y=log a|x|至少有6个交点,则log a5≤1 或log a5>﹣1,解得a≥5,或0<a<,故选:B.二、填空题(共4小题,每小题5分,满分20分)13.=﹣3.【考点】有理数指数幂的化简求值.【分析】利用指数与对数的运算法则即可得出.【解答】解:原式=﹣4÷1﹣=4﹣4﹣3=﹣3.故答案为:﹣3.14.已知奇函数f(x)是定义在(﹣3,3)上的减函数,且满足不等式f(x﹣3)+f(x2﹣3)<0,则不等式解集(2,).【考点】函数单调性的性质;一元二次不等式的解法.【分析】利用函数是奇函数,将不等式转化为f(x2﹣3)<﹣f(x﹣3)=f(3﹣x),然后利用函数是减函数,进行求解.【解答】解:因为f(x)是奇函数,所以不等式f(x﹣3)+f(x2﹣3)<0等价为f(x2﹣3)<﹣f(x﹣3)=f(3﹣x),又f(x)是定义在(﹣3,3)上的减函数,所以,即,解得2,即不等式的解集为(2,).故答案为:(2,).15.如图是一几何体的平面展开图,其中ABCD为正方形,E,F分别为PA,PD的中点,在此几何体中,给出下面四个结论:①直线BE与直线CF异面;②直线BE与直线AF异面;③直线EF∥平面PBC;④平面BCE⊥平面PAD;其中正确的是②③.【考点】空间中直线与直线之间的位置关系.【分析】①根据三角形的中位线定理可得四边形EFBC是平面四边形,直线BE与直线CF 共面;②由异面直线的定义即可得出;③由线面平行的判定定理即可得出;④可举出反例【解答】解:由展开图恢复原几何体如图所示:①在△PAD中,由PE=EA,PF=FD,根据三角形的中位线定理可得EF∥AD,又∵AD∥BC,∴EF∥BC,因此四边形EFBC是梯形,故直线BE与直线CF不是异面直线,所以①不正确;②由点A不在平面EFCB内,直线BE不经过点F,根据异面直线的定义可知:直线BE与直线AF异面,所以②正确;③由①可知:EF∥BC,EF⊄平面PBC,BC⊂平面PBC,∴直线EF∥平面PBC,故③正确;④如图:假设平面BCEF⊥平面PAD.过点P作PO⊥EF分别交EF、AD于点O、N,在BC上取一点M,连接PM、OM、MN,∴PO⊥OM,又PO=ON,∴PM=MN.若PM≠MN时,必然平面BCEF与平面PAD不垂直.故④不一定成立.综上可知:只有②③正确,故答案为:②③16.设关于x 的方程x 2﹣ax ﹣1=0和x 2﹣x ﹣2a=0的实根分别为x 1、x 2和x 3、x 4,若x 1<x 3<x 2<x 4,则实数a 的取值范围为.【考点】函数的零点.【分析】由x 2﹣ax ﹣1=0得ax=x 2﹣1,由x 2﹣x ﹣2a=0得2a=x 2﹣x ,构造函数y=x 2﹣x 和y=2x ﹣,在同一坐标系中作出两个函数得图象,并求出x 2﹣x=2x ﹣的解即两图象交点的横坐标,结合条件和函数的图象求出a 的取值范围. 【解答】解:由x 2﹣x ﹣2a=0得2a=x 2﹣x ,由x 2﹣ax ﹣1=0(x ≠0)得ax=x 2﹣1,则2a=2x ﹣,作出函数y=x 2﹣x 和y=2x ﹣的函数图象如下图:由x 2﹣x=2x ﹣得,x 2﹣3x +=0,则=0,∴=0,解得x=1或x=1或x=,∵x 1<x 3<x 2<x 4,且当x=时,可得a=,∴由图可得,0<a <,故答案为:.三、解答题(共6小题,满分70分)17.已知集合A={x|x2﹣6x+8<0},B={x|(x﹣a)(x﹣3a)<0}.(1)若A⊆(A∩B),求a的取值范围;(2)若A∩B=∅,求a的取值范围.【考点】集合的包含关系判断及应用.【分析】求出集合A中不等式的解集,确定出A,(1)分a大于0与a小于0两种情况考虑,求出A为B子集时a的范围即可;(2)要满足A与B交集为空集,分a大于0,小于0和等于0三种情况考虑,求出a的范围即可.【解答】解:由集合A中的不等式x2﹣6x+8<0,解得:2<x<4,即A={x|2<x<4},(1)当a>0时,B={x|a<x<3a},由A⊆(A∩B),可得A⊆B,得到,解得:≤a≤2;当a<0时,B={x|3a<x<a},由A⊆B,得到,无解,当a=0时,B=∅,不合题意,∴A⊆B时,实数a的取值范围为≤a≤2;(2)要满足A∩B=∅,分三种情况考虑:当a>0时,B={x|a<x<3a},由A∩B=∅,得到a≥4或3a≤2,解得:0<a≤或a≥4;当a<0时,B={x|3a<x<a},由A∩B=∅,得到3a≥4或a≤2,解得:a<0;当a=0时,B=∅,满足A∩B=∅,综上所述,a≤或a≥4.18.已知函数f(x)=是奇函数.(1)求实数m的值;(2)若函数f(x)在区间[﹣1,a﹣2]上单调递增,求实数a的取值范围.【考点】奇偶性与单调性的综合.【分析】(1)根据函数奇偶性的性质建立条件关系即可.(2)利用数形结合,以及函数奇偶性和单调性的关系进行判断即可.【解答】解:(1)∵f(x)是奇函数,∴设x>0,则﹣x<0,∴f(﹣x)=(﹣x)2﹣mx=﹣f(x)=﹣(﹣x2+2x)从而m=2.(2)由f(x)的图象知,若函数f(x)在区间[﹣1,a﹣2]上单调递增,则﹣1≤a﹣2≤1∴1≤a≤319.如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,其中PA=PD=AD=2,∠BAD=60°,Q为AD的中点.(1)求证:AD⊥平面PQB;(2)若平面PAD⊥平面ABCD,且,求四棱锥M﹣ABCD的体积.【考点】平面与平面垂直的性质;直线与平面垂直的判定.【分析】(1)连接BD,等边三角形PAD中,中线PQ⊥AD;因为菱形ABCD中∠BAD=60°,所以AD⊥BQ,最后由线面垂直的判定定理即可证出AD⊥平面PQB;(2)连接QC,作MH⊥QC于H.因为平面PAD⊥平面ABCD,PQ⊥AD,结合面面垂直性质定理证出PQ⊥平面ABCD.而平面PQC中,PQ∥MH,可得MH⊥平面ABCD,即MH就是四棱锥M﹣ABCD的高线.最后利用锥体体积公式结合题中数据即可算出四棱锥M ﹣ABCD的体积.【解答】解:(1)连接BD∵PA=PD=AD=2,Q为AD的中点,∴PQ⊥AD又∵∠BAD=60°,底面ABCD为菱形,∴△ABD是等边三角形,∵Q为AD的中点,∴AD⊥BQ∵PQ、BQ是平面PQB内的相交直线,∴AD⊥平面PQB.