第九章 三维地震勘探要点

合集下载

三维地震勘探方法原理与进展

三维地震勘探方法原理与进展

三维地震勘探方法原理与进展1.震源激发:使用震源激发地震波。

常见的震源有人工震源(如重锤、炸药等)和自然地震。

2.地震波传播:地震波在地下沿不同路径传播,并与地下介质发生相互作用。

地震波的传播路径和传播速度取决于地下介质的物理特性,如弹性模量、密度等。

3.接收地震记录:在地震波传播的路径中,设置一系列地震接收器(通常是地震检波器或地震传感器),接收并记录地震波的到达时间、振幅等信息。

4.数据处理与分析:通过对接收到的地震记录进行数据处理和分析,可以得到地震波的传播速度、衰减特性等信息,并进一步推断地下介质的性质。

5.三维地震成像:将地震记录中的信息转化为地下模型,并进行三维地震成像。

常用的地震成像方法包括反演、偏移等。

1.高密度三维数据采集:随着数据采集技术的进步,三维地震勘探可以获得更高密度、更广范围的数据。

这使得勘探人员能够更准确地了解地下构造,并更好地定位资源。

2.多尺度体积建模:三维地震勘探方法逐渐从局部尺度向大范围尺度延伸。

除了对沉积盆地等大尺度地质问题的研究外,也在微观尺度上得到广泛应用,如岩石孔隙结构的研究。

3.三维地震反演技术:传统的地震成像方法主要基于地震波的走时信息,对地下结构的分辨率有限。

而三维地震反演技术可以利用地震波的振幅信息来改善地下结构的分辨率,进一步提高地震勘探的精度。

4.三维地震模拟方法:随着计算机技术的发展,三维地震模拟方法得到了广泛应用。

通过数值模拟地震波在地下的传播过程,可以更好地理解地震波和地下介质的相互作用,为地震勘探提供更准确的解释。

总之,三维地震勘探方法通过收集、处理和分析地震波传播信息来推断地下构造,并取得了显著的进展。

随着技术的进一步改进和计算机技术的不断发展,三维地震勘探将在未来的勘探开发中发挥更重要的作用,为石油、天然气等资源的开发提供更准确和可靠的地质信息。

三维地震勘探概述

三维地震勘探概述

第六章三维地震勘探技术
概述
第1节三维地震勘探优点
第2节三维地震资料采集
第3节三维地震资料处理
主讲教师:刘洋
第1节三维地震勘探优点
第6章
VSP 地面地震勘探
地面激发井中接收地面接收接收点激发点
(3)海上四分量地震勘探(单源—四分量)(4)陆上三分量地震勘探(单源—三分量)
模型示意图二维地震成果剖面三维地震成果剖面
第6章
二维资料作的构造等值线图三维资料作的构造等值线图
第6章
第2节三维地震资料采集
第6章
宽线弯线
十字线环形排列

常规正交线束砖墙式奇偶式非正交式
常用三维观测系统--束状观测系统
第6章
8线8炮观测系统
第3节三维地震资料处理
第6章
第六章总结
1.地震勘探的分类
2.三维地震勘探的优点
3.三维观测系统设计的要求
4.三维地震野外采集过程
第六章词汇
时移地震time-lapse seismic
三维地震3D seismic
三分量地震three-component seismic 三维三分量地震3D-3C seismic
面元bin
方位角azimuth。

三维地震勘探概述

三维地震勘探概述

三维地震勘探概述三维地震勘探通过在地表或井下埋设地震探测仪器,如地震震源、地震传感器等,来记录由地震源激发的地震波信号。

这些设备可以记录信号的到达时间、振幅和频率等信息。

根据记录到的地震波数据,可以进行地震成像和地震解释分析,从而推断出地下地层的性质和结构。

三维地震勘探是传统二维地震勘探的进一步发展。

传统的二维地震勘探只能获取地层沿勘探延线的二维信息。

而三维地震勘探则可以获取地层在水平和垂直方向上的三维信息,提供更全面的地下结构描述。

三维地震勘探可以更准确地刻画地下地层的复杂性,为油气勘探、矿产资源勘探和地质灾害研究等提供重要数据支持。

三维地震勘探的基本原理是地震波在地下的传播。

当地震波传播到地下不同的介质中时,会发生折射、反射、散射和衍射等现象,这些现象都可以通过地震波记录来分析和解释。

通过分析地震波的传播路径和到达时间,可以推导出地震波在地下的传播速度和传播路径,从而推断地下地层的结构和性质。

三维地震勘探的关键步骤包括数据采集、数据处理和数据解释。

在数据采集阶段,地震探测仪器会记录地震波的信号,这些信号可以通过地面震动、井下震动等方式激发。

数据采集通常需要在大范围、多点同时进行,以获取更全面的地震波数据。

数据处理阶段主要涉及信号预处理、地震成像和地震解释等过程。

信号预处理主要包括滤波、去除噪声等处理,以提高数据的质量。

地震成像是将数据转换成地下结构信息的过程,主要采用波动方程正演模拟、走时反演和成像等方法。

地震解释是对成像结果进行解释和分析,根据地震波的传播规律和地震信号的特征,推断地下地层的结构、性质和岩性等参数。

三维地震勘探的优势在于其能够提供更全面和详细的地下结构信息。

相比于二维地震勘探,三维地震勘探可以更好地揭示地下地层的三维结构和复杂性。

它可以提供地层性质的空间分布图、地下构造的三维模型和地震波传播路径的可视化等,为地质研究和勘探开发提供重要的佐证和指导。

总之,三维地震勘探是一种应用地震波传播原理进行地下结构分析的方法。

野外三维地震勘探测量质量检查和要点分析

野外三维地震勘探测量质量检查和要点分析

野外三维地震勘探测量质量检查和要点分析摘要:工程测量的质量对地震勘探资料品质和效果有重大的影响,因此必须由专业人员负责施工过程中的质量检查和监督。

本文以野外石油、煤炭等矿产资源三维地震勘探为例,阐述了测量工程在三维地震勘探工程中从施工前准备、施工中质量检查和监理、施工后质量验收等每个环节需要检查的内容和重点检查的对象,以及为测量质量检查人员高水平的完成质量检查提供一定的参考。

