万有特性曲线
发动机的特性曲线分析
发动机的特性曲线分析发动机特性§6-1 发动机⼯况和性能指标分析式⼀发动机⼯况在绪论中我们已经介绍过⼯况的概念。
有效功率Ne 和转速n 决定了发动机的⼯作运⾏情况。
⼯况 — Ne ,转速n 。
发动机的⼯况分为点⼯况、线⼯况和⾯⼯况。
⼆发动机性能指标分析式1 p k e vi m =1ηαηη2 M k e vi m =2ηαηη3 N k n e vi m =3ηαηη4 g k e i m =41ηη 5 G k n T v=5ηα§6-2 发动机速度特性发动机节⽓门开度(或油门开度)不变,发动机性能指标随转速n 变化的关系。
如:汽车爬坡或阻⼒变化时, 节⽓门(或油门)开度不变, n 随外界负荷的变化⽽变化。
外界负荷⼤, n ↓, 外界负荷⼩, n ↑, 这时发动机沿速度特性⼯作。
⼀汽油机的速度特性(⼀)定义汽油机节⽓门开度固定不变,汽油机性能指标随转速n 变化的关系。
外特性(全负荷的速度特性) — 节⽓门全开( 100% ), 测得的速度特性。
部分速度特性 — 节⽓门固定在部分开启位置, 测得的速度特性。
(⼆)外特性曲线1 Me 曲线M k e vi m =2ηαηη n ↑→ ?g ↑→α↓(不多)M k e v i m =2'ηηη(1)ηv — n ↑→⽓流惯性↑→ηv ↑;n ↑↑→节流损失↑→ηv ↓。
(2)ηi — n ↑→⽓流运动↑→混合⽓形成改善→ηi ↑; n ↑↑→燃烧时间↓,燃烧恶化→ηi ↓。
(3)ηm — n ↑→ηm ↓。
(4) Me — 低速时: ηv ↑n ↑→ηi ↑使Me 变化不⼤, 略有↑;ηm ↓⾼速时: →ηv ↓n ↑→ηi ↓使Me ↓↓。
ηm ↓2 Ne 曲线低速时: n ↑→ Me ↑(不⼤), 但 Ne ∝ Me ↑ ? n ↑→ Ne ↑↑;⾼速时: n ↑→ Me ↓→ Ne ↑(不⼤)。
3 g e 曲线g k e i m=41ηη低速时: n ↑→ηi ↑,ηm ↓,ηi ↑⼤于ηm ↓→ g e ↓(不⼤);⾼速时: n ↑→ηi ↓,ηm ↓→ g e ↑↑。
万有特性曲线
当内燃机在油量调节机构(油量调节或节气门)保持不变的情况下,主要性能指标随着内燃 机转速的变化规律叫做发动机的速度特性曲线。 当油量调节机构开到最大或者节气门的开度 最大时, 发动机的主要性能指标随发动机转速的变化成为发动机的外特性曲线, 它反映了发 动机的最大功率、 最大转矩和最低油耗所对应的转速。 油量调节机构低于最大位置或者节气 门没有开到最大程度时, 发动机的主要性能指标随发动机转速的变化规律称为发动机的部分 负荷特性曲线。 柴油机速度特性分析: 1) 循环供油量������������ 曲线随 n 增大而增大,根据油量调节杆位置不变时,由于进油孔节流和 燃料泄露的影响,������������ 随 n 的增加而增加,只有在转速很高转速时,曲线才会转平。 2) 知识热效率������������������ ,两头低,中间高。低速时,燃油压力低,缸内的气流运动小,这是混 合气形成及燃烧不利,同时传热损失增大,������������������ 下降。高速时,喷油量及燃烧持续角增 大,同时ϕc 下降,������������ 升高,������������������ 。 3) ������������ 随着 n 的升高而降低。 柴油机无节气门的流动损失,所以在各种富负荷下大致相同, 但 4) Te 曲线,因为������������ 和������������ (上升、下降)的影响,故总体比较平坦,但������������������ 使其端下垂。 5) Pe 随 n 增大而增大,由于 Te 比较平坦,所以 Pe 随着 n 持续增大,当增大到一定值后 由于机械损失的增大而降低。 6) be∝ ������
(二) 柴油机、汽油机速度特性比较: 1) 柴油机在各种负荷下,其 Te 曲线都比较平坦,在中低负荷下,Te 随转速的升高而增 大。汽油机在各种负荷下,其 Te 曲线都比较窄,在中低负荷下,Te 随转速的升高而 降低。 2) 柴油机的最佳经济油耗区比较宽,汽油机节气门开度越小,be 的翘起程度越大,的最 佳经济油耗区比较窄。 ������1 ϕc ������ ������ ������������ ������������ = = ϕ������ ������0 ϕ������ ������������������ ∝ ������������ ������������������ ������������ ∝ ϕc ������ ������ ϕ������ ������������ ������
基于MATLAB语言的发动机万有特性曲线的绘制
Plotting of Engine Univer sal Char acter istics Cur ve Based on MATLAB
HUANG Meimei, ZHAO Zhiwei,JIN Hualei, JIA Yantao,SUN Haipeng
低 。其 实 质 是 以 二 维 的 图 形 方 式 表 达 三 维 的 信 息 ,不 直 观
并且难以保证对数据进行深刻分析。
随着 MATLAB 语言的广泛应用,因为其强大的数据处
理和三维曲线绘图功 能 ,可 进 行 工 程 计 算 、建 模 仿 真 和 数
据分析处理等。本文则利用 MATLAB 强大的功能,提出了
[3] 易 雪 梅 ,吴 伶 . 用 MATLAB 语 言 绘 制 发 动 机 万 有 特 性 的 两 种 方法 [J]. 北京汽车, 2005, 5: 33- 35
[4] 李 金 辉 ,徐 立 友 . 基 于 MATLAB 语 言 的 发 动 机 特 性 研 究 [J]. 汽车科技, 2005, 3: 40- 42
参考文献
[1] 杨 丽 娟 ,赵 丹 平 . 基 于 MATLAB 基 础 上 的 发 动 机 万 有 特 性 曲 线的建立 [J]. 汽车节能, 2010, 1: 32- 33
[2] 薛 定 宇 ,陈 阳 泉 . 基 于 MATLAB/Simulink 的 系 统 仿 真 与 应 用 [M]. 北京: 清华大学出版社 .2002
Key words: straight welded pipe, burr, broach, hydraulic system
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
多项式插值法绘制发动机万有特性曲线_李小华
∫∫ L [b
me
n
ቤተ መጻሕፍቲ ባይዱ
p