(2)连接QC,作MH⊥QC于H.∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PQ⊥AD∴PQ⊥平面ABCD,结合QC⊂平面ABCD,可得PQ⊥QC∵平面PQC中,MH⊥QC且PQ⊥QC,∴PQ∥MH,可得MH⊥平面ABCD,即MH就是四棱锥M﹣ABCD的高线∵,可得,==.∴四棱锥M﹣ABCD的体积为V M﹣ABCD20.我县某种蔬菜从二月一日起开始上市,通过市场调查,得到西红柿种植成本Q(单位:/102Q与上市时间t的变化关系.Q=at+b,Q=at2+bt+c,Q=a•b t,Q=a•log b t.(2)利用你选取的函数,求西红柿种植成本最低时的上市天数及最低种植成本.【考点】函数模型的选择与应用.【分析】(1)由提供的数据知,描述西红柿种植成本Q与上市时间t的变化关系函数不是单调函数,应选取二次函数Q=at2+bt+c进行描述,利用待定系数法将表格所提供的三组数据代入Q,列方程组求出函数解析式;(2)由二次函数的图象与性质,求出函数Q在t取何值时,有最小值即可.【解答】解:(1)由数据和散点图知,描述西红柿种植成本Q与上市时间t的变化关系函数不是单调函数;而函数Q=at+b,Q=a•b t,Q=a•log b t,在a≠0时,均为单调函数,这与表格中提供的数据不吻合,所以,选取二次函数Q=at2+bt+c进行描述;将表格所提供的三组数据(50,150),,分别代入方程,得,解得a=,b=﹣,c=;故西红柿种植成本Q与上市时间t的变化关系函数为Q=t 2﹣t +; (2)因为函数Q=t 2﹣t +=(t ﹣150)2+100,所以当t=150(天)时,西红柿种植成本Q 最低,为100元/102kg .21.已知等腰梯形PDCB 中,PB=3,DC=1,PD=BC=,A 为PB 边上一点,且PA=1,将△PAD 沿AD 折起,使平面PAD ⊥平面ABCD . (1)求证:平面PAD ⊥平面PCD .(2)在线段PB 上是否存在一点M ,使截面AMC 把几何体分成的两部分的体积之比为V 多面体PDCMA :V 三棱锥M ﹣ACB =2:1?(3)在M 满足(2)的条件下,判断PD 是否平行于平面AMC .【考点】棱柱、棱锥、棱台的体积;平面与平面垂直的判定. 【分析】(1)证明平面与平面垂直是要证明CD ⊥面PAD ;(2)已知V 多面体PDCMA :V 三棱锥M ﹣ACB 体积之比为2:1,求出V M ﹣ACB :V P ﹣ABCD 体积之比,从而得出两多面体高之比,从而确定M 点位置.(3)利用反证法证明当M 为线段PB 的中点时,直线PD 与平面AMC 不平行.【解答】解:(1)因为PDCB 为等腰梯形,PB=3,DC=1,PA=1,则PA ⊥AD ,CD ⊥AD .又因为面PAD ⊥面ABCD ,面PAD ∩面ABCD=AD ,CD ⊂面ABCD ,故CD ⊥面PAD . 又因为CD ⊂面PCD ,所以平面PAD ⊥平面PCD . (2)所求的点M 即为线段PB 的中点,证明如下:设三棱锥M ﹣ACB 的高为h 1,四棱锥P ﹣ABCD 的高为h 2当M 为线段PB 的中点时,=.所以=所以截面AMC 把几何体分成的两部分V PDCMA :V M ﹣ACB =2:1. (3)当M 为线段PB 的中点时,直线PD 与面AMC 不平行. 证明如下:(反证法)假设PD ∥面AMC ,连接DB 交AC 于点O ,连接MO . 因为PD ⊂面PDB ,且面AMC ∩面PBD=MO ,所以PD ∥MO .因为M 为线段PB 的中点时,则O 为线段BD 的中点,即.面AB ∥DC ,故,故矛盾.所以假设不成立,故当M 为线段PB 的中点时,直线PD 与平面AMC 不平行.22.已知幂函数f(x)=x(2﹣k)(1+k),k∈Z,且f(x)在(0,+∞)上单调递增.(1)求实数k的值,并写出相应的函数f(x)的解析式;(2)若F(x)=2f(x)﹣4x+3在区间[2a,a+1]上不单调,求实数a的取值范围;(3)试判断是否存在正数q,使函数g(x)=1﹣qf(x)+(2q﹣1)x在区间[﹣1,2]上的值域为.若存在,求出q的值;若不存在,请说明理由.【考点】二次函数的性质;幂函数的性质.【分析】(1)由已知f(x)在(0,+∞)上单调递增,结合幂函数的单调性与指数的关系可构造关于k的不等式,解不等式求出实数k的值,并得到函数f(x)的解析式;(2)由(1)中结果,可得函数F(x)的解析式,结合二次函数的图象和性质,可构造关于a的不等式,解不等式求出实数a的取值范围;(3)由(1)中结果,可得函数g(x)的解析式,结合二次函数的图象和性质,可求出q 的值.【解答】解:(1)由题意知(2﹣k)(1+k)>0,解得:﹣1<k<2.…又k∈Z∴k=0或k=1,…分别代入原函数,得f(x)=x2.…(2)由已知得F(x)=2x2﹣4x+3.…要使函数不单调,则2a<1<a+1,则.…(3)由已知,g(x)=﹣qx2+(2q﹣1)x+1.…假设存在这样的正数q符合题意,则函数g(x)的图象是开口向下的抛物线,其对称轴为,因而,函数g(x)在[﹣1,2]上的最小值只能在x=﹣1或x=2处取得,又g(2)=﹣1≠﹣4,从而必有g(﹣1)=2﹣3q=﹣4,解得q=2.此时,g(x)=﹣2x2+3x+1,其对称轴,∴g(x)在[﹣1,2]上的最大值为,符合题意.∴存在q=2,使函数g(x)=1﹣qf(x)+(2q﹣1)x在区间[﹣1,2]上的值域为.…2016年11月18日。
河南省安阳市2017-2018学年高二下学期期末考试数学试卷(文科)Word版含解析
