滑动轴承设计

合集下载

机械设计第十二章滑动轴承

机械设计第十二章滑动轴承
任意截有极大值 ,此时 ,该截面的流量为:
流体是连续的
一维雷诺方程
讨论 1)油膜压力沿 x 方向变化规律 由
• 对平行板 平行板间油膜压力沿 x 方向无 变化,等于入口处压力( )
( )成正比,因此限制 值也就是限制轴承的温升,
从而避免温度过高使润滑失效。对于连续运转轴承,通常
都应进行这项计算。
轴颈的转速,r/min
轴颈的圆周速度,m/s 轴承材料的 许用
3. 限制速度 :
值,见P280表12-2
当 过大,即使 和 值都在允许的范围内,轴
承也可能很快磨损,故还必须限制滑动速度。

油槽的 尺寸可 查相关 的手册
§12-5 滑动轴承润滑剂的选用
润滑目的:减小摩擦,降低磨损,冷却,防锈,防尘和吸振。 润滑剂分类:流体(液体为主),脂,固体。润滑油为常用。
一.润滑脂的选择
润滑脂是润滑油与金属皂的混合物,呈半固体形态
。其稠度大,不易流失,无冷却效果,物化稳定性差,
摩阻大,有缓冲、吸振作用、承载能力大,故只适合低
3)润滑油油性良好,与固 6)润滑油不可压缩。
体表面吸附牢固。 取截面x处的一个单元体分
移动板A 0
h
析,存在如下静力平衡条件:
静止板B y
化简后得: 考虑到假设 4)有: 于是: 积分得: 1.油层的速度分布
带入边界条件: 解得:
即:
移动板A 0
静止板B b y
h
2.润滑油的流量 假设:无侧漏,z方向尺寸无限大,则通过间隙高度为 的
层与层间靠内摩擦阻 力(粘性)带动前进 沿 方向按线性变化
油层间压力无变化,平行板间润滑油不产生压力
轴颈和轴瓦偏心时 两倾斜板的摩擦状况

机械设计8—滑动轴承

机械设计8—滑动轴承

3. 许用油膜厚度[h] ] 在其他条件不变的情况下, 在其他条件不变的情况下,外载荷 F↑,动压润滑轴承的 ↑ hmin↓ ,轴承、轴颈表面的微观凸峰可能直接接触,而不能实现 轴承、轴颈表面的微观凸峰可能直接接触, 液体润滑。 液体润滑。 显然,要想实现液体润滑,应满足如下条件: 显然,要想实现液体润滑,应满足如下条件: hmin ≥ [h]= S ( Rz1 + Rz2 ) ] 式中: 式中: S — 安全因数 , S ≥2,一般可取 S=2 一般可取 RZ1,RZ2 —轴颈和轴承孔表面粗糙度,µm 轴颈和轴承孔表面粗糙度, 轴颈和轴承孔表面粗糙度
特点
应用
2.极大型的、极微型的、极简单的场合;如自动化办公设备等。 极大型的、极微型的、极简单的场合;如自动化办公设备等。 极大型的 3.结构上要求剖分的场合;如曲轴用轴承。 结构上要求剖分的场合; 结构上要求剖分的场合 如曲轴用轴承。 4.受冲击与振动的场合;如轧钢机。 受冲击与振动的场合;如轧钢机。 受冲击与振动的场合
ψ = δ /r → δ = ψ . r =0.001x60 = 0.06mm x χ = 1-[h]/δ = 1 -9.6x10-3/0.06 = 0.84 - ] x
查表12-7,B/d = 108/120=0.9 得到 , / 查表 /
χ
Cp
0.80 3.067
0.85 4.459
插值计算:Cp = 4.181
§8-2 径向滑动轴承的主要类型
一、整体式 结构简单,成本低, 间隙无法 结构简单,成本低,但间隙无法 补偿,且只能从轴端装入, 补偿,且只能从轴端装入,适用 低速、轻载或间歇工作的场合。 低速、轻载或间歇工作的场合。 无法用于曲轴。 无法用于曲轴。 二、对开式(剖分式) 对开式(剖分式)

机械设计课件 滑动轴承学习课件

机械设计课件 滑动轴承学习课件

偏心距:e OO
偏心率:
e e Rr
表示偏心程度0 1
最小油膜厚度:
hmin e r r (1 )(χ↑→hmin↓)
保证流体动力润滑:
hmin Rz1 Rz2 [hmin ]
S hmin 2 ~ 3 Rz1 Rz2
Rz1、Rz2— 轴颈、轴瓦表面微观不平度的十点高度,m
2. 剖分式轴承 剖分式轴承由轴承座、轴承盖、剖分轴瓦、轴承盖
螺柱等组成。
轴瓦是轴承直接和轴颈相接触的零件,常在轴瓦内表面 上贴附一层轴承衬。在轴瓦内壁不承担载荷的表面上开设油 沟,润滑油通过油孔和油沟流进轴承间隙。
R(球)
3.调心式滑动轴承
特点:轴瓦外表面做成球面形状,与轴承盖及轴承座的 球状内表面相配合,轴瓦可以自动调位以适应轴颈在轴弯 曲时所产生的偏斜。
X 0:
pdydz ( p p dx )dydz dxdz ( dy )dxdz 0
x
y
p
x y
由于:
u y
p x
2u y 2
二次积分
u
1
2
p x
y
2
C1y
C2
代入边界条件:y=0,u=v;y=h,u=0
流速方程:u v (h y ) 1 p (y h)y
h
2 x
pmax

