《复变函数》-期末试卷及答案(A卷)

合集下载

复变函数期末考试复习题及答案详解

复变函数期末考试复习题及答案详解

《复变函数》考试试题(一) 1、 =-⎰=-1||00)(z z nz z dz__________.(n 为自然数)2.=+z z 22cos sin_________.3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数n n nz ∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8.=)0,(Re n zz es ________,其中n 为自然数.9. zz sin 的孤立奇点为________ .10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式.2. .cos 11||⎰=z dz z3. 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数.2. 试证: ()f z =在割去线段0Re 1z ≤≤的z 平面内能分出两个单值解析分支, 并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(二)二. 填空题. (20分)1. 设i z -=,则____,arg __,||===z z z2.设Ciy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(l i m 1z f iz ________.3.=-⎰=-1||00)(z z n z z dz_________.(n 为自然数)4. 幂级数nn nz∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆内的零点个数为________.8. 设211)(z z f +=,则)(z f 的孤立奇点有_________.9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz .三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z 在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z =处的值.3. 计算积分:⎰-=iiz z I d ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dzz zz ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)二. 填空题. (20分) 1. 设11)(2+=z z f ,则f (z )的定义域为___________. 2. 函数e z的周期为_________.3. 若n n ni n n z )11(12++-+=,则=∞→n z n lim __________.4. =+z z 22cos sin ___________.5. =-⎰=-1||00)(z z n z z dz_________.(n 为自然数) 6. 幂级数∑∞=0n nnx的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=z e ,则___=z . 9. 若0z是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =n zze.三. 计算题. (40分)1. 将函数12()zf z z e =在圆环域0z <<∞内展为Laurent 级数.2. 试求幂级数nn nz nn ∑+∞=!的收敛半径. 3. 算下列积分:⎰-C z z z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z在|z |<1内根的个数.四. 证明题. (20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数.2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。

复变函数_期末试卷及答案

复变函数_期末试卷及答案

一、单项选择题(本大题共15小题,每小题2分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.下列复数中,位于第三象限的复数是( )A. 12i +B. 12i --C. 12i -D. 12i -+ 2.下列等式中,不成立的等式是( ) 3.下列命题中,正确..的是( ) A. 1z >表示圆的内部B. Re()0z >表示上半平面C. 0arg 4z π<<表示角形区域D. Im()0z <表示上半平面4.关于0limz zz zω→=+下列命题正确的是( ) A.0ω=B. ω不存在C.1ω=-D.1ω=5.下列函数中,在整个复平面上解析的函数是( ) 6.在复平面上,下列命题中,正确..的是( )A. cos z 是有界函数B. 22Lnz Lnz =7.在下列复数中,使得ze i =成立的是( ) 8.已知31z i =+,则下列正确的是( ) 9.积分||342z dz z =-⎰的值为( )A. 8i πB.2C. 2i πD. 4i π10.设C 为正向圆周||4z =, 则10()zC e dz z i π-⎰等于( ) A.110!B.210!iπ C.29!iπ D.29!iπ- 11.以下关于级数的命题不正确的是( )A.级数0327nn i ∞=+⎛⎫⎪⎝⎭∑是绝对收敛的B.级数212(1)n n in n ∞=⎛⎫+ ⎪-⎝⎭∑是收敛的 C. 在收敛圆内,幂级数绝对收敛D.在收敛圆周上,条件收敛12.0=z 是函数(1cos )ze z z -的( )A. 可去奇点B.一级极点C.二级极点D. 三级极点13.1(2)z z -在点 z =∞ 处的留数为( )A. 0.1BC.12D. 12-14.设C 为正向圆周1||=z , 则积分 sin z c e dzz⎰等于( )A .2πB .2πiC .0D .-2π 15.已知()[()]F f t ω=F ,则下列命题正确的是( ) A. 2[(2)]()j f t eF ωω-=⋅FB. 21()[(2)]j ef t F ωω-⋅=+FC. [(2)]2(2)f t F ω=FD. 2[()](2)jte f t F ω⋅=-F二、填空题(本大题共5小题,每小题2分,共10分) 16. 设121,1z i z =-=,求12z z ⎛⎫=⎪⎝⎭____________. 17. 已知22()()()f z bx y x i axy y =++++在复平面上可导,则a b +=_________. 18. 设函数)(z f =cos zt tdt ⎰,则)(z f 等于____________.19. 幂极数n n2n 1(2)z n ∞=-∑的收敛半径为_______. 20. 设3z ω=,则映射在01z i =+处的旋转角为____________,伸缩率为____________. 20. 设函数2()sin f t t t =,则()f t 的拉氏变换等于____________.三、计算题(本大题共4小题,每题7分,共28分) 21.设C 为从原点到3-4i 的直线段,计算积分[()2]CI x y xyi dz =-+⎰22. 设2()cos ze f z z z i=+-. (1)求)(z f 的解析区域,(2)求).(z f ' 24.已知22(,)4u x y x y x =-+,求一解析函数()(,)(,)f z u x y iv x y =+,并使(0)3f =。

最新复变函数与积分变换期末考试试卷(A卷)

最新复变函数与积分变换期末考试试卷(A卷)