1
dn
1
enp
0
me
( n , p me ) ]I d pme
0 引 言
发动机作为其他工作机械的动力装置 , 其万有特性 曲线可直观地反映发动机工作范围内的动力 性、 经济 性 , 不仅可以为正确地选用发动机提供依据 , 还可为适 应匹配要求、 优化整个动力装置性能提供依据。 传统的作图法制取万有特性工作量大 , 同时由于用 人工处理这些数据 , 还经常会出现数据差错和图形畸 变 。 随着计算机技术的发展 , 人们处理发动机特性参数 时总结出了很多处理方法 , 提高了万有特性曲线制取精 度 , 如利用张量积插值法解决多元数据的曲面拟合问题 就得出了很多结果 ; 从一元样条非张量积形式推广到薄 板样条能较好光顺曲面 [ 2, 3] ; 利用线性最小二乘法对多 维数据进行曲面拟合 [ 4- 6] , 这些方法最终归结于求解方 程组的系数矩阵 , 一旦拟合条件增加 , 系数矩阵有可能 会出现病态 , 从而导致数据噪声 , 干扰对事物特性的正 [7, 8 ] 常判断 , 因此处理方法的选取直接影响结果分析 ; 另 外 , 神经网络技术发展也为发动机实验数据的处理提供 了新的方法 , 取得了不错的效果 [9 ]。 本文采用三次多项式插值法绘制发动机万有特性 曲线。
设 已 知 函 数 be ( n , pme ) 在 各 点 数 值 为 be ( 0, 0)、 be ( 1, 0) 及 be ( 1, 1)。 其中: n—— 发动机转速 ; pm e—— 平
收稿日期 : 2004-02-06 修订日期 : 2004-04-30 基金项目 : 国家自然科学基金资助项目 ( 50176016) 作者简介 : 李小华 ( 1971) ,男 ,江苏 南通人 ,博士生 ,镇 江市 江苏大 学汽车与交通工程学院 , 212013
如何深度理解发动机特性曲线?
如何深度理解发动机特性曲线?在说明这个问题之前,我们⾸先来了解⼏个基本概念。
1、发动机有效功率:发动机在单位时间对外输出的有效功称为有效功率。
发动机功率是发动机性能最重要的指标,汽车的最⾼车速就是由发动机功率决定的。
通常⽤⼤写的字母P来表⽰。
2、有效转矩:在发动机飞轮上对外输出的转矩称为有效转矩。
⼀般发动机的扭矩越⼤,它的加速能⼒和爬坡能⼒越强。
通常⽤⼤写的字母M来表⽰。
3、发动机转速:发动机曲轴每分钟的回转数称为发动机转速。
发动机转速的⾼低,关系到单位时间内作功次数的多少。
通常⽤⼩写的字母n来表⽰。
4、有效燃油消耗率:发动机每输出 1kW 的有效功所消耗的燃油量称为有效燃油消耗率。
显然,有效燃油消耗率越低,发动机的经济性越好。
通常⽤⼩写的字母g来表⽰。
以上这⼏个参数,是发动机重要的性能指标,可以⽤来表⽰发动机的⼯作状况,简称⼯况。
它们之间有如下的关系:P=M*n/9550由于汽车发动机的⼯况变化范围很⼤,所以这⼏个参数也可以在很⼤的范围内变化,⽽研究它们之间的变化规律,可以找出提⾼发动机动⼒性和经济性的有效途径。
这就是所说的发动机特性。
所谓的发动机特性,是指发动机的性能指标随发动机调整情况和运转⼯况⽽变化的规律。
表⽰其变化规律的曲线称为发动机特性曲线。
⼀般发动机有速度特性、负荷特性、调整特性、万有特性这⼏个特性。
由于柴油机和汽油机有很⼤的区别,所以它的特性曲线也有所不同。
下⾯我们以最常见的汽油机分别来说说这⼏个特性。
⼀、汽油机的速度特性所谓的速度特性,是指在发动机点⽕系统和燃油供给系统调整到最佳的条件下,在节⽓门开度不变时,发动机的有效功率、有效扭矩、有效燃油消耗率随发动机转速⽽变化的关系。
表述上述关系的曲线称为速度特性曲线。
当节⽓门全开时的速度特性称为发动机的外特性,它表⽰发动机的最⾼性能;节⽓门部分开启时的速度特性称为发动机部分特性。
部分特性曲线位于外特性曲线之下,有⽆限多条。
由于汽车发动机经常在部分负荷下⼯作,所以研究部分特性曲线更有实际意义,⼀般发动机要做出标定功率的90%、75%、50%、25%的速度特性。
汽车发动机万有特性曲线数字化的研究与分析
本方法的数字化原理为:将万有特性曲线图放
大,然后用鼠标沿着等油耗线点击读取数据,利用
计算机图形学原理转换坐标,将计算机界面坐标转
化为万有特性坐标系坐标。如图l所示,将万有特
性曲线的图片读人计算机,在用户坐标系中,制定
一矩形区域以显示图形,设该区域的左边界为工。,
右边界而,上边界Y。,下边界y2。同时,设万有特性
(686,48),其工程值为2 200 r/rain,l 460 N·m,
万方数据
常州工学院学报
2010年
则屏幕坐标系每单位对应的值为: 对于转速:As。=(2 200一l 000)/(686—
110)=2.08(r/rain) 对于扭矩:AsL=(1 460-236)/(530—48)=
2.54(N·m) 其相对于整个坐标系每单位的百分比为: 对于转速:2.08/1 200=O.17% 对于扭矩:2.54/1 224=0.21% 当用鼠标在万有特性图片上选取坐标点时,
第23卷第5期 2010年lO月
常州工学院学报
Journal of Changzhou Institute of Technology
V01.23 No.5 Oct.2010
汽车发动机万有特性曲线数字化的研究与分析
张录鹤
(安徽国防科技职业学院,安徽六安237011)
摘要:通过对汽车发动机万有特性曲线进行数字化处理和应用,可以准确、快速地建立发动机
万方数据
32
常州工学院学报
2010年
慧击百虿童妻鬟董箜亳譬雾娶镳罢了譬圣的臀长竺长度2一为翌”喜嚣砒有0特设葛其考耋比鬻发言森动经沅过数黼值淼计算荔处巍理,薹得磊到
胭?≯蚵譬。
蓄豢羔蔷孟麓71出H门蝈肜~~一巾’
基于MATLAB基础上的发动机万有特性曲线的建立
基于MATLAB基础上的发动机万有特性曲线的建立杨丽娟;赵丹平【摘要】发动机性能的好坏直接影响着整车运行的平顺性、安全性、稳定性等,要全面评价发动机性能,万有特性曲线则是一个很好的工具.万有特性曲线是以发动机转速为横坐标,以扭矩或平均有效压力为纵坐标,在坐标系内画出等燃油消耗率曲线和等功率曲线[1].绘制万有特性曲线的方法有很多种,MATLAB语言是其中之一.本文利用强大的MATLAB绘图工具,绘制了发动机的万有特性曲线,经分析,该方法是一个有效的精确度较高的方法.【期刊名称】《交通节能与环保》【年(卷),期】2010(000)001【总页数】3页(P32-33,48)【关键词】MATLAB;发动机;万有特性【作者】杨丽娟;赵丹平【作者单位】内蒙古工业大学,内蒙古,赤峰,010051;内蒙古工业大学,内蒙古,赤峰,010051【正文语种】中文0 引言发动机是汽车的动力源,发动机性能的好坏直接影响着整车的动力性与经济性。
