热力学与统计物理练习题1答案

合集下载

(完整版)热力学与统计物理_试题及答案

(完整版)热力学与统计物理_试题及答案

6! 1 4!1!1!
30;
6!
C
1 3! 3!
20
所有分布总的微观态数为: A B C 6 30 20 56
pA A / 6 / 56 0.107; 各分布对应的概率为: pB B / 30 / 56 0.536;
pC C / 20 / 56 0.357;
;
处于激发态的粒子数为: N2
N Z1
e2
N
e0 e0 e0
;
温度为 T 时处于激发态的粒子数与处于基态的粒子数之为:
N2 N1
e0 e0
0
e kT 0
e kT
极端高温时:ε0《kT, N2 1 , 即处于激发态的粒子数与处于基 N1
态的粒子数基本相同;
极端低温时:ε0》kT, N2 0 , 即粒子几乎全部处于基态。 N1
5.
l
l
给出内能变化的两个原因,其中( ldal )
l
项描述传热,( aldl )项描述做功。
l
6.对粒子数守恒的玻色系统,温度下降会使粒子的化学势( 升高 ); 如果温度足够低,则会发生( 玻色——爱因斯坦凝聚 )。这时系统的 能量 U0=(0),压强 p0=(0),熵 S0=(0)。
7.已知粒子遵从经典玻尔兹曼分布,其能量表达式为
4.对弱简并的非相对论费米气体,求:
(1)粒子数分布的零级近似 f0 与一级修正项Δf1;
(2)证明:与零级近似相比,粒子数的相对修正量和内能的相对修正量 均正比于 e 。
解:费米气体分布函数为:
f
1 e
1
(1)
f
e
1
1 e
e (1 e ) e
e2 2

热力学与统计物理学课后习题及解答

热力学与统计物理学课后习题及解答

第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数T k 。

解:由理想气体的物态方程为 nRT PV = 可得: 体胀系数:TP nR V T V V αp 111==⎪⎭⎫ ⎝⎛∂∂= 压强系数:TV nR P T P P βV 111==⎪⎭⎫ ⎝⎛∂∂=等温压缩系数:P P nRT V P V V κT 1)(112=−⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛∂∂−=1.2 证明任何一种具有两个独立参量P T ,的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数T k ,根据下述积分求得:()⎰−=dP κdT αV T ln 如果PκT αT 11==,,试求物态方程。

解: 体胀系数:p T V V α⎪⎭⎫ ⎝⎛∂∂=1,等温压缩系数:TT P V V κ⎪⎭⎫ ⎝⎛∂∂−=1 以P T ,为自变量,物质的物态方程为:()P T V V ,= 其全微分为:dP κV VdT αdP P V dT T V dV T Tp −=⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=,dP κdT αV dV T −= 这是以P T ,为自变量的全微分,沿任意的路线进行积分得:()⎰−=dP κdT αV T ln 根据题设 ,将P κT αT 1,1==,代入:⎰⎪⎭⎫ ⎝⎛−=dP P dT T V 11ln 得:C pT V +=lnln ,CT PV =,其中常数C 由实验数据可确定。

1.4 描述金属丝的几何参量是长度L ,力学参量是张力£,物态方程是()0£=T L f ,,,实验通常在1n p 下进行,其体积变化可以忽略。

线胀系数定义为:£1⎪⎭⎫ ⎝⎛∂∂=T L L α,等温杨氏模量定义为:TL A L Y ⎪⎭⎫ ⎝⎛∂∂=£,其中A 是金属丝的截面积。

一般来说,α和Y 是T 的函数,对£仅有微弱的依赖关系。

如果温度变化范围不大,可以看作常量。

热力学统计物理 课后习题 答案

热力学统计物理  课后习题  答案

第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。

解:已知理想气体的物态方程为nRT pV =由此得到 体胀系数TpV nR T V V p 11==⎪⎭⎫ ⎝⎛∂∂=α, 压强系数T pV nR T P P V 11==⎪⎭⎫ ⎝⎛∂∂=β 等温压缩系数p p nRT V p V V T 1)(112=-⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛∂∂-=κ 1.2证明任何一种具有两个独立参量T ,P 的物质,其物态方程可由实验测量的体胀系数和等温压缩系数,根据下述积分求得()⎰-=dp dT V T καln ,如果P T T 1,1==κα,试求物态方程。

解: 体胀系数 pT V V ⎪⎭⎫ ⎝⎛∂∂=1α 等温压缩系数 TT p V V ⎪⎪⎭⎫ ⎝⎛∂∂-=1κ 以T ,P 为自变量,物质的物态方程为 ()p T V V ,=其全微分为 dp V dT V dp p V dT T V dV T Tp κα-=⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂= dp dT VdV T κα-= 这是以T ,P 为自变量的完整微分,沿一任意的积分路线积分,得()⎰-=dp dT V T καln 根据题设 , 若 pT T 1,1==κα ⎰⎪⎪⎭⎫ ⎝⎛-=dp p dT T V 11ln 则有 C pT V +=ln ln , PV=CT 要确定常数C ,需要进一步的实验数据。