复变函数与积分变换期末考试试卷(A 卷)一、单项选择题(本大题共15小题,每小题2分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.下列复数中,位于第四象限的复数是( )A. 4+3iB. -3-3iC.-1+3iD.5-3i 2.下列等式中,不成立的等式是( ) A. z·z =Re (z·z ).arg(3)arg()B i i -=- .rg(3)arg(3)C A =2.||D z z z ⋅=3.不等式 ||3z > 所表示的区域为( ) A. 圆的外部B.上半平面C. 角形区域D.圆的内部4.积分||322z dz z =-⎰的值为( )A. 8i πB.2C. 2i πD. 4i π 5.下列函数中,在整个复平面上解析的函数是( ).z A z e +.sin z B z e + .tan z C z e + .R e ()s i n D z z+6.在复平面上,下列命题中,错误..的是( )A. cosz 是周期函数B. ze 是解析函数.cos sin iz C e z i z =+.||D z =7.在下列复数中,使得ze =成立的是( ).ln 224iA z i ππ=++.ln 424iB z i ππ=++.ln 22C z i π=+.l n 42D z iπ=+ 8.设C 为正向圆周1||=z , 则积分 cos z c e dzz⎰等于( )A .2πB .2πiC .0D .-2π 9.设C 为正向圆周||2z =, 则21(1)C dz z i --⎰等于( )A.i21π B. 0 C.i 2πD.2i π-10.以下关于级数的命题不正确的是( )A.级数0327nn i ∞=+⎛⎫⎪⎝⎭∑是绝对收敛的B.级数212(1)n n in n ∞=⎛⎫+ ⎪-⎝⎭∑是收敛的 C.级数01(1)2n n n i n ∞=⎛⎫-+ ⎪⎝⎭∑是收敛的D.级数212n n i n ∞=⎛⎫+ ⎪⎝⎭∑是收敛的11.已知31z i =+,则下列正确的是( )12.iA z π=34.iB z eπ=712.i C z π=3.iD z π=12.下列关于幂级数的叙述,不正确 的是( ) A.在收敛圆内,幂级数绝对收敛 B.在收敛圆外,幂级数发散 C.在收敛圆周上,可能收敛,也可能发散 D.在收敛圆周上,条件收敛13.0=z 是函数sin z e z z的( )A.本性奇点B.一级极点C.二级极点D.可去奇点14.cos z zz π-在点 z π= 处的留数为( ) A. π-.B πC.1D. -115.关于0Im lim z zzω→=下列命题正确的是( )A.0ω=B. ω不存在C.1ω=-D.1ω=二、填空题(本大题共5小题,每小题2分,共10分)16.sincos 33z i ππ=+复数的三角形式为____________. 17. 已知22()()()f z x ay x i bxy y =++++在复平面上可导,则a b +=_________. 18. 设函数)(z f =3zt te dt ⎰,则)(z f 等于____________.19. 幂极数n n2n 1(-1)z n∞=∑的收敛半径为_______.20.设121,1z i z =-+=,求12z z ⎛⎫=⎪⎝⎭____________.三、计算题(本大题共4小题,每题7分,共28分) 21.设C 为从原点到2+3i 的直线段,计算积分[(2)]CI x y ixy dz =-+⎰22. 设2()cos 4ze f z z z=+-. (1)求)(z f 的解析区域,(2)求).(z f '23. 将函数1()(1)(2)f z z z =--在点0=z 处展开为泰勒级数.24. 将函数112()(1)z ef z z -=-在圆环0|1|z <-<∞内展开成洛朗级数.四、综合题(共4小题,每题8分,共32分)25.已知22(,)2u x y x y x =-+,求一解析函数()(,)(,)f z u x y iv x y =+,并使(0)2f i =。

复变函数期末试卷及答案

复变函数期末试卷及答案

20**-20** 1 复变函数与积分变换(A 卷)(答案写在答题纸上,写在试题纸上无效)一、单项选择题(每小题3分,共30分) 1.设 复数1z i =-,则arg z =( )A .4π-B .4πC .34πD .54π 2.设z 为非零复数,,a b 为实数且z a bi z=+,则22a b +( )A .等于0B .等于1C .小于1D .大于1 3.函数()f z z =在0z =处( )A .解析B .可导C .不连续D .连续 4.设z x iy =+,则下列函数为解析的是( )A 22()2f z x y i xy =-+ B ()f z x iy =- C ()2f z x i y =+ D ()2f z x iy =+ 5.设C 为正向圆周||1z =,则积分Czdz =⎰( )A .6i πB .4i πC .2i πD .0 6. 设C 为正向圆周||1z =,则积分(2)Cdzz z =-⎰( ).A .i π-B .i πC .0D .2i π7. 设12,C C 分别是正向圆周||1z =与|2|1z -=,则积分121sin 222z C C e z dz dz i z z π⎛⎫+= ⎪--⎝⎭⎰⎰ A .2i π B .sin 2 C .0 D .cos2 8.幂级数1(1)nnn z i ∞=+∑的收敛半径为 ( ) A.0 B.12C. 2D. 2课程考试试题学期 学年 拟题人:校对人: 拟题学院(系): 适 用 专 业:9. 0z =是函数2(1)sin ()(1)z e zf z z z -=-的( ) A .本性奇点 B .可去奇点 C .一级极点 D .二级极点10.已知210(1)sin (21)!n n n z z n ∞+=-=+∑,则4sin Re [,0]zs z =( )A .1B .13!C .13!-D .1-二、填空题(每空3分,共15分)1 复数1i -+,的指数形式为__________。

