快速成型技术的发展及关键技术
快速成型技术的多领域应用与发展
快速成型技术的多领域应用与发展摘要:简要介绍了快速成型技术的基本原理、工艺方法和技术特点。
阐述了快速成型技术在工业造型、制造、模具、医学、航天等多领域的应用,探讨了快速成型技术今后的发展趋势。
关键词:快速成型技术原型快速制模应用快速成型技术RP(Rapid Protot-yping RP)是20世纪80年代末开始发展起来的一种基于逐层累加成型的新兴制作工艺,它是集多种先进科技于一体的能够迅速将设计思想转化为产品的现代先进制造技术。
它为零件原型制作、新设计思想的校验等方面提供了一种高效低成本的实现手段。
快速成型工艺是一个涉及CAD/CAM、逆向工程技术、分层制造技术、数据编程、材料编制、材料制备、工艺参数设置及后处理等环节的集成制造过程。
通俗地说,快速成型技术就是利用三维CAD的数据,通过快速成型机,将一层层的材料堆积成实体原型。
近十几年来,随着全球市场一体化的形成,制造业的竞争十分激烈。
尤其是计算机技术的迅速普遍和CAD/CAM技术的广泛应用,使得RP技术得到了异乎寻常的高速发展,表现出很强的生命力和广阔的应用前景。
快速成型制造工艺PR技术是将传统的“去除”加工方法(由毛坯切去多余材料形成产品)改变为“增加”加工方法(将材料逐层累积形成产品),采用离散分层/堆积的原理,由CAD模型直接驱动,快速制作原型或三维实体零件的一种全新的制造技术。
快速成型技术发展至今,以其技术的高集成性、高柔性、高速性而得到了迅速发展,目前,快速成型的工艺方法已有几十种之多,其中主要工艺有四种基本类型: 光固化成型法(Stereo lithography Apparatus, SLA)、叠层实体制造法(Laminated Object Manufacturing, LOM)、选择性激光烧结法(Selective Laser Sintering, SLS) 和熔融沉积制造法(Fused Deposition Manufacturing, FDM)。
各种快速成型的优点及缺点及将来发展趋势
各种快速成型的优点及缺点及将来发展趋势各种快速成型的优点及缺点及将来发展趋势1.光固化成型(SLA)优点:(1)尺⼨精度⾼。
SLA原型的尺⼨精度可以达到±0.1mm(2)表⾯质量好。
虽然在每层固化时侧⾯及曲⾯可能出现台阶,但上表⾯仍可以得到玻璃状的效果。
(3)可以制作结构⼗分复杂的模型。
(4)可以直接制作⾯向熔模精密铸造的具有中空结构的消失型。
缺点:(1)尺⼨的稳定性差。
成型过程中伴随着物理和化学变化,导致软薄部分易产⽣翘曲变形,因⽽极⼤地影响成型件的整体尺⼨精度。
(2)需要设计成型件的⽀撑结构,否则会引起成型件的变形。
⽀撑结构需在成型件未完全固化时⼿⼯去除,容易破坏成形性。
(3)设备运转及维护成本⾼。
由于液态树脂材料和激光器的价格较⾼,并且为了使光学元件处于理想的⼯作状态,需要进⾏定期的调整和维护,费⽤较⾼。
(4)可使⽤的材料种类较⼩。
⽬前可使⽤材料主要为感光性液态树脂材料,并且在太多情况下,不能对成型件进⾏抗⼒和热量的测试。
(5)液态树脂具有⽓味和毒性,并且需要避光保护,以防⽌其提前发⽣聚合反应,选择时有局限性。
(6)需要⼆次固化。
在很多情况下,经过快速成型系统光固化后的原型树脂并未完全被激光固化,所以通常需要⼆次固化。
(7)液态树脂固化后的性能不如常⽤的⼯业塑料,⼀般较脆,易断裂,不便进⾏机加⼯。
2.分层实体制造(LOM)优点:(1)成型速度较快。
由于只需要使⽤激光束沿物体的轮廓进⾏切割,⽆须扫描整个断⾯,所以成型速度很快,因⽽常⽤语加⼯内部结构简单的⼤型零件。
(2)原型精度⾼,翘曲变形⼩。
(3)原型能承受⾼达200摄⽒度的温度,有较⾼的硬度和较好的⼒学性能。
(4)⽆需设计和制作⽀撑结构。
(5)可进⾏切削加⼯。
(6)废料易剥离,⽆须后固化处理。
(7)可制作尺⼨⼤的原型。
(8)原材料价格便宜,原型制作成本低。
缺点:(1)不能直接制作塑料原型。
(2)原型的抗拉强度和弹性不够好。
(3)原原型易吸湿膨胀,因此,成型后应尽快进⾏表⾯防潮处理。
快速成型技术的心得心得:如何提高成型效率和质量
快速成型技术的心得心得:如何提高成型效率和质量快速成型技术的心得:如何提高成型效率和质量随着科技的不断进步,各种新型加工技术层出不穷。
其中快速成型技术因其快速、高效、精准等优点,在工业设计、医疗、航空航天等领域得到广泛应用。
然而,快速成型技术对成型效率和质量的要求很高,如何提高成型效率和质量成为了制约其应用的主要因素。
本文将从优化设计、材料选择、后处理等多个方面阐述如何提高成型效率和质量。
一、优化设计设计是成型的关键因素。
一个优秀的设计可以在一定程度上缩短成型周期,提高成型质量。
优化设计的具体操作有以下几个方面:1、简化构型。
设计简单的构型可以减少连接点、支撑点,降低成型难度。
如在SLA快速成型技术中,简单的构型可以降低生成的悬空部分,避免出现变形或断裂。
2、优化结构。
结构设计的优化可以经过预测、模拟和试验三个阶段完成。
预测阶段可以使用有限元方法对部件进行静态或动态分析,计算应力和变形。
模拟阶段可以将数字模型导入软件中进行仿真。
试验阶段可以将优化后的设计进行制作和测试。
3、合理放置支撑结构。
在使用部分快速成型技术时,支撑结构的设置至关重要。
任何快速成型技术都需要一定的支撑结构,以保证成型构型的稳定性。
但是,支撑结构太多、太大、太密集会直接影响成型效率和质量。
因此,在设计过程中,合理放置支撑结构是提高成型效率和质量的关键之一。
二、材料选择快速成型技术的材料也是影响成型效率和质量的重要因素。
每种材料都有各自的特点,对成型性能、机械性能、化学性能等指标都有不同的要求。
其中,选择合适的材料是非常关键的。
如果选择了质量低劣的材料,将直接影响成型效率和成型质量。
在选择材料时,应注意以下几点:1、优先考虑适用性。
在原材料不同的情况下,适用于具体快速成型技术的材料不同。
因此,在选材时,首先应考虑应用的快速成型技术。
2、考虑机械性能和化学性能。
材料的机械性能和化学性能是直接影响成型效率和质量的因素。
其中,机械性能受材料在力学中的表现影响,而化学性能则受其在化学中的表现影响。
快速成形技术发展状况与趋势