汽车的运行工况是个随机的过程,受到很多因素的影响,如道路条件、交通流量、气候条件以及汽车自身技术性能的变化等等。
在所有的运行工况下,发动机都应能够与传动系实现最佳匹配,以使整车动力性、经济性、排放性和噪声污染等方面均处于最佳状态。
然而,对发动机性能的分析与研究是保证整车性能达到最佳的重要前提。
MATLAB语言是一个功能强大的仿真软件,可以完成复杂的数学运算,实现对动态系统的建模仿真等,在工程计算中应用非常广泛。
本文利用MATLAB的强大的绘图功能,建立了发动机的输出转矩模型、油耗模型及万有特性曲线。
通过输出转矩模型,由当前发动机节气门开度及转速既可得到与之相对应的发动机的转出转矩,从而为分析发动机性能奠定基础;发动机油耗模型反应了其有效燃油消耗率与转速和转矩之间的关系,发动机在不同工况下运行时,由此模型既可得到不同工况下发动机的比油耗,从而为分析整车燃油经济性提供数据支持;万有特性曲线是在由发动机转速和转矩构成的坐标系内,绘制出等油耗曲线、等功率曲线、外特性曲线等,通过万有特性曲线既可较全面地了解发动机在不同工况下的性能指标。
MATLAB的发动机万有特性曲线绘制方法程序
%不同转速下的燃油消耗率与扭矩的曲线拟合clear allbe仁[222.8,220.4,232.4,228.5,227.8,232.6,248.5,245.9,272.4,329.7];Ttq仁[399.8,354.1,318.5,278.1,236.2,203.6,185.3,157.2,117.2,80.8];T1=80:320/9:400;%转换矩阵格式Be仁in terp1(Ttq1,be1,T1,'spli ne');% n=1400r/mi n 时燃油消耗率与扭矩的曲线拟合be2=[222.0,221.7,235.4,226.5,230.5,236.8,249.1,276.1,407.9,487.0];Ttq2=[409.1,365.7,328.3,284.1,243.7,203.2,164.3,123.9,83.5,39.7];T2=39:371/9:410;Be2=i nterp1(Ttq2,be2,T2,'spl in e');be3=[226.0,225.3,226.4,233.9,242.1,283.3,253.9,271.4,323.5,468.6];Ttq3=[408.3,368.3,328.3,289.0,244.4,208.8,167.7,132.1,89.5,46.1];T3=46:363/9:409;Be3=i nterp1(Ttq3,be3,T3,'spl in e');be4=[206.5,231.1,231.1,233.0,242.0,244.9,265.0,299.8,398.0,596.8];Ttq4=[425.6,380.3,332.7,290.9,244.4,205.1,160.2,114.5,68.8,30.7];T4=30:396/9:426;Be4=i nterp1(Ttq4,be4,T4,'spl in e');be5=[234.7,259.8,235.5,237.6,242.8,292.3,277.9,308.7,396.2,605.9];Ttq5=[420.7,379.6,334.6,291.6,244.4,202.8,157.5,116.0,74.1,37.8];T5=37:384/9:421;Be5=i nterp1(Ttq5,be5,T5,'spl in e');be6=[174.2,242.2,252.1,287.4,253.6,263.6,290.6,316.8,378.0,518.8];Ttq6=[404.6,360.5,322.7,283.0,243.3,205.5,162.1,124.7,86.8,52.4];T6=52:353/9:405;Be6=i nterp1(Ttq6,be6,T6,'spl in e');be7=[256.9,253.7,253.5,260.0,303.8,280.7,300.6,346.6,435.6,812.9];Ttq7=[378.0,344.7,310.3,264.3,226.1,186.8,154.2,115.3,76334.1];T7=34:344/9:378;Be7=i nterp1(Ttq7,be7,T7,'spl in e');be8=[257.9,295.3,282.4,288.7,301.9,329.7,357.0,475.4,580.3,1080.1];Ttq8=[315.6,275.5,242.5,210.3,178.5,145.6,118.6,72.6,52.8,22.4];T8=22:294/9:316;Be8=i nterp1(Ttq8,be8,T8,'spl in e');B=[Be1';Be2';Be3';Be4';Be5';Be6';Be7';Be8'];N=[1400*o nes(10,1);1600*o nes(10,1);1800*o nes(10,1);2000*o nes(10,1);2200* on es(10,1);2400*o nes(10,1);2600*o nes(10,1);2800*o nes(10,1)];Ttq n=[T1';T2';T3';T4';T5';T6';T7';T8'];G=[o nes(80,1),N,Ttq n,N.A2,N.*Tt qn ,Ttq n. A2];A=G\B;%A 为6*1 矩阵[n,Ttq]=meshgrid(1400:2800,100:600);% 生成n-Ttq 平面上的自变量“格点”矩阵be=A(1)+n. *A (2)++Ttq*A(3)+n.A2*A(4)+n.*Ttq*A(5)+Ttq.A2*A(6);Pe=Ttq.