杯体 接头 油芯
20°
§5 非液体摩擦滑动轴承的计算
一、混合摩擦滑动轴承失效形式 胶合、磨损等 设计准则:至少保持在边界润滑状态, 即维持边界油膜不破裂。
计算方法:简化计算(条件性计算)
磨损
点蚀及金属剥落
二、向心轴承
1、限制轴承平均压强
p F p

机械设计课件 第17章滑动轴承1

机械设计课件 第17章滑动轴承1
Fn pv [ pv ] 20000 B
MPa
3) 限制滑动速度v
v
dn
60 1000
[v ]
轴承材料的最高许用〔p〕、〔v〕、〔pv〕 值见表17.1、17.2。常用机器径向轴承的 〔p〕、〔v〕,〔pv〕见表17.4。
17.7.2
推力轴承
结构如图17.12所示。用来承受轴向载荷。
润滑方式的选择:根据系数k选定。k
pv
3
p F /(dB) k 2 -用润滑脂,油杯润滑;
k=2~16-针阀式注油油杯润滑; k=16~32-油环或飞溅润滑; k>32-压力循环润滑。
17.7 滑动轴承的条件性计算
对于工作要求不高、v较低,载荷不大,难以 维护等条件下工作的轴承,往往设计成非流体摩
17.2.3 自动调心轴承 轴瓦可自动调位 适应轴颈在轴弯曲 时所产生的倾斜。

17.3 滑动轴承的材料
轴承材料:轴瓦和轴承衬的材料。
选用何种材料,取决于失效形式。
主要失效形式是轴瓦磨损、疲劳损坏及轴承 衬脱落。 17.3.1 对轴承材料的要求
1)强度、塑性、顺应性和嵌藏性;2)磨合性、 耐磨性、减摩性好;3)耐腐蚀;4)润滑性能 和热化学性;5)工艺性;6)经济性。
17.6.1
油润滑
间歇供油:用油壶或油杯供油,见图17.9。 连续:供油比较可靠,连续供油方法见图 17.10。
17.6.2 脂润滑 润滑脂只能间歇供油。润滑杯(黄油杯) 是应用最广的脂润滑装置。也常用黄油枪向轴 承补充润滑脂。
17.6.2 脂润滑
润滑杯(黄油杯)是应用最广的脂润滑装置。也
常用黄油枪向轴承补充润滑脂。
(17.6)
17.7.2

机械设计-滑动轴承PPT课件精选全文

机械设计-滑动轴承PPT课件精选全文
第6页/共54页
4.调心式径向滑动轴承(自位轴承)
特点:轴瓦能自动调整位置,以适应轴的偏斜。
注:调心式轴承必须成对使用。
当轴倾斜时,可保证轴颈与轴承配合表面接触良好,从而避免产生偏载。
主要用于轴的刚度较小,轴承宽度较大的场合。
滑动轴承的结构
观看动画
第7页/共54页
二、止推滑动轴承的结构
止推滑动轴承由轴承座和止推轴颈组成。常用的轴颈结构形式有:
◆设计准则 :维持边界膜不破裂。
◆条件性计算内容:限制压强 p 、pv 值、滑动速度v不超过许用值
失效形式:
磨损胶合
第18页/共54页
§12-6 滑动轴承的条件性计算
一、径向滑动轴承的计算
已知条件:径向载荷F (N)、 轴颈转速n (r/mm)轴颈直径d (mm)
1.限制轴承的平均压强 p
2.工作平稳,噪音低;
3.结构简单,径向尺寸小。
第3页/共54页
§12-2 滑动轴承的主要结构形式
一、径向滑动轴承的结构
1.整体式径向滑动轴承
特点:结构简单,成本低廉。
应用:低速、轻载或间歇性工作的机器中
磨损后间隙无法调整;只能沿轴向装拆。
常用的滑动轴承已经标准化,可根据使用要求从有关手册中合理选用。
-考虑油槽使承载面积减小的系数,其值=0.85~0.95。
Z-止推环数。
滑动轴承的条件性计算
第21页/共54页
注意:设计时液体动压润滑轴承,常按上述条件性计算进行初步计算。(动压润滑轴承在起动和停车阶段,往往也处于混合润滑状态)
2.限制 值
vm-止推环平均直径dm=(d2+d1)/2 处的圆周速度。
1)油槽沿轴向不能开通,以防止润滑油从端部大量流失。