关键词:工程测量;三维地震勘探;质量检查要点近年来,随着我国经济的迅速发展,国家的能源需求出现了明显的上升趋势,这也促使野外石油、煤炭等矿产资源勘探市场的业务工作量大幅上升。

野外三维地震勘探的重要性显得更加突出,并在石油、煤炭等矿产资源三维地震勘探中取得了显著的效果,尤其是在探明资源储量领域三维地震勘探中发挥了关键的作用。

各工作单位提出了多种地震勘探技术测量技术。

王国芹[1]等提出了GoogleEarth的使用方法,能够实现人机交互,该方法的使用提高了地震勘探的效率。

张晶心介绍了[2]探讨、研究了全数字地震勘探、全数字地震测量的主要特色,并对全数字地震测量技术的革新作了浅要的分析。

由于资源勘探领域测量工作程序复杂,劳动量大,而且贯穿到地震数据采集过程的始终,极易产生误差和疏漏,因此为了地震勘探测量工作实施专业质量检查,确保野外三维地震勘探测量资料合格率达到100%,本文提出了如下工作流程和每个工作流程中需要检查的重点内容。

1测量准备阶段质量检查工作《测量质量检查细则》是测量工作的的指导性文件,可操作性较强,在地震勘探中的测量专业工作的地位和作用十分重要,必须按照《测量质量检查细则》的具体要求来制定测量工作的目的、任务和方法,所制定的质量检查措施必须符合规范和合同要求。

因为三维地震勘探测量是一项专业性较强的工作,而且工作的独立性十分突出,因此还需要一个《测量质量检查细则》对质量检查工作做出具体的指导。

测量工程施测前,质量检查人员需要对以下方面内容进行监督检查并进行签字交:(1)测量施工设计是否满足地震项目采集技术要求;(2)对测量工程人员的测绘证、设备操作证进行审查,并核查认可其测量工作经验,复印相关证书存档备案。

三维地震勘探方法原理与进展

三维地震勘探方法原理与进展

三维地震勘探方法原理与进展三维地震勘探是一种利用地震波对地下结构进行成像的方法,它通过记录地震波在地下传播过程中的反射、折射和透射等现象,从而获取地下结构的信息。

与传统的二维地震勘探方法相比,三维地震勘探能够更全面、准确地描述地下构造,并且能够提供更高分辨率的成像结果。

三维地震勘探的原理是利用地震波在地下介质中的传播特性来推断地下结构。

地震波是由地震源产生的一种机械波,它可以在地下介质中传播,并且会遇到不同介质边界的反射、折射和透射等现象。

通过记录地震波的传播时间、振幅和频率等信息,可以建立地震波在地下介质中的传播模型,并通过反演等数学手段将地下结构成像。

1.设计地震勘探方案:根据勘探目标和地质条件,确定地震源和测量装置的部署方式。

常用的地震源包括重锤、震源车和炸药等,测量装置包括地震检波器。

2.采集地震数据:利用地震源激发地震波,在地下布置检波器,并记录地震波在地下传播的过程。

通常采集多个不同位置和方向的地震数据,以获取更完整、准确的地下信息。

3.数据处理:利用信号处理、地震波理论和数学模型等方法对采集到的地震数据进行处理。

这包括地震分析、波场模拟和成像等步骤,通过反演等数学手段将地震数据转化为地下结构信息。

4.地震成像:将处理后的地震数据进行可视化,生成三维地震成像结果。

地震成像方法包括卷积成像、叠前深度偏移和正演模拟等,这些方法可以提供高分辨率的地下结构图像。

1.采集技术的提升:随着测量设备和地震源的不断发展和更新,三维地震勘探的采集效率和数据质量得到了改善。

如引入宽频带地震源、多分量地震数据采集和大角度成像等技术,提高了地震数据的频率响应和波动物性分辨能力。

2.数值模拟方法的发展:为了改善地震数据的处理效果,科学家们对波场模拟方法进行了深入研究。

开发了高效且精确的波动方程求解方法,如有限差分法、有限元法和高阶边界条件法等,这些方法可以更准确地模拟地震波在地下的传播过程。

3.成像技术的提高:为了提高地震勘探的分辨率和准确度,研究人员发展了一系列的地震成像方法。

地球物理大地测量学三维地震勘探技术的浅述

地球物理大地测量学三维地震勘探技术的浅述

地球物理大地测量学学院:专业:学生姓名:学号:三维地震勘探技术的浅述地球物理学是地球科学中的一门新兴学科,也是人类借以深化认识地球本体、地球内部结构及其深层过程极为重要的途径和“钥匙”。

地球物理学集物理学、地质学、大气科学、海洋科学、天文学等为一体,是描述地球上所发生的各种地学事件,并对其发生机制进行科学解释的一门边缘学科。

[1]地球物理学的主要研究对象是人类赖以生存的地球及其周围空间;它用物理学的原理和方法,通过利用先进的电子和信息技术、航天航空技术和空间探测技术对各种地球物理场进行观测,探索地球内部及其周围空间、近地太空的介质结构、物质组成、形成和演化,研究与其相关的各种自然现象及其变化规律;在此基础上优化和改善人类生存和活动环境,防御并减轻地球与空间灾害对人类的影响,为探测和开发国民经济中急需的能源及资源提供新理论、新方法和性能技术。