* n/9550;%外特性实验数据拟合Nw=[1403,1597,1797,1986,2102,2199,2303,2400,2507,2598,2700,2802];Ttqw=[474,497,515,526,528.8,522.8,509.5,492.2,471.2,448.4,408.3,357.4]; n0=1400:2800; Ttqw_N=i nterp1(Nw,Ttqw ,n 0,'spli ne');h=repmat(Ttqw_N,501,1);ii=find(Ttq>h);%确定超出边界的“格点”下标be(ii)=NaN;%强制为非数Pe(ii)=NaN;%强制为非数%绘制等燃油消耗率曲线和等功率曲线三维拟合图subplot(1,2,1);mesh( n, Ttq,be);hold on;mesh( n,Ttq,Pe);axis([1000,3000,100,600,0,500]);hold on;xlabel(' n(r/mi n)')ylabel('Ttq(N*m)')zlabel('Pe(KW) be(g/(KW*h))')title('等燃油消耗曲线和等功率曲线的三维拟合图')%绘制边界线(外特性曲线)subplot(1,2,2);plot( nO,Ttqw_N,'Li neWidth',2);axis([1400,2800,100,550]);xlabel(' n(r/mi n)');ylabel('Ttq(N*m)');title('万有特性曲线');hold on;%绘制等油耗率曲线的二维图B=contour(n,Ttq,be,11);%画等位线,并给出标识数据clabel(B);%把“等位值”沿等位线随机标识hold on;%绘制等功率曲线的二维图P=contour(n,Ttq,Pe,11);%画等位线,并给出标识数据clabel(P);%把“等位值”沿等位线随机标识lege nd('等油耗曲线','等功率曲线','外特性曲线')hold off。
发动机术语及特性曲线
1、发动机主要性能指标: 、发动机主要性能指标: 动力性能指标:有效转矩、有效功率、转速; 动力性能指标:有效转矩、有效功率、转速; 经济性能指标;燃油消耗率、润滑油消耗率; 经济性能指标;燃油消耗率、润滑油消耗率; 运转性能指标:寿命和可靠性、启动性能、 运转性能指标:寿命和可靠性、启动性能、噪声 和排气品质; 和排气品质; • (1)有效转矩:发动机通过飞轮对外输出的转矩 )有效转矩: 称为有效转矩, Te表示 单位N.m, 表示, 称为有效转矩,以Te表示,单位N.m,有效转矩 与外界施加于发动机曲轴上的阻力矩相平衡。 与外界施加于发动机曲轴上的阻力矩相平衡。 • (2)有效功率:发动机通过飞轮对外输出的功率 )有效功率: 称为有效功率, 表示, 称为有效功率,用Pe表示,它等于有效转矩与曲 表示 轴角速度乘积。 轴角速度乘积。 • 发动机产品铭牌上标明的功率及相应转速,称为 发动机产品铭牌上标明的功率及相应转速, 额定功率和额定转速。 额定功率和额定转速。 • • • •
发动机性能参数定义
• (12)、 工况(指发动机的工作状况):一般用 ):一般用 )、 工况(指发动机的工作状况): 它的功率与曲轴转速来表征, 它的功率与曲轴转速来表征,有时也用负荷与曲 轴转速来表明 。 • 固定式内燃机工况:直线工况和点工况 固定式内燃机工况: • 直线工况:转速近似不变,但功率变化很大;如 直线工况:转速近似不变,但功率变化很大; 发电机、空压机和水泵等; 发电机、空压机和水泵等; • 点工况:转速和功率均恒定;如排灌内燃机; 点工况:转速和功率均恒定;如排灌内燃机; • 螺旋桨工况:功率与转速近似成三次方关系; 螺旋桨工况:功率与转速近似成三次方关系; • 车用(面)工况:功率和转速在大范围内独立变 车用( 工况: 无确定函数关系;陆地运输机械、 化,无确定函数关系;陆地运输机械、工程机械 等 • (13)、 升功率:最大功率与排气量的比值;表 )、 升功率:最大功率与排气量的比值; 示了单位气缸工作容积的利用率, 示了单位气缸工作容积的利用率,升功率越大表 示单位气缸工作容积所发出的功率越大; 示单位气缸工作容积所发出的功率越大;
从而得到万有特性曲线
负荷特性和速度特性只能用来表示某一转速或某一油量控 制机构位置时,内燃机各种参数的变化规律,而内燃机特 别是车用内燃机的工况变化范围很广,要分析各种工况下 的性能,就需要多张负荷特性或速度特性图,这样既不方 便,也不直观。为了能在一张图上较全面地表示内燃机各 种性能参数的变化,经常应用多参数的特性曲线,这种特 性就是万有特性。 万有特性曲线一般是以转速n为横坐标,以负荷(平均有效 压力pme)为纵坐标。在图上绘出若干条等油耗曲线和等功 率曲线。两种类型内燃机典型的万有特性如图8—7所示。 根据需要,还可在万有特性曲线上绘出等节气门开度线、 等排放线、等过量空气系数线等。
characteristics柴油机的调速特性 7.5 Engine performance map (universal
characteristics)万有特性 Master: definition, The plotting steps
7.5 Engine performance map
Ch.7 Engine Operating Characteristics
Content
7.1 Engine performance parameters 7.2 Engine load characteristics 7.3 Engine speed characteristics 7.4 Diesel engine governing
volumetric efficiency v , mechanical efficiency m , indicated efficiency i and the importance of heat
用origin软件绘制发动机万有特性曲线
用origin软件绘制发动机万有特性曲线方法一、万有特性数据输入在excel中整理好发动机万有特性数据,主要包括发动机转速、扭矩、燃油消耗率及功率数据。
打开origin,将excel中整理好的数据直接复制粘贴到Book1中即可,可以在左下方的信息栏对Book1进行重命名。
origin中表格操纵与excel中类似。
可以编辑数据的名称、单位、备注等信息,也可空着以后再绘制好的图表上修改。
同时选中燃油消耗率和功率数据两列,点右键选择Set as Z,也可以在Column菜单下点选Set as Z,如下图所示。
二、绘制万有特性曲线选中表格中所有数据列表,在绘图命令菜单Plot下绘制等高线命令Contour的颜色填充Color Fill选项,将出现图表窗口,如下图所示。
三、万有特性曲线图调整上一步完成的万有特性曲线只是一个雏形,与常见的还很不一样,需要进行调整细化。
在已绘制好的万有特性曲线图中,由于点选的是颜色填充的绘制方法,数据源有两组Z轴分量,相当于在一张图上绘制了两层,而等燃油消耗率曲线在等功率曲线的下方,被覆盖住无法看到。
因此,需要取消等功率曲线图层的颜色填充效果。
如图所示,在图片窗口左上角的1上右击,选择图层属性Layer Properties命令,在弹出的对话框中打开图层Layer1的下一级,选中转速、扭矩、功率曲线,并去掉Color Fill Control下Enabled之前的勾选,即可取消等功率曲线图层的颜色填充效果。