河南省安阳市2017-2018学年高二下学期期末考试数学试卷(文科)一、选择题(每小题5分,共60分)1.集合A={﹣1,0,1},B={y|y=cosx ,x ∈A},则A ∩B=( ) A .{0} B .{1} C .{0,1} D .{﹣1,0,1} 2.下列有关选项正确的是( ) A .若p ∨q 为真命题,则p ∧q 为真命题 B .“x=5”是“x 2﹣4x ﹣5=0”的充分不必要条件C .命题“若x <﹣1,则x 2﹣2x ﹣3>0”的否定为:“若x ≥﹣1,则x 2﹣3x+2≤0”D .已知命题p :∃x ∈R ,使得x 2+x ﹣1<0,则¬p:∃x ∈R ,使得x 2+x ﹣1≥0 3.已知a=log 32,那么log 38﹣2log 36用a 表示是( ) A .5a ﹣2 B .a ﹣2C .3a ﹣(1+a )2D .3a ﹣a 2﹣14.设F (x )=f (x )+f (﹣x ),x ∈R ,若[﹣π,﹣]是函数F (x )的单调递增区间,则一定是F (x )单调递减区间的是( )A .[﹣,0] B .[,0]C .[π,π]D .[,2π]5.设y 1=40.9,y 2=80.48,y 3=,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 3>y 2D .y 1>y 2>y 36.设f ′(x )是函数f (x )的导函数,y=f ′(x )的图象如图所示,则y=f (x )的图象最有可能的是( )A .B .C .D .7.已知函数f (x )=lnx+ln (2﹣x ),则( )A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称8.设函数 f(x)在 R上可导,其导函数为 f′(x),且函数 y=(1﹣x)f′(x)的图象如图所示,则下列结论中一定成立的是()A.函数 f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值 f(2)和极小值 f(﹣2)C.函数 f(x)有极大值f(﹣2)和极小值 f(1)D.函数f(x)有极大值f(﹣2)和极小值 f(2)9.函数y=2x3﹣3x2﹣12x+5在[0,3]上的最大值、最小值分别是()A.5,﹣4 B.5,﹣15 C.﹣4,﹣15 D.5,﹣1610.函数y=x2﹣lnx的单调递减区间为()A.(﹣1,1] B.(0,1] C.[1,+∞)D.(0,+∞)4.1),c=f(20.8),则11.已知奇函数f(x)在R上是增函数.若a=﹣f(),b=f(log2a,b,c的大小关系为()A.a<b<c B.b<a<c C.c<b<a D.c<a<b12.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值点()A.1个B.2个C.3个D.4个二、填空题(每小题5分,共20分)13.曲线y=x2+在点(1,2)处的切线方程为.14.要使函数f(x)=x2+3(a+1)x﹣2在区间(﹣∞,3]上是减函数,则实数a的取值范围.15.若曲线y=x2+ax+b在点(0,b)处的切线方程是x﹣y+1=0,则a,b的值分别为.16.y=的定义域是.三、解答题(请写出必要的文字说明和推演步骤,第17题10分,其他每题12分,共70分)17.已知A={x|﹣2≤x≤5},B={x|m+1≤x≤2m﹣1},B⊆A,求m的取值范围.18.求值:lg500+lg﹣lg64+50(lg2+lg5)2.19.设函数,曲线y=f(x)在点(2,f(2))处的切线方程为7x﹣4y﹣12=0.(1)求y=f(x)的解析式;(2)证明:曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形面积为定值,并求此定值.20.求f(x)=x3﹣12x在[﹣3,5]上的最值.21.设a,b∈R,|a|≤1.已知函数f(x)=x3﹣6x2﹣3a(a﹣4)x+b,g(x)=e x f(x).(Ⅰ)求f(x)的单调区间;(Ⅱ)已知函数y=g(x)和y=e x的图象在公共点(x0,y)处有相同的切线,求证:f(x)在x=x处的导数等于0.22.设函数f(x)=lnx+x2+ax(1)若x=时,f(x)取得极值,求a的值;(2)若f(x)在其定义域内为增函数,求a的取值范围.河南省安阳市2017-2018学年高二下学期期末考试数学试卷(文科)参考答案与试题解析一、选择题(每小题5分,共60分)1.集合A={﹣1,0,1},B={y|y=cosx,x∈A},则A∩B=()A.{0} B.{1} C.{0,1} D.{﹣1,0,1}【考点】1E:交集及其运算.【分析】求出B={cos1,1},利用两个集合的交集的定义求得A∩B.【解答】解:∵A={﹣1,0,1},∴B={y|y=cosx,x∈A}={cos1,1},则A∩B={1 },故选 B.2.下列有关选项正确的是()A.若p∨q为真命题,则p∧q为真命题B.“x=5”是“x2﹣4x﹣5=0”的充分不必要条件C.命题“若x<﹣1,则x2﹣2x﹣3>0”的否定为:“若x≥﹣1,则x2﹣3x+2≤0”D.已知命题p:∃x∈R,使得x2+x﹣1<0,则¬p:∃x∈R,使得x2+x﹣1≥0【考点】2L:必要条件、充分条件与充要条件的判断;2J:命题的否定.【分析】本题需要逐一判断,到满足题意的选项为止,(选择题四选一);可以采用先熟悉后生疏的策略判定解答.【解答】解:由复合命题真值表知:若p∨q为真命题,则p、q至少有一个为真命题,有可能一真一假,也可能两个都真,推不出p∧q为真命题∴选项A错误;由x=5可以得到x2﹣4x﹣5=0,但由x2﹣4x﹣5=0不一定能得到x=5,∴选项B成立;选项C错在把命题的否定写成了否命题;选项D错在没有搞清楚特称命题的否定是全称命题.故选B.3.已知a=log32,那么log38﹣2log36用a表示是()A.5a﹣2 B.a﹣2 C.3a﹣(1+a)2D.3a﹣a2﹣1【考点】4H:对数的运算性质.【分析】利用对数的幂的运算法则及积的运算法则将log 38﹣2log 36用log 32,从而用a 表示.【解答】解:∵log 38﹣2log 36 =3log 32﹣2(1+log 32) =log 32﹣2 =a ﹣2 故选B .4.设F (x )=f (x )+f (﹣x ),x ∈R ,若[﹣π,﹣]是函数F (x )的单调递增区间,则一定是F (x )单调递减区间的是( )A .