地球物理大地测量学是由地球物理学、大地测量学、地质学和天文学交叉派生出来的边缘学科,它的主要研究内容和目的是:利用近代空间大地测量和地球物理观测新技术,精确测定地球表面点的几何位置、地球重力场元素、地球自转轴在空间的位置和方向以及相关参数随时间的变化,并从动力学的观点研究地球动态变化的物理机制,进而为环境变迁和海平面变化的研究、地震火山等自然灾害的孕育预测、空间飞行器精密定轨和制导以及地下资源的勘探等提供服务。

[2] 地下资源勘探是地球物理大地测量的一个重要方面,而地震勘探是地下资源勘探的常用方法。

地震勘探是利用地下介质弹性和密度的差异,通过观测和分析大地对人工激发地震波的响应,推断地下岩层的性质和形态的地球物理勘探方法。

其具体原理可以描述为:在地表以人工方法激发地震波,地震波在向地下传播时,遇有介质性质不同的岩层分界面,将发生反射与折射,在地表或井中用检波器接收这种地震波。

收到的地震波信号与震源特性、检波点的位置、地震波经过的地下岩层的性质和结构有关。

通过对地震波记录进行处理和解释,可以推断地下岩层的性质和形态。

三维地震勘探方法及原理

三维地震勘探方法及原理

三维地震勘探方法及原理1. 引言嘿,大家好!今天我们要聊聊一个听上去很高大上的话题——三维地震勘探。

听名字就知道,这可不是随便玩玩的事情。

它是一种能让我们了解地下世界的神奇方法,想象一下,像是在看一部《寻龙诀》那样,揭开大地的秘密。

不过别担心,我会用简单易懂的方式告诉你这一切,咱们轻松聊聊,不让你感觉像在上课。

2. 三维地震勘探的基本概念2.1 什么是三维地震勘探?简单来说,三维地震勘探就是通过发送地震波到地下,然后再接收这些波反射回来的信息,帮我们“看”清地下的结构。

这就像是在用声音给地下“拍照”,而且是立体的!你可以想象一下,像是在玩一个高级的探险游戏,寻找宝藏的感觉。

2.2 三维勘探与传统勘探的区别传统的地震勘探就像是在平面上画图,而三维勘探则是把这个图变成立体的。

你知道的,平面图和立体图的感觉完全不一样。

三维勘探能给我们更丰富、更详细的信息,帮助我们更好地了解地下资源的位置,尤其是石油、天然气这些重要的宝贝。

3. 三维地震勘探的方法3.1 数据采集首先,我们得把“耳朵”伸得长长的,来听地下的声音。

为了做到这一点,咱们需要在地面上布置很多的传感器,这些小家伙就像是地下的侦探,负责接收地震波。

当我们用震源(比如炮炸或者震动器)制造地震波的时候,这些传感器会像打了鸡血一样,快速记录下反射回来的波形数据。

3.2 数据处理与解释数据采集完成后,就进入了“数理化”的阶段。

别担心,不用心慌,这可不是高深的数学题。

其实就是把我们采集到的数据进行分析,转化成地下结构的图像。

这个过程就像是在拼图,有时候拼图的碎片可能会缺失,但聪明的工程师们总能用他们的智慧,把这些碎片拼凑起来,呈现出一个清晰的地下世界。

4. 三维地震勘探的应用4.1 石油与天然气勘探大家知道,石油和天然气是现代生活的命脉。

通过三维地震勘探,我们能够找到这些资源的埋藏地点,提前做好准备,确保能安全高效地开采。

可以说,这项技术就像是给石油公司带来了“金钥匙”,打开了通往财富的大门。

三维(3D)地震勘探 图文

三维(3D)地震勘探 图文

4.三维资料是一个数据体,可以在任意方位上切片显示:如 主测线方向In line,横测线方向Cross line,过井切片,斜切 片,水平切片,层切片,尤其象水平切片和层振幅切片是 三维解释中所特有的功能。
30
用水平切片直接 做构造图。
31
5.彩色显示:三维资料
均采用彩色显示,彩色 成图,彩色输出。这样 提高了地震资料的视觉 分辨率。
×× ×× ×
1 50cm
61 121
181
100m
四线六炮端点激

60 200m
120
180
240
这种观测系统的的优点:可以获得从小到大均匀的炮检距和均匀的覆 盖参数,适应于复杂地质条件的三维地震勘探。此外在多居民点、多 农田地区可改变偏移距和发炮方向进行施工,亦可获得满意的资料。
12
观测系统(大港油田王官屯三维)
1.十字型观测系统
× ×
×
×
L型
×
× × × o o o o o o o oo o o
宽十字型 × × × ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ × ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
○ ○ ○ ○ ○○ ○ ○○○
× ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
× × ×


T型

○ ○

○ ○
× × × × × × × ×× × ×
大大改善记录质量,提高信号的清晰度和分辨率,从而提高解决地质问题的能力,能 把油气田的位置确定得更准确。
由于三维地震最后得到的是一组立体的数据,根据这个数据体就能给出地层的立体图 像(三维立体图)。同时,也可给出由浅至深,一层层的水平切片图,将这些图制成 动画,人们就能像看电影一样来解释地下地质情况,省时省力又精确。