等燃油消耗率曲线还需要进行进一步的调整,才能变成最常见的样子。
需要调整曲线的层次间隔,让等值曲线分布的疏密合理,还要加上等值线的数据标注,以便于观看查阅。
同样是在图层属性对话框里,选中转速、扭矩、燃油消耗率曲线,在列标题或单元格编辑表格中,单击列标题或单元格可以完成曲线的层次、填充颜色、层次线型及添加数据标注的修改。
如图所示,单击Level栏表头,弹出Set Level设置层次对话框,先点击find min/max命令,找到燃油消耗率的最小值与最大值,并自动设置为等值曲线变化范围,选择线性变化,并选中增量increment选项,设置增量值为1,既让等燃油消耗率曲线从184.5g/kw.h开始,每隔1g/kw.h就绘制一条,直至367g/kw.h结束,一共183条。
基于MATLAB的发动机万有特性曲线绘制方法_2_图文(精)
【设计研究】基于 M AT LAB 的发动机万有特性曲线绘制方法周广猛 1, 郝志刚 2, 刘瑞林 1, 陈东 3, 管金发 1, 张春海4(1. 军事交通学院汽车工程系 , 天津 300161;2. 军事交通学院训练部 , 天津300161; 3. 军事交通学院基础部 , 天津 300161;4. 兰州军区军械汽车技工训练大队 , 陕西 710111摘要 :利用 MAT LAB 数学运算能力 , , , 有曲线直观明了 , 把等燃油消耗率曲线、 , 拟合程度较高。
关键词 ; :A文章编号 :1673-6397(2009 02-0034-03U niversal Characteristics Curve Plotting Method based on MAT LABZ H O U G uang -m eng 1,H A O Z hi -gang 2, L I U Rui -lin 1,CHE N D ong 3,G U A N Jin -fa 1,Z H A NG Chun -hai 4(1. Autom obile Engineering Department , Academy of Military T ransportation , T ianjin 300161,China ;2. T raining Department ,Academy of Military T ransportation , T ianjin 300161,China ;3. G eneral C ourse Department , Academy of Military T ransportation , T ianjin 300161,China ;4. Ordnance Mechanic T raining Brigade , Lan Zhou Theater , X i ’ an 710111,China Abstract :Taking advantage of MAT LAB mathematic operation , data from engine characteristic test was processed , the method is sim ple and credible , The universal characteristics curve plotted is intuitionistic and perspicuous ,and was in g ood fit with data g ot in test.K ey Words :MATLAB ;Universal Characteristics Curve ;Plot作者简介 :周广猛 (1984- , 男 , 山东邹城人 , 在读硕士研究生 , 主要研究方向为动力机械特殊环境适应性。
发动机特性曲线
第11章发动机特性内容提要1.发动机特性与特性曲线的含义、分类与意义2.发动机调节特性的含义、分类与曲线3.发动机负荷特性4.发动机速度特性5.发动机万有特性6.发动机调速特性7.发动机性能指标的校正11.1基本概念全面了解发动机在所有工况下的性能指标的变化,对合理使用、检查与维修发动机,都有很强的适用价值。
11.1.1发动机特性与特性曲线1 •发动机特性发动机性能指标随调整情况及运转情况而变化的关系称为发动机特性。
发动机性能指标主要有功率、转矩、燃料消耗率、排气温度、排气烟度等;调整情况主要指柴油机的供油提前角、汽油机的点火提前角、发动机燃料等可调因素对发动机性能的影响;运转情况一般指发动机转速和负荷等。
2 •特性曲线为了直观显示发动机的特性,常以曲线形式表示,称为发动机特性曲线。
图11-1为Audi (奥迪)2.4L 四缸5 气门汽油机的外特性曲线。
3.发动机特性分类发动机特性分调节特性和性能特性两大类。
(1)调节特性指发动机的性能指标随调节情况而变化的关系。
如柴油机的供油提前角调节特性、汽油机的点火提前角调节特性、汽油机的燃料调节特性等。
(2)性能特性指内燃机的性能指标随运行工况而变化的关系。
如负荷特性、速度特性、调速特性、万有特性、螺旋桨图11-1 发动机特性曲线(Audi 2.4L5 气门V汽油机外特性)特性等。
11.1.2 发动机特性的制取 发动机特性需在专门的试 验台(俗称发动机台架)上进 行,图11-2显示了带水力测功 器的试验台的基本组成。
它可 以模拟发动机的实际工况,使 其在要求的转速和负荷下工 作,并可以同步测量发动机在 各种工况下的功率、燃料消耗、 废气排放、气缸压力等性能参 数。
发动机特性试验,国家已 有标准,需按有关标准,在规 定的条件下进行。
1H 1111.2发动机调节特性发动机调节特性对发动机 的正确调整、使用与维修关系 密切,值得重视。
图11-2 发动机试验台1-发动机2-数显水温表3-数显油压表4-数显排温表5-油门执行器 6-转速表7-负荷表8-水门执行器9-水温传感器10-油压传感器11-排温传感器12-气 缸压力传感器13-油压传感器14-针阀升程仪15-电 荷放大器16-电荷放大器17-霍尔针阀传感器18-示 波器19-水力测功器20-转角信号发生器 21-电荷放 大器22- A / D 转换板23-微机24-打印机25-显示器11.2.1 柴油机供油提前角 调节特性它是指在发动机转速一定和油量控制机构(如喷油泵的供油拉杆)位置一定 条件下,其功率、燃料消耗率等性能指标随供 油提前角变化而变化的关系。
发动机万有特性曲线
发动机万有特性曲线
万有特性曲线,也叫map图,左侧纵坐标是发动机输出扭矩,横坐标是发动机转速,右侧纵坐标是发动机做功汽缸平均有效压力。