快速成形技术发展状况与趋势快速成形技术,又称为三维打印、增材制造等,是近年来新兴的一种制造技术,它可以将数字化的设计文件转化为实体物体,而且速度快、成本低,能够满足个性化定制的需求。
该技术的发展已经引起海内外制造业的广泛关注和研究,下面介绍快速成形技术的发展状况和趋势。
快速成形技术最早出现在20世纪80年代,最初被用于快速制作模型,其发展始于CAD 设计技术、计算机组成技术以及材料工程技术的发展。
20世纪90年代以后,该技术经过不断的改良和完善,应用范围逐渐扩大,主要涉及到汽车、航空、医疗、建筑等领域。
目前,全球主要的快速成形技术公司有美国Stratasys、德国EOS、瑞典Arcam和中国沃特玛等。
近年来,随着材料科技、智能制造和数字工厂的发展,快速成形技术呈现出以下几个趋势:1. 多材料、多工艺:不同快速成形技术采用不同材料和工艺,未来发展方向是多材料、多工艺的结合。
例如,增材制造可以利用多种材料打印出复杂的组件,立体光绘可以通过多重叠加实现更高的可塑性和更精细的表面质量。
2. 智能化、网络化:快速成形技术已经与计算机、互联网和智能化制造相结合,实现了数字化和智能化的设计与制造,未来将趋向于更加智能化和网络化,实现生产和流程的自动化。
例如,智能打印机具有自我诊断和自动修复的功能,可以自主管理并调节打印参数,提高设备利用率和打印效率。
3. 个性化、定制化:快速成形技术具有快速、便捷、低成本的特点,可以实现个性化和定制化的生产,未来将趋向于更加个性化和高效化。
例如,医疗领域可以利用该技术制作个性化的医疗器械、假体和植入物,满足患者的特殊需求;商品领域可以利用该技术实现全球化生产和本地化供应,提高响应速度和市场竞争力。
4. 生态可持续、绿色制造:快速成形技术采用增材制造和材料回收等技术,可以实现生态可持续和绿色制造,未来将趋向于更加环保和节能。
例如,采用生物降解材料可以实现零污染和资源循环利用,采用能源节约技术可以减少能源消耗和碳排放。
快速成型技术的现状和发展趋势
快速成型技术的现状和发展趋势快速成型技术(Rapid Prototyping Technology,RPT)是一种将设计文件快速转化为实体模型的技术。
它通过逐层堆叠材料的方式制造模型,相比传统的基于切割、拼接和加工的方法,具有快速、灵活和定制化的特点。
随着科技的不断发展和应用领域的扩大,快速成型技术也在不断创新和更新。
1.技术日臻成熟:快速成型技术经过多年的研发和实践,已经在各个领域有了广泛的应用,例如汽车制造、医疗器械、航空航天等。
技术的稳定性和可靠性得到了验证,成型精度和制造效率也有了很大提高。
2.多种成型技术:随着快速成型技术的发展,出现了许多不同的成型技术,包括光固化、喷墨、熔融沉积等。
每种技术都有自己的特点和适用范围,可以根据不同的需求选择合适的技术。
3.材料种类丰富:最初的快速成型技术只能使用一些特定的材料进行成型,如塑料、树脂等。
而现在,随着材料科学的进步,可以使用金属、陶瓷等多种材料进行快速成型,大大扩展了应用领域。
1.精度的提高:精度是快速成型技术的一个重要指标,未来的发展趋势是进一步提高成型的精度。
通过改进设备和材料,优化参数设置等方式,可以实现更加精细的成型,满足更高的需求。
2.成型速度的提升:虽然快速成型技术已经很快,但是在一些特定的应用场景下,速度还是有待提高。
未来的发展趋势是研发更加高效的成型设备和更快速的材料固化方式,以满足更加紧迫的需求。
3.结构复杂性的增加:快速成型技术的优势之一就是可以制造复杂结构的模型。
未来的发展趋势是进一步发展可以制造更加复杂的结构,如组织结构、微观结构等,以满足更多领域的需求。
4.材料种类的扩展:材料的种类对快速成型技术的应用范围有很大的影响。
未来的发展趋势是不断扩展可用材料的范围,如增加金属、陶瓷、生物材料等,以满足更广泛的应用需求。
总之,快速成型技术是一项具有广阔应用前景的技术,随着科技的不断发展和创新,将会在制造业、医疗、航空等领域发挥更为重要的作用。
快速成型技术的应用及发展趋势
快速成型技术的应用及发展趋势熊文恪模具1111 2011118501266摘要:阐述了快速成型技术的基本概念,总结了快速成型技术的特点,并通过制作实例展现了快速成型技术在产品开发中的应用现状,最后展望了快速成型技术的未来发展趋势。
关键词:快速成型技术应用发展趋势当今时代,制造业市场需求不断向多样化、高质量、高性能、低成本、高科技的方向发展,一, 快速成型技术在成型过程中无需专用的夹具或工具,成型过程具有极高的柔性, 这是快速成型技术非常重要的一个技术特征。
1—5 自动化程度高。
快速成型是一种完全自动的成型过程, 只需要在成型之初由操作者输入一些基本的工艺参数,整个成型过程操作者无需或较少干预[ 4] 。
出现故障, 设备会自动停止, 发出警示并保留当前数据。
完成成型过程时, 机器会自动停止并显示相关结果。
2快速成型技术应用近年来, 快速成型技术在工业造型、制造、建筑、艺术、医学、航空、航天、考古和影视等领域得到迅速良好的应用。
主要包括以下几个方面:2—1 设计和功能验证。
通过快速成型技术可以快速制作产品的物理模型, 以验证设计人员的构思, 发现产品设计中存在的问题。
而使用传统的方法制作原型意味着从绘图到工装模具设计和制造, 一般至少历时数月, 经过多次返工和修改。
采用快速成型技术则可节省大量时间和费用。
同时, 使用快速成型技术制作的原型可直接进行装配检验、干涉检查和模拟产品真实工作情况的一些功能试验, 如运动分析、应力分析、流体和空气动力学分析等, 从而迅速完善产品的结构和性能、相应的工艺及所需工模具的设计。
2—2 非功能性样品制作。
在新产品正式投产之前或按照定单制造时,需要制作产品的展览样品或摄制产品样本照片,采用快速成型是理想的方法。
邵敏[ 5]在首饰设计方面提出首饰设计是立体的物质实体性设计,,逐层制造的优点,探索制造具有功能梯度、综合性能优良、特殊复杂结构的零件,也是一个新的方向发展。
3—2.概念创新与工艺改进。
快速成型与制造技术发展现状与趋势
形的要求。
另外,快速成型技术在⽛科⽅⾯也有⼴泛的应⽤。
制造领域如前所述,快速成型技术在制造领域应⽤最多,达到了67%,⼀⽅⾯显⽰出了RP技术在⽣产制造业独特的优势,另⼀⽅⾯也显⽰出了制造⾏业对新技术、新⼯艺的需求。