1.4描述金属丝的几何参量是长度L ,力学参量是张力£,物态方程是(£,L,T)=0,实验通常在大气压下进行,其体积变化可以忽略。

线胀系数定义为FT L L ⎪⎭⎫ ⎝⎛∂∂=1α ,等温杨氏模量定义为TL F A L Y ⎪⎭⎫ ⎝⎛∂∂= ,其中A 是金属丝的截面。

一般来说,α和Y 是T 的函数,对£仅有微弱的依赖关系。

如果温度变化范围不大,可以看作常数。

假设金属丝两端固定。

热力学统计物理练习题及答案

热力学统计物理练习题及答案

热力学·统计物理练习题一、填空题. 本大题70个小题,把答案写在横线上。

1.当热力学系统与外界无相互作用时,经过足够长时间,其宏观性质 时间改变,其所处的 为热力学平衡态。

2. 系统,经过足够长时间,其 不随时间改变,其所处的状态为热力学平衡态。

3.均匀物质系统的热力学平衡态可由力学参量、电磁参量、几何参量、化学参量等四类参量描述,但有 是独立的。

4.对于非孤立系统,当其与外界作为一个整体处于热力学平衡态时,此时的系统所处的状态是 。

5.欲描述非平衡系统的状态,需要将系统分成若干个小部分,使每小部分具有 小,但微观上又包含大量粒子,则每小部分都可视为 。

6.描述热力学系统平衡态的独立参量和 之间关系的方程式叫物态方程,其一般表达式为 。

7.均匀物质系统的独立参量有 个,而过程方程独立参量只有 个。

8.定压膨胀系数的意义是在 不变的条件下系统体积随 的相对变化。

9.定容压力系数的意义是在 不变条件下系统的压强随 的相对变化。

10.等温压缩系数的意义是在 不变条件下系统的体积随 的相对变化。

11.循环关系的表达式为 。

12.在无摩擦准静态过程中存在着几种不同形式的功,则系统对外界作的功∑-=δi i dy Y W ,其中i y 是 ,i Y 是与i y 相应的 。

13.W Q U U A B +=-,其中W 是 作的功。

14.⎰=+=0W Q dU ,-W 是 作的功,且-W 等于 。

15.⎰δ+δ2L 11W Q ⎰δ+δ2L 12W Q (1、2均为热力学平衡态,L 1、L 2为准静态过程)。

16.第一类永动机是指 的永动机。

17.内能是 函数,内能的改变决定于 和 。

18.焓是 函数,在等压过程中,焓的变化等于 的热量。

19.理想气体内能 温度有关,而与体积 。

20.理想气体的焓 温度的函数与 无关。

21.热力学第二定律指明了一切与热现象有关的实际过程进行的 。

22.为了判断不可逆过程自发进行的方向只须研究 和 的相互关系就够了。

热力学与统计物理 - 习题课一 2024-11-18

热力学与统计物理 - 习题课一 2024-11-18

第一章 习题10.(a)等温条件下,气体对外作功为22ln 2V VVVdVW pdV RT RT V===⎰⎰ln 2Q W RT =-=- ()0U ∆=(b)等压条件下,由PV RT =,得RTP V =所以 o o o o o o RT V P V V P W ==-=)2( 当体积为2V 时 22P VPV T T R R=== 1252TP P T Q C dT C T RT ===⎰11.(1) ()521 2.110P Q C n T T cal =-=⨯⎪⎭⎫⎝⎛==25041000n (2) 51.510VU nC T cal ∆=∆=⨯ (3)4610W Q U cal =-∆=⨯ (4) 因为0W =,所以51.510Q U cal =∆=⨯12.由热力学第肯定律Q d W d dU += (1)对于准静态过程有PdV W d -=对志向气体V dU C dT =气体在过程中汲取的热量为dTC Q d n =由此()n V C C dT PdV -= (2)由志向气体物态方程RT n PV += (3) 且 P VC C n R +-= 所以 ()()n V P V dT dVC C C C T V-=- (4) 对志向气体物态方程(3)求全微分有dV dP dT V P T+= (5)(4)与(5)联立,消去dTT ,有()()0n V n P dP dVC C C C P V-+-= (6)令n Pn V C C n C C -=-,可将(6)表示为0dV dPn V P += (7)若,,n V P C C C 均为常量,将(7)式积分即得nPV C = (8)式(8)表明,过程是多方过程.14. (a) 以T,P 为电阻器的状态参量,设想过程是在大气压下进行的,假如电阻器的温度也保持为27C 不变,则电阻器的熵作为状态函数也保持不变.(b) 若电阻器被绝热壳包装起来,电流产生的焦耳热Q 将全部被电阻器汲取而使其温度由i T 升为f T ,所以有2()P f imC T T i Rt -= 2600f i Pi RtT T K mC =+= (1卡 = 4.1868焦耳)139.1ln-•===∆⎰K cal T T mC TdT mC S ifT T p p fi15.依据热力学第肯定律得输血表达式Q d W d dU += (1)在绝热过程中,有0=Q d ,并考虑到对于志向气体dT C dU v = (2)外界对气体所作的功为:pdV w d -=,则有0=+pdV dT C v (3)由物态方程nRT pV =,全微分可得nRdT Vdp pdV =+ (4)考虑到对于志向气体有)1(-=-=γv v p C C C nR ,则上式变为dTC Vdp pdV v )1(-=+γ (5)把(5)和(3)式,有0=+pdV Vdp γ (6)所以有 V p V p sγ-=⎪⎭⎫⎝⎛∂∂ (7)若m 是空气的摩尔质量,m +是空气的质量,则有V m +=ρ和m m n +=ss s VV p p ⎪⎪⎭⎫⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂ρρ ssV p m V p ⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂+2ρ (8)将式(7)代入(8)式,有+=⎪⎪⎭⎫ ⎝⎛∂∂m pV p sγρ (9) 由此可得+=⎪⎪⎭⎫ ⎝⎛∂∂=m pV p v sγρ有物态方程RT m m nRT pV +==,代入上式,得m RTmpVv γγ==+17.(1) 0C 的水与温度为100C 的恒温热源接触后水温升为100C ,这一过程是不行逆过程.为求水、热源和整个系统的熵变,可以设想一个可逆过程,通过设想的可逆过程来求不行逆过程前后的熵变。

热力学与统计物理答案

热力学与统计物理答案

第一章 热力学的基本规律习题1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数T κ。

解:由得:nRT PV= V nRTP P nRT V ==; 所以, T P nR V T V V P 11)(1==∂∂=α T PV Rn T P P V /1)(1==∂∂=β P P nRT V P V V T T /111)(12=--=∂∂-=κ 习题 1.2 试证明任何一种具有两个独立参量的物质p T ,,其物态方程可由实验测得的体胀系数α及等温压缩系数T κ,根据下述积分求得:⎰-=)(ln dp dT VT κα如果1Tα=1Tpκ=,试求物态方程。