最小的那个圈是指最小的燃油经济性,然后慢慢扩散,从图里可以看出在发动机转速2400-3200输出扭矩在85-100NM时燃油经济性最好。
将不同转速的负荷特性转换为以平均有效压力Pme或Ttq为横坐标、燃油消耗率b为纵坐标的负荷特性,并逆时针旋转90°。
在万有特性图的横坐标上,以一定比例标出转速数值。
纵坐标Pme的比例应与负荷特性Pme的比例相同。
万有特性的制取:
柴油机通常根据各种转速下的负荷特性曲线,用作图法可以得到万有特性;而汽油机通常用速度特性法作出万有特性图。
一、等燃油消耗率曲线
(1)将不同转速的负荷特性转换为以平均有效压力Pme或Ttq 为横坐标、燃油消耗率b为纵坐标的负荷特性,并逆时针旋转90°。
(2)在万有特性图的横坐标上,以一定比例标出转速数值。
纵坐标Pme的比例应与负荷特性Pme的比例相同。
二、等功率曲线
根据公式Pe= kPmen,可画出等功率曲线,是一组双曲线。
边界线
将外特性中的Ttq-n画在万有特性上,构成边界线。
发动机万有特性曲线看油耗,省油是怎么来的
书山有路勤为径;学海无涯苦作舟发动机万有特性曲线看油耗,省油是怎么来的本文概要:发动机万有特性看经济性、空挡带档行驶、变速器如何操作省油。
提到燃油经济性,大家最直观体验就是在开车的时候,烧了多少油,花了多少人民币,今天cartech8从专业的角度来分析一下燃油经济性。
目前世界上评论汽车燃油经济性一般用耗油量或油行程来表示。
汽油的燃油经济性指标与发动机的特性和汽车的自重、车速及各种运动阻力如空气阻力、滚动阻力和爬坡阻力等大小、传动系的效率及减速比等都有关系,因而在数值上往往与实际情况有差别。
要了解燃油经济性,我们先了解几个概念。
油耗率:通常以“克(燃油)/(千瓦小时)”来表示,以一千瓦的功率工作一小时的燃油消耗量多少克。
有效燃油耗率(BSFC)、指示燃油耗率(ISFC)两种,两者之间差了两个字,前一个有效燃油耗率意味着“现在实际是多少”,是实际。
指示燃油耗率意味着“原本可以有多少”,是潜力。
不同的时候得到关注的不一样,一般情况下,还是有效燃油耗率用的比较多。
发动机万有特性曲线:横坐标为发动机转速,纵坐标为平均有效压力(单位气缸工作容积发出的有效功称为平均有效压力,单位为bar)。
平均有效压力越大,发动机的作功能力越强。
这个平均有效压力,可能有点费解,我们就直接把它理解为发动机的负荷率。
发动机负荷率=(某点的扭矩/相同转速下最大扭矩)*100%,你也可以理解为特定转速下油门开度的百分比。
在万有特性曲线上,越高的点负荷率越高,到最高点(外特性)时就是100%负荷了。
发动机万有特性曲线的等油耗线主要反映的是:在不同的发动机转速和负荷情况下的油耗率,就是下图一圈一圈标有数字的曲线,这些曲线叫等油耗线。
数值越小表示油耗率越低,经济性越好。
在图上你会看到一个油耗最低的专注下一代成长,为了孩子。
MATLAB万有特性曲线
%不同转速下的燃油消耗率与扭矩的曲线拟合clear allbe1=[222.8,220.4,232.4,228.5,227.8,232.6,248.5,245.9,272.4,329.7];Ttq1=[399.8,354.1,318.5,278.1,236.2,203.6,185.3,157.2,117.2,80.8];T1=80:320/9:400; %转换矩阵格式Be1=interp1(Ttq1,be1,T1,'spline'); %n=1400r/min时燃油消耗率与扭矩的曲线拟合be2=[222.0,221.7,235.4,226.5,230.5,236.8,249.1,276.1,407.9,487.0];Ttq2=[409.1,365.7,328.3,284.1,243.7,203.2,164.3,123.9,83.5,39.7];T2=39:371/9:410;Be2=interp1(Ttq2,be2,T2,'spline');be3=[226.0,225.3,226.4,233.9,242.1,283.3,253.9,271.4,323.5,468.6];Ttq3=[408.3,368.3,328.3,289.0,244.4,208.8,167.7,132.1,89.5,46.1];T3=46:363/9:409;Be3=interp1(Ttq3,be3,T3,'spline');be4=[206.5,231.1,231.1,233.0,242.0,244.9,265.0,299.8,398.0,596.8];Ttq4=[425.6,380.3,332.7,290.9,244.4,205.1,160.2,114.5,68.8,30.7];T4=30:396/9:426;Be4=interp1(Ttq4,be4,T4,'spline');be5=[234.7,259.8,235.5,237.6,242.8,292.3,277.9,308.7,396.2,605.9];Ttq5=[420.7,379.6,334.6,291.6,244.4,202.8,157.5,116.0,74.1,37.8];T5=37:384/9:421;Be5=interp1(Ttq5,be5,T5,'spline');be6=[174.2,242.2,252.1,287.4,253.6,263.6,290.6,316.8,378.0,518.8];Ttq6=[404.6,360.5,322.7,283.0,243.3,205.5,162.1,124.7,86.8,52.4];T6=52:353/9:405;Be6=interp1(Ttq6,be6,T6,'spline');be7=[256.9,253.7,253.5,260.0,303.8,280.7,300.6,346.6,435.6,812.9];Ttq7=[378.0,344.7,310.3,264.3,226.1,186.8,154.2,115.3,76.3,34.1];T7=34:344/9:378;Be7=interp1(Ttq7,be7,T7,'spline');be8=[257.9,295.3,282.4,288.7,301.9,329.7,357.0,475.4,580.3,1080.1];Ttq8=[315.6,275.5,242.5,210.3,178.5,145.6,118.6,72.6,52.8,22.4];T8=22:294/9:316;Be8=interp1(Ttq8,be8,T8,'spline');B=[Be1';Be2';Be3';Be4';Be5';Be6';Be7';Be8'];N=[1400*ones(10,1);1600*ones(10,1);1800*ones(10,1);2000*ones(10,1);2200*ones(10,1);2400*ones (10,1);2600*ones(10,1);2800*ones(10,1)];Ttqn=[T1';T2';T3';T4';T5';T6';T7';T8'];G=[ones(80,1),N,Ttqn,N.