严格来说,⽬前RP 技术应⽤在制造领域中的⽅式并不是前⽂所定义的快速制造(RM),即并不是利⽤RP设备直接制造不经过再加⼯即可使⽤的制品。
通常RP技术在制造业的应⽤主要在产品试制和试验阶段(57%),⽐如功能检测和装配检测等。
同时,也有利⽤RP技术直接制造的例⼦。
波⾳公司建⽴了⼀整套的“定制⽣产(Production On Demand-POD)”⽣产流程,可以在很短时间内制造传统加⼯⽅法很难加⼯的航空航天⼯业中的导风管道。
RP技术的发展就⽬前RP技术的发展来说,其⽣产的制品在表⾯粗糙度、精度、可重复性和制品质量⽅⾯与传统制造⽅法均存在差距。
这也是现在RP技术发展的⼀个重要的⽅⾯。
现存的RP⼯艺以及⼯艺链条都必须经历⼀段发展以实现⼀个可靠、安全的技术,来达到⼯艺所要求的精度和质量。
上⽂提到的RP⼯艺都有⼏乎相同的精度(0.1-0.2mm/100mm)和粗糙度(Ra 5-20µm)和较低的可重复性。
进⼀步的改进应该从机械设计⽅⾯开始⼿,可以通过技术回馈系统来实现。
为了提⾼制品的质量,将出现RP⼯艺和传统⼯艺相结合的复合⼯艺设备。
在设备本⾝和材料⽅⾯,⽬前研究的主要⽅向⼤多集中于加⼯⽅法、加⼯设备、激光发⽣器和材料等⽅⾯,⽬的在于提⾼制品的强度、耐久性和精度,同时也⼒于提⾼⽣产制品的周期⽅⾯。
这些研究,终究会为快速成型到快速制造的过渡提供强⼤的动⼒。
快速成型技术经过20余年的发展⽬前已经在加⼯⽅法、材料等⽅⾯取得了研究⽅⾯的突破。
在市场推⼴⽅⾯,也取得了⼀定成绩。
但是就从快速成型(RP)到快速制造(RM)的过程来看,进展仍不理想。
在市场⽅⾯,2001年快速成型技术已经⽣产了近350万套模具和产品原型,并在此后以每年20%的速度稳定增长。
快速成型技术
快速成型技术1、快速成型简介快速成型(RP)技术是九十年代发展起来的一项先进制造技术,是为制造业企业新产品开发服务的一项关键共性技术, 对促进企业产品创新、缩短新产品开发周期、提高产品竞争力有积极的推动作用。
自该技术问世以来,已经在发达国家的制造业中得到了广泛应用,并由此产生一个新兴的技术领域。
RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。
不同种类的快速成型系统因所用成形材料不同,成形原理和系统特点也各有不同。
但是,其基本原理都是一样的,那就是"分层制造,逐层叠加",类似于数学上的积分过程。
形象地讲,快速成形系统就像是一台"立体打印机"。
2、RP 技术的原理RP 技术是采用离散∕堆积成型的原理, 由CAD 模型直接驱动的通过叠加成型方出所需要零件的计算机三维曲面或实体模型, 根据工艺要求将其按一定厚度进行分层, 把三维电子模型变成二维平面信息(截面信息), 在微机控制下, 数控系统以平面加工的方式有序地连续加工出每个薄层并使它们自动粘接成型, 图1 为RP 技术的基本原理。
图1 RP 技术的基本原理。
RP 技术体系可分解为几个彼此联系的基本环节: 三维CAD 造型、反求工程、数据转换、原型制造、后处理等。
2.1立体光固化成型(SLA)该方法是目前世界上研究最深入、技术最成熟、应用最广泛的一种快速成型方法。
SLA 技术原理是计算机控制激光束对光敏树脂为原料的表面进行逐点扫描, 被扫描区域的树脂薄层( 约十分之几毫米) 产生光聚合反应而固化, 形成零件的一个薄层。
工作台下移一个层厚的距离, 以便固化好的树脂表面再敷上一层新的液态树脂, 进行下一层的扫描加工, 如此反复, 直到整个原型制造完毕。
由于光聚合反应是基于光的作用而不是基于热的作用, 故在工作时只需功率较低的激光源。
此外,因为没有热扩散, 加上链式反应能够很好地控制, 能保证聚合反应不发生在激光点之外, 因而加工精度高, 表面质量好, 原材料的利用率接近100%, 能制造形状复杂、精细的零件, 效率高。
快速成型技术
快速成型技术发展:(在国内的发展状况):近年来国内的快速成型技术与水平有了质的飞跃,主要以西安交通大学、清华大学为代表。
国内各快速成型技术在研发、设备的生产以及RP技术及其市场、应用与服务方面都取得了很大进展。
1.技术方面:在国际上发展起来的RP技术如SLA,LOM,FDM,SLS等,在国内基本都有单位进行了成功的开发,而且大多数关键部件都实现了国产化。
2.市场方面:近年来,国内RP市场已从起步阶段逐步走向发展阶段,快速成型技术已逐渐成为一种通用的产品快速加工与制造的方法。
3.技术服务方面:目前,国内大部分企业购买RP设备的能力有限,可对单个小批量的RP 原型传的需求量又很大。
在这种需求的刺激下,RP技术服务公司开始购买国外成熟的RP设备,用于开展三维实体数据的反求、快速成型技术及制造等服务,随时也扩大了RP技术的宣传面,在RP技术应用的深度和广度上都产生促进作用。
应用:1.在工业设计新产品研发中的广泛应用。
2.概念模型的可视化应用。
3.开发新产品的快去速评价应用。
4.对一些发型,复杂的仪器设备系统应进行装配检验及校验。
5.产品性能和功能测试应用。
6.医学领域的广泛应用。
7.艺术领域的应用。
基本原理:将零件的三维CAD实体模型按一定的方式进行离散,将其转变为可加工的离散面,离散线,离散点。
然后采用多种物理或化学方法,将这些离散面,线段,点进行逐层堆积,最后形成零件的实体模型。
(间隔选取:0.05~0.2,一般取0.1mm)发展趋势:目前,RP工艺与技术已逐渐趋向成熟,各项RP工艺与技术在进一步完善的同时,研发的重点已从工艺和设备研发向工业化、实用化和产业化的方向进行研究。
未来RP制造技术的研究与发展方向,应该是朝着智能化、网络化以及集成化的方向发展;同时,进一步研制出更为经济可靠、精密高效的RP工艺与设备,研发出多种通用的原材料,以拓展RP 技术的应用领域。
具体包括:1.RP工艺技术的改进。
2.新型RP原型材料的研制。
快速成型技术及其应用
快速成型技术及其应用一、本文概述随着科技的迅速发展和市场竞争的日益激烈,产品的设计、开发和生产周期已经成为决定企业竞争力的关键因素。
在这一背景下,快速成型技术(Rapid Prototyping,简称RP技术)应运而生,以其独特的优势在生产制造领域引发了深刻的变革。
本文旨在全面介绍快速成型技术的基本概念、发展历程、主要类型及其在各行业中的应用实例,分析快速成型技术带来的经济效益与社会影响,并展望其未来的发展趋势和挑战。