[﹣,0] B .[,0]C .[π,π]D .[,2π]【考点】3D :函数的单调性及单调区间.【分析】根据条件先判断函数F (x )的奇偶性,结合函数奇偶性和单调性之间的关系进行求解即可.【解答】解:∵F (x )=f (x )+f (﹣x ), ∴F (﹣x )=f (﹣x )+f (x )=F (x ), 则函数F (x )是偶函数,若[﹣π,﹣]是函数F (x )的单调递增区间,则[,π]是函数F (x )的单调递递减区间,∵[,0]⊊[,π],∴[,0]是函数F (x )的单调递递减区间,故选:B .5.设y 1=40.9,y 2=80.48,y 3=,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 3>y 2D .y 1>y 2>y 3 【考点】4B :指数函数的单调性与特殊点.【分析】化简这三个数为2x 的形式,再利用函数y=2x 在R 上是增函数,从而判断这三个数的大小关系.【解答】解:∵ =21.8, =(23)0.48=21.44, =21.5,函数y=2x在R上是增函数,1.8>1.5>1.44,∴21.8>21.5>21.44,故y1>y3>y2,故选C.6.设f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能的是()A.B.C.D.【考点】6A:函数的单调性与导数的关系.【分析】先根据导函数的图象确定导函数大于0 的范围和小于0的x的范围,进而根据当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减确定原函数的单调增减区间.【解答】解:由y=f'(x)的图象易得当x<0或x>2时,f'(x)>0,故函数y=f(x)在区间(﹣∞,0)和(2,+∞)上单调递增;当0<x<2时,f'(x)<0,故函数y=f(x)在区间(0,2)上单调递减;故选C.7.已知函数f(x)=lnx+ln(2﹣x),则()A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称【考点】35:函数的图象与图象变化.【分析】由已知中函数f(x)=lnx+ln(2﹣x),可得f(x)=f(2﹣x),进而可得函数图象的对称性.【解答】解:∵函数f(x)=lnx+ln(2﹣x),∴f(2﹣x)=ln(2﹣x)+lnx,即f(x)=f(2﹣x),即y=f(x)的图象关于直线x=1对称,故选:C.8.设函数 f(x)在 R上可导,其导函数为 f′(x),且函数 y=(1﹣x)f′(x)的图象如图所示,则下列结论中一定成立的是()A.函数 f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值 f(2)和极小值 f(﹣2)C.函数 f(x)有极大值f(﹣2)和极小值 f(1)D.函数f(x)有极大值f(﹣2)和极小值 f(2)【考点】6A:函数的单调性与导数的关系.【分析】利用函数的图象,判断导函数值为0时,左右两侧的导数的符号,即可判断极值.【解答】解:由函数的图象可知,f′(﹣2)=0,f′(2)=0,并且当x<﹣2时,f′(x)>0,当﹣2<x<1,f′(x)<0,函数f(x)有极大值f(﹣2).又当1<x<2时,f′(x)<0,当x>2时,f′(x)>0,故函数f(x)有极小值f(2).故选:D.9.函数y=2x3﹣3x2﹣12x+5在[0,3]上的最大值、最小值分别是()A.5,﹣4 B.5,﹣15 C.﹣4,﹣15 D.5,﹣16【考点】6E:利用导数求闭区间上函数的最值.【分析】对函数求导,利用导数研究函数y=2x3﹣3x2﹣12x+5在[0,3]上的单调性,判断出最大值与最小值位置,代入算出结果.【解答】解:由题设知y'=6x2﹣6x﹣12,令y'>0,解得x>2,或x<﹣1,故函数y=2x3﹣3x2﹣12x+5在[0,2]上减,在[2,3]上增,当x=0,y=5;当x=3,y=﹣4;当x=2,y=﹣15.由此得函数y=2x3﹣3x2﹣12x+5在[0,3]上的最大值和最小值分别是5,﹣15;故选B.10.函数y=x2﹣lnx的单调递减区间为()A.(﹣1,1] B.(0,1] C.[1,+∞)D.(0,+∞)【考点】6B:利用导数研究函数的单调性.【分析】由y=x2﹣lnx得y′=,由y′<0即可求得函数y=x2﹣lnx的单调递减区间.【解答】解:∵y=x2﹣lnx的定义域为(0,+∞),y′=,∴由y′≤0得:0<x≤1,∴函数y=x2﹣lnx的单调递减区间为(0,1].故选:B.11.已知奇函数f(x)在R上是增函数.若a=﹣f(),b=f(log4.1),c=f(20.8),则2a,b,c的大小关系为()A.a<b<c B.b<a<c C.c<b<a D.c<a<b【考点】3N:奇偶性与单调性的综合.【分析】根据奇函数f(x)在R上是增函数,化简a、b、c,即可得出a,b,c的大小.【解答】解:奇函数f(x)在R上是增函数,5),∴a=﹣f()=f(log24.1),b=f(log2c=f(20.8),又1<20.8<2<log24.1<log25,∴f(20.8)<f(log24.1)<f(log25),即c<b<a.故选:C.12.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值点()A.1个B.2个C.3个D.4个【考点】6D:利用导数研究函数的极值.【分析】由图象得:导函数f′(x)=0有3个根,只有在b附近的根满足根的左边为负值,根的右边为正值,故函数只有1个极小值点.从而问题得解.【解答】解:由图象得:导函数f′(x)=0有3个根,只有在b附近的根满足根的左边为负值,根的右边为正值,故函数只有1个极小值点,故选:A.二、填空题(每小题5分,共20分)13.曲线y=x2+在点(1,2)处的切线方程为x﹣y+1=0 .【考点】6H:利用导数研究曲线上某点切线方程.【分析】求出函数的导数,求出切线的斜率,利用点斜式求解切线方程即可.【解答】解:曲线y=x2+,可得y′=2x﹣,切线的斜率为:k=2﹣1=1.