^2,N.*Ttqn,Ttqn.^2];A=G\B; %A为6*1矩阵[n,Ttq]=meshgrid(1400:2800,100:600); %生成n-Ttq平面上的自变量“格点”矩阵be=A(1)+n.*A(2)++Ttq*A(3)+n.^2*A(4)+n.*Ttq*A(5)+Ttq.^2*A(6); %501×1401Pe=Ttq.*n/9550; %501×1401%外特性实验数据拟合Nw=[1403,1597,1797,1986,2102,2199,2303,2400,2507,2598,2700,2802]; Ttqw=[474,497,515,526,528.8,522.8,509.5,492.2,471.2,448.4,408.3,357.4]; n0=1400:2800;Ttqw_N=interp1(Nw,Ttqw,n0,'spline');h=repmat(Ttqw_N,501,1); % 501×1401矩阵ii=find(Ttq>h); %确定超出边界的“格点”下标 %155109×1be(ii)=NaN; %强制为非数Pe(ii)=NaN; %强制为非数%绘制等燃油消耗率曲线和等功率曲线三维拟合图subplot(1,2,1);mesh(n,Ttq,be);hold on;mesh(n,Ttq,Pe);axis([1000,3000,100,600,0,500]);hold on;xlabel('n(r/min)')ylabel('Ttq(N*m)')zlabel('Pe(KW) be(g/(KW*h))')title('等燃油消耗曲线和等功率曲线的三维拟合图')%绘制边界线(外特性曲线)subplot(1,2,2);plot(n0,Ttqw_N,'LineWidth',2);axis([1400,2800,100,550]);xlabel('n(r/min)');ylabel('Ttq(N*m)');title('万有特性曲线');hold on;%绘制等油耗率曲线的二维图B=contour(n,Ttq,be,11); %画等位线,并给出标识数据clabel(B); %把“等位值”沿等位线随机标识hold on;%绘制等功率曲线的二维图P=contour(n,Ttq,Pe,11); %画等位线,并给出标识数据clabel(P); %把“等位值”沿等位线随机标识legend('等油耗曲线','等功率曲线','外特性曲线')hold off%利用mesh作原始曲面N=3500:500:8000;T=1.3:-1.2/6:0.1;B=xlsread('F:\Matlab\RanJia.xls','revise5');%mesh(N,T,B)%colormap;%colorbar;%xlabel('转速n/ r*min^-^1'), ylabel('p平均有效压力/ Mpa'), zlabel('燃油消耗率z/ kg/(kw*h)')%hidden off 透明网孔%colormap; 表面小块着色%colorbar;%surf(,,,'FaceColor','red','EdgeColor','none');%camlight left; 增加光源%lighting phone 照明方式%view(-15,65) 改变视角(方位角,仰角)%利用interrp2矩阵插值函数作优化曲面N1=3500:50:8000;T1=1.3:-0.005:0.1;[N2,T2]=meshgrid(N1,T1);B1=interp2(N,T,B,N2,T2,'cubic');P1=T2.*N2/9.55;%figure;%surf(N1,T1,B1)%colormap;%colorbar;%xlabel('转速n/ r*min^-^1'), ylabel('p平均有效压力/ Mpa'), zlabel('燃油消耗率z/ kg/(kw*h)')%外特性实验数据拟合T3=[0.90,0.95,0.99,1.06,1.12,1.18,1.24,1.30,1.22,1.11];T4=interp1(N,T3,N1,'spline');W=repmat(T4,241,1); %平铺成381×91矩阵jj=find(T2>W); %确定超出边界的“格点”下标B1(jj)=NaN;%画外特性曲线plot(N1,T4,'LineWidth',2);axis([3500,8000,0.1,1.3]);hold on%画等油耗线v=[450,460,470,480,490,500,510,525,540,560];[A1,h]=contour(N2,T2,B1,v,'b:'); %N2,T2限制在X,Y轴上的范围,10为等高线条数clabel(A1,h,'manual');hold on%画等功率线[A2,h]=contour(N2,T2,P1,500:100:900,'k:'); %N2,T2限制在X,Y轴上的范围,10为等高线条数clabel(A2,h,'manual');plot(6000,1.114,'.','color','r');xlabel('转速—r/min');ylabel('扭矩—N ·m');legend('外特性曲线','等油耗线-g/(kW ·h)','等功率线-W') hold off% title('等油耗线');%xlabel('转速n/ r*min^-^1'), ylabel('p 平均有效压力/ Mpa')转速(r/min )扭矩(N ·m )。
基于MATLAB基础上的发动机万有特性曲线的建立
基于MATLAB基础上的发动机万有特性曲线的建立
杨丽娟;赵丹平
【期刊名称】《交通节能与环保》
【年(卷),期】2010(000)001
【摘要】发动机性能的好坏直接影响着整车运行的平顺性、安全性、稳定性等,要全面评价发动机性能,万有特性曲线则是一个很好的工具.万有特性曲线是以发动机转速为横坐标,以扭矩或平均有效压力为纵坐标,在坐标系内画出等燃油消耗率曲线和等功率曲线[1].绘制万有特性曲线的方法有很多种,MATLAB语言是其中之一.本文利用强大的MATLAB绘图工具,绘制了发动机的万有特性曲线,经分析,该方法是一个有效的精确度较高的方法.