通过对这一技术的深入探讨,我们期望能够帮助读者更好地理解并应用快速成型技术,以促进企业创新能力的提升和产业升级的加速。
二、快速成型技术的基本原理与分类快速成型技术(Rapid Prototyping, RP)是一种基于三维计算机辅助设计(CAD)数据,通过逐层堆积材料来制造三维实体的技术。
其基本原理可以概括为“离散-堆积”。
将三维CAD模型进行切片处理,得到一系列二维层面信息;然后,按照这些层面信息,通过特定的成型设备,如激光烧结机、熔融沉积机、光固化机等,将材料逐层堆积起来,最终形成与原始CAD模型一致的三维实体。
根据成型材料的不同和成型方式的差异,快速成型技术可以分为以下几类:熔融沉积成型(Fused Deposition Modeling, FDM):该技术使用热塑性材料,如蜡、ABS塑料等。
材料在喷头中加热至熔融状态,然后按照CAD模型的切片信息,通过喷头逐层挤出材料,冷却后形成实体。
光固化成型(Stereo Lithography, SLA):使用液态光敏树脂作为材料。
在紫外光照射下,液态树脂逐层固化,形成实体。
该技术精度较高,适用于制造复杂结构和高精度的模型。
选择性激光烧结(Selective Laser Sintering, SLS):采用粉末状材料,如塑料粉末、金属粉末、陶瓷粉末等。
在激光的作用下,粉末逐层烧结,形成实体。
该技术可以制造金属和陶瓷等高强度材料的零件。
《快速成型技术》
学院:机械工程学院专业:机电信息工程姓名:骆科鹏学号: 1108030443年级:机信118班快速成型技术摘要:快速成形技术(Rapid Prototyping;RP)又称快速原型制造(Rapid Prototyping Manufacturing,简称RPM)技术,诞生于20世纪80年代后期,是基于材料堆积法的一种高新制造技术,被认为是近20年来制造领域的一个重大成果。
它集机械工程、CAD、逆向工程技术、分层制造技术、数控技术、材料科学、激光技术于一身,可以自动、直接、快速、精确地将设计思想转变为具有一定功能的原型或直接制造零件,从而为零件原型制作、新设计思想的校验等方面提供了一种高效低成本的实现手段。
一、快速成型技术产生需求背景(1)随着全球市场一体化的形成,制造业的竞争十分激烈,产品的开发速度日益成为主要矛盾。
在这种情况下,自主快速产品开发的能力成为制造业全球竞争的实力基础。
(2)制造业为满足日益变化的用户需求,要求制造技术有较强的灵活性,能够以小批量甚至单件生产而不增加产品的成本。
因此,产品的开发速度和制造技术的柔性就十分关键。
(3)从技术发展角度看,计算机科学、CAD技术、材料科学、激光技术的发展和普及为新的制造技术的产生奠定了技术物质基础。
二、快速成型技术的特点(1) 制造原型所用的材料不限,各种金属和非金属材料均可使用;(2) 原型的复制性、互换性高;(3) 制造工艺与制造原型的几何形状无关,在加工复杂曲面时更显优越;(4) 加工周期短,成本低,成本与产品复杂程度无关,一般制造费用降低50%,加工周期节约70%以上;(5) 高度技术集成,可实现了设计制造一体化;三、快速成型技术工艺过程首先利用三维造型软件创建三维实体造型,再将设计出的实体造型通过快速成型设备的处理软件进行离散与分层,然后将处理过的数据输入设备进行制造,最后还需要进行一定的后处理以得到最终的成品。
实体造型的构建:使用快速成型技术的前提是拥有相应模型的CAD数据,这可以利用计算机辅助设计软件如Pro/E、SolidWorks、Unigraphics、AutoCAD等创建,或者通过其他方式如激光扫描、电脑断层扫描,得到点云数据后,也得创建相应的三维实体造型。
快速成型技术的应用与发展趋势
快速成型技术的应用及发展趋势摘要:;快速成型技术凭借其加工原理的独特性和相对传统加工时间的大大节省,在模具工业和修复医学方面得到了大力的推广和应用.同时也是一种结合计算机、数控、激光和材料技术于一体的先进制造技术,并提出快速成型技术未来的发展方向。
关键词:快速成型;快速模具;修复医学;成型方法;成型材料;引言快速成型(Rapid Prototyping,简称RP)是80年代末期开始商品化的一种高新制造技术,它是集CAD/CAM技术、激光加工技术、数控技术和新材料等技术领域的最新成果于一体的零件原型制造技术.快速成型不同于传统的用材料去除方式制造零件的方法,而是用材料一层一层积累的方式构造零件模型.它利用所要制造零件的三维CAD模型数据直接生成产品原型,并且可以方便地修改CAD模型后重新制造产品原型.由于该技术不像传统的零件制造方法需要制作木模、塑料模和陶瓷模等,可以把零件原型的制造时间减少为几天、几小时,大大缩短了产品开发周期,减少了开发成本.随着计算机技术的快速发展和三维CAD软件应用的不断推广,越来越多的产品基于三维CAD设计开发,使得快速成型技术的广泛应用成为可能.快速成形技术已广泛应用于宇航、航空、汽车、通讯、医疗、电子、家电、玩具、军事装备、工业造型(雕刻)、建筑模型、机械行业等领域[1]。
1.快速成型技术的应用1.1 工业产品开发及样件试制作为一种可视化的设计验证工具,RP具有独特的优势。
(1)在国外,快速原型即首版的制作,已成为供应商争取订单的有力工具。
美国Detroit的一家制造商,利用2台不同型号的快速成型机以及快速精铸技术,在接到№rd公司标书后的4个工作日内生产出了第一个功能样件,从而拿到了Ford公司年生产总值300万美元的发动机缸盖精铸件的合同。
(2)在RP系统中,一些使用特殊材料制作的原型(如光敏树脂等)可直接进行装配检验、模拟产品真实工作状况的部分功能试验。
Chrysler 直接利用RP技术制造的车体原型进行高速风洞流体动力学试验,节省成本达70%。
快速成型技术现状与行业发展趋势
快速成型技术现状与行业发展趋势快速成型技术(Rapid Prototyping)是一种通过逐层添加材料构建三维实体模型的技术,也被称为三维打印技术。
不仅可以用于产品原型的制作,还可以应用于医学、建筑、艺术等多个领域。
快速成型技术的发展对于加速产品开发、提高设计效率和降低生产成本具有重要意义。
目前,快速成型技术已经成为制造业领域的重要技术之一,并呈现出以下的现状和发展趋势。