切线方程为:y﹣2=x﹣1,即:x﹣y+1=0.故答案为:x﹣y+1=0.14.要使函数f(x)=x2+3(a+1)x﹣2在区间(﹣∞,3]上是减函数,则实数a的取值范围(﹣∞,1] .【考点】3W:二次函数的性质.【分析】函数f(x)=x2+3(a+1)x﹣2在区间(﹣∞,3]上是减函数,即说明(﹣∞,3]是函数f(x)的减区间的子集.【解答】解:函数f(x)=x2+3(a+1)x﹣2的单调减区间为(﹣∞,﹣],又f(x)在区间(﹣∞,3]上是减函数,所以有(﹣∞,3]⊆(﹣∞,﹣],所以3≤﹣,解得a≤1,即实数a的取值范围为(﹣∞,1].故答案为:(﹣∞,1].15.若曲线y=x2+ax+b在点(0,b)处的切线方程是x﹣y+1=0,则a,b的值分别为1,1 .【考点】6H:利用导数研究曲线上某点切线方程.【分析】求出函数的导数,求得切线的斜率,由已知切线方程,可得切线的斜率和切点,进而得到a,b的值.【解答】解:y=x2+ax+b的导数为y′=2x+a,即曲线y=x2+ax+b在点(0,b)处的切线斜率为a,由于在点(0,b)处的切线方程是x﹣y+1=0,则a=1,b=1,故答案为:1,1.16.y=的定义域是(] .【考点】33:函数的定义域及其求法.【分析】由根式内部的代数式大于等于0,然后求解对数不等式得答案.【解答】解:由,得0<3x﹣2≤1,∴,∴y=的定义域是(].故答案为:(].三、解答题(请写出必要的文字说明和推演步骤,第17题10分,其他每题12分,共70分)17.已知A={x|﹣2≤x≤5},B={x|m+1≤x≤2m﹣1},B⊆A,求m的取值范围.【考点】18:集合的包含关系判断及应用.【分析】解决本题的关键是要考虑集合B能否为空集,先分析满足空集的情况,再通过分类讨论的思想来解决问题.同时还要注意分类讨论结束后的总结.【解答】解:当m+1>2m﹣1,即m<2时,B=∅,满足B⊆A,即m<2;当m+1=2m﹣1,即m=2时,B=3,满足B⊆A,即m=2;当m+1<2m﹣1,即m>2时,由B⊆A,得即2<m≤3;综上所述:m的取值范围为m≤3.18.求值:lg500+lg﹣lg64+50(lg2+lg5)2.【考点】4H:对数的运算性质.【分析】利用对数的性质和运算法则求解.【解答】解:lg500+lg﹣lg64+50(lg2+lg5)2=lg+50=2+50=52.19.设函数,曲线y=f(x)在点(2,f(2))处的切线方程为7x﹣4y﹣12=0.(1)求y=f(x)的解析式;(2)证明:曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形面积为定值,并求此定值.【考点】6H:利用导数研究曲线上某点切线方程;62:导数的几何意义;IG:直线的一般式方程.【分析】(1)已知曲线上的点,并且知道过此点的切线方程,容易求出斜率,又知点(2,f (2))在曲线上,利用方程联立解出a,b(2)可以设P (x 0,y 0)为曲线上任一点,得到切线方程,再利用切线方程分别与直线x=0和直线y=x 联立,得到交点坐标,接着利用三角形面积公式即可.【解答】解析:(1)方程7x ﹣4y ﹣12=0可化为,当x=2时,,又,于是,解得,故.(2)设P (x 0,y 0)为曲线上任一点,由知曲线在点P (x 0,y 0)处的切线方程为,即令x=0,得,从而得切线与直线x=0的交点坐标为;令y=x ,得y=x=2x 0,从而得切线与直线y=x 的交点坐标为(2x 0,2x 0);所以点P (x 0,y 0)处的切线与直线x=0,y=x 所围成的三角形面积为.故曲线y=f (x )上任一点处的切线与直线x=0,y=x 所围成的三角形面积为定值,此定值为6.20.求f (x )=x 3﹣12x 在[﹣3,5]上的最值. 【考点】6E :利用导数求闭区间上函数的最值.【分析】求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最值即可.【解答】解:函数f(x)定义域为R,f′(x)=3(x+2)(x﹣2),令f′(x)=0,得x=±2,当x>2或x<﹣2时,f′(x)>0,∴函数在(﹣∞,﹣2)和(2,+∞)上是增函数;当﹣2<x<2时,f′(x)<0,∴函数在(﹣2,2)上是减函数.∴当x=﹣2时,函数有极大值f(﹣2)=16,当x=2时,函数有极小值f(2)=﹣16,f(﹣3)=9 f(5)=65,因此函数的最大值是 f(5)=65,最小值是f(2)=﹣16.21.设a,b∈R,|a|≤1.已知函数f(x)=x3﹣6x2﹣3a(a﹣4)x+b,g(x)=e x f(x).(Ⅰ)求f(x)的单调区间;(Ⅱ)已知函数y=g(x)和y=e x的图象在公共点(x0,y)处有相同的切线,求证:f(x)在x=x处的导数等于0.【考点】6H:利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求出函数f(x)的导函数,得到导函数的零点,由导函数的零点对定义域分段,列表后可得f(x)的单调区间;(Ⅱ)求出g(x)的导函数,由题意知,求解可得,得到f(x)在x=x处的导数等于0.【解答】(Ⅰ)解:由f(x)=x3﹣6x2﹣3a(a﹣4)x+b,可得f'(x)=3x2﹣12x﹣3a(a﹣4)=3(x﹣a)(x﹣(4﹣a)),令f'(x)=0,解得x=a,或x=4﹣a.由|a|≤1,得a<4﹣a.当x变化时,f'(x),f(x)的变化情况如下表:∴f(x)的单调递增区间为(﹣∞,a),(4﹣a,+∞),单调递减区间为(a,4﹣a);(Ⅱ)证明:∵g'(x)=e x(f(x)+f'(x)),由题意意知,即求解可得,处的导数等于0.∴f(x)在x=x22.设函数f(x)=lnx+x2+ax(1)若x=时,f(x)取得极值,求a的值;(2)若f(x)在其定义域内为增函数,求a的取值范围.【考点】6D:利用导数研究函数的极值;6B:利用导数研究函数的单调性.【分析】(1)先求函数的导函数,根据若时,f(x)取得极值得f′()=0,解之即可;(2)f(x)在其定义域内为增函数可转化成只需在(0,+∞)内有2x2+ax+1≥0恒成立,建立不等关系,解之即可;【解答】解:,(1)因为时,f(x)取得极值,所以,即2+1+a=0,故a=﹣3.(2)f(x)的定义域为(0,+∞).方程2x2+ax+1=0的判别式△=a2﹣8,①当△≤0,即时,2x2+ax+1≥0,f'(x)≥0在(0,+∞)内恒成立,此时f (x)为增函数.②当△>0,即或时,要使f(x)在定义域(0,+∞)内为增函数,只需在(0,+∞)内有2x2+ax+1≥0即可,设h(x)=2x2+ax+1,由得a>0,所以.由①②可知,若f(x)在其定义域内为增函数,a的取值范围是.。