复变函数期末考试复习题及答案详解

复变函数期末考试复习题及答案详解

《复变函数》考试试题(一)三 . 计算题( 40 分):dz1、|z z 0 | 1 ( z z )n__________. ( n 为自然数)f ( z)12.sin 2 z cos 2z _________.3. 函数sin z的周期为 ___________.f (z)14. z 2 1 ,则f ( z)的孤立奇点有 __________.设 5. 幂级数nz n的收敛半径为 __________.n 06. 若函数 f(z) 在整个平面上处处解析,则称它是__________.lim z nlimz 1z 2 ... z n7. 若 n,则 nn ______________.Res(ez8.n,0)z________,其中 n 为自然数 .9.sin z的孤立奇点为 ________ .z10. 若zlimf (z) ___是f (z) 的极点,则z z.1. 设( z 1)( z 2) ,求 f ( z) 在 D { z : 0 | z | 1}内的罗朗展式 .1dz.2.|z| 1cos zf ( z) 3 2 71,其中 C { z :| z |3} ,试求 f '(1 i ).3.d设Czwz 14. 求复数 z 1 的实部与虚部 .四 . 证明题 .(20 分 )1. 函数f (z)在区域 D 内解析 . 证明:如果 | f ( z) |在 D 内为常数, 那么它在 D 内为常数 .2. 试证 :f (z)z(1 z) 在割去线段 0 Re z 1 的 z 平面内能分出两个单值解析分支 , 并求出支割线 0 Re z 1 上岸取正值的那支在 z 1 的值 .《复变函数》考试试题(二)二. 填空题 . (20 分)1.设z i ,则| z |__,arg z__, z__2.设 f ( z)(x2 2 xy) i (1 sin( x2y2 ), z x iy C,则lim f (z)________.z1idz_________. (n为自然数)3.|z z0 |1 ( z z )n4.幂级数nz n的收敛半径为 __________ .n05.若 z0是 f(z) 的 m 阶零点且 m>0,则 z0是f ' ( z)的 _____零点 .6.函数 e z的周期为 __________.7.方程 2z5z33z 8 0 在单位圆内的零点个数为________.18.设 f ( z)1z2,则 f ( z) 的孤立奇点有_________.9.函数 f (z)| z |的不解析点之集为________.10.Res( z41,1)____ . z三.计算题 . (40 分)1.求函数sin(2z3)的幂级数展开式 .2. 在复平面上取上半虚轴作割线 . 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点z i 处的值.计算积分: Ii1)单位圆(| z |1)3.| z | dz,积分路径为(i的右半圆 .sin zdzz22( z)4.求2.四. 证明题 . (20 分)1.设函数 f(z) 在区域 D 内解析,试证:f(z)在 D 内为常数的充要条件是 f ( z)在D内解析.2.试用儒歇定理证明代数基本定理 .《复变函数》考试试题(三)二. 填空题 .(20 分)11.设 f ( z),则f(z)的定义域为___________.z212.函数 e z的周期为_________.3.若 z nn 2 i (1 1 )n,则 lim z n __________.1 nn n4. sin 2 z cos 2z___________.dz5.|z z 0 | 1 ( z z )n_________. ( n 为自然数)6.幂级数nx n的收敛半径为 __________.n 07.设f (z)1,则 f ( z ) 的孤立奇点有 __________.z218. 设ez1,则 z___ .9.若z 0 是 f (z) 的极点,则 limf ( z) ___ .z z 010.Res( e z,0)____.z n三. 计算题 . (40分)11.将函数 f ( z)z 2e z在圆环域 0z内展为 Laurent 级数 .n!n2. 试求幂级数nnz的收敛半径 .n3. 算下列积分:e zdz,其中C 是| z| 1.Cz 2 (z29)4. 求z 9 2z 6z28z 2 0 在 | z |<1内根的个数 .四 . 证明题 . (20 分)1.函数f (z)在区域 D 内解析 . 证明:如果 | f ( z) |在 D 内为常数,那么它在D 内为常数 .2.设f (z) 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及 M ,使得当| z|R 时| f (z) |M | z |n ,证明f (z) 是一个至多 n 次的多项式或一常数。

复变期末考试题及答案

复变期末考试题及答案

复变期末考试题及答案复变函数期末考试题一、选择题(每题2分,共20分)1. 若复数 \( z = x + yi \),则 \( \overline{z} \) 是:A. \( x - yi \)B. \( -x - yi \)C. \( -x + yi \)D. \( x + yi \)2. 复平面上,单位圆上的点 \( z = e^{i\theta} \) 对应的实部是:A. \( \cos\theta \)B. \( \sin\theta \)C. \( \tan\theta \)D. \( \sec\theta \)3. 以下哪个是解析函数:A. \( f(z) = \frac{1}{z} \)B. \( f(z) = z^2 \)C. \( f(z) = \log z \)D. \( f(z) = \sin z \)4. Cauchy-Riemann方程是:A. \( \frac{\partial u}{\partial x} = \frac{\partialv}{\partial y} \)B. \( \frac{\partial u}{\partial y} = -\frac{\partialv}{\partial x} \)C. \( \frac{\partial u}{\partial x} = -\frac{\partialv}{\partial y} \)D. 所有选项5. 若 \( f(z) \) 在 \( z_0 \) 处可导,则下列哪个说法是正确的:A. \( f(z) \) 在 \( z_0 \) 处连续B. \( f(z) \) 在 \( z_0 \) 处可微C. \( f(z) \) 在 \( z_0 \) 处解析D. 以上都是...二、填空题(每空3分,共30分)1. 复数 \( z = 3 + 4i \) 的模是 _________。

2. 如果 \( f(z) = z^3 + 2z^2 + z \),则 \( f'(z) = _________ \)。

复变函数期末考试复习题及答案详解

复变函数期末考试复习题及答案详解

《复变函数》考试试题(一) 1、 =-⎰=-1||00)(z z nz z dz__________.(n 为自然数)2.=+z z 22cos sin_________.3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数n n nz ∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8.=)0,(Re n zz es ________,其中n 为自然数.9. zz sin 的孤立奇点为________ .10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式.2. .cos 11||⎰=z dz z3. 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数.2. 试证: ()f z =在割去线段0Re 1z ≤≤的z 平面内能分出两个单值解析分支, 并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(二)二. 填空题. (20分)1. 设i z -=,则____,arg __,||===z z z2.设Ciy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(l i m 1z f iz ________.3.=-⎰=-1||00)(z z n z z dz_________.(n 为自然数)4. 幂级数nn nz∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆内的零点个数为________.8. 设211)(z z f +=,则)(z f 的孤立奇点有_________.9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz .三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z 在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z =处的值.3. 计算积分:⎰-=iiz z I d ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dzz zz ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)二. 填空题. (20分) 1. 设11)(2+=z z f ,则f (z )的定义域为___________. 2. 函数e z的周期为_________.3. 若n n ni n n z )11(12++-+=,则=∞→n z n lim __________.4. =+z z 22cos sin ___________.5. =-⎰=-1||00)(z z n z z dz_________.(n 为自然数) 6. 幂级数∑∞=0n nnx的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=z e ,则___=z . 9. 若0z是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =n zze.三. 计算题. (40分)1. 将函数12()zf z z e =在圆环域0z <<∞内展为Laurent 级数.2. 试求幂级数nn nz nn ∑+∞=!的收敛半径. 3. 算下列积分:⎰-C z z z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z在|z |<1内根的个数.四. 证明题. (20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数.2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。