解: 因为0),,(=p V T f ,所以,我们可写成),(p T V V =,由此,dp p V dT T V dV T p )()(∂∂+∂∂=, 因为T T p p V V T V V )(1,)(1∂∂-=∂∂=κα 所以,dp dT VdVdp V dT V dV T T κακα-=-=,所以,⎰-=dp dT V T καln ,当p T T /1,/1==κα.CT pV pdpT dT V =-=⎰:,ln 得到 习题 1.3测得一块铜块的体胀系数和等温压缩系数分别为1510*85.4--=K α和1710*8.7--=n T p κ,T κα,可近似看作常量,今使铜块加热至10°C 。

问(1压强要增加多少np才能使铜块体积不变?(2若压强增加100n p ,铜块的体积改多少解:分别设为V xp n ∆;,由定义得:74410*8.7*10010*85.4;10*858.4----=∆=V x T κ所以,410*07.4,622-=∆=V p xn习题1.4描述金属丝的几何参量是长度L ,力学参量是张力η,物态方 程是0),,(=T L f η实验通常在n p 1下进行,其体积变化可忽略。

线胀系数定义为ηα)(1T L L ∂∂=等杨氏摸量定义为T LA L Y )(∂∂=η其中A 是金属丝的截面积,一般说来,α和Y 是T 的函数,对η仅有微弱的依赖关系,如果温度变化范不大,可看作常数。

热力学与统计物理课后答案.docx

热力学与统计物理课后答案.docx

《热力学与统计物理学》课后习题及解答选用教材:汪志诚主编,高等教育出版社第一章热力学的基本规律1.1试求理想气体的体胀系数压强系数卩和等温压缩系数為。

解:由理想气体的物态方程为PV = uRT 可得:1.2证明任何一种具有两个独立参量T,尸的物质,其物态方程可由实验测得的 体胀系数Q 及等温压缩系数紡,根据下述积分求得:\nV = \(adT-K T dP)以八尸为自变量,物质的物态方程为:V = V(T,P)如耘〒 专’试求物态方程。

解: 体胀系数: 其全微分为:dV dT + p ar dP dP = aVdT-VK T dP, y- = adT-K T dP体胀系数:压强系数:0 =等温压缩系数: 丄P等温压缩系数:这是以八P 为自变量的全微分,沿任意的路线进行积分得:}nV = j (adT-K T dP ) 根据题设,将6(=丄,K T =丄,代入:ln/=f 丄dT -丄dPT T P }{T P 丿得:lnr = ln- + C, PV = CT,其中常数c 由实验数据可确定。

P1.5描述金属丝的儿何参量是长度厶,力学参量是张力£,物态方程是 ./、(£, L, r ) = o,实验通常在1几下进行,其体积变化可以忽略。

线胀系数定义为:“丄(学],等温杨氏模量定义为:Y = -(^},其中/是 L (打人 牡。

厶力金属丝的截面积。

一般来说,a 和Y 是厂的函数,对£仅有微弱的依赖关系。

如 果温度变化范围不大,可以看作常量。

假设金属丝两端固定。

试证明,当温度由 7;降至3时,其张力的增加为:\^ = -YAa (T 2-T^ 解:由/(£,厶,T )= 0,可得:£ = £(L, T )微分为:〃£ = (等)血+ (善]刃\由题意可知:dL = O.即:d£ = -aAYdT,积分得:A£ = -aAY(T 2 ・TJ1. 7在25 °C 下,压强在0至1000 p n 之间,测得水的体积为:K = (18.066-0.715x 10~3P + 0.046x 1 O'6P 2\m\mor [Q 如果保持温度不变,将 1 mol 的水从1几加压至1000 求外界所作的功。

热力学与统计物理课后习题答案第一章

热力学与统计物理课后习题答案第一章

1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。

解:已知理想气体的物态方程为,pV nRT = (1)由此易得11,p V nR V T pV Tα∂⎛⎫=== ⎪∂⎝⎭ (2) 11,V p nR p T pV Tβ∂⎛⎫=== ⎪∂⎝⎭ (3) 2111.T T V nRT V p V p pκ⎛⎫⎛⎫∂⎛⎫=-=--= ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭ (4)1.2 证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κT ,根据下述积分求得:()ln T V =αdT κdp -⎰如果11,T T pακ==,试求物态方程。

解:以,T p 为自变量,物质的物态方程为(),,V V T p =其全微分为.p TV V dV dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 全式除以V ,有11.p TdV V V dT dp V V T V p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭根据体胀系数α和等温压缩系数T κ的定义,可将上式改写为.T dVdT dp Vακ=- (2) 上式是以,T p 为自变量的完整微分,沿一任意的积分路线积分,有()ln .T V dT dp ακ=-⎰ (3)若11,T T pακ==,式(3)可表为11ln .V dT dp Tp ⎛⎫=- ⎪⎝⎭⎰ (4)选择图示的积分路线,从00(,)T p 积分到()0,T p ,再积分到(,T p ),相应地体积由0V 最终变到V ,有000ln=ln ln ,V T pV T p - 即000p V pV C T T ==(常量), 或.pV CT = (5)式(5)就是由所给11,T T pακ==求得的物态方程。

确定常量C 需要进一步的实验数据。

1.3 在0C 和1n p 下,测得一铜块的体胀系数和等温压缩系数分别为51714.8510K 7.810.n p ακ----=⨯=⨯T 和T ακ和可近似看作常量,今使铜块加热至10C 。

热力学与统计物理课后习题答案第一章复习课程

热力学与统计物理课后习题答案第一章复习课程

热力学与统计物理课后习题答案第一章1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。

解:已知理想气体的物态方程为,pV nRT = (1)由此易得11,p V nR V T pV Tα∂⎛⎫=== ⎪∂⎝⎭ (2) 11,V p nR p T pV Tβ∂⎛⎫=== ⎪∂⎝⎭ (3) 2111.T T V nRT V p V p pκ⎛⎫⎛⎫∂⎛⎫=-=--= ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭ (4)1.2 证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κT ,根据下述积分求得:()ln T V =αdT κdp -⎰如果11,T T pακ==,试求物态方程。