河南省郑州市2017-2018学年高一下学期期末考试数学试题含答案
2017-2018学年下期期末考试高一数学试题卷 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.0sin 585的值为( )A .2 B .2- C .2- D .22.已知向量a =(3,5-),b =(5,3),则a 与b ( )A .垂直B .不垂直也不平行C .平行且同向D .平行且反向3.下列各式中,值为2的是( ) A .002sin15cos15 B .2020cos 15sin 15- C .202sin 151- D .2020sin 15cos 15+4.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们所有比赛得分的情况用如下图所示的茎叶图表示,则运动员甲得分的中位数,乙得分的平均数分别为( )A .19,13B .13,19 C.19,18 D .18,195.从装有大小材质完全相同的3个红球和3个黑球的不透明口袋中,随机摸出两个小球,则两个小球同色的概率是( ) A .23 B .25 C. 12 D .136.函数cos sin cos sin 4444y x x x x ππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++∙+-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦在一个周期内的图像是( )A .B . C.D .7.设单位向量1e ,2e 的夹角为60°,则向量1234e e +与向量1e 的夹角的余弦值是( )A .34 B .5378.如果下面程序框图运行的结果1320s =,那么判断框中应填入( )A .10?k <B .10?k > C. 11?k < D .11?k >9.甲、乙两人各自在400米长的直线型跑道上跑步,则在任一时刻两人在跑道上相距不超过50米的概率是( ) A .18 B .1136 C.14 D .156410.已知函数()sin(2)f x x ϕ=+的图像关于直线6x π=对称,则ϕ可能取值是( )A .2π B .12π- C.6π D .6π- 11.如图所示,点A ,B ,C 是圆O 上的三点,线段OC 与线段AB 交于圈内一点P ,若3OC mOA mOB =+,AP AB λ=,则λ=( )A .56 B .45 C.34 D .2512.已知平面上的两个向量OA 和OB 满足cos OA α=,sin OB α=,[0,]2πα∈,0OA OB ⋅=,若向量(,)OC OA OB R λμλμ=+∈,且22221(21)cos 2(21)sin 4λαμα-+-=,则OC 的最大值是( ) A .32 B .34 C.35 D .37第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知tan 4α=,tan()3πβ-=,则tan()αβ+ .14.已知样本7,8,9,x ,y 的平均数是8,则xy = . 15.已知ABC ∆的三边长4AC =,3BC =,5AB =,P 为AB 边上的任意一点,则()CP BC BA -的最小值为 .16.将函数()2sin(2)6f x x π=+的图像向左平移12π个单位,再向下平移2个单位,得到()g x 的图像,若12()()16g x g x =,且1x ,2[2,2]x ππ∈-,则122x x -的最大值为 . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知向量(1,2)a =,(3,4)b =-. (I )求向量a b -与向量b 夹角的余弦值 (II )若()a a b λ⊥-,求实数λ的值.18.某同学用“五点法”画函数()sin()(0,)2f x A x B πωϕωϕ=++><在某一个周期内的图像时,列表并填入了部分数据,如下表:(I )请将上表数据补充完整,并直接写出函数()f x 的解析式 (II )将()f x 的图像上所有点向左平行移动6π个单位长度,得到()y g x =的图像,求()y g x =的图像离y 轴最近的对称中心.19. 某商场经营某种商品,在某周内获纯利y (元)与该周每天销售这种商品数x 之间的一组数据关系如表:(I )画出散点图;(II )求纯利y 与每天销售件数x 之间的回归直线方程;(III )估计当每天销售的件数为12件时,每周内获得的纯利为多少? 附注:721280ii x==∑,721()27i i x x =-=∑,713076i i i x y ==∑,72134992i i y ==∑,1122211()()()n niii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.20. 在矩形ABCD 中,点E 是BC 边上的中点,点F 在边CD 上.(I )若点F 是CD 上靠近C 的四等分点,设EF AB AD λμ=+,求λμ的值; (II )若3AB =,4BC =,当2AE BE =时,求DF 的长.21.某中学举行了数学测试,并从中随机抽取了60名学生的成绩(满分100分)作为样本,其中成绩不低于80分的学生被评为优秀生,得到成绩分布的频率分布直方图如图所示. (I )若该所中学共有3000名学生,试利用样本估计全校这次考试中优秀生人数; (II )若在样本中,利用分层抽样的方法从成绩不低于70分的学生中随机抽取6人,再从中抽取3人,试求恰好抽中1名优秀生的概率.22.