关于葡萄酒问题的数学建模.

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

葡萄酒评价模型

摘要本文讨论了葡萄酒的评价问题。

对问题一,分别求出两组评酒员对各葡萄酒样品的平均评分,通过SPSS软件对同一类酒的两组得分进行T检验,检验结果表明两组评酒员的评价结果有显著性差异。再建立评酒员和样品葡萄酒得分的典型相关分析模型,运用MATLAB 求解,以样品葡萄的得分与评酒员的相关系数越大评分越不可信为依据,得出第二组的评分更可信的结论。

对问题二,以第二组的评分为准,对葡萄酒的质量进行排序,得出排序向量,对酿酒葡萄中各个理化指标进行排序,得出排序矩阵,排序向量与排序矩阵的各列进行点乘,得到葡萄酒质量与酿酒葡萄中各个理化指标的内积,以此内积作为葡萄酒的质量与酿酒葡萄中各个理化指标的相似度指标,选出相似度较高的五项指标作为酿酒葡萄分级的参考指标。根据参考指标对酿酒葡萄进行分级,分别得出了依香气、口感、外观进行分级的酿酒葡萄分级结果(见表五,表六)。

对问题三,建立非线性回归模型,讨论酿酒葡萄与葡萄酒理化指标的联系。将葡萄和葡萄酒的理化指标进行无量纲化处理,利用最短距离法,选出葡萄理化指标中对葡萄酒理化指标影响最大的五项作为回归自变量,以葡萄酒的理化指标为回归因变量,运用MATLAB求解得到酿酒葡萄与葡萄酒的理化指标之间的4次函数关系式(见表七,表八)。

对问题四,建立酿酒葡萄的理化指标、葡萄酒的理化指标与葡萄酒质量的多重T检验模型。应用SPSS软件进行T检验,通过检验结果所体现出的向量整体差异程度表明,酿酒葡萄和葡萄酒的理化指标对葡萄酒质量影响较大,故可以用酿酒葡萄和葡萄酒的理化指标评价葡萄酒质量。

关键词理化指标;T检验;典型相关系数;回归模型;葡萄酒评价

一、问题重述

由于葡萄酒不仅饮用口感佳,而且还具有延缓衰老、滋补养颜、预防心脑血管病、预防癌症等功效,因而受到越来越多人的亲睐。葡萄酒厂在对葡萄酒质量进行鉴定时,一般是通过聘请一批有专业知识和资质的评酒员对葡萄酒进行品评。每名评酒员品评后会根据评判标准对所品葡萄酒进行打分,然后求其所有评酒员的打分之和,从而确定葡萄酒的质量。酿酒行业很多人把葡萄园作为葡萄酒厂的第一车间,这个比喻充分说明了原料质量对成品质量的重要性,所以说酿酒葡萄的好坏直接影响着葡萄酒的质量。葡萄酒和酿酒葡萄的理化指标在一定程度上反映了葡萄酒和葡萄的质量。附件1给出了某一年份一些葡萄酒的评价结果,附件2和附件3分别给出了该年份这些葡萄酒的和酿酒葡萄的成分数据。根据记录的数据,通过数学模型完成如下问题:问题一:分析附件1中两组评酒员的评价结果有无明显差异,如果有差异,进一步讨论哪一组结果更可信。

问题二:根据酿酒葡萄的理化指标和葡萄酒的质量的对应关系,对这些酿酒葡萄进行分级。

问题三:根据不同酒样分析酿酒葡萄与葡萄酒的理化指标之间的联系。

问题四:分别分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响。并以此判断能否利用酿酒葡萄和葡萄酒的理化指标判断葡萄酒的好坏。

二、问题分析

针对问题一,为比较分析两组评酒员的评价结果有无显著性差异,需先分别求出每组中各葡萄酒质量的平均值。再将所求的第一组红葡萄酒质量的平均值与第二组红葡萄酒质量的平均值、第一组白葡萄酒质量的平均值与第二组白葡萄酒质量的平均值分别进行T检验,进而可确定两组评酒员的评价结果是否存在显著差异。

确定哪一组结果更可信问题。由于影响各葡萄酒评分大小的因素主要有评酒员打分差异与葡萄酒自身质量。根据实际可知可信度越高的组别,其打分与评酒员的相关关系越小,故以评酒员编号与该评酒员所打分数做为变量,可建立典型相关分析模型。然后根据模型计算出每组评酒员编号与所得分的相关系数,判断其可信度。

针对问题二,由于酿酒葡萄的分级与其自身各项理化指标的大小有关,而酿酒葡萄中各项理化指标大小对酿酒葡萄的影响会在葡萄酒质量的好坏中体现,所以本文将根据葡萄酒质量的好坏来判断酿酒葡萄中各理化指标的大小,而后以葡萄中对葡萄影响较大的理化指标为酿酒葡萄分级的依据。用问题一中更可信一组的评分对葡萄酒的质量进行排序,得出排序向量,对酿酒葡萄各理化指标进行排序得到排序矩阵,用排序向量和排序矩阵各列的点乘值表示相似度,相似度越高则该理化指标对酿酒葡萄的影响越大。将按照相似度的大小对酿酒葡萄受各项理化指标的影响程度进行排序,选出排在前面5个理化指标作为酿酒葡萄分级的依据,从而进行分级。

针对问题三,由于酿酒葡萄和葡萄酒的理化指标的量纲不同,所以为讨论酿酒葡萄与葡萄酒的理化指标之间的联系,需将原始表格中各数据转化为无量纲,进而得到一组新数据表,再运用最短距离法将新葡萄酒数据表中每一组数据与新

酿酒葡萄的数据求差的平方和,平方和越小,两组数据近似度大,进而将得到一个关于差平方和的27

9⨯阶矩阵P,对矩阵中每一列按从大到小进行排序,取前五行数据进行拟合,建立非线性回归模型,从而可确定酿酒葡萄与葡萄酒的理化指标之间的联系。

针对问题四,酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,可先将酿酒葡萄、葡萄酒的理化指标与葡萄酒质量无量纲化,可利用SPSS软件,对酿酒葡萄和葡萄酒的各项理化指标与葡萄酒质量进行T检验,可进一步分析与葡萄酒质量存在显著性差异的理化指标数目。从而确定根据酿酒葡萄与葡萄酒是否能判断葡萄酒质量。

三、基本假设

1.假设葡萄酒的质量基本服从正态分布;

2.原始数据真实可靠;

3.未被测量出来的指标对葡萄酒质量的影响忽略不计。

四、符号表示

五、模型建立与求解

葡萄酒评价结果受多方面因素影响,葡萄酒的质量与原材料酿酒葡萄有直接影响,酿酒葡萄和葡萄酒的理化指标确定着葡萄酒的质量,以及影响葡萄酒最终评价结果的因素是多方面,现就针对酿酒葡萄好坏与葡萄酒质量以及酿酒葡萄和葡萄酒的理化指标之间的关系,来讨论题目中的四个问题。

5.1 两组评酒员评价的选择

首先分析两组评酒员的评价结果有无显著差异,再进行可信度分析,选可信度高的一组为葡萄酒质量的评判标准。

5.1.1分析两组评酒员的评价结果有无显著性差异

为分析两组评酒员的评价结果有无显著性差异,本文首先运用EXCEL求得每组中各红葡萄酒的平均分(见附录一)以及白葡萄酒的平均分(见附录一),而后运用T检验方法进行双重比较。这种方法为比较第一组与第二组平均数,即

相关文档
最新文档