解:以,T p 为自变量,物质的物态方程为(),,V V T p =其全微分为.p TV V dV dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 全式除以V ,有11.p TdV V V dT dp V V T V p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭根据体胀系数α和等温压缩系数Tκ的定义,可将上式改写为.TdVdT dpVακ=-(2)上式是以,T p为自变量的完整微分,沿一任意的积分路线积分,有()ln.TV dT dpακ=-⎰(3)若11,TT pακ==,式(3)可表为11ln.V dT dpT p⎛⎫=-⎪⎝⎭⎰(4)选择图示的积分路线,从00(,)T p积分到()0,T p,再积分到(,T p),相应地体积由V最终变到V,有000ln=ln ln,V T pV T p-即00p VpVCT T==(常量),或.pV CT=(5)式(5)就是由所给11,T T pακ==求得的物态方程。

确定常量C 需要进一步的实验数据。

1.3 在0C 和1n p 下,测得一铜块的体胀系数和等温压缩系数分别为51714.8510K 7.810.n p ακ----=⨯=⨯T 和T ακ和可近似看作常量,今使铜块加热至10C 。

热力学统计物理练习题及答案

热力学统计物理练习题及答案

热力学统计物理练习题及答案热力学统计物理练习题及答案2热力学·统计物理练习题一、填空题. 本大题70个小题,把答案写在横线上。

1.当热力学系统与外界无相互作用时,经过足够长时间,其宏观性质时间改变,其所处的为热力学平衡态。

2.系统,经过足够长时间,其不随时间改变,其所处的状态为热力学平衡态。

3.均匀物质系统的热力学平衡态可由力学参量、电磁参量、几何参量、化学参量等四类参量描述,但有是独立的。

4.对于非孤立系统,当其与外界作为一个整体处于热力学平衡态时,此时的系统所处的状态是。

5.欲描述非平衡系统的状态,需要将系统分成若干个小部分,使每小部分具有小,但微观上又包含大量粒子,则每小部分都可视为。

6.描述热力学系统平衡态的独立参量和之间关系的方程式叫物态方程,其一般表达式为。

7.均匀物质系统的独立参量有个,而过程方程独立参量只有个。

8.定压膨胀系数的意义是在不变的条件下系统体积随的相对变化。

9.定容压力系数的意义是在不变条件下系统的压强随的相对变化。

10.等温压缩系数的意义是在不变条件下系统的体积随的相对变化。

11.循环关系的表达式为。

12.在无摩擦准静态过程中存在着几种不同形式的功,则系统对外界作的功∑-=δi i dy Y W ,其中i y 是,i Y 是与i y 相应的。

13.W Q U U A B +=-,其中W 是作的功。

14.?=+=0W Q dU ,-W 是作的功,且-W 等于。

15.?δ+δ2L 11W Q ?δ+δ2L 12W Q (1、2均为热力学平衡态,L 1、L 2为准静态过程)。

16.第一类永动机是指的永动机。

17.内能是函数,内能的改变决定于和。

18.焓是函数,在等压过程中,焓的变化等于的热量。

19.理想气体内能温度有关,而与体积。

320.理想气体的焓温度的函数与无关。

21.热力学第二定律指明了一切与热现象有关的实际过程进行的。

22.为了判断不可逆过程自发进行的方向只须研究和的相互关系就够了。

热力学与统计物理练习题1答案

热力学与统计物理练习题1答案

热力学与统计物理 练习题1答案一、简答题1. 热力学第二定律的克氏表述;不能把热量从低温物体传到高温物体而不引起其它变化。

2. 能量均分定理。

对于处在温度为T 的平衡状态的经典系统,粒子能量中每一个平方项的 平均值等于kT 21。

3. 单元复相系的平衡条件;(5分) 设有两相 βα,则两相平衡条件为βαβαβαμμ===p p T T分别为热平衡条件、力学平衡条件和相变平衡条件。

4. 熵增原理。

(5分) 孤立系统的熵永不减少。

二、计算机题1、试证明,在某一过程中理想气体的热容量n C 如果为常数,这个过程一定是多方过程,多方过程指数Vn Pn C C C C n --=,假设气体的定压热容量和定容热容量是常数。

解:根据热力学第一定律pdV dT C dT C V n +=由RT pV =,有RdT Vdp pdV =+,将dT 代入上式,得01=-+⎪⎭⎫⎝⎛--Vdp R C C pdV R C C V n V n两边除以pV ,再经整理,得到0=+pdpV dV n,经积分即得C pV n =。

2、图1.16所示的循环称狄塞尔(Diesel )循环。

试证明,理想气体在狄塞尔循环中的效率为 ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=1213121311V V V V V V V V γγγη , 假设PC 和V C 是常数。

解:狄塞尔循环为等压加热循环,在等压过程32→中,吸收热量(),231T T C Q p -=,在等容过程14→中,放出热量()142T T C Q V -=,所以该循环的效率()()()231423142312111T T T T T T C T T C T T C Q Q Q p V p ---=----=-=γη (1) 因32→为等压过程,所以2323V V T T =(2) 因21→和43→为绝热过程,所以122111--=γγV T V T 和133114--=γγV T V T (其中41V V =)由上两式,得到,1122113314--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫⎝⎛=-γγVV T V V T T T (3)将(3)式代入(1)式,并考虑到(2)式,经化简之后,则得⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=1213121311V V V V V V V V γγγη。