已知函数21()sin cos 2f x x x x ωωω=+(0ω>),()y f x =的图象与直线2y =相交,且两相邻交点之间的距离为x . (I )求函数()f x 的解析式;(II )已知,2x ππ⎡⎤∈⎢⎥⎣⎦,求函数()f x 的值域; (III )求函数()f x 的单调区间并判断其单调性.试卷答案一、选择题1-5BABCB 6-10BDADC 11、12:CB 二、填空题 13.113 14.60 15.16- 16.5512π 三、解答题17.解:(1)()4,2a b -=-,设a b -与a 的夹角为θ,所以()()2(3)(2)4cos a a b bb b θ-⋅⨯-+-⨯===- , (2)()13,24a b λλλ-=+-()a ab λ⊥-,∴()0a a b λ⋅-= ()()1132240λλ∴⨯++⨯-=,解得1λ= 18....解:..(1)...根据表中已知数据,解得...........5A =,.2ω=,.6πϕ=-..数据补全如下表:........且函数表达式为.......f(x)=5sin 2+26x π⎛⎫- ⎪⎝⎭..(2)...由.(1)...知.f(x)=5sin 2+26x π⎛⎫- ⎪⎝⎭,. 因此..g(x)=5sin 2+2=5sin 2+2666x x πππ⎡⎤⎛⎫⎛⎫+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.. 因为..y sinx =的对称中心为......(,2)k π ,.k Z ∈,令..2x+=k 6ππ,.k Z ∈,解得...x=212k ππ-,.k Z ∈,.即.()y g x =图象的对称中心为........222kx π(-,),.k Z ∈,其中离....y 轴最近的对称中心为.........(,2)12π-..19.解:(1)(2)712723456789675659637179808270730767670136 4.92807362813670640.928i ii iix y x y nx yb xnxa y bx =++++++==++++++==--⨯⨯∴===≈-⨯-∴=-=-⨯≈∑∑∴回归方程为: 4.940.9y x ∧=+(3)当12x -时 4.91240.999.7y ∧=⨯+=所以估计当每天销售的简述为12件时,周内获得的纯利润为99.7元.20.解:(1)EF EC CF =+,因为E 是BC 边的中点,点F 是CD 上靠近C 的四等分点,所以1124EF EC CF BC CD =+=+,在矩形ABCD 中,,BC AD CD AB ==-, 所以,1142EF AB AD =-+,即14λ=-,12μ=,则18λμ⋅=-. (2)设DF mDC =(0)m >,则(1)CF m DC =-,1122AE AB BC AB AD =+=+, (1)(1)BF CF BC m DC BC m AB AD =+=-+=-+,又0AB AD ⋅=, 所以1()[(m 1)]2AE BF AB AD AB AD ⋅=+-+221(1)2m AB AD =-+9(1)82m =-+=, 解得13m =,所以DF 的长为1. 21.解:(1)由直方图可知,样本中数据落在[]80,100的频率为0.20.10.3+=,则估计全校这次考试中优秀生人数为30000.3900⨯=.(2)由分层抽样知识可知,成绩在[)70,80,[)80,90,[]90,100间分别抽取了3人,2人,1人.记成绩在[)70,80的3人为a ,b ,c ,成绩在[)80,90的2人为d ,e ,成绩在[]90,100的1人为f ,则从这6人中抽取3人的所有可能结果有(,,)a b c ,(,,)a b d ,(,,)a b e ,(,,)a b f ,(,,)a c d ,(,,)a c e ,(,,)a c f ,(,,)a d e ,(,,)a d f ,(,,)a e f ,(,,)b c d ,(,,)b c e ,(,,)b c f ,(,,)b d e ,(,,)b d f ,(,,)b e f ,(,,)c d f ,(,,)c e f ,(,,)d e f 共20种,其中恰好抽中1名优秀生的结果有(,,)a b d ,(,,)b c d ,(,,)c a d ,(,,)a b e ,(,,)b c e (,,)c a e ,(,,)a b f ,(,,)b c f ,(,,)c a f 共9种,所以恰好抽中1名优秀生的概率为920P =.22.解:(1)()211cos2ωx 1sin 21sin(2)2226f x x xcos x sin x x πωωωωω-=+==+=-+与直线2y =的图象的两相邻交点之间的距离为π,则T π=,所以1ω=(2)7131[,]2[,]sin(2)[1,]266662x x x ππππππ∈∴+∈∴+∈-()f x ∴的值域是1[,2]2(3)令222()262kx x kx k Z πππ-≤+≤+∈,则()36kx x kx k Z ππ-≤≤+∈,所以函数()f x 的单调减区间为()ππk π-,k πk Z 63⎡⎤+∈⎢⎥⎣⎦令3222(),262kx x kx k Z πππ+≤+≤+∈则2()63kx x kx k Z ππ+≤≤+∈, 所以函数()f x 的单调增区间为()π2πk π,k πk Z 63⎡⎤++∈⎢⎥⎣⎦。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017~2018学年下学期高一期末联考
数 学
2018.7
考生注意:
1.本试券分第I 卷(选择题)和第II 卷(非选择题)两部分。
满分150分,考试时间120分钟。
2.考生作答时,请将答案答在答题卡上。