复变函数期末考试复习题及答案详解

复变函数期末考试复习题及答案详解

《复变函数》考试试题(一) 1、 =-⎰=-1||00)(z z nz z dz__________.(n 为自然数)2.=+z z 22cos sin_________.3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数n n nz ∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8.=)0,(Re n zz es ________,其中n 为自然数.9. zz sin 的孤立奇点为________ .10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式.2. .cos 11||⎰=z dz z3. 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数.2. 试证: ()f z =在割去线段0Re 1z ≤≤的z 平面内能分出两个单值解析分支, 并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(二)二. 填空题. (20分)1. 设i z -=,则____,arg __,||===z z z2.设Ciy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(l i m 1z f iz ________.3.=-⎰=-1||00)(z z n z z dz_________.(n 为自然数)4. 幂级数nn nz∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆内的零点个数为________.8. 设211)(z z f +=,则)(z f 的孤立奇点有_________.9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz .三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z 在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z =处的值.3. 计算积分:⎰-=iiz z I d ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dzz zz ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)二. 填空题. (20分) 1. 设11)(2+=z z f ,则f (z )的定义域为___________. 2. 函数e z的周期为_________.3. 若n n ni n n z )11(12++-+=,则=∞→n z n lim __________.4. =+z z 22cos sin ___________.5. =-⎰=-1||00)(z z n z z dz_________.(n 为自然数) 6. 幂级数∑∞=0n nnx的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=z e ,则___=z . 9. 若0z是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =n zze.三. 计算题. (40分)1. 将函数12()zf z z e =在圆环域0z <<∞内展为Laurent 级数.2. 试求幂级数nn nz nn ∑+∞=!的收敛半径. 3. 算下列积分:⎰-C z z z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z在|z |<1内根的个数.四. 证明题. (20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数.2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。

西北工大复变函数试题

西北工大复变函数试题

考试题1复变函数 (A 卷)一、填空题(每题4分,共20分)1 12i +=______________2 |z|=21d ()(4)z z i z =+-⎰ 3 幂级数1n n nz ∞=∑的收敛半径R=______________4 1Re [,]sin s z zπ=____________________ 5 函数1zω=将z 平面上的曲线1x =变为ω平面上的(,z x iy u iv ω=+=+)二、单项选择题(每题4分,共20分).1 设1()sin(1)f z z=-,则0z =是()f z 的 【 】A .可去奇点B .本性奇点C .极点D .非孤立奇点.2 设1n > 为正整数,则||21d 1n z z z =-⎰ 为 【 】 A .0 B . 2i π C. i π D. 2n i π3 级数1nn z n∞=∑在||1z =上 【 】A .收敛B .发散C .既有收敛点也有发散点D .不确定4 0cos limsin x z z zz z→-=- 【 】 A .3- B. ∞ C. 0 D. 35 设1328()(1)(1)z f z z z =-+, 则()f z 在复平面上所有有限奇点处的留数之和等于 【 】 A . 1- B. 1 C. 10 D. 0三 (10分) 讨论函数2()f z x iy =-的可微性与解析性。

四 (10分) 设()f z 在||(1)z R R <>内解析,且(0)1f =,(0)2f '=,试计算积分22||1()(1)d z f z z z z =+⎰ 并由此得出22cos ()2i f e d πθθθ⎰之值。

五 (10分) 已知调和函数22(,)u x y x y xy =-+。

求共轭调和函数(,)v x y 及解析函数()(,)(,)f z u x y iv x y =+。

六 (12分) 求函数21()()f z z z i =-在以下圆环域内的Laurent 展式: (1) 0|1z i <-<; (2) 1|z i <-<∞。

(完整版)《复变函数》期末试卷及答案(A卷)(可编辑修改word版)

(完整版)《复变函数》期末试卷及答案(A卷)(可编辑修改word版)

a - b1- abn (z -1) n (z -1) XXXX 学院 2016—2017 学年度第一学期期末考试复变函数 试卷7.幂级数∑(-1)n n =0z n2nn !的和函数是()学号和姓名务必正确清 A. e -zz B. e2- zC. e2dzD. sin z楚填写。

因填写错误或不清 8. 设C 是正向圆周 z = 2 ,则⎰C z2=()楚造成不良后果的,均由本 A. 0 B. - 2i C. iD. 2i人负责;如故意涂改、乱写 的,考试成绩 答一、单项选择题(本大题共 10 小题,每题 3 分,共 30 9. 设函数 f (z ) 在0 < z - z 0 < R (0 < R ≤ +∞) 内解析,那么 z 0 是 f (z ) 的极点的充要条件是()A. lim f (z ) = a ( a 为复常数)B. lim f (z ) = ∞视为无效。