热力学统计物理练习试题和答案

热力学统计物理练习试题和答案

热力学统计物理练习试题和答案WORD 格式整理热力学·统计物理练习题一、填空题 . 本大题 70 个小题,把答案写在横线上。

1. 当热力学系统与外界无相互作用时 , 经过足够长时间 , 其宏观性质时间改变,其所处的为热力学平衡态。

2.系统,经过足够长时间,其不随时间改变,其所处的状态为热力学平衡态。

3.均匀物质系统的热力学平衡态可由力学参量、电磁参量、几何参量、化学参量等四类参量描述,但有是独立的。

4.对于非孤立系统,当其与外界作为一个整体处于热力学平衡态时,此时的系统所处的状态是。

5.欲描述非平衡系统的状态,需要将系统分成若干个小部分,使每小部分具有小,但微观上又包含大量粒子,则每小部分都可视为。

6.描述热力学系统平衡态的独立参量和之间关系的方程式叫物态方程,其一般表达式为。

7.均匀物质系统的独立参量有个,而过程方程独立参量只有个。

8.定压膨胀系数的意义是在不变的条件下系统体积随的相对变化。

9.定容压力系数的意义是在不变条件下系统的压强随的相对变化。

10.等温压缩系数的意义是在不变条件下系统的体积随的相对变化。

11.循环关系的表达式为。

12.在无摩擦准静态过程中存在着几种不同形式的功,则系统对外界作的功 W Y i dy i ,其中 y i 是, Y i 是与 y i 相应的。

13. U B U A Q W ,其中是作的功。

W14. dUQW0 ,-W 是作的功,且 -W 等于。

22(、均为热力学平衡态1、L2 为15.Q W QW ,L 1L 1 1 2 1L 2准静态过程)。

16.第一类永动机是指的永动机。

17.内能是函数,内能的改变决定于和。

18.焓是函数,在等压过程中,焓的变化等于的热量。

19.理想气体内能温度有关,而与体积。

学习参考资料分享WORD 格式整理20.理想气体的焓温度的函数与无关。

21.热力学第二定律指明了一切与热现象有关的实际过程进行的。

22.为了判断不可逆过程自发进行的方向只须研究和的相互关系就够了。

热力学与统计物理答案汪志诚

热力学与统计物理答案汪志诚

热力学与统计物理答案(汪志诚) 第一章热力学的基本规律1.1 热力学系统的平衡态及其描述1.什么是热力学系统?热力学系统有哪些分类?答:热力学系统是指由大量相互作用的粒子组成的集合体,可以用一些宏观物理量来描述其状态。

热力学系统可以分为孤立系统、封闭系统和开放系统。

2.什么是热力学平衡态?热力学平衡态有哪些性质?答:热力学平衡态是指在没有外界影响的情况下,系统的宏观性质不随时间变化的状态。

热力学平衡态具有均匀性、各向同性和稳定性等性质。

3.如何描述热力学系统的状态?常用的状态参量有哪些?答:热力学系统的状态可以用一组状态参量来描述,常用的状态参量有体积、温度、压力和熵等。

1.2 热力学第零定律温度1.热力学第零定律的内容是什么?如何理解?答:热力学第零定律的内容是:如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡(温度相同),则它们彼此也必定处于热平衡。

这个定律说明了温度是描述热力学系统状态的一个重要参量,也是进行热交换的驱动力。

2.什么是温度?温度有哪些性质?答:温度是描述热力学系统状态的一个宏观参量,表示系统的冷热程度。

温度具有可加性和可比较性等性质,可以用温度计来测量。

3.温度与微观粒子运动的关系是什么?答:温度与微观粒子运动的关系可以通过麦克斯韦-玻尔兹曼分布来描述。

在一定温度下,系统中微观粒子的速度分布服从麦克斯韦-玻尔兹曼分布,粒子的平均动能与温度成正比。

1.3 热力学第一定律能量守恒定律1.热力学第一定律的内容是什么?如何理解?答:热力学第一定律的内容是:物体内能的增加等于物体吸收的热量和对物体所作的功的总和。

这个定律说明了能量守恒和转换的规律,即能量既不会凭空产生也不会凭空消失,只会从一种形式转换成另一种形式。

2.什么是内能?内能有哪些性质?答:内能是指热力学系统中所有微观粒子的动能和势能之和。

内能是一个状态函数,具有可加性和单调性等性质。

热力学与统计物理学习题答案

热力学与统计物理学习题答案

第一章 热力学的基本规律习题1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数T κ。

解:由 得:nRT PV =V nRTP P nRT V ==; 所以, T P nR V T V V P 11)(1==∂∂=αT PV RnTP P V /1)(1==∂∂=βP PnRT V P V V T T /111)(12=−−=∂∂−=κ习题1.2 试证明任何一种具有两个独立参量的物质,其物态方程可由实验测得的体胀系数p T ,α及等温压缩系数T κ,根据下述积分求得:∫−=)(ln dp dT V T κα如果,试求物态方程。

解: 因为,所以,我们可写成0),,(=p V T f ),(p T V V =,由此, dp pV dT T VdV T p ()(∂∂+∂∂=,因为T T p pVV T V V (1,)(1∂∂−=∂∂=κα 所以, dp dT VdVdp V dT V dV T T κακα−=−=,所以, ,当∫−=dp dT V T καln p T T /1,/1==κα.CT pV pdpT dT V =−=∫:ln 得到 习题 1.3测得一块铜块的体胀系数和等温压缩系数分别为和,可近似看作常量,今使铜块加热至。

问(1压强要增加多少才能使铜块体积不变?(2若压强增加,铜块的体积改多少 1510*85.4−−=K α1710*8.7−−=n T p κT κα,解:分别设为,由定义得:V xp n Δ;74410*8.7*10010*85.4;10*858.4−−−−=Δ=V x T κ所以,410*07.4,622−=Δ=V p x n 习题 1.4描述金属丝的几何参量是长度L ,力学参量是张力η,物态方程是0),,(=T L f η实验通常在下进行,其体积变化可忽略。

线胀系数定义为n p 1ηα)(1T L L ∂∂=等杨氏摸量定义为T LA L Y )(∂∂=η其中A 是金属丝的截面积,一般说来,α和Y 是T 的函数,对η仅有微弱的依赖关系,如果温度变化范不大,可看作常数。