1. 技术不断创新:快速成型技术一直在不断创新和发展。
除了传统的层积累积(Stereolithography,SLA)、选择性激光烧结(Selective Laser Sintering,SLS)、三维打印(3D Printing)等技术之外,还有新的技术涌现,如聚合光束制造(Polymer Jetting)、电子束熔化(Electron Beam Melting,EBM)等。
这些新技术在速度、成品质量、材料适用范围等方面都有所提升。
2.应用领域不断扩大:快速成型技术开始应用于更多的领域。
除了常见的汽车、航空航天、电子产品等制造业领域,还涉及到医疗、教育、文化创意等多个领域。
医疗方面,快速成型技术可以用于制作适配性假肢、手术模拟器等。
教育方面,可以用于制作教学模型,提高教学效果。
文化创意方面,可以实现艺术品、建筑模型等的快速制作。
3.材料种类丰富:随着技术的发展,快速成型技术所应用的材料种类越来越丰富。
除了传统的塑料材料,还有金属、陶瓷等材料可以用于快速成型技术。
这使得快速成型技术的适用范围更广,可以实现更多的应用。
1.加快制造速度:快速成型技术的一个重要发展趋势是加快制造速度。
传统的快速成型技术需要较长的时间来完成一个实体模型的制作,限制了其在制造业中的应用。
因此,通过改进设备和工艺,加快制造速度是一个重要的发展方向。
2.提高成品质量:成品质量是快速成型技术发展的一个重要方向。
目前,由于制造过程中的一些技术限制,快速成型技术所制作的成品的表面质量和精度有一定的局限性。
机械设计中的快速成型技术如何发展
机械设计中的快速成型技术如何发展在当今科技飞速发展的时代,机械设计领域也在不断寻求创新和突破。
快速成型技术作为一项具有重要意义的制造手段,正逐渐改变着机械设计的流程和方式。
那么,这项技术在未来将如何发展呢?快速成型技术,也被称为增材制造技术,它是一种基于离散堆积原理,通过逐层添加材料来构建三维物体的制造方法。
与传统的减材制造方法相比,快速成型技术具有诸多优势。
它能够快速地将设计理念转化为实际产品,大大缩短了产品开发周期,降低了开发成本。
同时,它还能够制造出复杂形状的零件,突破了传统制造工艺的限制。
在材料方面,快速成型技术未来将不断拓展可用材料的种类。
目前,常用的材料包括塑料、金属、陶瓷等,但随着技术的进步,更多高性能、特殊功能的材料将被应用于快速成型。
例如,具有高强度、高韧性的新型合金材料,能够满足航空航天等高端领域对零件性能的严格要求;具有生物相容性的材料,可用于医疗领域的人体器官制造;具有耐高温、耐腐蚀性能的材料,适用于极端环境下的机械部件生产。
在精度和表面质量方面,快速成型技术也有着巨大的提升空间。
通过不断改进设备的精度控制、优化工艺参数以及采用更先进的扫描和沉积技术,未来快速成型制造的零件精度将能够达到甚至超越传统加工方法的水平。
同时,表面质量也将更加光滑、细腻,减少后续处理的工作量,提高产品的整体质量和性能。
多材料复合成型是快速成型技术发展的一个重要趋势。
在一个零件中集成多种不同性能的材料,能够实现零件功能的最优化。
例如,在机械传动部件中,可以将耐磨材料用于接触表面,高强度材料用于承受载荷的部位,而轻质材料则用于减轻整体重量。
这种多材料复合成型技术将为机械设计带来更多的创新空间,使产品能够更好地满足复杂的工作条件和性能要求。
快速成型技术与其他制造技术的融合也将成为未来发展的方向。
例如,与传统的铸造、锻造、切削加工等技术相结合,取长补短,形成更加高效、灵活的制造体系。
通过快速成型技术制造出复杂形状的毛坯,再经过传统加工方法进行后续的精度加工,可以在保证产品质量的前提下,提高生产效率,降低成本。
快速成型技术总结
快速成型技术总结快速成型总结报告一、快速成型技术的发展及原理快速成形技术(RapidPrototyping,简称RP)是二十世纪八十年代末九十年代初兴起并迅速发展起来的新的先进制造技术.是由CAD模型直接驱动的快速制造任意复杂形状三维物理实体的技术总称,其基本过程是:首先设计出所需零件的计算机三维模型(数字模型、CAD 模型),然后根据工艺要求,按照一定的规律将该模型离散为一系列有序的单元,通常在Z向将其按一定厚度进行离散(习惯称为分层),把原来的三维CAD模型变成一系列的层片;再根据每个层片的轮廓信息,输入加工参数,自动生成数控代码;最后由成形机成形一系列层片并自动将它们联接起来,得到一个三维物理实体。
快速成型技术的原理:快速成型技术(RP)的成型原理是基于离散-叠加原理而实现快速加工原型或零件.这里所说的快速加工原型是指能代表一切性质和功能的实验件,一般数量较少,常用来在新产品试制时作评价之用.而这里所说的快速成型零件是指最终产品,已经具有最佳的特性,功能和经济性.二、快速成型技术的分类快速成型技术 - 分类快速成型技术根据成型方法可分为两类:基于喷射的成型技术(JettingTechnoloy),例如:熔融沉积成型(FDM)、三维印刷(3DP)、多相喷射沉积(MJD)。
下面对其中比较成熟的工艺作简单的介绍。
SLA技术是基于液态光敏树脂的光聚合原理工作的。
这种液态材料在一定波长和强度的紫外光照射下能迅速发生光聚合反应,分子量急剧增大,材料也就从液态转变成固态。
1、SLA(光固化成型)SLA工作原理:液槽中盛满液态光固化树脂激光束在偏转镜作用下,能在液态表而上扫描,扫描的轨迹及光线的有无均由计算机控制,光点打到的地方,液体就固化。
成型开始时,工作平台在液面下一个确定的深度.聚焦后的光斑在液面上按计算机的指令逐点扫描,即逐点固化。
当一层扫描完成后.未被照射的地方仍是液态树脂。
然后升降台带动平台下降一层高度,已成型的层面上又布满一层树脂,刮板将粘度较大的树脂液面刮平,然后再进行下一层的扫描,新周化的一层牢周地粘在前一层上,如此重复直到整个零件制造完毕,得到一个三维实体模型。
快速成型技术的发展趋势以及对智能制造的影响
快速成型技术的发展趋势以及对智能制造的影响一、快速成型技术的基本成型原理 近十几年来,随着全球市场一体化的形成,制造业的竞争十分激烈。
尤其是计算机技术的迅速普遍和CAD/CAM技术的广泛应用,使得快速成型技术(Rapid Prototyping 简称RP)得到了异乎寻常的高速发展,表现出很强的生命力和广阔的应用前景。