题分,请从每题备选项中选出唯一符合题干要求的选项,z → z 0z → z 0请勿1.Re(i z ) =并将其前面的字母填在题中括号内。

)()10. 10. C. lim f (z ) 不存在D.以上都对z → z 0ln z 在 z = 1处的泰勒级数展开式为 ()超 A. - Re(i z )B. Im(i z )∞(z -1)n +1∞ (z -1)n A. ∑(-1)n, z -1 < 1B. ∑(-1)n, z -1 < 1过C. - Im z此 D. Im zn =1∞n +1n +1n =1 n∞n2. 函数 f (z ) =z 2在复平面上()C. ∑(-1) , z -1 < 1D. ∑(-1) , z -1 < 1密 封 A.处处不连续B.处处连续,处处不可导线 C.处处连续,仅在点 z = 0 处可导D.处处连续,仅在点 z = 0 处解析,3. 设复数 a 与b 有且仅有一个模为 1,则的值()n =0n +1 n =0n 否 则 A.大于 1 B.等于 1 C.小于 1D.无穷大视 4. 设 z = x + i y ,f (z ) = - y + i x ,则 f '(z ) = ()二、填空题(本大题共 5 小题,每题 3 分,共 15 分)为A.1+ i无B. isin zC. -1D. 011. z = 1+ 2i 的5. 设C 是正向圆周 z = 1 , ⎰C dz = 2i ,则整数n 等于 ()zn A. -1B. 0e z -1C.1D. 26. z = 0 是 f (z ) =的()z2A.1阶极点B. 2 阶极点C.可去奇点D.本性奇点∞系别专业姓名班级学号(最后两位)总分 题号 一 二 三四统分人 题分 30203030复查人得分得分评卷人复查人得分评卷人复查人⎰18.求在映射 w = z 2 下, z _ _ _ _ 平面上的直线 __ _z = (2 + i)t 被映射成 w 平面上的曲线的方程.12.设 z = (2 - 3i)(-2 + i) ,则arg z =.13.在复平面上,函数 f (z ) = x 2 - y 2 - x + i(2xy - y 2 ) 在直线上可导.cos 5z.19.求e z 在 z = 0 处的泰勒展开式.14. 设C 是正向圆周 z = 1 ,则 ⎰Cdz = .z∞ ∞∞15. 若级数∑ zn 收敛,而级数∑ zn 发散,则称复级数∑ zn 为.n =1n =1n =1三、计算题(本大题共 5 小题,每小题 8 分,共 40 分)16. 利用柯西-黎曼条件讨论函数 f (z ) = z 的解析性.20.计算积分1+iz 2dz .2017 + n i 17.判断数列 z n = n +1的收敛性. 若收敛,求出其极限.三、证明题(本大题共1 小题,每小题15 分,共15 分)nn !⎩ 21.试证明柯西不等式定理:设函数 f (z ) 在圆C : z - z 0 = R 所围的区域内解析,且在C因此在任何点(x , y ) 处, ∂u ≠∂v,所以 f (z ) 在复平面内处处不解析。

复变函数期末考试复习题及答案详解

复变函数期末考试复习题及答案详解

《复变函数》考试试题(一) 1、 =-⎰=-1||00)(z z nz z dz__________.(n 为自然数)2.=+z z 22cos sin_________.3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数n n nz ∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8.=)0,(Re n zz es ________,其中n 为自然数.9. zz sin 的孤立奇点为________ .10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式.2. .cos 11||⎰=z dz z3. 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数.2. 试证: ()f z =在割去线段0Re 1z ≤≤的z 平面内能分出两个单值解析分支, 并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(二)二. 填空题. (20分)1. 设i z -=,则____,arg __,||===z z z2.设Ciy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(l i m 1z f iz ________.3.=-⎰=-1||00)(z z n z z dz_________.(n 为自然数)4. 幂级数nn nz∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆内的零点个数为________.8. 设211)(z z f +=,则)(z f 的孤立奇点有_________.9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz .三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z 在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z =处的值.3. 计算积分:⎰-=iiz z I d ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dzz zz ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)二. 填空题. (20分) 1. 设11)(2+=z z f ,则f (z )的定义域为___________. 2. 函数e z的周期为_________.3. 若n n ni n n z )11(12++-+=,则=∞→n z n lim __________.4. =+z z 22cos sin ___________.5. =-⎰=-1||00)(z z n z z dz_________.(n 为自然数) 6. 幂级数∑∞=0n nnx的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=z e ,则___=z . 9. 若0z是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =n zze.三. 计算题. (40分)1. 将函数12()zf z z e =在圆环域0z <<∞内展为Laurent 级数.2. 试求幂级数nn nz nn ∑+∞=!的收敛半径. 3. 算下列积分:⎰-C z z z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z在|z |<1内根的个数.四. 证明题. (20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数.2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。

复变函数期末考试复习题及答案详解

复变函数期末考试复习题及答案详解

《复变函数》考试试题(一)1、__________.(为自然数)2。

_________。

3.函数的周期为___________.4.设,则的孤立奇点有__________。

5.幂级数的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________。

7.若,则______________.8。

________,其中n为自然数.9。

的孤立奇点为________。

10.若是的极点,则。

三.计算题(40分):1. 设,求在内的罗朗展式.2.3. 设,其中,试求4. 求复数的实部与虚部.四。

证明题.(20分)1。

函数在区域内解析. 证明:如果在内为常数,那么它在内为常数。

2。

试证:在割去线段的平面内能分出两个单值解析分支,并求出支割线上岸取正值的那支在的值.《复变函数》考试试题(二)二。

填空题. (20分)1。

设,则2。

设,则________。

3. _________。

(为自然数)4. 幂级数的收敛半径为__________ 。

5. 若z0是f(z)的m阶零点且m>0,则z0是的_____零点。

6. 函数e z的周期为__________.7. 方程在单位圆内的零点个数为________.8. 设,则的孤立奇点有_________。

9。

函数的不解析点之集为________。

10. .三。

计算题. (40分)1。

求函数的幂级数展开式。

2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点处的值。

3。

计算积分:,积分路径为(1)单位圆()的右半圆。

4. 求。

四。

证明题。

(20分)1. 设函数f(z)在区域D内解析,试证:f(z)在D内为常数的充要条件是在D内解析。

2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)二. 填空题. (20分)1. 设,则f(z)的定义域为___________.2。

《复变函数与积分变换》期末考试试卷A及答案

《复变函数与积分变换》期末考试试卷A及答案

《复变函数与积分变换》期末考试试卷A及答案六、(本题6分)求)()(0>=-ββtet f 的傅立叶变换,并由此证明:te d t ββπωωβω-+∞=+⎰2022cos三.按要求完成下列各题(每小题10分,共40分)(1).设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a解:因为)(z f 解析,由C-R 条件y v x u ∂∂=∂∂ xvy u ∂∂-=∂∂ y dx ay x 22+=+,22dy cx by ax --=+,2,2==d a ,,2,2d b c a -=-=,1,1-=-=b c给出C-R 条件6分,正确求导给2分,结果正确2分。