三维地震勘探方法及原理

三维地震勘探方法及原理

三维地震勘探方法及原理### 三维地震勘探方法及原理想象一下,你正在参加一个地质勘探的派对,而你的角色是那个负责“探测”地球深处秘密的地质学家。

在这个派对上,有各种各样的技术,就像各种地质探针一样,它们可以帮助你找到地下的宝藏。

我们要来谈谈“三维地震勘探”。

这个技术就像是在地下世界里放了一个超级大的望远镜。

它通过向地下发送一系列小石头(地震波),然后观察这些石头是如何反射回来的。

这些反射回来的信号就像是我们收到的信息,告诉我们地下有什么。

想象一下,当你在一个大型超市里,你想要知道每个角落都有什么商品。

你拿起一个超长的望远镜,开始四处张望。

突然,你发现某个角落有一个闪闪发光的东西,那就是你的宝藏!三维地震勘探也是这样,通过发射和接收地震波,我们可以“看到”地下的情况。

但是,这并不意味着我们可以直接“看”到地下的物体。

相反,我们得到的是一个关于地下情况的图像,就像是一张地下世界的地图。

接下来,我们要介绍“成像技术”。

这项技术就像是给这张地图上的每个地方加上了颜色和标记。

想象一下,你在超市里找到了一个你喜欢的商品,但你不确定它在哪里。

这时,你拿出一张地图,上面用不同的颜色标出了各个商品的位置。

这样,你就可以轻松地找到你想要的那个宝贝了。

同样地,在地下世界中,成像技术帮助我们识别出不同的岩石类型、断层和其他地质结构。

通过这些信息,我们可以理解地下的构造,预测可能的风险,甚至找到新的资源。

我们来谈谈“数据处理与解释”。

就像处理超市里的购物清单一样,我们需要对这些数据进行分析和解释。

这个过程就像是在地图上标注出宝藏的位置,并确定宝藏的大小和形状。

三维地震勘探是一种强大的工具,可以帮助我们理解地下世界的秘密。

通过发射和接收地震波,我们可以“看到”地下的情况;通过成像技术,我们可以识别出不同的地质结构;通过数据处理与解释,我们可以进一步了解地下的情况。

三维地震勘探概述

三维地震勘探概述

第一节 三维地震资料采集
X1=Z﹒tgφ
一、采集要求
或 X1=Vt0sinφ/2 其中:Z—深度,φ—最深目 的层的最大倾角,V—平均速 度,t0——Z对应的垂直反射 时 显然,这个扩大范围的估算由 目的层的深度和倾角决定。
由这个“偏移帽沿”X1扩大 后A0变成了A1——满覆盖面积, 但还应加上覆盖次数渐减带和 附加段,最后得到
第一节 三维地震资料采集
1、采集参数
二、观测系统和采集参数
④最大炮检距Xmax Xmax的设计应考虑下列因素:⒜近似等于目的层深度,⒝ 主要目的层反射应避开直达波、初至折射波的干涉,⒞小于 最深目的层临界折射炮检距,⒟满足速度鉴别精度的要求 ⒠ 使动校正拉伸对信号的影响较小,⒡满足消除多次波的要求 等。 ⑤偏移孔径M 其设计应考虑:⒜大于第一菲涅尔带半径;⒝大于Z•tg30° (Z为最深目的层的深度),以使绕射波能量很好收敛;⒞ 大于倾斜层偏移的横向移动距离 : M >Z•tgmax 偏移孔径应取三项中的最大值。
第一节 概述
四、三维地震勘探应用范围
①复杂构造勘探
查明因断层发育、地层产状变化大而引起的绕射波、侧面波 等干涉严重的复杂断裂构造区,以及盐丘、礁块、地层尖灭、 不整合、微型构造等;
②地层岩性和沉积特征研究 结合钻井资料研究地层岩性的平面和空间变化; ③油田勘探开发
帮助制定或调整油田勘探开发方案,在油田开发过程中监测 油藏动态
第一节 三维地震资料采集
1、采集参数
二、观测系统和采集参数
②覆盖次数N 纵测线方向覆盖次数NX应满足:NX = n/(2dx) 横测线方向覆盖次数NY应满足: NY= P•R/(2dy) 式中: n—排列内一条接收线的道数,dx—纵向上激发点移 动的道数;dy—束线之间接收线移动距离相当的道数,P—排 列不动所需的激发点数,R—接收线数; 总覆盖次数N则为: N = NX •NY ③最大的最小炮检距Xmin Xmin是“子区”(由两条相邻接收线和两条相邻激发线构成) 中心点的CMP面元的最小炮检距,也是该子区内所有CMP面 元中最小炮检距中的最大者。一般等于1~1.2倍的最浅目的层 深度。

三维高密度地震勘探方法与技术

三维高密度地震勘探方法与技术
三维地震勘探技术
线性动校正后初至波场(40m道距)
(Cai, et.al. 2006)
高密度地震勘探特点
4.提高噪声的识别、分析、和压制的精度
组合接收记录 (25m道距) 和点接收记录 (5m道距噪声 后的结果
高密度地震勘探特点
5.室内组合方式灵活多变
(Cao Wuxiang,2006)

信号传输道数有限 损失高频有效信号
保真度差

仪器动态范围有限 不利于信噪分离
勘 探
组内信号简单叠加 存在空间假频
单点激发/接收
消除组内干扰
信噪比高
高 密 度
采集道数高 采集面元小
避免假频 保留更多高频成分
分辨率高 保真度高

采样密度高
提高噪声压制精度

方位信息全
灵活的组合方式
动态范围大
利于4D地震监测
高密度是面向油藏的 一体化技术解决方案
三维地震勘探技术
Arshad South conventional seismic section (right) compared to the extended section of the high-density data (left). (WesternGeco)


斜交
正交
三维地震勘探技术
高密度地震资料室内处理
三维噪音压制
no fk
shot fk
S & R fk
3D fk
三维地震勘探技术
(Karagul and Crawford, 2003 EAGE)
高密度地震资料室内处理
室内组合方式对比
No static,10 traces sum static,10 traces sum