传统的加工技术是采用去材料的加工方式,在毛坯上把多余的材料去除,得到我们想要的产品。
而快速成型技术基本原理是∶借助计算机或三维扫描系统构建目标零件的三维数字化模型,之后将该信息传输到计算机控制的机电控制系统,计算机将模型按一定厚度进行"切片"处理,即将零件的3D数据信息离散成一系列2D 轮廓信息,通过逐点逐面的增材制造方法将材料逐层堆积,获得实体零件,最后进行必要的少量加工和热处理,使零件性能、尺寸等满足设计要求。
它集机械工程、CAD、逆向工程技术、分层制造技术、数控技术、材料科学、激光技术于一身,可以自动、直接、快速、精确地将设计思想转变为具有一定功能的原型或直接制造零件,从而为零件原型制作、新设计思想的校验等方面提供了种高效低成本的实现手段。
目前,快速成形的工艺方法已有几十种之多,大致可分为7大类,包括立体印刷、叠层实体制造、选择性激光烧结、熔融沉积成型、三维焊接、三维打印、数码累积成型等。
二、快速成型技术在产品开发中的应用 不断提高RP技术的应用水平是推动RP技术发展的重要方面。
目前,西安交通大学机械学院,快速成型国家工程研究中心,教育部快速成型工程研究中心快速成型技术已在工业造型、机械制造、航空航天、军事、建筑、影视、家电、轻工、医学、考古、文化艺术、雕刻、首饰等领域都得到了广泛应用。
并且随着这一技术本身的发展,其应用领域将不断拓展。
RP 技术的实际应用主要集中在以下几个方面∶ 1.用于新产品的设计与试制。
(1)CAID 应用∶工业设计师在短时间内得到精确的原型与业者作造形研讨。
金属直接快速成型技术发展现状及未来发展趋势
金属激光熔化快速成型技术的现状及发展引言速成型(Rapid Prototype,RP)技术是通过材料添加法直接制造实体模型的技术总称,已经被广泛地用于缩短产品生产周期。
虽然此技术包括很多种不同的工艺,但最基本的思想是根据电脑中的CAD数据用逐层添加方式直接成型具有特定几何形状的零件。
它突破了传统加工方法去除成犁的概念,采用添加材料的方法成型零件,不存在材料去除的浪费问题;可显著缩短零件制造周期,增强产品竞争优势;成型过程小受零件复杂程度的限制,因而具有很大的柔性,特别适合于单件小批量产品和样件的制造⋯。
当前发展起来的20多种技术中,多数不能直接用丁金属零件的制造,往往是用非金属材料制造出零件的模具,然后再浇铸成金属零件。
但工业上对金属零件的直接快速成型技术更感兴趣,近年来此技术也成了RP技术的主流发展方向。
金属零件选区激光熔化(Selective L2Lser Melting,SLM)直接成型是一种新型的RP技术,它能一步加工出具有冶金结合、致密度接近100%、具有一定尺寸精度和表面粗糙度的金属零件。
它可以大大加快产品的开发速度,具有广阔的发展前景,也是国外研究的热点领域之一。
1选区激光熔化技术的基本原理SLM技术基于快速成犁原理,从零件的CAD几何模型如发,通过软件分层离散和数控成型系统,用激光束把金属或合金粉末逐层熔化,堆积成一个冶金结合、组织致密的实体。
在计算机上设计出零件的三维实体模型,通过专用软件对该三维模型进行切片分层,得到各截面的轮廓数据,将这些数据导入快速成型设备,设备将按照这些轮廓数据,控制激光束选择地熔化各层的金属粉末材料,逐步堆叠成三维金属零件。
2金属零件快速成型的主要方法目前,可以直接成型金属零件的快速成型方法主要有三种:第一种是选区激光烧结(SLS)制造金属,即用低熔点金属或有机粘接材料包覆在金属粉末表而,激光选照射时,激光作用下低熔点金属或粘接材料熔化,而金属粉末不熔化,形成的三实体为类似粉末冶金烧结的坯件,实体存在一定比例孔隙,不能达到100%密度,力学性能也较差,常常还需要经过高温重熔或渗金属填补孔隙等后处理才能使用。
快速成型技术的现状与发展趋势
快速成型技术的现状与发展趋势
一、快速成型技术现状
快速成型技术作为现代工业制造中的一种高效制造技术,具有节约时间、节省能源、提高质量、更便宜的优点,以满足现代工业制造的要求,其中主要包括3D打印,热塑性快速成型,模压快速成型,非接触式快速成型,以及一些其他快速成型技术。
3D打印技术是快速成型技术的一种,它可以将设计的3D模型转化为可靠的复杂结构。
它利用三维建模软件将设计文件转换为可以打印的格式文件,然后通过3D打印机将模型打印成实体产品,其特点是可保证准确性、完整性和不需要传统模具,无需抛光,大大提高了生产效率,同时也能节约大量材料,可以说是快速成型技术发展的重要桥梁。
热塑性快速成型技术是另一类快速成型技术,其中最常用的是不同型号的热塑性快速成型机,它能够快速成型出可靠度高、尺寸精准、快速实现的一类物体。
这类机器的工作原理是,用塑料粉末放入加工室,加工室内有一对相对移动的热板,通过合适的压力,能够将塑料粉末快速塑造出任何复杂形状的产品,它具有快速、灵活、准确、效率高的优点,在航空航天、电子、机械等领域的应用非常广泛。
模压快速成型技术是另一类快速成型技术。
快速成型技术的发展及关键技术
摘要成形材料的开发应用,可提升成形质量、拓宽原型应用的领域、开发新的成形工艺.软件是快速成形技术的灵魂,第三方软件介入是当前快速成形技术软件开发的一个明显趋势.基于快速成形思想的各种新的工艺方法、研究与工艺装备开发,以及桌面化设备和功能原型成形设备的开发,是新的快速成形设备研制的两大趋势.关键词快速成形,成形材料,软件技术,工艺装备Abstract By developing and applying material of forming or shaping, forming quality can be promoted, prototype appli-cation can be broadened, and new RP process can be developed. Software is the core of rapid prototyping technology. Thefield of rapid prototyping technology where commercial software involved is an obvious trend of software technique development at present. The research on various new technological method