机械设计教程 第3版 第十章 滑动轴承设计

机械设计教程 第3版 第十章 滑动轴承设计
机械设计教程
第3版
第十章 滑动轴承设计
第一节 滑动轴承的主要类型和特点 第二节 滑动轴承的常用材料和结构 第三节 混合润滑滑动轴承的工作能力设计 第四节 流体动压润滑滑动轴承的工作能力设计
第十章 滑动轴承设计
滑动轴承通过润滑剂作为中间介质将旋转的轴与固定的机架(座)分隔开,以达 到减少摩擦的目的,这是一种工作在滑动摩擦状态下的轴承。滑动轴承主要用于 滚动轴承难以满足工作要求的场合,如高转速、长寿命、低摩擦阻力、承受大的 冲击载荷、低噪声和无污染等条件。另外,为降低成本,一些极简单的回转支撑也 常采用滑动轴承。 滑动轴承设计的主要内容是:轴承材料的选择,轴承的结构设计,润滑剂与润滑方 式的选择,轴承工作能力设计计算等。
第二节 滑动轴承的常用材料和结构
三、推力滑动轴承结构
推力滑动轴承的承载面与轴线垂直,用以承受轴向载荷。 图10-6所示为常用的推力滑动轴承承载面的情况。图10-6a所示为实心端面推力滑动轴 承,这种轴承结构简单,但是承载面沿直径方向速度变化大,产生不均匀的磨损以后,导致压 强分布不均匀;图10-6b所示为空心端面推力滑动轴承,靠近中心处不承载,避免了实心式 结构的缺点;图10-6c所示为单环式推力滑动轴承,可承受单向轴向载荷,承载面可利用径向 滑动轴承(图10-2)的端面;图10-6d所示为多环式推力滑动轴承,承载面积增大,承载能力提 高,可承受双向轴向载荷,但是各环之间载荷分布不均匀,承载能力受各环加工误差的影响 较大。
图10-2所示为剖分式径向滑动轴承结构,轴承座沿轴线剖开,使轴系的装配与拆卸都很 方便。在剖开的轴承座与轴承盖之间设有止口结构,保证装配时轴承座与轴承盖的准确 定位。双头螺柱和螺母用于轴承座与轴承盖的连接。为便于轴承的润滑,轴承盖顶部设 有注油孔。

机械设计滑动轴承

机械设计滑动轴承

3)铝基合金 —— 耐腐蚀性好,疲劳强度较高摩擦性较好 4)灰铸铁及耐磨铸铁 —— 具有减磨性、耐磨性,性脆、磨合性差, 轻载、低速 5)多孔质金属材料 —— 不同金属粉末压制、烧结而成 —— 吸油 (自润滑性)——含油轴承 韧性小,平稳、无冲击 中低速 6)非金属材料 塑料、碳— 石墨、橡胶、木材等
p 6ηV = 3 (h h0 ) x h
A< 0
不能承载
4、形成流体动力润滑的必要条件 1)两运动表面间具有楔形间隙; 2)两表面应有相对速度,速度的方向是将油 由大口带向小口; 3)润滑油应有一定的粘度,且要充分
二、径向滑动轴承形成流体动力润滑的过程 F F F n n
n=0
n≈0 Ff与 n反相
4、润滑油的粘-温特性
粘 -温 曲 线
5、零件润滑方法 旋 套 式
油 环 润 滑
油 芯 油 杯 旋 盖 式 油 脂 杯
针 阀 油 杯
§2 滑动轴承类型、轴瓦结构及材料
一、 滑动轴承类型
承载形式: 径向轴承(承受径向载荷)
止推轴承(承受轴向载荷)
滑 动 轴 承
润滑状态:不完全液体润滑轴承(不许干摩擦)
2、失效形式与设计准则 失效形式: 承载油膜破裂。 设计准则: 保证液体润滑,hmin≥[h] 同时,因Δt↑→η↓→油膜破裂:限制Δt 3、承载能力计算 推导思路 1)将直角坐标系的雷诺方程转换极坐标系 2)求任意位置的油膜压力 3)pφ 在 F 方向上的分量 pφy 4)求单位宽度上的油膜承载能力 5)考虑轴承端泄,进行修正 承载能力
y
η——动力粘度 y 长、宽、高各1米的液体,上下板相对滑动速度 1 m/s ,需要的切向力为 1 N 时,即 η=1 Ns/m2 (1Pa s — 帕 秒) 动力粘度国际制单位(SI):

滑动轴承设计参数与计算方法

滑动轴承设计参数与计算方法

第三章滑动轴承设计参数与计算方法!"#滑动轴承的类型、特性与选用滑动轴承的种类繁多,分类方法亦繁多,按润滑原理不同,将其分为:无润滑轴承、粉末冶金含油轴承、动压轴承和静压轴承。

以粉末冶金含油轴承代表处于混合润滑状态下的轴承;无润滑轴承亦代表固体润滑轴承。

!"#"#滑动轴承的性能比较(表$%!%#)表$%!%#滑动轴承的性能比较轴承型式无润滑轴承粉末冶金含油轴承动压轴承静压轴承轴承性能承载能力!!高温适应性好,可以在材料的温度极限以下运转差,受润滑剂氧化的限制一般,可以在润滑剂温度极限以下运转低温适应性优一般好,摩擦阻力大真空适应性优好,需要专用润滑剂一般,需专用润滑剂差潮湿适应性好,轴须耐腐蚀好尘埃适应性好,需注意密封必须密封好,需密封和过滤装置好抗振性一般好旋转精度差好优摩擦阻力大较大小最小噪声一般小最小润滑装置最简单简单复杂程度差异较大复杂w w w.bz f x w.c om!"#"$滑动轴承的承载能力与极限转速几种主要滑动轴承的极限承载能力和极限转速曲线见图!"#"$和图!"#"%。