第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;第II 卷请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答。
超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效。
3.本卷命题范园:必修①~必修④。
第I 卷 (选择题共60分)
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={1,2,3.4,5},B={x|x<2},则A∩B 等于
A.{1}
B.{1,2}
C.{1,2,3}
D.{1,2,3,4}
2.已知角α的始边是x 轴的正半轴,终边经过点(-3,y),且sin α=,则tan α= A.-34 B.-43 C.34 D.4
3 3.工厂的一个车间包装一种产品,在一定的时间内,从自动包装传送带上, 每隔30 min 抽一包产品,称其重量是否合格,记录抽查产品的重量的茎叶 图如图所示(以重量的个位数为叶),则抽查产品重量的中位数和众数分别为
A.96,98
B.96,99
C.98,98 D, 98,99
4.函数f(x)=3x +x-5的一个零点所在区间为 A. (0,1) B.(1,2) C. (2,3) D. (3,4)
5.函数f(x)= sin(x+6π)+cos(x-3
π)的最大值是 A.34 B.32 C.1 D.3
1 6.某单位有840名职工,现采用系统抽样方法,抽取42人做问卷调查,将840
人从1到840进行编号,求得间隔数k=42
840=20,即每20人抽取一个人,其中21号被抽到,则抽取的42人中,编号落入区间[421,720]的人数为
A.12
B.13
C.14
D.15
【高一下学期期未联考 数学卷第1页(共4页)】 9H8A
7.若某三校柱的三视图如图所示,则该几何体的体积是
A.31
B.32
C.1
D.2
8.在平行四边形ABCD 中,E 是CD 中点,F 是BE 中点,若+=m ,+ n ,则 A.m=-
21,n= 43 B.m=41,n= 2
3 C.m=-21,n= 23 D.m=41,n= 4
3 9.已知某程序框图如图所示,则该程序运行后输出的结果为 A.0.8 B.0.6 C.0.
4 D.0.2
10. 由曲线c 1:y=sin 2χ,曲线c 2:y= cos χ,下列说法正确的是
A.将c 1上所有点横坐标扩大到原米的2倍,纵坐标不变,再将所得由线向左平移
4
π个单位。
得到c 2 B.将c 1上所有点横坐标缩小到原来的
21,纵坐标不变,再将所得曲线向左平移4
π个单位,得到c 2
C.将c 1上所有点横坐标扩大到原来的2倍,纵坐标不变,再将所得曲线向左平
移2
π个单位,得到c 2 D.将c 1上所有点横坐标缩小到原来的
21,纵坐标不变.再将所得曲线向左平移2π个单位,得到c 2
11.函数y=(x 2-1)e x
的图象大致是 A. B. C. D.
12.已如函数f(x)=cos(ωx+ϕ)(ω>0,ϕ≤
2π),x=-4π为y=f(x)的图象的对轴,f(x)在(16π,6
π)上单调,则ω的最大值为 A.3 B.4 C.5 D.6
【高一下学期期末联考 数学卷 第2页(共4页)】 9H8A
第II 卷(非选择题 共90分)
二、填空题:本大题共4小题,每小题5分,共20分 13.已知样本数据
a 1,a 2a 3,a 4方差s 2=41(a 21+a 22+a 23+a 24-16),则样本数据3a 1-1, 3a 2-1,3a 3-1,3a 4-1的平均数为_________.
14.已知定义在(32,+∞)的两数f(x)满足f(x+1)-f(x)=log 3(x-3
2)若f(1)=2,则 f(2)=_________. 15.已知圆C :x 2+y 2-4x+m=0与圆(x 一3)2 +(y+22)2
=4外切,点P 是圈C 一动点,则点P 到直线m x -4y+4=0的距离的最大值为_________.
16.设函数f(x)=log a 3(10x- ax 2)(a>0,a ≠3
1)在区间(1,2)上是减函数,则a 的取值范围是_________.
三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程及演算步骤,
17.(本小题满分10分)
已知向最a = (cos χ- sin χ),b = (1,3),,c =(1,1),x ∈[]π,0.
(1)若a 与b 共线,求x 的值;
(2)若a ⊥c ,.求x 的值:
(3)记f(x)=a ·b ,当f(x)取得最小值时,求x 的值,
18. (本小题满分12分)
已知四棱锥P -ABCD 的底面是菱形,PB=PD ,E 为PA 的中点.
(1)求证:PC ∥平面BDE;
(2)求证:平面PAC ⊥平面BDE.
【高一下学期期未联考 数学卷第3页(共4 页)】 9H8A
19.(本小题满分12分)
某连锁经营公司的5个零售店某月的销售额和利润额资料如下表:
(1)若销售额和利润额具有线性相关关系,用最小二乘法计算利润额y 对销售额x 的回归直线方程;
(2)若商店F 此月的销售额为1亿1千万元,试用(1)中求得的回归方程,估测其利润.(精确到百万元)
(注;b=,a=-b )
20. (本小题满分12分)
已知函数f(x)=(3
1)x +a 的图象经过第二、三、四象限. (1) 求实数a 的取值范围
(2) 设g(a)=f(a)-f(a+1),求g(a)的取值范围
21. (本小题满分12分)
已知圆C 关于直线x +y+2-0对称,且过点P(-2,2)和原点O.
(1) 求圆C 的方程;
(2)相互垂直的两条直线l 1,l 2都过点A(-1,0).若l 1,l 2被園C 所截得弦长相等,
求此时直线l 1的方程,
22. (本小题满分12分)
设关于x 的方程sin(π-χ) +3sin(
2
π+χ)+a=0在(0,2π)内有两个相异的实数解.,βα
(1) 求实数a 的取值范围;
(2) 求E:cos(βα-)=122
-a 【高一下学期期末联考 数学卷第4页(共4页)】 9H8A。