and technological equipment based on the principle of rapid prototyping as well as the development of desktop equipment and functionalizing equipment, are two R& D big trends in developing new RP equipment.Keywords rapid prototyping, forming material, software technique, process equipment引言快速成形制造(RPM)是20世纪80年代末、90年代初由美国开发的高新制造技术,其重要意义可与数控(CNC)技术相比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要成形材料的开发应用,可提升成形质量、拓宽原型应用的领域、开发新的成形工艺.软件是快速成形技术的灵魂,第三方软件介入是当前快速成形技术软件开发的一个明显趋势.基于快速成形思想的各种新的工艺方法、研究与工艺装备开发,以及桌面化设备和功能原型成形设备的开发,是新的快速成形设备研制的两大趋势.关键词快速成形,成形材料,软件技术,工艺装备Abstract By developing and applying material of forming or shaping, forming quality can be promoted, prototype appli- cation can be broadened, and new RP process can be developed. Software is the core of rapid prototyping technology. The field of rapid prototyping technology where commercial software involved is an obvious trend of software technique development at present. The research on various new technological method and technological equipment based on the principle of rapid prototyping as well as the development of desktop equipment and functionalizing equipment, are two R& D big trends in developing new RP equipment.Keywords rapid prototyping, forming material, software technique, process equipment引言快速成形制造(RPM)是20世纪80年代末、90年代初由美国开发的高新制造技术,其重要意义可与数控(CNC)技术相比。
该技术采用材料累加的新成形原理,直接通过CAD数据制成三维实体模型。
这一技术不需要传统的机床、夹具、刀具,便可快速而精密地制造出任意复杂形状的零件模型,从而实现了“自由制造”。
快速成形出现给工业产品的造型开发、工艺品的模型设计提供了最为便捷的制造工具,使产品的开发速度数十倍地提高。
而且越是复杂结构的物体,其制造速度提高越显著。
1快速成形技术的国内外研究现状快速成形技术(Rapid Prototyping Technology,以下简称RP技术)是20世纪80年代中后期发展起来的一项新兴的先进制造技术,其核心思想是基于降维离散的方法,把任意复杂的三维实体通过切片处理,转换为二维平面的制造和沿成形方向做一维的层片叠加,实现物理原型的快速制造.我国快速成形技术自20世纪世纪90年代初开始发展,西安交通大学、北京隆源公司等院校和企业在典型的快速成形设备、软件、材料等方面的研究和产业化方面的获得了重大进展。
随后国内许多高校和研究机构也开展了相关研究,重点在金属成形方面开展研究。
我国快速成形技术的研究工作基本与国际同步。
在快速成形技术新设备研发和应用方面我国则落后于国外。
由于我国在这方面的投入少,企业的应用开发能力弱,故相对于欧美国家,在新技术的开发上已显落后。
在应用上,我们许多行业缺少后续技术研发,例如在快速制造的原型向模具和功能零件转化方面没有形成系统技术体系,企业没有很好地将此技术应用在产品开发方面。
国外快速成形技术在航空领域超过8%的应用量,而我国在这方面的应用量则非常低。
快速成形尤其适合于航空航天产品中的零部件单件小批量的制造,具有成本低和效率高的优点。
国外在航空航天器的研制中不断尝试应用快速成形技术,显示出了巨大发展潜力。
在我国重大的专项研究和航空航天事业发展中,快速成形这一技术都有广泛的用途。
因此,通过“产学研用”结合,通过不断与企业合作,拓展应用领域,将是快速成形制造技术发展的根本方向。
2快速成型系统的构成和原理2.1 系统构成快速成型系统主要由硬件和软件两部分组成。
其中,硬件由工业控制计算机、激光选区烧结器、光路及其扫描系统、成型室及送料室组成;软件由操作系统、CAD软件、CAD切层软件、激光选区烧结控制软件等组成。
(一)快速成型技术的原理快速成型技术是将计算机技术、CAD、机械工程、数控技术、检测技术、激光技术和材料科学等集合为一体的高新技术。
近年来,该技术在国内外得到了迅速的发展,并将成为21世纪制造业的重要组成部分。
其原理是根据对三维CAD电子模型进行分层切片处理,得到一系列的二维截面轮廓,然后用激光束或其它方法切割、固化或烧结某种状态材料,得到一层层的产品截面并逐步叠加成三维实体。
RP技术摒弃了传统机械加工的材料“去除”加工法,而采用全新的材料增长加工法,将复杂的三维加工分解成简的二维加工的组合,它从成型原理上提出了一个全新的思维模式,是一个从离散到堆积的过程(二)快速成型工艺过程在快速成型工艺过程中,由于系统是由三维CAD模型直接驱动,因此首先要构建所加工件的三维CAD模型。