可供选择滑动轴承类型时参考。

对动压轴承,按中等粘度润滑油进行计算;对无润滑轴承和混合润滑轴承,按磨损寿命为$&’(计算;对静压轴承,理论上在材料强度允许图%&!&#径向轴承的极限载荷与转速""""无润滑轴承—·—液体动压轴承—··—粉末冶金含油轴承—滚动轴承图%&!&$推力轴承的极限载荷与转速""""无润滑轴承—·—液体动压轴承—··—粉末冶金含油轴承—滚动轴承w w w.bz f x w.c om的载荷和转速范围内均可应用。

为了便于比较,还将疲劳寿命为!"#$的滚动轴承的极限承载能力和极限转速曲线画出。

机械设计课件-滑动轴承

机械设计课件-滑动轴承

橡胶 多孔铁 (Fe 95%, Cu 2%,石墨和其 多孔质 它 3%) 金属材 料 多孔青铜
0.34 55(低速,间歇) 21(0.013m/s 4.8(0.51~0.76m/s) 2.1(0.76~1m/s) 27(低速,间歇) 14(0.013m/s 3.4(0.51~0.76m/s) 1.8(0.76~1m/s)
电侵蚀
气蚀
二、轴承材料 对 材 料 性 能 要 求 常 用 轴 承 材 料 良好的减摩性、耐磨性和咬粘性。 良好的摩擦顺应性、嵌入性和磨合性。 足够的强度和抗腐蚀的能力。 良好的导热性、工艺性、经济性等。 金属材料 多孔质金属材料 非金属材料 特 点 应 用
轴承合金、铜合金、铸铁、铝基合金。 多孔铁、多孔质青铜。 酚醛树脂、尼龙、聚四氟乙烯。
150 5 15 280 15 30 12 280 280
00
300 300
3
5
1
3 5
4 5
4 5
用于中速、中等载 荷的轴承,不易受显著 5 冲击。可作为锡锑轴承 合金的代替品。 用于中速、重载及 受变载荷的轴承 。 1 用于中速、中载的 轴承。 用于高速、重载轴 2 承,能承受变载荷冲击。 2 最宜用于润滑充分 的低速重载轴承。
酚醛树脂
非金属 材料
尼龙
14
3
90
碳-石墨
4
13
400
由棉织物、石棉等填料经酚醛树脂粘结而成。 抗咬合性好,强度、抗振性也极好,能耐酸碱, 导热性差,重载时需用水或油充分润滑,易膨胀, 轴承间隙宜取大些。 摩擦系数低,耐磨性好,无噪声。金属瓦上 覆以尼龙薄层,能受中等载荷。加入石墨、二硫 化钼等填料可提高其力学性能、刚性和耐磨性。 加入耐热成分的尼龙可提高工作温度。 有自润滑性及高的导磁性和导电性,耐蚀能 力强,常用于水泵和风动设备中的轴套。 橡胶能隔振、降低噪声、减小动载、补偿误 差。导热性差,需加强冷却,温度高易老化。常 用于有水、泥浆等的工业设备中。 具有成本低、含油量多、耐磨性好、强度高 等特点,应用很广。

滑动轴承的设计

滑动轴承的设计

滑动轴承的设计§ 1滑动轴承概述用于支撑旋转零件(转轴,心轴等)的装置通称为轴承。

按其承载方向的不同,轴承可分为:径向轴承Radial bearing:轴承上的反作用力与轴心线垂直的轴承称为径向轴承;推力轴承Thrust bearing:轴承上的反作用力与轴心线方向一致的轴承称为推力轴承。

按轴承工作时的摩擦性质不同,轴承可分为:滑动轴承和滚动轴承。

滑动轴承,根据其相对运动的两表面间油膜形成原理的不同,还可分为:流体动力润滑轴承(简称动压轴承)(Hydrodynamic lubrication)流体静力润滑轴承(简称静压轴承)(Hydrostatic lubrication)。

本章主要讨论动压轴承。

和滚动轴承相比,滑动轴承具有承载能力高、抗振性好,工作平稳可靠,噪声小,寿命长等优点,它广泛用于内燃机、轧钢机、大型电机及仪表、雷达、天文望远镜等方面。

在动压轴承中,随着工作条件和润滑性能的变化,其滑动表面间的摩擦状态亦有所不同。

通常将其分为如下三种状态:1、完全液体摩擦完全液体摩擦状态(图8-1a)是指滑动轴承中相对滑动的两表面完全被润滑油膜所隔开,油膜有足够的厚度,消除了两摩擦表面的直接接触。

此时,只存在液体分子之间的摩擦,故摩擦系数很小(f =0.001~0.008),显著地减少了摩擦和磨损。

2、边界摩擦当滑动轴承的两相对滑动表面有润滑油存在时,由于润滑油与摩擦表面的吸附作用,将在摩擦表面上形成一层极薄的边界油膜(图8-1b),它能承受很高的压强而不破坏。

边界油膜的厚度比一微米还小,不足以将两摩擦表面分隔开,所以,相对滑动时,两摩擦表面微观的尖峰相遇就会把油膜划破,形成局部的金属直接接触,故这种状态称为边界摩擦状态。