三维(3D)地震勘探

三维(3D)地震勘探
3D 地震勘探
1
2
一维勘探是观测一个点的地下情况;
二维勘探是观测一条线下面的地下情况;
三维勘探是观测一块面积下面的地下情况;
四维地震勘探是在同一地区不同时间重复做三维地震 勘探,则可称之为四维地震勘探(时移地震)。四维 是观测同一块面积下面不同时间的地下变化情况。根 据地质任务和达到的目的不同,可采用不同维的勘探 方法。
二是发展数据处理和数据存储技术。为提高处理精度,必须发展海量机群 并行处理和海量存储技术。海量机群并行处理技术是指PC-CLUSTER(针对大型 数据库及大负荷运算量的集群计算机)的节点要多,同时发展相关的静校正处理、 组合处理、叠前时间偏移、叠前深度偏移、全三维各向异性等处理技术,以提 高地下成像精度和储层描述精度及含油气分析精度。海量存储技术指发展大容 量的磁盘和自动带库,以满足大数据量的存储需求。
a、三维地震模型 b 、原始剖面 c 、二维偏移剖面 d 、三维偏移剖面
6
7
三维地震勘探与二维地震勘探相比的优越性
三维数据采集不存在二维数据采集时来自非射线平面 内的侧面反射波。 三维采集的数据按三维空间成象处理,可以真实地确 定反射界面的空间位置。 三维观测可以避开地形、地物的障碍,对地表条件适 应性很强。 三维观测可对资料有更大的保真度,相位数据更齐全, 便于研究地层的岩性。 三维地震勘探资料的完整统一性及显示技术的现代化, 更便于人工联机解释。
×× ×× ×
1 50cm
61 121
181
100m
四线六炮端点激

60 200m
120
180
240
这种观测系统的的优点:可以获得从小到大均匀的炮检距和均匀的覆 盖参数,适应于复杂地质条件的三维地震勘探。此外在多居民点、多 农田地区可改变偏移距和发炮方向进行施工,亦可获得满意的资料。

三维地震勘探概述..

三维地震勘探概述..

第一节 三维地震资料采集
二、观测系统和采集参数
设计观测系统和采集参数时,应根据地质任务的要求, 综合考虑地形、地貌、地物、交通条件以及装备等诸多因 素,选择最佳。 1。采集参数 共有7项主要参数:面元边长、覆盖次数、最大的最小炮检 距、最大炮检距、偏移孔径、覆盖渐减带和记录长度。
第一节 三维地震资料采集
线束状观测系统优点是:可以获得从小到大均匀的炮检 距和均匀的覆盖次数,适应于复杂地质条件的三维地震 勘探;此外,在多居民点、多农田地区,可以改变偏移 距和发炮方向进行施工,亦可获得满意的结果。
野外施工时,一排炮点 逐点激发后,炮点和 接收排列同时沿前进 方向滚动,再进行下 一排炮点的激发,直 到完成整条线束面积。 然后垂直于原滚动方 向整个移动炮点排列 和接收排列,重复以 上步骤进行第二束线、 第三束线……的施工, 直到完成整个探区面 积的观测。
第一节 概述
三、三维地震勘探能力
⑴它是获得地下构造和岩性的精确地震成像的最佳 方法,目前还没有其它方法可以与其相比,它可 使钻井成功率更高; ⑵高分辨率有助于发现可能忽视的油气储量; ⑶其资料可用作储层特征描述,是油藏描述的有效 地球物理方法,可大规模提供有关储层特征的信 息,可提供高采样密度的储层数据; ⑷可作时间推移三维地震监测(用于油田开发、查 明剩余油分布等)
第一节 概述
一、二维地震勘探存在问题
2、岩性勘探:不能准确地描述地质体空间分布的形态
实际含气区
二维资料预测区
第一节 概述
二、三维地震勘探优势
三维地震勘探是炮、检波点在地表全方位布设 、进行面积观测的一种地震勘探方法。它可以提供 高分辨率、高信噪比、高保真度的有关地下三维地 质体的精确资料,是解决复杂地区构造和岩性问题 不可缺少的重要手段。

煤田勘探三维地震质量监督的注意要点

煤田勘探三维地震质量监督的注意要点

煤田勘探三维地震质量监督的注意要点摘要三维地震勘探具有灵活的野外施工方法和采集的信息量密度大等优点,适合各种矿产资源的勘探工作。

本文通过对三维地震勘探步骤的分析,找到在进行质量监督过程中需要注意的一些要点。

关键词三维地震质量监督AbstractThe three-dimensional seismic exploration has flexible the wild construction methods and the acquisition of the large amount of information density, suitable for a variety of mineral resources exploration work. In this paper, the analysis of three-dimensional seismic exploration step, find conducting quality monitoring process, you need to pay attention to some of the points.Keywords: three-dimensional seismic Quality Supervision目录1 引言 (3)2 勘探的目的 (3)3 勘探区地质条件 (4)4 现场施工情况 (4)4.1 测量 (4)4.2 激发 (5)4.3 接收 (5)5 资料处理解释方法 (5)6 结论 (5)1 引言地震勘探是地球物理勘探方法的一种方法,即通过人工方法是地面产生振动进而产生地震波动,该波动以不同的传播方式向地下传播。

在传播过程中如果遇地震界面,则波能够返回到地面,在地面接收信号,并通过各种处理方法处理后,得到携带地下地质信息的波,最终获得地下的各种地质信息,从而达到地震勘探的目的。