该三维CAD模型可以利用计算机辅助设计软件直接构建,也可以将现有产品的二维图样进行转换而形成三维模型,或对产品实体进行激光扫描、断层扫描,得到点云数据,然后利用反求工程的方法来构造三维模型。
其次是三维模型的近似处理,由于产品往往有一些不规则的自由曲面,加工前要对模型进行近似的处理,以方便后续的数据处理工作。
由于格式文件格式简单、实用,目前已经成为快速成型领域的标准接口文件。
它是用一系列的小三角形平面来逼近原来的模型,每个小三角形用3个顶点坐标和一个法向量来描述,三角形的大小可以根据精度要求进行选择。
文件有二进制码和ASCn码两种输出形式,二进制码输出形式所占的空间比ASCn码输出形式的文件所占用的空间小得多,但ASCn码输出形式可以阅读和检查。
典型的CAD软件都带有转换和输出STL文件的功能。
后是三维模型的切片处理,根据被加工模型的特征选择合适的加工方向,在成型高度方向上用一系列一定间隔的平面切割近似后的模型,以便提取截面的轮廓信息。
间隔一般常用0.1mm。
间隔越小,成型精度越高,但成型时间也越长,效率就越低,反之则精度越低,但效率高。
最后成型加工与零件的后处理,根据切片处理的截面轮廓,在计算机控制下,相应的成型头按各截面轮廓信息做扫描运动,在工作台上一层一层地堆积材料,然后将各层相粘结,最终得到原型产品。
成型零件的后处理是从成型系统里取出成型件,进行打磨、抛光、涂挂,或放在高温炉中进行后烧结,进一步提高其强度。
3 快速成型技术的特点快速成型技术有如下优点:(1)与模具的复杂程度无关,可以实现自由制造。
无论多么复杂的模具,只要设计出来,就可以用快速成型技术制造出来,这是传统的模具加工方法无法比拟的。
(2)生产模具的单价与批量无关,特别适合于新模具的开发和单件小批量模具的生产。
(3)对一些直接用成型料生产的模具,可以实现非接触加工;没有工具的更换和磨损之类的问题;可以实现无人值班;不需要机加工方面的专门知识就可操作;无切割、噪音和振动等;有利于环保,材料无浪费。
(4)生产过程数字化,与CAD模型有直接的关联,零件可大可小,所见即所得,可随时修改、随时制造。
(5)模具生产周期大大缩短,是模具制造业甚至是制造业上的又一次革命。
比较见表1。
(6)大大节约模具生产的费用,有的可减少到传统生产方法的几分之一甚至几十分之一。
4快速成形技术发展趋势快速成形制造是一种以材料累加为原理的制造方法,可以制造任意复杂的三维结构。
快速成形发展目前最大的难题是材料的物理与化学性能制约了工艺实现。
例如,在成形材料上,目前主要是有机高分子材料;金属材料直接成形是近十多年的研究热点,难点在于如何提高精度。
在成形材料上,发展方向是研究陶瓷材料和复合材料的快速成形制造。
在制造装备的发展上,三维打印机是国外近年来的发展热点。
将其作为计算机一个外设在应用。
快速成形技术在工业造型、产品创意、工艺美术等方面有着广泛的应用前景和巨大的商业价值。
快速成形技术的研究热点和发展方向分3个方面:(1)快速成形制造技术本身的发展。
例如三维打印技术,使快速成形走向信息市场;金属直接成形技术使结构功能零件可直接制造。
进一步的发展是陶瓷零件的快速成形技术和复合材料的快速成形。
(2)快速成形应用领域的拓展。
例如快速成形在汽车制造领域的应用为新产品的开发提供了快捷的支持技术。
快速成形在生物假体与组织工程上的应用,为人工定制假体制造、三维组织支架制造提供了有效的技术手段。
进一步是向创意设计、航空航天制造和功能结构器件领域发展。
(3)快速成形学术思想的发展。
快速成形从过去的外形制造向材料组织与外形结构设计制造一体化方向发展。
力图实现从微观组织到宏观结构的可控制造。
例如在制造复合材料时,能否将复合材料组织设计制造与外形结构设计制造同步完成。
这样从更广泛的意义上实现结构体的“设计—材料—制造”一体化。
5快速成形的相关技术1.计算机技术是快速成形产生的根本。
CAD技术的出现使设计出现了一次飞跃,它使得人的思维、创新设计能力以数字的形式记录于机器之中。
这样对其进行的后处理也变得十分容易。
CAD技术实现了零件的曲面和实体造型,能够进行精确的离散运算和繁杂的数据转换。
2.数控技术是快速成形技术中的重要使能技术之一。
数控技术的发展使得精确的运动控制、能量传输控制、材料转移控制等成为可能。
3.激光技术是快速成形技术中的重要使能技术之一,激光的极高能量密度和极小光斑直径的特性是实施切割、烧结、聚合反应等工艺的保证。
4.材料科学已经能够设计、制造满足各种性能要求的材料,如光敏材料、热敏材料等。
我国需要研发新的快速成形技术,向产业化发展。
加强快速成形后续应用技术的研发,通过“产学研用”结合,与企业合作不断拓展应用领域。
参考文献:[1] 王振林.数控加工技术是应用发展现代制造技术的基础[J].机电产品创新与开发,2001,(5): 30-32.[2] 鞠华,李剑,王文,等.快速原型制造与反求工程集成的几个关键技术[J].机械制造,2001,(6): 22-24.[1]李春祥,彭淑慧.快速成型技术原理及应用[J].甘肃工业大学学报,2000,26(3).[2]刘伟军.快速成型技术及应用[M].北京:机械工业出版社,2004.[3]王广春,赵国群.快速成型与快速模具制造技术及应用[M].机械工业出版社,2003.[4]马承银,郑文姬,胡慧萍.水性环氧树脂的制备和固化机理的探讨[J].高分子通报,2006,(1).颜永年,郭海滨等.多功能快速成形制造系统的研究.中国先进制造学术会议,1996,9:913~92013 徐健,颜永年,卢伟,等.快速成形技术的发展方向[J].航空制造技术,2002,11:5~ 2714 黄树槐,肖跃加,莫健华,等.快速成形技术的展望[J].中国机械工程,2000,11(2):195~ 200Jiang K Y, Gu Y H. Study of the shape deposition manufacturing of polymer parts[J]. Key Engineering Materials,2003,(256-260):672~ 676国家自然科学基金委员会工程与材料科学部,机械工程科学技术前沿编委会.机械工程科学技术前沿.北京:机械工业出版社, 1996(1)提高RP系统的速度、控制精度和可靠性优化设备结构,选用性能价格比高、寿命长的元器件,使系统更简洁,操作更方便,可靠性更高,速度更快。