(2).计算⎰-C zz zz e d )1(2其中C 是正向圆周: 解:本题可以用柯西公式\柯西高阶导数公式计算也可用留数计算洛朗展开计算,仅给出用前者计算过程因为函数z z e z f z2)1()(-=在复平面内只有两个奇点1,021==z z ,分别以21,z z 为圆心画互不相交互不包含的小圆21,c c 且位于c 内⎰⎰⎰-+-=-21d )1(d )1(d )1(222C z C z C zz z z e z zz e z z z e i z e iz e i z zz z πππ2)1(2)(2021=-+'===无论采用那种方法给出公式至少给一半分,其他酌情给分。

(3).⎰=++3342215d )2()1(z z z z z解:设)(z f 在有限复平面内所有奇点均在:3<z 内,由留数定理]),([Re 2d )2()1(3342215∞-=++⎰=z f s i z z z z z π -----(5分) ]1)1([Re 22z z f s i π= ----(8分)234221521))1(2()11()1(1)1(z z zz zz f ++=0,z )12()1(11)1(34222=++=有唯一的孤立奇点z z z z z f 1)12()1(11)1(]0,1)1([Re 34220202lim lim =++==→→z z z z zf z z f s z z⎰==++∴33422152d )2()1(z i z z z z π --------(10分)(4)函数2332)3()(sin )2)(1()(-+-=z z z z z z f π在扩充复平面上有什么类型的奇点?,如果有极点,请指出它的级. 解:∞±±±==-+-=,的奇点为 ,3,2,1,0,)(sin )3()2)(1()(3232k k z z z z z z z f π(1)的三级零点,)为(032103=±±±==z kk z πsin ,,,,,(2)的可去奇点,是的二级极点,为,)()(,z f z z f z z 210-=±== (3)的一级极点,为)(3z f z =(4)的三级极点;,为)(4,3,2z f z±-=(5)的非孤立奇点。

复变函数期末考试试卷及答案详解

复变函数期末考试试卷及答案详解

复变函数期末考试试卷及答案详解复变函数期末考试试卷及答案详解《复变函数》考试试题(一) 三.计算题(40分):dz1,1、 __________.(为自然数)nn,f(z),|z,z|,10(zz),0D,{z:0,|z|,1}(z,1)(z,2)f(z),求在1. 设22sinz,cosz,2. _________. 内的罗朗展式.1sinz3.函数的周期为___________. dz.,|z|,1cosz2. 12f(z),,,,,3712,f(z)fzd,()z,1C,{z:|z|,3}f'(1,i).,C4.设,则的孤立奇点有__________. ,z,3. 设,其中,试求,z,1nw,nz5.幂级数的收敛半径为__________. ,z,14. 求复数的实部与虚部. n0,6.若函数f(z)在整个平面上处处解析,则称它是__________. 四. 证明题.(20分)zzz,,...,1. 函数在区域D内解析. 证明:如果在D内为常数,f(z)|f(z)|12n,limlimz,,n,,nnn,,7.若,则______________.D那么它在内为常数. zesRe(,0),n0Re1,,z2. 试证: 在割去线段的平面内能分出两zfzzz()(1),,z8.________,其中n为自然数.z,,10Re1,,z个单值解析分支, 并求出支割线上岸取正值的那支在sinz的值.9. 的孤立奇点为________ .《复变函数》考试试题(二) z二. 填空题. (20分)limf(z),___zf(z)z,z0010.若是的极点,则.13sin(2z)1. 设,则 z,,i|z|,__,argz,__,z,__的幂级数展开式. 1. 求函数2222.设,则f(z),(x,2xy),i(1,sin(x,y),,z,x,iy,C2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数在正z实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点________. limf(z),z,1,i处的值. z,idz,3. _________.(为自然数) inn,|z,z|,10(zz),0I,|z|dz3. 计算积分:,积分路径为(1)单位圆()|z|,1,,i,nnz4. 幂级数的收敛半径为__________ . 的右半圆. ,n0,sinzdz,z,25. 若z是f(z)的m阶零点且m>0,则z是的_____零点. ,f'(z)002(,)z24. 求 .z6. 函数e的周期为__________.四. 证明题. (20分) 537. 方程在单位圆内的零点个数为________. 2z,z,3z,8,0f(z)1. 设函数f(z)在区域D内解析,试证:f(z)在D内为常数的充要条件是1f(z),8. 设,则的孤立奇点有_________. f(z)2在D内解析. 1,z2. 试用儒歇定理证明代数基本定理. 9. 函数的不解析点之集为________.f(z),|z|《复变函数》考试试题(三)二. 填空题. (20分) z,1110. . Res(,1),____f(z),1. 设,则f(z)的定义域为___________. 42z,1zz三. 计算题. (40分) 2. 函数e的周期为_________.2n,21n,,z,,i(1,)3. 若,则__________. limz,nnn!n,,1,nnn的收敛半径.2. 试求幂级数z,n22n4. ___________. sinz,cosz,n,dzzedz,5. _________.(为自然数) nn,|z,z|,13. 算下列积分:,其中是.C|z|,10(zz),22,0Cz(z,9),nnx6. 幂级数的收敛半径为__________. ,962n,0z,2z,z,8z,2,04. 求在|z|<1内根的个数.四. 证明题. (20分) 1f(z),7. 设,则f(z)的孤立奇点有__________. 21. 函数在区域D内解析. 证明:如果在D内为常f(z)|f(z)|z,1z数,那么它在D内为常数. 8. 设,则. z,___e,,12. 设是一整函数,并且假定存在着一个正整数n,以及两个正数f(z)z9. 若是的极点,则. f(z)limf(z),___0z,z0R及M,使得当时 |z|,Rzen10. Res(,0),____. n|f(z)|,M|z|, z三. 计算题. (40分) 证明是一个至多n次的多项式或一常数。