三维地震勘探与普通地震勘探的差异在于激发点线(即炮线)垂直于接收点线(即检波点线)布设,具有灵活的野外施工方法,可根据地形地物灵活的设计观测系统、使用了多道的面积采集系统、采集的信息量密度大,组成三维空间数据体,便于进行空间处理,提供了进行地下三维构造形态和地层特征显示的丰富资料的特点。

三维地震勘探及垂直地震剖面法(9学时)

三维地震勘探及垂直地震剖面法(9学时)

第五章三维地震勘探及垂直地震剖面法(9学时)三维地震技术的兴起是在70年代末,正值世界范围内出现石油供应紧张的尖锐矛盾时期,当时由于二维地震方法的局限性,即使仅复加密测浅、增加覆盖次数,也难于查明较复杂的油气田地地质问题。

因此,钻探成功率很低,或本人幅度上升。

在这种形势下,已经从试验阶段发展到理论与实践都较成熟的三维地震技术得到了迅速发展。

与此同时,适应于三维地震勘探的技术设备——多道数字仪和大型数字处理计算机的发展,也为三维地震技术的发展创造了必要条件。

从此以后,地震勘探技术进入了一个全新的水平。

由于三维地震具有高密度,三维空间成像归位以及多种灵活的显示方式寻优点。

因此,外已卓有成效地用于查明各种复杂地质结构和陷蔽油气芷。

地震勘探的目的是通过地震观测获取反映地下界面真实位置和地下岩性、物性等地质信息。

然而,二维地震观测只能获取反映(x,t)平面内的地质信息。

即使在实际生产中,二维观测有时也在地表按面积布置测线,但每一条测线都是按二维采集数据并按二维偏移处理。

由于二维偏移是沿着测线的视倾角方向进行的,偏移结果不完全,也不准确,尤其对于地下复杂的地质构造进行二维地震勘探。

二维归位处理就不能反映地下界面的真实产状。

三维地震采集的数据是一个三维数据体(x,yct,A),三维偏移是□□进行的,各点都是按照它们真倾角方向偏移。

因此可以回到它们各自的□□位置上去三维偏移的结果与真深度是一致的。

在国外,自1974年W.S.FRENCH用三维模型实验有为地证明了“只有□□”观点和方法研究地下三维问题,才能得出对于地质结构的全面正确认识,这一著名的模型试验结果引起了地震界同行们的广泛重视,从而开始三维地震技术的理论到实践的不断探索历程。

此后,美国地球物理服务公司(GSI)、西方地球物理服务公司、西德普拉克拉塞兹其斯(Prakla-seismos)地球物理公司、普劳塞路(Proussag)石油天然气公司等为解决复杂地震地质条件下的构造问题,首先开展了三维地震工作,采用这种技术公司还有埃克森、阿莫科、壳牌、德士古和黑西哥国家石油公司等,经过近十年的努力,大量的实例证明,三维地震在解决复杂地质问题以及在油气回开发的作用,无一便外地都收到了二维地震无法比拟的地质效果和经济效益。

第九章三维地震勘探要点

第九章三维地震勘探要点

第九章三维地震勘探要点第九章三维地震勘探要点地震勘探是一种利用地震波在地下传播特性获取地壳结构和地质信息的方法。

在勘探过程中,为了提高数据的精度和准确性,必须注意一系列的要点。

本章将介绍三维地震勘探的要点,包括采集参数设计、数据处理、图像解释和应用。

采集参数设计要点在进行三维地震勘探之前,需要合理设计采集参数,以获得高质量的地震数据。

以下是一些要点:1. 选取适当的地震源:地震源的类型和能量决定了勘探数据的质量。

常用的地震源包括爆炸源、振动源和重力源等。

在选择地震源时,要考虑地下结构复杂性和勘探目标的深度。

2. 选择合适的接收器布置方案:接收器的密度和布置方式对于勘探结果具有重要影响。

通常采用均匀布置的方式,并根据地下结构调整接收器的位置。

3. 合理选择地震剖面参数:地震剖面的长度和方向应根据勘探目标和地质条件进行合理选择。

在确定剖面参数时,需要考虑到地震数据分辨率和数据采集的经济性。

数据处理要点数据处理是保证勘探结果准确可靠的重要环节。

以下是一些数据处理的要点:1. 原始数据预处理:在进行数据处理之前,需要对原始数据进行预处理,包括去除噪声、校正仪器漂移和调整数据的振幅等。

这些预处理操作可以提高数据质量和解释结果的准确性。

2. 数据变换和滤波:对地震数据进行变换和滤波操作,可以提取有用的信号信息,并去除不必要的干扰。

常用的数据变换方法包括频率域变换和小波变换等。

3. 叠加和成像处理:通过对多次采集的地震数据进行叠加和成像处理,可以提高勘探效果。

叠加处理可以有效增强勘探信号,成像处理可以产生地质构造的图像。

图像解释要点图像解释是三维地震勘探结果分析和解释的关键步骤。

以下是一些图像解释的要点:1. 识别地震波形特征:通过对地震波形的振幅、频率和相位等特征的观察和分析,可以识别地下地质结构和岩性的差异。

2. 建立地质模型:基于勘探数据的解释结果,可以建立地质模型,包括地层的分布、岩性的变化和构造的分布等信息。

第九章三维地震勘探要点

第九章三维地震勘探要点

第九章三维地震勘探要点1 •二维地震勘探存在的问题久不能满足二维地震勘探的假设条件b心时间不闭合C.复杂地区成像不准确d.不能满足地层岩性圈闭解释的需要2.三维地震勘探:在平面上采集随时间变化的地震信息,并在(x,y,t) 三维空间进行处理和解释的一整套工作过程和相应的方法或者技术。