一般而言,边界油膜可覆盖摩擦表面的大部分。

虽它不能像完全液体摩擦完全消除两摩擦表面间的直接接触,却可起着减轻磨损的作用。

这种状态的摩擦系数f =0.008~0.01。

3、干摩擦两摩擦表面间没有任何物质时的摩擦称为干摩擦状态(图8-1c),在实际中,没有理想的干摩擦。

机械设计第十二章滑动轴承

机械设计第十二章滑动轴承

摩擦:滚动摩擦滚动摩擦轴承滚动轴承滑动摩擦滑动摩擦轴承滑动轴承第十二章滑动轴承第一节概述1、滑动轴承应用场合:1)工作转速特高轴承,如汽轮发电机;2)要求对轴的支撑位置特别精确的轴承,如精密磨床;3)特重型的轴承,如水轮发电机;4)承受巨大的冲击和振动,如轧钢机;5)根据工作要求必须做成剖分式的轴承,如曲轴轴承;6)在特殊的工作条件下(如在水中或腐蚀性介质中)工作的轴承,如军舰推进器的轴承;7)在安装轴承处的径向空间尺寸受到限制时,也常采用滑动轴承,如多辊轧钢机。

2、分类①按载荷方向:径向(向心)轴承、止推轴承、向心止推②按接触表面之间润滑情况:液体滑动轴承、非液体滑动轴承液体滑动轴承:完全是液体非液体滑动轴承:不完全液体润滑轴承、无润滑轴承不完全液体润滑轴承(表面间处于边界润滑或混合润滑状态)无润滑轴承(工作前和工作时不加润滑剂)③液体润滑承载机理:液体动力润滑轴承(即动压轴承)液体静压润滑轴承(即液体静压轴承)3、如何设计滑动轴承(设计内容)1)轴承的型式和结构2)轴瓦的结构和材料选择3)轴承的结构参数4)润滑剂的选择和供应5)轴承的工作能力及热平衡计算4.特点:承载能力大,工作平稳可靠,噪声小,耐冲击,吸振,可剖分等特点。

第二节滑动轴承的典型结构一、整体式径向滑动轴承:特点:结构简单,易于制造,端部装入,装拆不便,轴承磨损后无法调整。

应用:低速、轻载或间歇性工作的机器中。

二、对开式径向滑动轴承:装拆方便,间隙可调,应用广泛。

特点:结构复杂、可以调整磨损而造成的间隙、安装方便。

应用场合:低速、轻载或间歇性工作的机器中。

三、止推式滑动轴承:多环式结构,可承受双向轴向载荷。

第三节滑动轴承的失效形式及常用材料一、失效形式1、磨粒磨损:硬颗粒对轴颈和轴承表面起研磨作用。

2、刮伤:硬颗粒划出伤痕。

3、胶合:轴承温度过高,载荷过大,油膜破裂或供油不足时,轴颈和轴承相对运动表面材料发生粘附和迁移,从而造成轴承损坏。

机械设计第十二章滑动轴承

机械设计第十二章滑动轴承
• 计算轴承宽度 B=d(B/d);
• 校核 p; • 校核 pv; • 校核 v; • 确定配合: H9/d9、H8/f7、H7/f6
机械设计
第十二章 滑动轴承
47
滑动轴承的常用配合及其应用
机械设计
第十二章 滑动轴承
48
12.5 液体动力润滑径向滑动轴承设计计算
1. 流体动力润滑
1) 概念
两个作相对运动物体的摩擦表面,用借助 于相对速度而产生的粘性流体膜将两摩擦表面 完全隔开,由液体膜产生的压力来平衡外载荷, 称为流体动力润滑。
hmin[h], [h]=(2~3)(Rz1+Rz2)
机械设计
第十二章 滑动轴承
69
4. 承载能力
F 2B 2
Cp
v, ,B, F
Cp —— 承载量系数 Cp (, B/d) 见表 12-6
机械设计
第十二章 滑动轴承
70
5. 参数的选择
1) 宽径比 B/d
B/d , F ; B/d =0.3~1.5
形成液体润滑。一般值主要根据载荷和速度 选取。速度越高, 值应越大;载荷越大, 值应越小。
n 60
4
31
9
10 9
机械设计
第十二章 滑动轴承
72
3) 动力粘度 F
n 60
1
3
7
Pas
10 6
运动粘度:
v
机械设计
第十二章 滑动轴承
73
滑动轴承常用润滑油牌号
机械设计
第十二章 滑动轴承
74
液体动力润滑径向滑动轴承设计计算总结
机械设计
第十二章 滑动轴承
49
机械设计
第十二章 滑动轴承