复变函数期末考试卷-A-2011-2012-1-答案

复变函数期末考试卷-A-2011-2012-1-答案
6. 把函数
1 在 1 | z | 2 内展开成罗朗级数。 ( z 1)( z 2)
2
【解】
1 ( z 1)( z 2)
2
1 1 z2 2 5 z 2 z 1 1 1 1 1 ( z 2) 1 5 2 1 z z 2 (1 2 ) 2 z n 1 1 z ( z 2) n 1 ( 1) 5 z 2 n 0 z 2n 2 n 0 2 n 1 z 1 2 n 1 (1) n 2 n 1 (1) n 2 n 2 5 n0 2 z z n0 n0
(5 分)
4. 求积分 I 【解】设

C
zdz, C 为沿单位圆 (| z | 1) 的逆时针一周的曲线。
z ei (0 2 ), dz iei d , 则 I ei iei d (3分) 2 i
0 2
5. 求
C
z( z 1) d z ,其中 C 为 | z | 2 。
ux v ) ( x ) 1 ,即: 两族曲线互相正交。 uy vy
(2)
u v u 与 中有一个为零时,不妨设 u y 0 ,则由 C-R 方程,有 y y y
k1
u ux v , k2 x y 0 uy vy ux
即:两族曲线在交点处的切线一条是水平的,另一条是铅直的,它们仍互相正交。证毕。 2. 证明:当 C 为任何不通过原点的简单闭曲线时,有 【证明】分两种情况讨论: (1) 当 z 0 在 C 之外时,由 Cauchy-Gurssat 定理得, (2) 当 z 0 在 C 之内时,在高阶导数的 Cauchy 公式

最新复变函数与积分变换期末考试试卷(A卷)(1)

最新复变函数与积分变换期末考试试卷(A卷)(1)

复变函数与积分变换期末考试试卷(A 卷)一、单项选择题(本大题共15小题,每小题2分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.下列复数中,位于第四象限的复数是( )A. 4+3iB. -3-3iC.-1+3iD.5-3i 2.下列等式中,不成立的等式是( ) A. z·z =Re (z·z ).arg(3)arg()B i i -=- .rg(3)arg(3)C A =2.||D z z z ⋅=3.不等式 ||3z > 所表示的区域为( ) A. 圆的外部B.上半平面C. 角形区域D.圆的内部4.积分||322z dz z =-⎰的值为( )A. 8i πB.2C. 2i πD. 4i π 5.下列函数中,在整个复平面上解析的函数是( ).z A z e +.sin z B z e + .tan z C z e + .R e ()s i n D z z+6.在复平面上,下列命题中,错误..的是( )A. cosz 是周期函数B. ze 是解析函数.cos sin iz C e z i z =+.||D z =7.在下列复数中,使得ze =成立的是( ).ln 224iA z i ππ=++.ln 424iB z i ππ=++.ln 22C z i π=+.l n 42D z iπ=+ 8.设C 为正向圆周1||=z , 则积分 cos z c e dzz⎰等于( )A .2πB .2πiC .0D .-2π 9.设C 为正向圆周||2z =, 则21(1)C dz z i --⎰等于( )A.i21π B. 0 C.i 2πD.2i π-10.以下关于级数的命题不正确的是( )A.级数0327nn i ∞=+⎛⎫⎪⎝⎭∑是绝对收敛的B.级数212(1)n n in n ∞=⎛⎫+ ⎪-⎝⎭∑是收敛的 C.级数01(1)2n n n i n ∞=⎛⎫-+ ⎪⎝⎭∑是收敛的D.级数212n n i n ∞=⎛⎫+ ⎪⎝⎭∑是收敛的11.已知31z i =+,则下列正确的是( )12.iA z π=34.iB z eπ=712.i C z π=3.iD z π=12.下列关于幂级数的叙述,不正确 的是( ) A.在收敛圆内,幂级数绝对收敛 B.在收敛圆外,幂级数发散 C.在收敛圆周上,可能收敛,也可能发散 D.在收敛圆周上,条件收敛13.0=z 是函数sin z e z z的( )A.本性奇点B.一级极点C.二级极点D.可去奇点14.cos z zz π-在点 z π= 处的留数为( ) A. π-.B πC.1D. -115.关于0Im lim z zzω→=下列命题正确的是( )A.0ω=B. ω不存在C.1ω=-D.1ω=二、填空题(本大题共5小题,每小题2分,共10分)16.sincos 33z i ππ=+复数的三角形式为____________. 17. 已知22()()()f z x ay x i bxy y =++++在复平面上可导,则a b +=_________. 18. 设函数)(z f =3zt te dt ⎰,则)(z f 等于____________.19. 幂极数n n2n 1(-1)z n∞=∑的收敛半径为_______.20.设121,1z i z =-+=,求12z z ⎛⎫=⎪⎝⎭____________.三、计算题(本大题共4小题,每题7分,共28分) 21.设C 为从原点到2+3i 的直线段,计算积分[(2)]CI x y ixy dz =-+⎰22. 设2()cos 4ze f z z z=+-. (1)求)(z f 的解析区域,(2)求).(z f '23. 将函数1()(1)(2)f z z z =--在点0=z 处展开为泰勒级数.24. 将函数112()(1)z ef z z -=-在圆环0|1|z <-<∞内展开成洛朗级数.四、综合题(共4小题,每题8分,共32分)25.已知22(,)2u x y x y x =-+,求一解析函数()(,)(,)f z u x y iv x y =+,并使(0)2f i =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