《热力学与统计物理学》习题解答

《热力学与统计物理学》习题解答

《热力学与统计物理学》习题解答
热力学与统计物理学习题解答:
P1. 一个双分子物质中有两个粒子,其中一个是A粒子而另一个则是B
粒子。

当它们达到蒸汽相时,请估计它们各自的平均表面速度。

答:根据热力学原理,在蒸汽相中,A粒子和B粒子的平均表面速
度应该是相同的,且都等于Boltzmann常数乘以绝对温度的平方根
(kT^(1/2))。

P2. 甲烷气体在室温下的布朗运动速度是多少?
答:甲烷气体的平均布朗运动速度等于Boltzmann常数乘以绝对
温度的平方根 (kT^(1/2)),在室温(293K)下,则为1.25×10^5 m/s。

P3. 为什么热力学第三定律的最终状态是均匀的熵?
答:热力学第三定律的最终状态是均匀的熵,这是因为概率分布
函数定义熵,而不断扩大分布函数来接近熵最大值,就可以最大化熵。

而这正是热力学第三定律所要求的。

热力学·统计物理答案 第一章(完整资料).doc

热力学·统计物理答案 第一章(完整资料).doc

【最新整理,下载后即可编辑】第一章 热力学的基本规律习题1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数T κ。

解:由得:nRT PV =VnRTP P nRT V ==; 所以, TP nR V T V V P 11)(1==∂∂=αT PVRn T P P V /1)(1==∂∂=βP P nRT V P V V T T /111)(12=--=∂∂-=κ习题1.2 试证明任何一种具有两个独立参量的物质p T ,,其物态方程可由实验测得的体胀系数α及等温压缩系数T κ,根据下述积分求得:⎰-=)(ln dp dT V T κα如果1Tα= 1Tpκ=,试求物态方程。

解: 因为0),,(=p V T f ,所以,我们可写成),(p T V V =,由此,dp pVdT T V dV T p )()(∂∂+∂∂=, 因为T T p pVV T V V )(1,)(1∂∂-=∂∂=κα 所以,dp dT VdVdp V dT V dV T T κακα-=-=,所以,⎰-=dp dT V T καln ,当p T T /1,/1==κα.CT pV pdpT dT V =-=⎰:,ln 得到习题 1.3测得一块铜块的体胀系数和等温压缩系数分别为1510*85.4--=K α和1710*8.7--=n T p κ,T κα,可近似看作常量,今使铜块加热至10°C 。

问(1压强要增加多少np 才能使铜块体积不变?(2若压强增加100np ,铜块的体积改多少 解:分别设为V xp n ∆;,由定义得:74410*8.7*10010*85.4;10*858.4----=∆=V x T κ所以,410*07.4,622-=∆=V p x n 错习题1.4描述金属丝的几何参量是长度L ,力学参量是张力η,物态方程是0),,(=T L f η实验通常在n p 1下进行,其体积变化可忽略。

线胀系数定义为ηα)(1T L L ∂∂=等杨氏摸量定义为T LA L Y )(∂∂=η其中A 是金属丝的截面积,一般说来,α和Y 是T 的函数,对η仅有微弱的依赖关系,如果温度变化范不大,可看作常数。

热力学与统计物理试题及答案

热力学与统计物理试题及答案

一.选择(25分)1.下列不是热学状态参量的是( )A.力学参量B.几何参量C.电流参量 D 。

化学参量2。

下列关于状态函数的定义正确的是( )A.系统的吉布斯函数是:G=U —TS+PVB 。

系统的自由能是:F=U+TSC 。

系统的焓是:H=U —PVD.系统的熵函数是:S=U/T3.彼此处于热平衡的两个物体必存在一个共同的物理量,这个物理量就是( )A.态函数B.内能 C 。

温度 D 。

熵4。

热力学第一定律的数学表达式可写为( )A 。

W Q U U AB +=- B.W Q U U B A +=-C 。

W Q U U A B -=-D 。

W Q U U B A -=-5.熵增加原理只适用于( )A 。

闭合系统 B.孤立系统 C 。

均匀系统 D.开放系统二.填空(25分)1.孤立系统的熵增加原理可用公式表示为( ).2.热力学基本微分方程du=( )。

3.热力学第二定律告诉我们,自然界中与热现象有关的实际过程都是()。

4.在S。

V不变的情况下,平衡态的()最小。

5。

在T。

VB不变的情形下,可以利用( )作为平衡判据。

三.简答(20分)1.什么是平衡态?平衡态具有哪些特点?2.什么是开系,闭系,孤立系?四.证明(10分)证明范氏气体的定容热容量只是温度的函数,与比容无关五.计算(20分)试求理想气体的体胀系数α,压强系数β,等温压缩系数T K参考答案一。

选择 1~5AACAB二。

填空1。

ds≧02。

Tds—pdv3。

不可逆的4。

内能5。

自由能判据三.简答1.一个孤立系统,不论其初态如何复杂,经过足够长的时间后,将会达到这样状态,系统的各种宏观性质在长时间内不发生变化,这样的状态称为热力学平衡态.特点:不限于孤立系统弛豫时间涨落热动平衡2.开系:与外界既有物质交换,又有能量交换的系统闭系:与外界没有物质交换,但有能量交换的系统,孤立系:与其他物体既没有物质交换也没有能量交换的系统四.证明解证:范氏气体()RT b v v a p =-⎪⎭⎫ ⎝⎛+2 T v U ⎪⎭⎫ ⎝⎛∂∂=T V T p ⎪⎭⎫ ⎝⎛∂∂—p =T 2va pb v R =-- T v U ⎪⎭⎫ ⎝⎛∂∂=2va ⇒)(),(0T f v a U v T U +-= =V C V T U ⎪⎭⎫ ⎝⎛∂∂=)(T f ' ;与v 无关。