滑动轴承完整版设计手册

滑动轴承完整版设计手册

3. 多环式
多环式推力滑动轴承可
承受较大的轴向载荷,还可 承受双向轴向载荷。
4. 固定式推力轴承 楔形的倾斜角固定不变,在楔形顶部留有平台,用于承受 停车后的轴向载荷.
5.可倾式推力轴承 扇形块的倾斜角随载荷、转速的变化而自行调整。
§15-3 轴瓦及轴承衬材料
一. 轴瓦的失效形式 1. 磨损 有磨粒磨损和研磨磨损两种形式,磨损使轴承间隙加大, 丧失精度,导致几何形状改变。
1. 按承受载荷的方向分 a) 径向轴承:只承受径向载荷。 b) 止推轴承:只承受轴向载荷。
2. 按轴承工作时的润滑状态分 a) 非液体摩擦滑动轴承 (边界摩擦、混合摩擦) b) 液体摩擦滑动轴承 (液体摩擦)
液体动压润滑轴承—动压轴承 液体静压润滑轴承—静压轴承
五. 滑动轴承的应用
滑动轴承除液体摩擦轴承外,一般摩擦损耗大。由于设计、 维护比较复杂,所以在很多场合被滚动轴承代替。但在某些工 作条件下,滑动轴承具有显著的优越性,往往滚动轴承不能替 代。
二. 推力滑动轴承的结构
推力滑动轴承用于承受轴向载荷,与径向滑动轴承联合 使用可承受复合载荷。推力滑动轴承由轴承座和推力轴颈组 成。
1. 实心式
由于支承面上离中心越远处, 相对滑动速度越大,磨损越快。故 实心轴承承载面上压力分布不均, 靠近中心处的压力高。
一般推力轴承采用空心轴颈或 多环轴颈。
2. 单环式
第 15 章 滑 动 轴 承
滑动轴承概述 一. 轴承的功用
支承轴及轴上零件, 保持轴的旋转精度; 减少轴 与支承间的摩擦和磨损。
二. 轴承的类型
按轴承零件相对运动表面间的摩擦性质分: 1. 滑动轴承— 滑动摩擦(15章)
2. 滚动轴承—滚动摩擦(16章)

动压径向滑动轴承设计中 将宽径比增大则最小油膜厚度

动压径向滑动轴承设计中 将宽径比增大则最小油膜厚度

动压径向滑动轴承设计中将宽径比增大则最小油膜厚度动压径向滑动轴承设计中,将宽径比增大则最小油膜厚度引言:动压径向滑动轴承作为一种常见而重要的机械元件,在工程设计中发挥着重要作用。

而在其设计过程中,宽径比对最小油膜厚度的影响尤为重要。

本文将从深度和广度两个方面,对这个问题进行全面评估,并探讨宽径比的增加如何影响最小油膜厚度。

我们将简要介绍动压径向滑动轴承的基本原理,然后探讨宽径比与最小油膜厚度之间的关系,以从简到繁、由浅入深的方式来展开讨论。

一、动压径向滑动轴承的基本原理动压径向滑动轴承是一种基于流体动压原理工作的机械元件。

它由内圈、外圈和轴承座构成,其中轴承座内表面和外圈之间形成一个微小的间隙,称为油膜。

当轴以一定速度旋转时,油膜会产生压力,使轴与轴承座之间形成一个承载力,从而实现轴的平稳运转。

二、宽径比与最小油膜厚度的关系在动压径向滑动轴承的设计中,宽径比是一个重要的参数,它指的是轴承的外径与内径之间的比值。

在设计过程中,我们需要考虑宽径比对最小油膜厚度的影响。

通常情况下,增大宽径比会使最小油膜厚度减小。

这是因为相同转速下,增大宽径比会导致流经油膜的流量增加,从而增大单位面积上的速度梯度。

根据流体动力学的原理,速度梯度增大会引起油膜的压力降低,进而导致油膜厚度减小。

然而,当宽径比增加到一定程度时,最小油膜厚度会出现一个临界点。

在这个临界点之后,最小油膜厚度反而会开始增加。

这是因为过大的宽径比会导致流经油膜的流量增加过多,使得油膜压力不再降低,甚至到达饱和状态。

此时,增大宽径比会导致油膜的压力增加,从而使最小油膜厚度增加。

在动压径向滑动轴承的设计中,需要根据具体的工况和性能要求,合理选择宽径比,以达到最佳的最小油膜厚度。

三、增大宽径比对轴承性能的影响除了对最小油膜厚度的影响外,增大宽径比还会对动压径向滑动轴承的其他性能产生一定的影响。

增大宽径比能够提高轴承的刚度。

由于宽径比的增加会使油膜厚度减小,从而使轴承的刚度增加,提高了轴向的刚度。

课程设计滑动轴承盖工艺工装设计(有夹具)

课程设计滑动轴承盖工艺工装设计(有夹具)

一、零件的分析(一)零件的作用题目所给的零件是滑动轴承盖。

它一般与滑动轴承配套使用中,与滑动轴承一起是用来支撑轴的部件,有时也用来支撑轴上的回转零件。

主要起安装、定位支承滑动轴承的作用,零件上方的Φ60孔用来安装滑动轴承,底面用来将滑动轴承组件固定在机器上,2-Φ13孔联接滑动轴承下半部分与轴承座,起联接、调整间隙用。

(二)零件的工艺分析零件的材料为HT200,灰铸铁生产工艺简单,铸造性能优良,但塑性较差、脆性高,不适合磨削,为此以下是滑动轴承盖需要加工的表面以及加工表面之间的尺寸公差要求:1、以φ60为中心的加工表面这一组加工表面包括:φ60的孔,以及其前后端面,前后端面与孔有位置要求,2—φ13通孔与φ60孔有位置要求。