14. 设 C 是正向圆周 z 1 ,则
cos 5z dz
________ .
Cz
15. 若级数 zn 收敛,而级数
zn 发散,则称复级数
zn 为 ________ .
n1
n1
n1
精品资料
欢迎下载
得分
评卷人
复查人
三、计算题 ( 本大题共 5 小题,每小题 8 分,共 40 分 )
16. 利用柯西 - 黎曼条件讨论函数 f (z) z 的解析性 .
()
B.
lim f ( z)
z z0
C. lim f (z) 不存在
D.
以上都对
z z0
10. ln z 在 z 1处的泰勒级数展开式为
n1
A.
( 1) n ( z 1) , z 1 1 B.
n1
n1
C.
( 1) n ( z 1)n 1 , z 1 1 D.
n0
n1
()
n
( 1)n ( z 1) , z 1 1
16. 解:因 f ( z) z x iy ,故 u( x, y) x, v(x, y) y ,从而
u
u
u
u
1,
0,
0,
1,
x
y
x
y
因此在任何点 ( x, y) 处, u v ,所以 f (z) 在复平面内处处不解析。
xy
17. 解: 而
2016 n1
2016 0, n
Mn! Rn 1
(n
1,2,...)
1,2,...)
20. 计算积分 1 i z 2dz .
0
17. 判断数列 zn 2017 ni 的收敛性 . 若收敛,求出其极限 . n1
18. 求在映射 w z2 下, z 平面上的直线 z ( 2 i )t 被映射成 w 平面上的曲线的方程 .
得分
评卷人 复查人
三、证明题 ( 本大题共 1 小题, 每小题 15 分,共 15 分 )
20
得分


30
30
得分
评卷人 复查人
一、单项选择题(本大题共 10 小题,每题 3 分,共 30 分,请从每题备选项中选出唯一符合题干要求的选项, 并将其前面的字母填在题中括号内。 )
1. Re(i z)
()
A. Re(i z)
B.
Im(i z)
C. Im z 2. 函数 f ( z)
D.
2
z 在复平面上
1 (n
)
n1
n1
所以
lim
n
zn
i
18. 解:直线 z (2 i)t 的参数方程为
x 2t, yt
( t)
在 w z2 映射下,该直线被映射成 w 平面上的曲线
w z2 (2 i) 2 t 2 (3 4i )t 2
于是
u 3t 2 , v 4t 2 ,
欢迎下载
消去 t ,得
v 4 u (u 0) 3
Im z
()
A. 处处不连续
B.
C. 处处连续,仅在点 z 0 处可导
处处连续,处处不可导
D. 处处连续,仅在点 z 0 处解析
3. 设复数 a 与 b 有且仅有一个模为 1,则 a b 的值 1 ab
()
A. 大于 1 B.
等于 1 C.
小于 1 D.
无穷大
4. 设 z x iy, f ( z) y i x ,则 f ( z)
21. 试证明柯西不等式定理 : 设函数 f ( z) 在圆 C : z z0 R 所围的区域内解析, 且在 C
上连续,则
f ( n) ( z0 )
Mn ! Rn ( n 1,2,...)
其中 M 是 f ( z) 在 C 上的最大值 .
19. 求 ez 在 z 0 处的泰勒展开式 .
精品资料
XXXX学院 2016-2017 学年度第一学期期末考试 复变函数 答案( A 卷)
()
A. 1 i
B.
i
C.
1
D.
0
5. 设 C 是正向圆周 z
1,
C
sin zn
zdz
2 i ,则整数 n 等于
(
)
A. 1
B.
0
C.
1
D.
2
6. z 0 是 f (z)
ez 1 z2 的
()
A. 1阶极点 B. 2 阶极点 C. 可去奇点 D. 本性奇点
欢迎下载
7. 幂级数 (
n0
1) n
zn 2n n!
1(1 i)3 3
2( 1 i) 3
五、证明题(本大题 15 分)
21. 证:由假设条件及高阶导数公式,有
于是
f (n) ( z0 )
n!
f (z)
2 i C ( z z0 ) n 1 dz ( n 1,2,...)
证毕。
f ( n) ( z0 )
n!
f (z)
2
Cz
n 1 dz ( n z0
n! M 2 Rn 1 2 R
这是 w 平面上第一象限内的一条半直线。
19. 解:因为 (ez )(n) ez (n 0,1,2,...) ,其展开式中泰勒系数为
f (n) (0) 1 cn
n! n!
于是 ez 在 z 0处的泰勒展开式为
ez
zn
zn
1z
zn
n 0 n!
2!
n!
20.
解:
1 i z2dz
0
1 z3 |10 i 3
一、单项选择题(本大题共 10 小题,每题 3 分,共 30 分) 1 -5 C C B B D 6-10 A C A B C
二、单项选择题(本大题共 5 小题,每题 3 分,共 15 分)
11. 1 2i
12.
arctan8
13.
1 y
2
14. 2 i
15.
条件收敛
三、计算题(本大题共 5 小题,每小题 8 分,共 40 分)
n1
n
( 1)n ( z 1) n , z 1 1
n0
n
得分
评卷人 复查人
二、填空题 ( 本大题共 5 小题,每题 3 分,共 15 分 )
11. z 1 2i 的共轭复数 z ________ . 12. 设 z (2 3i )( 2 i ) ,则 arg z ________ .
13. 在复平面上,函数 f (z) x2 y 2 x i (2 xy y2 ) 在直线 ________ 上可导 .
的和函数是
z
z
A. e z
B.
e2
C.
e2
dz 8. 设 C 是正向圆周 z 2 ,则 C z2
A. 0
B.
2 i C.
i
()
D.
sin z
()
D.
2i
9. 设函数 f ( z) 在 0 z z0 R (0
的充要条件是
A. lim f (z) a ( a 为复常数) z z0
R
) 内解析,那么 z0 是 f (z) 的极点
精品资料
XXXX学院 2016— 2017 学年度第一学期期末考试
复变函数 试卷
学号(最后两位)
学号和姓
名务必正确清
楚填写。因填
写错误或不清
楚造成不良后
果的,均由本
人负责;如故
意涂改、乱写 的,考试成绩 答
视为无效。


系别




专业


线



班级




姓名

总分 统分人 复查人
题号


题分
30
相关文档
最新文档