热力学统计物理试题及其参考答案完整版

热力学统计物理试题及其参考答案完整版
《热力学统计物理》试题参考解答及评分标准
一、1. B, 2. D, 3. A, 4. A, 5. B, 6. A, 7. C, 8. C, 9.A, 10. A.
评分标准:本题共20分, 每个答案2分。
二、1.状态,2.系统从外界吸收,3. , 4. , ,
5. , 6. 0, 7. , 8.负温度状态, 9. ,
(4)
评分标准:(1)和(4)式各2分,(2)(3)式各3分
五、计算题:
1.解:范氏方程可表为
对范氏方程取导数得
(1)
按循环关系式,我们有
(2)
因此
(3)
(4)
. (5)
评分标准:(1)--(5)式各2分。
2.解:双原子分子的转动自由度 =2,选广义坐标和广义动量为 。双原子分子的配分函数为
.(1)
双原子分子理想气体的转动内能和熵
.(2)
。(3)
评分标准:(1)式4分,(2)和(3)式各3分。
令 ,得
=- <0.(2)
这里应用了 和 。
再由
.(3)
令 ,得
= .(4)
这里应用了 和 .
评分标准:(1)和(3)式各2分,(2)和(4)式各3分。
3.证明:由 (1)
绝对零度下自由电子气体中电子动量(大小)的分布为
(2)
其中 是费米动量,)
因此电子的平均速率为
四、1.证:由正则分布 ,得
.(1)
将上式代入广义熵的表示式,得
.(2)
上式即正则系综中系统熵的表示式。
或者,由正则分布中熵的表示式出发
,(3)
利用(1)式,由上式得熵的普遍表示式
. (4)
评分标准:(1),(2)式各5分。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热力学与统计物理 练习题1答案一、简答题1. 热力学第二定律的克氏表述;不能把热量从低温物体传到高温物体而不引起其它变化。

2. 能量均分定理。

对于处在温度为T 的平衡状态的经典系统,粒子能量中每一个平方项的 平均值等于kT 21。

3. 单元复相系的平衡条件;(5分) 设有两相 βα,则两相平衡条件为βαβαβαμμ===p p T T分别为热平衡条件、力学平衡条件和相变平衡条件。

4. 熵增原理。

(5分) 孤立系统的熵永不减少。

二、计算机题1、试证明,在某一过程中理想气体的热容量n C 如果为常数,这个过程一定是多方过程,多方过程指数Vn Pn C C C C n --=,假设气体的定压热容量和定容热容量是常数。

解:根据热力学第一定律pdV dT C dT C V n +=由RT pV =,有RdT Vdp pdV =+,将dT 代入上式,得01=-+⎪⎭⎫⎝⎛--Vdp R C C pdV R C C V n V n两边除以pV ,再经整理,得到0=+pdpV dV n,经积分即得C pV n =。

2、图1.16所示的循环称狄塞尔(Diesel )循环。

试证明,理想气体在狄塞尔循环中的效率为 ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=1213121311V V V V V V V V γγγη , 假设PC 和V C 是常数。

解:狄塞尔循环为等压加热循环,在等压过程32→中,吸收热量(),231T T C Q p -=,在等容过程14→中,放出热量()142T T C Q V -=,所以该循环的效率()()()231423142312111T T T T T T C T T C T T C Q Q Q p V p ---=----=-=γη (1) 因32→为等压过程,所以2323V V T T =(2) 因21→和43→为绝热过程,所以122111--=γγV T V T 和133114--=γγV T V T (其中41V V =)由上两式,得到,1122113314--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫⎝⎛=-γγVV T V V T T T (3)将(3)式代入(1)式,并考虑到(2)式,经化简之后,则得⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=1213121311V V V V V V V V γγγη。

3、试证明,一个均匀物体在准静态等压过程中熵随体积的增减取决于等压下温度随体积的增减。

解:这可以由压力不变下,熵对体积的偏导数PV S ⎪⎭⎫⎝⎛∂∂的符号证明之。

就定压膨胀系数PT V V ⎪⎭⎫ ⎝⎛∂∂=1α而论,选P T ,为独立变量是方便的;于是问题就归结于把 PV S ⎪⎭⎫ ⎝⎛∂∂中的独立变量()p V ,变换到独立变量(,)T p 。

这可采用下面两种方法来做。

(i) P V S ⎪⎭⎫⎝⎛∂∂=P P V T T S ⎪⎭⎫⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂=αV T C T V T S P PP //=⎪⎭⎫⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂ 因对均匀物体,0>P C ;而0≥T 及0≥V ,所以 PV S ⎪⎭⎫⎝⎛∂∂的符号与α的符号相同。

即在准静态等压过程中熵S 随体积V 的增减取决于温度随体积的增减。

4、由热力学公式VC S dT T=⎰及低温下电子气体的热容量,求电子气体的熵。

解:已知在低温下电子气体的热容量为202V kT C Nk πμ⎛⎫= ⎪⎝⎭∴22000022TT V C k kTS dT Nk dT NkT ππμμ⎛⎫=== ⎪⎝⎭⎰⎰ 按上面的结果,在0T →时,我们有0S →,这与热力学第三定律的要求相符合。

5、在C 025下,压力在0至1000atm 之间,测得水的体积为:3623118.0660.715100.04610V p p cm mol ---=-⨯+⨯⋅,如果保持温度不变,将1 mol 的水从1 atm 加压至1000 atm ,求外界所作的功。

解:写出 2cp bp a V ++=,则()()dp p dp cp b dV 6310046.0210715.02--⨯⨯+⨯-=+=所要求的功 ()1000132100013221221⎪⎭⎫⎝⎛+-=+-=-=⎰⎰cp bp dp cp b p pdV W V V()()()3362331010046.0321010715.021⨯⨯⨯+⨯⨯-⨯=-- 1131.3383.326--⋅=⋅⋅=mol J molcm atm ()J cm atm 101324.013=⋅6、试讨论以平衡辐射为工作物质的卡诺循环,计算其效率。

解:已知平衡辐射场的熵为V aT S 334=在可逆绝热过程中辐射场的熵不变,故有 T 3V = 恒量 (25.5)由于u p 31=,4aT u =,∴ 43131aT u p == (1)上式说明平衡辐射场的压力与体积无关,可逆等压过程也就是可逆等温过程。