2、以顶部为中心的加工表面这一组加工表面包括:M10螺纹孔、端面。

由上面分析可知,加工时应先加工一组表面,再以这组加工后表面为基准加工另外一组。

由上面分析可知,可以粗加工滑动轴承盖下端面,然后以此作为基准采用专用夹具进行加工,并且保证位置精度要求。

再根据各加工方法的经济精度及机床所能达到的位置精度,并且此滑动轴承盖零件没有复杂的加工曲面,所以根据上述技术要求采用常规的加工工艺均可保证。

二、确定生产类型已知此滑动轴承盖零件的生产纲领为大批生产,所以初步确定工艺安排为:加工过程划分阶段;工序适当集中;加工设备以通用设备为主,大量采用专用工装。

三、确定毛坯(一)确定毛坯种类零件材料为HT200。

考虑零件在机床运行过程中所受冲击不大,零件结构又比较简单,生产类型为中批生产,故选择木摸手工砂型铸件毛坯。

查《机械制造工艺设计简明手册》第41页表2.2-5,选用铸件尺寸公差等级为CT-8。

(二)确定铸件加工余量及形状查《机械制造工艺设计简明手册》第41页表2.2-5,选用加工余量为MA-F级,并查表2.2-4确定各个加工面的铸件机械加工余量,铸件的分型面的选用及加工余量,如下表所示:表1-1(三)绘制铸件零件图四、工艺规程设计(一)选择定位基准1、粗基准的选择:以零件的底部大端面为主要的定位粗基准,以侧面为辅助粗基准。

滑动轴承的设计计算

滑动轴承的设计计算

将对p、、v的限制画在对数坐标图上,构成一条折线。
这种计算方法称为条件性计算。
[p]、[v]和[]数据查阅相关表格。
滑动轴承的设计计算
滑动轴承的设计计算
液体动力润滑轴承的计算
液体动力润滑轴承是利用轴颈与轴瓦的相对速度和表面与油的粘附性能,将润滑油带入轴承间隙, 建立起压力油膜而把轴颈与轴瓦隔开的一种液体摩擦轴承。描述这种润滑状态的基本方程是雷诺 方程。从数学观点看,流体润滑计算的基本内容就是对雷诺方程的应用和求解。
滑动轴承的设计计算
滑动轴承的设计计算
3.参数选取
•宽径比(B/D)。
一般情况建议在0.2-1.5范围内选取,
•相对间隙(ψ)
•润滑油粘度 (η)
•要供给充足的润滑剂。
(二)油楔形成方法
滑动轴承的设计计算
滑动轴承的设计计算 (二)油楔形成方法
形成油楔是流体动压轴承的最基本条件。不同的油楔形成方法造就成各种各具特色的动压轴承。
(三) 液体动力润滑径向轴承的计算 1.几何参数 偏心距e—轴瓦几何中心O与轴颈 中心的距离; 偏心率ε—偏心距e与轴颈间隙c之比, (ε )
p F [p] Bd
推力轴承
pZ(d402Fdi2)[p]
2.限制轴承滑动速度v (防止高温下过快磨损 )
径向轴承 推力轴承
v=πdn≤[v] v=π(do+di)n/2≤[v]
滑动轴承的设计计算
3.限制轴承的值(限制轴承发热量)
径向轴承 推力轴承
pvnF[PV]
B
pv 2Fn [pv] z(d0 di)
•膜厚度方程 h≈c(1+εθ)
• 热平衡方程
• 令:Fμμ,为轴承的摩擦因数;μ=μ/ψ,为摩擦特性数,则摩擦功耗为

机械设计4[1].12#滑动轴承

机械设计4[1].12#滑动轴承
15
§4-4 流体润滑原理简介
(一)流体动力润滑:两相对运动的摩擦表面借助 流体动力润滑: 于相对速度而产生的粘性流体膜来平衡外载荷; 于相对速度而产生的粘性流体膜来平衡外载荷; (二)弹性流体动力润滑:高副接触中,接触应力 弹性流体动力润滑: 使表面产生局部弹性变形,在接触区形成弹性流 体动力润滑状态; (三)流体静力润滑:将加压后的流体送入摩擦表 流体静力润滑: 面之间,利用流体静压力来平衡外载荷;
du 即 : τ = η ( 4 6) dy
剪切 应力 动力 粘度 速度 梯度
Uh h u
x
y
u=0
13
b)运动粘度与动力粘度的换算关系: η 2 ν= m / s 粘—温曲线见 图4-9 密度 ρ
动力粘度η:主要用于流体动力计算.Pas 动力粘度 运动粘度ν:使用中便于测量.m2/s 运动粘度 2.油性(润滑性):润滑油在摩擦表面形成各种吸附膜 油性
23
径向轴承, 滑动轴承 :径向轴承,止推轴承
24
§12-2 径向滑动轴承的结构
整体式径向滑动轴承
对开式径向滑动轴承 对开式径向滑动轴承 径向
图15-18 斜剖 分式径向 径向滑动 分式径向滑动 轴承
25
26
27
28
29
§12-2 径向滑动轴承的结构
调心滑动轴承
可调间隙的滑动轴承
30
滑动轴承
MPa m / s
v=
πn ( d1 + d 2 )
60 × 1000 × 2
≤ [v ]
m/s
44
(上式中各参数见表12-6) 上式中各参数见表 )
中南大学考研试题
设计计算非液体滑动轴承时要验算: 设计计算非液体滑动轴承时要验算 1) ; 其目的是 p ≤ [ p] 2) 3)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