【总页数】3页(P32-33,48)
【作者】杨丽娟;赵丹平
【作者单位】内蒙古工业大学,内蒙古,赤峰,010051;内蒙古工业大学,内蒙古,赤峰,010051
【正文语种】中文
【相关文献】
1.基于MATLAB的气动马达万有特性曲线绘制方法研究 [J], 曾鸣;王葆葆;张仕民;王文明
2.基于MATLAB语言的发动机万有特性曲线的绘制 [J], 黄美美;赵志伟;靳华磊;贾延涛;孙海鹏
3.基于MATLAB的发动机万有特性曲面拟合 [J], 黄风清
4.基于MATLAB的发动机万有特性曲线绘制方法 [J], 周广猛;郝志刚;刘瑞林;陈东;管金发;张春海
5.基于LabVIEW的发动机万有特性曲线建立 [J], 施水娟;李文文
因版权原因,仅展示原文概要,查看原文内容请购买。
发动机的万有特性
绘制曲线
将处理后的数据用图形的方式绘 制在同一张图上,通常采用极坐 标或直角坐标系,以便更好地展
示发动机的性能变化趋势。
应用场景
发动机设计
匹配应用
万有特性曲线可用于发动机设计阶段, 帮助设计人员了解不同工况下的发动机 性能表现,为设计优化提供依据。
万有特性曲线可用于发动机与车辆或设 备的匹配,根据实际需求选择合适的发 动机型号,以确保整体性能的优化。
发动机的工作原理
内燃机工作原理
内燃机通过燃烧燃料,将化学能 转换为热能,再通过热能推动活 塞运动,最终将热能转换为机械 能。
外燃机工作原理
外燃机通过燃烧燃料,将化学能 转换为热能,再通过热能推动蒸 汽机的活塞运动,最终将热能转 换为机械能。
发动机的性能指标
功率
表示发动机在单位时间 内所做的功,单位为马
万有特性曲线对于发动机设计、优化、匹配和性能评估等方 面具有重要意义,是发动机性能分析和优化的重要工具。
绘制方法
收集数据
通过实验或仿真等方法,获取发 动机在不同转速、转矩、功率等 工况下的性能参数,如转速、转
矩、功率、燃油消耗率等。
数据处理
对收集到的数据进行处理,包括 数据清洗、整理、转换等,以确
燃油消耗特性
燃油消耗率
发动机每千瓦或每马力小时所消 耗的燃油量,通常以克/千瓦小时
(g/kW·h)或克/马力小时 (g/hp·h)表示。
燃油消耗曲线
随着转速和负荷的增加,燃油消耗 率逐渐增大。
应用场景
在关注燃油经济性的场合,如城市 驾驶、长途旅行等,应尽量使发动 机工作在较低的燃油消耗区域。
排放特性
排放物种类
包括一氧化碳(CO)、碳 氢化合物(HC)、氮氧化 物(NOx)和颗粒物 (PM)等。
内燃机的万有特性
汽油机NOX 的排放特性 与CO、HC 截然不同
在负荷很小 时,混合气 适当加浓, 导致CO排 放略有上升
a.CO排放特性
b.HC排放特性
HC的变化趋势与 CO有些类似,也是 中等负荷比排放量 较小,大负荷和小
负荷时相对增加
小负荷时HC比排 放随负荷的减小 增加得比CO更快
当负荷一定 时,NOx的 比排放随转
a.柴油机
b.汽油机 2
排放特性 Emission Map
一、汽油机的排放特性
在常用的部分负 荷区,过量空气 系数控制在1.0左 右,CO排放较低
负荷超过全负荷的 95%左右时,混合气 显著加浓, CO的比 排放量开始急剧上升
全负荷时HC 排放增加不 如CO严重
在中等转速以上当转 速一定时,NOx比 排放随负荷增大而下 降,而且当接近全负
✓ 当负荷不变而转速变化时,HC比排放变化不大。
6
➢ NOx排放特性
✓ 柴油机在中等偏大负荷时NOx排放量最大。 ✓ 负荷再加大,则含氧相对减少,NOx排放量不再增加
甚至略有减少。 ✓ 在中等负荷区,当负荷不变而转速提高到中高转速时,
NOx比排放不断增大,说明NOx绝对排放量增加更快。 ✓ 在小负荷区域,NOx比排放大致不随转速变化,绝对
排放量基本上与转速成正比。
7
➢ 滤纸烟度排放特性
✓ 当转速不变时,SF随负荷提高而增大。 ✓ 当负荷不变时, SF在某一转速达到最小值,这时对应燃
烧过程的最优化,而偏离这一转速均使SF上升。 ✓ 在低速大负荷工况,由于空气相对不足,气流运动减弱,
常导致SF急剧上升, 即柴油机冒烟严重。
8Байду номын сангаас