图23.3从(25.5)和(1)式,可得在可逆绝热过程中,有 =34pV 恒量 (2)下面计算此卡诺循环的效率。

从等温膨胀过程1→2中,系统吸收热量)(341241111V V aT S T Q -==∆在等温压缩过程3→4中,系统放出热量)(344342222V V aT S T Q -==∆,在绝热过程2→3和4→1中,没有热量交换。

所以,循环效率为)()()(124143421241121V V T V V T V V T Q Q Q ----=-=η(3)又因为状态2和3在同一条绝热线上;状态4和1也在同一条绝热线上,故分别得到332231V T V T =;432131V T V T =将上两式代入(3)式即得121T T T -=η(4)这与以理想气体为工作物质的卡诺循环效率的公式相同。

7、在三相点附近,固态氨的饱和蒸汽压(单位为大气压)方程为 3754ln 18.70p T=-(1)液态的蒸汽压方程为 3063ln 15.16p T=-(2) 试求三相点的温度和压力,氨的气化热和升华热,在三相点的溶解热。

解:(ⅰ)固态氨的饱和蒸汽压方程决定了氨的固态—汽态的相平衡曲线;液态氨的饱和蒸汽压方程决定氨的液态—汽态的相平衡曲线。

而三相点是两条曲线的交点,因此三相点的温度3T 满足下面方程:333754306318.7015.16T T -=- 解出3T ,得 3195T K =;(ⅱ)相变潜热可由公式 ln Lp A RT=-与实验公式(1)相比较而求得:3754L =升化R所以,43754 3.1210L R J mol ==⨯升化。

同理,43063 2.5410L R J mol ==⨯汽化。

(ⅲ)在三相点,L L L =+升化汽化溶解所以,3(37543063) 5.810L L L R J mol =-=-=⨯溶解升化汽化 8、线性谐振子能量的经典表示为2222121q p μωμευ+=试计算经典近似的振动配分函数v Z 以及振动的内能和熵。

解:对于线性谐振子,1=r ,所以 []q p kT q kT p h Z d d 2/2/exp 1222⎰⎰∞∞---=μωμυ [][]q kT q p kT p h d 2/exp d 2/exp 1222⎰⎰+∞∞-+∞∞---=μωμωμωππμηkTkT kT h ==2/122/1)/2()2(1(1)由N 个经典振子组成的系统的内能U 和熵S 为NkTN Z NU v ==∂∂-=ββυ1ln(2)⎪⎪⎭⎫ ⎝⎛∂∂-=υυυββZ Z Nk S ln ln⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+=11ln 1ln ωβββωηηNk kT Nk(3)1212111T T Q Q Q W -≤-='=η。

三、综合计算题1、 在p V -图上范氏气体等温线上的极大点和极小点连成一条曲线NCJ (见图),请证明这条曲线的方程是:3(2)pv a v b =-。

并说明这条曲线分割出来的区域Ⅰ、Ⅱ、Ⅲ的意义。

解:(ⅰ)范氏方程: 2()a p v b RT v ⎛⎫+-= ⎪⎝⎭得: 2RT a p v b v=-- 232()Tp RT a v v b v ∂⎛⎫∴=-+⎪∂-⎝⎭因为等温线上的极大点和极小点应满足0Tp v ∂⎛⎫=⎪∂⎝⎭的条件,所以232()RT a v b v =-或32()RT av b v b v =-- 以此式代入物态方程得: 322()a a p v b v v =-- 或 3(2)pv a v b =-。

(ⅱ)在图中所示的区域Ⅰ是过热液体区,Ⅲ是过冷蒸汽区,Ⅱ是不能实现的状态,因为在此区域中,0Tp V ∂⎛⎫>⎪∂⎝⎭ ,不满足平衡稳定性条件。

2、 理想气体分别经等压过程和等容过程,温度由T 1至T 2,假设γ是常数,试证明前者的熵增为后者的γ倍。

解:理想气体在准静态过程中,有Vdp dT C pdV dT C dQ P V -=+=(1)在等压过程中,熵增为222111()ln p p p p C dT T T TdT S C C T T TT T ∆===⎰⎰(2) 在等容过程中,熵增为121212ln )(T TC T dT T T C T dT C T T S V V V V ===⎰⎰∆(3)故γ∆∆==Vp Vp C C S S )()( (如C p 和C V 是常数)。

证明上式的另一种方法是:对于理想气体,我们已知(,)ln ln V S T V C T nR V so =++ (15.5) (,)ln ln p S T p C T nR p so =-+ (15.6) 将上两式分别用于等容和等压过程,可得2121ln()()ln V p pV V pT C S C T T S C C T γ∆===∆热力学与统计物理 练习题2答案一、简答题1、设有两相 βα,则两相平衡条件为 βαβαβαμμ===p p T T 分别为热平衡条件、力学平衡条件和相变平衡条件。

2、 对于处在温度为T 的平衡态的经典系统,粒子能量中每一个平方项的平均值等于kT 21 二、计算题1、 解:范氏气体的物态方程为 2RT ap V b V=-- 故气体对外界作功 22112V V V V RT a W pdV dVV b V ⎛⎫'==- ⎪-⎝⎭⎰⎰⎰⎰--=21212V V V V VdV a b V dVRT ⎪⎪⎭⎫⎝⎛-+--=1212lnV a V a b V b V RT 。

2、试证明,在相同的压力降落下,气体在准静态绝热膨胀中的温度降落大于在节流过程中的温度降落。

解:据题意,本题就是要证明:0>⎪⎪⎭⎫ ⎝⎛∂∂-⎪⎪⎭⎫ ⎝⎛∂∂HS p T p T 因为 SP H S p H H T p T p T ⎪⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂ 即0>=⎪⎪⎭⎫⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂-⎪⎪⎭⎫ ⎝⎛∂∂PS P H S C V p H H T p T p T 上式中用到P P T H C ⎪⎭⎫ ⎝⎛∂∂= 和 V p H S=⎪⎪⎭⎫⎝⎛∂∂。

相关文档
最新文档