二维地震勘探的假设条件:0、地下的构造形态只在一个垂直于深度的方向上变化;b、震源是线性的3.三维地震勘探的原理射线理论与波动理论4.面积观测法的时距曲线、折曲测线观测系统时距曲线、共反射面元共反射面元叠加:共反射面元道集内各反射信号的叠加。

5.三维地震勘探的优越性(1)观测灵活,适用地形地物多变的复杂地区(2)三维测网密集,采集地震信息丰富,可以有效压制噪音(3)在侧面反射波比较发育的地区,有有效的消除侧面波引起的地质假象(4)三维采集的数据按三维空间成像处理,可以真实的确定反射界面的空间位置,适应日趋复杂的油气勘探的需要(5)灵活多变的显示方式(6)拓宽了地震勘探的应用领域6.三维地震勘探对油气勘探开发的作用:(1)多数三维地震勘探用于老油田的滚动勘探开发阶段,可以加快油田勘探开发的步伐,提高钻井成功率,减少开发费用;(2)三维地震勘探技术用于滚动勘探开发的不同阶段能够准确、显著的增加石油和天然气的地质储量;(3)在油气目标区应用三维地震勘探技术越早,就可越早査清地下地质情况,也越有利于油藏描述和油藏模拟的开展,达到既快又经济的目的;(4)三维地震勘探特别适用于时间推移地震。

7.三维地震勘探施工前的准备工作:(1)三维工区的确定(2)根据地震地质条件和地质任务设计三维地震观测系统(3)合理选择三维地震观测的各种参数(4)进行必要的试验、分析工作,考虑适量的正演模拟(5)在三维采集的实施过程中严格质量控制8.三维地震测系统的设计原则(1)面元道集内炮检距分布均匀(2)共中心点或共反射点覆盖次数分布均匀(3)静校正耦合较好(4)复杂地表条件下,可根据踏勘情况,确定出既适合工区地表条件,又有利于改善资料品质、有较强跨越能力的多种三维观测系统模式(5)充分利用设备资源,在获得较奸地质效果的前提下降低采集费用9.三维勘探术语震源线、接收线、纵横测线、于区、排列片、片区、线束、cmp面元、最小、最大偏移距、偏移孔径、覆盖次数递减带或者斜坡1().三位勘探的具体要求(1)数据分布在一个均匀的网格上nn且网格间隔尽量小防止产生空间假频(2)各个面元的覆盖次数尽量相同,以防止不同面元的叠加能量不同(3)具有相同的炮检距组合(4)具有相同的方位角组合11 •勘探设计的要素(1)覆盖次数(2)面元大小或者尺度b:应该小于目标尺度而且满足采样定理, 即b<X/2 或者b<v n/2f m(3)最小偏移距小于最浅目的层深的1-1.2倍(4)最大偏移距(5)偏移孔径应该大于第一菲涅尔带半径(6)覆盖次数递减带(7)记录长度12.面积观测的基本公式单位面积炮点数NS的关系:NS=fbld.U/NC.b、.b「接收线间距RLI的关系:RLI=2A.x r2/NC.b r震源线间距SL1的关系:SLl=U/2byNS覆盖次数=纵向覆盖次数*横向覆盖次数纵向覆盖次数=单排列接收道数/2*排列移动道数横向覆盖次数=接收线数*炮数/ (2*束线距/炮间距)13 •设计观测系统的工作步骤(1)野外实测探区的调査或者踏勘(2)根据掌握的资料建立表层结构模型和地下地质构造模型(3)根据施工要求进行面向对象交互设计野外基础参数(4)利用波场模拟技术进行射线追踪(5)利用交互软件检査激发点、检波点布置的合理性,覆盖次数分布的均匀性、炮检距分布的合理性以及方位角分布的合理性(6)根据地形地物、地面交通和现有设备情况确定具体的观测方法, 优化采集参数(7)根据工区的具体情况,考虑观测系统的局部变动,最终确定野外采集参数,并进行现场监控与质量控制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章三维地震勘探要点
1、二维地震勘探存在的问题
a、不能满足二维地震勘探的假设条件
b、t0时间不闭合
c、复杂地区成像不准确
d、不能满足地层岩性圈闭解释的需要
2.三维地震勘探:在平面上采集随时间变化的地震信息,并在(x,y,t)三维空间进行处理与解释的一整套工作过程与相应的方法或者技术。

二维地震勘探的假设条件:a、地下的构造形态只在一个垂直于深度的方向上变化;b、震源就是线性的
3、三维地震勘探的原理
射线理论与波动理论
4、面积观测法的时距曲线、折曲测线观测系统时距曲线、共反射面元
共反射面元叠加:共反射面元道集内各反射信号的叠加。

5.三维地震勘探的优越性
(1)观测灵活,适用地形地物多变的复杂地区
(2)三维测网密集,采集地震信息丰富,可以有效压制噪音
(3)在侧面反射波比较发育的地区,有有效的消除侧面波引起的地质假象
(4)三维采集的数据按三维空间成像处理,可以真实的确定反射界面的空间位置,适应日趋复杂的油气勘探的需要
(5)灵活多变的显示方式
(6)拓宽了地震勘探的应用领域
6、三维地震勘探对油气勘探开发的作用:
(1)多数三维地震勘探用于老油田的滚动勘探开发阶段,可以加快油田勘探开发的步伐,提高钻井成功率,减少开发费用;
(2)三维地震勘探技术用于滚动勘探开发的不同阶段能够准确、显著的增加石油与天然气的地质储量;
(3)在油气目标区应用三维地震勘探技术越早,就可越早查清地下地质情况,也越有利于油藏描述与油藏模拟的开展,达到既快又经济的目的;
(4)三维地震勘探特别适用于时间推移地震。