滑动轴承的设计准则,是根据其工作方式及特点确定的。

对于非流体摩擦状态的滑动轴承,或称混和摩擦状态滑动轴承,保证其轴瓦材料的使用性能是主要任务;对于流体润滑轴承,设计重点则主要集中在如何在给定的工况下,构造具有合理几何特征的轴颈和轴瓦,使之能在工作过程中依赖流体内部的静动压力承载。

1.非流体润滑状态滑动轴承的设计准则
对于非流体润滑、混和润滑和固体润滑状态工作的滑动轴承,常用限制性计算条件来保证其使用功能。

此设计条件也可作为流体润滑轴承的初步设计计算条件。

(1)轴承承载面平均压强的设计计算
由于过大的表面压强将对材料表面强度构成威胁,并会加速轴承的磨损,因此在设计中应满足:
其中:P——轴承承载面上压强,MPa;F——轴承载荷,N;A——轴承承载面积,mm2;[P]——轴承材料的许用压强,MPa。

对于径向轴承,一般只能承担径向载荷:
其中:F——轴承径向载荷,N;D——轴承直径,mm;B——轴承宽度,mm。

DB是承载面在F方向上的投影面积。

推力轴承一般仅能承担轴向载荷,对于环形瓦推力轴承:
其中:F——轴承轴向载荷,N;D2、D1——轴承承载环面外径、内径,mm。

(2) 轴承摩擦热效应的限制性计算
滑动轴承工作时,其摩擦效应引起温度升高,摩擦热量的产生与单位面积上的摩擦功耗成正比,而轴承承载面压强p与速度v的乘积通常用来表征滑动轴承的摩擦功耗,称为pv值。

滑动轴承设计中,用限制
pv值的办法,控制其工作温升,其设计准则为:
其中:P——轴承承载面上压强,MPa;对于径向和推力轴承;V——轴承承载面平均速度,m/s;[Pv}——轴承许用Pv值。

其中:D——轴承平均直径,0.001m;n——轴颈与轴瓦的相对转速,。

这样,上式也可写为:
(3) 轴承最大滑动速度的条件性计算
非液体摩擦状态工作的滑动轴承,其工作表面相互接触,当相对滑动速度很高时,其工作表面磨损加速,此项计算对于轻载高速轴承尤为重要。

设计准则为:
其中:v——轴承承载面最大线速度,m/s;[v]——轴承许用线速度。

(4) 滑动轴承的几何参数
滑动轴承的轴颈和轴瓦间的间隙大小,对滑动轴承的工作性能有显著影响,滑动轴承的间隙大小用相对间隙ψ来表示:
其中:C——轴承半径间隙,即轴瓦与轴颈的半径差,mm;r——轴承半径,mm。

轴承间隙较大时,轴承承载力和运转精度下降,摩擦较小,温升较低;轴承间隙较小时,轴承运转精度较高,承载力较高,但摩擦功耗及温升较大。

滑动轴承设计时,ψ常在0.004~0.012范围取值。

滑动轴承的径向尺寸和宽度尺寸的比值称为宽径比B/D,有时写成L/D,轴承宽度较小时,会使润滑剂易沿轴向泄漏,不易保持于承载区,因此滑动轴承的宽径比不易过小,常推荐在0.5~1.5间选取。

径向轴承径向配合推荐优先选用H9/d9和H8/f7及D9/h9和F8/h7。

2. 流体润滑状态滑动轴承的设计
流体润滑状态润滑轴承是指在稳定运转时,其轴颈与轴瓦被润滑剂完全分隔,工作于无相互接触工作状态的滑动轴承。

(1) 滑动轴承形成流体动力润滑的条件
实现流体润滑主要有两种方式,一是静压方式,即将流体直接泵入承载区承载;二是动压方式,即利用轴承相对运动表面的特殊形状及运动条件形成的压力承载。

通常状态下,动压轴承的设计和工艺条件应满足如下几方面的要求,才可使流体润滑的实现成为可能。

条件1:滑动轴承相对运动表面间在承载区可以构成锲形空间,且其运动将使该区域中的流体从宽阔处流向狭窄处;即从大口流向小口;或使承载区体积有减小的趋势。

条件2:有充足的流体供给,且其具有一定的粘度;
条件3:相对运动表面间的最小间距,即最小流体膜厚度hmm,大于两表面不平度之和,使滑动表面间不发生直接接触。

(2) 流体动压润滑轴承承载流体膜的力学特征
流体动压润滑轴承依赖承载区流体膜承载,承载区流体在相对运动表面间形成压力,如上所述,该压力分布与间隙形状,流体物化性质及轴承表面的运动状态和几何特征有关。

滑动轴承要正常工作,必须具备一定的承载能力,较小的摩擦功耗以控制温升,并需按流量要求供给流体,而这些设计参数均取决于在给定工况下,承载膜内流体的力学表现。

相关文档
最新文档