7、三维地震勘探施工前的准备工作:
(1)三维工区的确定
(2)根据地震地质条件与地质任务设计三维地震观测系统
(3)合理选择三维地震观测的各种参数
(4)进行必要的试验、分析工作,考虑适量的正演模拟
(5)在三维采集的实施过程中严格质量控制
8.三维地震测系统的设计原则
(1)面元道集内炮检距分布均匀
(2)共中心点或共反射点覆盖次数分布均匀
(3)静校正耦合较好
(4)复杂地表条件下,可根据踏勘情况,确定出既适合工区地表条件,
又有利于改善资料品质、有较强跨越能力的多种三维观测系统
模式
(5)充分利用设备资源,在获得较好地质效果的前提下降低采集费用
9、三维勘探术语
震源线、接收线、纵横测线、子区、排列片、片区、线束、cmp面元、最小、最大偏移距、偏移孔径、覆盖次数递减带或者斜坡
10、三位勘探的具体要求
(1)数据分布在一个均匀的网格上,而且网格间隔尽量小,防止产生空间假频
(2)各个面元的覆盖次数尽量相同,以防止不同面元的叠加能量不同
(3)具有相同的炮检距组合
(4)具有相同的方位角组合
11、勘探设计的要素
(1)覆盖次数
(2)面元大小或者尺度b:应该小于目标尺度而且满足采样定理,即b<λ/2或者b<v n/2f m
(3)最小偏移距小于最浅目的层深的1-1、2倍
(4)最大偏移距
(5)偏移孔径应该大于第一菲涅尔带半径
(6)覆盖次数递减带
(7)记录长度
12.面积观测的基本公式
单位面积炮点数NS的关系:NS=fold、U/NC、b s、b r
接收线间距RLI的关系:RLI=2A、x r2/NC、b r
震源线间距SLI的关系:SLI=U/2b s、NS
覆盖次数=纵向覆盖次数*横向覆盖次数
纵向覆盖次数=单排列接收道数/2*排列移动道数
横向覆盖次数=接收线数*炮数/(2*束线距/炮间距)
13.设计观测系统的工作步骤
(1)野外实测探区的调查或者踏勘
(2)根据掌握的资料建立表层结构模型与地下地质构造模型
(3)根据施工要求进行面向对象交互设计野外基础参数
(4)利用波场模拟技术进行射线追踪
(5)利用交互软件检查激发点、检波点布置的合理性,覆盖次数分布的均匀性、炮检距分布的合理性以及方位角分布的合理性
(6)根据地形地物、地面交通与现有设备情况确定具体的观测方法,优化采集参数
(7)根据工区的具体情况,考虑观测系统的局部变动,最终确定野外采集参数,并进行现场监控与质量控制。

14.三维观测系统类型
面积观测系统与直线型观测系统(线束法、直线法、砖墙式、奇偶式、非正交三维观测系统等)
15.激发参数:包括激发方式、激发药量、激发井深
16、得到最佳激发参数需要做的工作
(1)表层结构调查
(2)虚反射分析
17.三维地震勘探费用的估算
18.最大炮检距选择需要考虑的因素
(1)最浅目的层的反射特征要稳定,避免因入射角过大而引起波形畸变与浅层折射的干扰
(2)既要保证速度分析精度,又要减少动校正拉伸畸变与多次波的压制效果
(3)考虑偏移精度的需要
19.影响最大偏移距选择的因素
(1)反射系数
(2)动校正拉伸
(3)速度分析精度
(4)偏移效果的考虑
(5)压制多次波的考虑
(6)面元尺度
20.决定面元尺度大小的因素
(1)勘探目标
(2)最大无混叠频率的产生
(3)横向分辨率
21.覆盖次数
(1)覆盖次数与压制随机干扰关系
(2)覆盖次数与压制规则干扰波的关系:压制多次波需要较高的覆盖次数与较大的炮检距
(3)三维速度分析的要求
(4)静校正量估算的要求
22.三维地震资料品质评价方法
频率特性分析、相对分辨率分析、信噪比分析等
23.三维地震资料处理目标
提高信噪比、提高分辨率、提高保真度、准确成像
24.三维地震资料处理流程
25.复杂地质条件
(1)地表复杂地震地质条件
(2)地质构造变化剧烈的复杂勘探区
26.复杂地质条件区勘探面对的困难
(1)地表地质条件变化大,相应的激发介质差异大
(2)激发的地震子波频带较窄,有效的下传能量较弱,且存在较大的不均匀性
(3)震源激发与检波器的耦合条件较差,信号与干扰无明显视波长差异,检波器组合无法发挥作用、资料信噪比偏低
(4)地表剧烈变化导致静校正精度低,剩余静校正困难
(5)地下勘探对象构造变化剧烈、地层倾角大。

导致反射波信号的能量弱、散射严重
(6)与地表变化相应的地下地层构造剧变,地层破碎严重,常规采集方法无法正常采集到有效的地震信息,资料信噪比与分辨率都很低
27.复杂地质条件下地震勘探野外采集质量监控的关键在于科学准确的把握三大主要施工环节:震源激发、地震波接收、科学合理的地震观测系统设计
28.激发井位优选原则:避高就低、避陡就缓、避碎就整、避土就岩、避赶就湿
29.几何耦合度就是爆炸能量传导能力的量度
阻抗耦合度表征通过不同介质接触面传导能量的效率
30.延时震源激发技术
13.偏移方法分类、各种偏移方法的优缺点
14.三维地震数据的显示方式
(1)各种垂向剖面
(2)水平剖面
(3)垂向剖面与水平联合显示
(4)立体动画显示
(5)三维可视化显示
15.三维地震勘探的发展趋势。

相关文档
最新文档