苏教版数学高一 必修4学案 任意角的三角函数

合集下载

苏教版高中数学必修四—学同步教学案三角函数§任意角的三角函数

苏教版高中数学必修四—学同步教学案三角函数§任意角的三角函数

§1.2 任意角的三角函数 1.2.1 任意角的三角函数(一)课时目标1.借助单位圆理解任意角的三角函数(正弦、余弦、正切)定义.2.熟记正弦、余弦、正切函数值在各象限的符号.1.任意角三角函数的定义设角α终边上任意一点的坐标为(x ,y ),它与原点的距离为r ,则sin α=________,cos α=________,tan α=________.2.正弦、余弦、正切函数值在各象限的符号一、填空题1.若角α的终边过点P (5,-12),则sin α+cos α=________.2.点A (x ,y )是300°角终边上异于原点的一点,则yx的值为________.3.若sin α<0且tan α>0,则α是第____象限角.4.角α的终边经过点P (-b,4)且cos α=-35,则b 的值为________.5.已知x 为终边不在坐标轴上的角,则函数f (x )=|sin x |sin x +cos x |cos x |+|tan x |tan x的值域是________.6.α是第一象限角,P (x ,5)为其终边上一点且cos α=24x ,则x =________.7.已知α终边经过点(3a -9,a +2),且sin α>0,cos α≤0,则a 的取值范围为________. 8.代数式:sin 2cos 3tan 4的符号是________.9.已知点P ⎝⎛⎭⎫sin 34π,cos 34π落在角θ的终边上,且θ∈[0,2π),则θ的值为________. 10.若角α的终边与直线y =3x 重合且sin α<0,又P (m ,n )是α终边上一点,且OP =10,则m -n =________. 二、解答题11.确定下列各式的符号:(1)tan 120°·sin 273°;(2)tan 108°cos 305;(3)sin 5π4·cos 4π5·tan 116π.12.已知角α终边上一点P(-3,y),且sin α=34y,求cos α和tan α的值.能力提升13.若θ为第一象限角,则能确定为正值的是________.①sin θ2;②cosθ2;③tanθ2;④cos 2θ;⑤sin 2θ.14.已知角α的终边上一点P(-15a,8a) (a∈R且a≠0),求α的各三角函数值.1.三角函数值是比值,是一个实数,这个实数的大小和点P(x,y)在终边上的位置无关,只由角α的终边位置确定.即三角函数值的大小只与角有关.2.符号sin α、cos α、tan α是一个整体,离开“α”,“sin”、“cos”、“tan”不表示任何意义,更不能把“sin α”当成“sin”与“α”的乘积.§1.2任意角的三角函数1.2.1任意角的三角函数(一)知识梳理 1.y r x r y x 作业设计1.-713 2.- 33.三解析 ∵sin α<0,∴α是第三、四象限角.又tan α>0, ∴α是第一、三象限角,故α是第三象限角. 4.3解析 r =b 2+16,cos α=-b r =-b b 2+16=-35.∵α的终边经过点P ,cos α=-35,∴α为第二象限角, ∴b >0,∴b =3. 5.{-1,3}解析 若x 为第一象限角,则f (x )=3; 若x 为第二、三、四象限,则f (x )=-1. ∴函数f (x )的值域为{-1,3}. 6. 3解析 r =x 2+5,cos α=xx 2+5,由2x 4=x x 2+5(x >0),解得x = 3. 7.-2<a ≤3解析 ∵sin α>0,cos α≤0,∴α位于第二象限或y 轴正半轴上,∴3a -9≤0,a +2>0,∴-2<a ≤3. 8.负号解析 ∵π2<2<π,∴sin 2>0,∵π2<3<π,∴cos 3<0,∵π<4<32π,∴tan 4>0. ∴sin 2cos 3tan 4<0. 9.7π4解析 由任意角三角函数的定义,tan θ=yx =cos 34πsin 34π=-2222=-1.∵sin 34π>0,cos 34π<0,∴点P 在第四象限.∴θ=74π.10.2解析 ∵y =3x ,sin α<0,∴点P (m ,n )位于y =3x 在第三象限的图象上,且m <0,n <0,n =3m .∴OP =m 2+n 2=10|m |=-10m =10. ∴m =-1,n =-3,∴m -n =2.11.解 (1)∵120°是第二象限角,∴tan 120°<0. ∵273°是第四象限角,∴sin 273°<0. 从而tan 120°·sin 273°>0,∴式子符号为正. (2)∵108°是第二象限角,∴tan 108°<0. ∵305°是第四象限角,∴cos 305°>0.从而tan 108°cos 305°<0,∴式子符号为负.(3)∵5π4是第三象限角,4π5是第二象限角,11π6是第四象限角,∴sin 5π4<0,cos 4π5<0,tan 11π6<0,从而sin 5π4·cos 4π5·tan 11π6<0,∴式子符号为负.12.解 sin α=y 3+y 2=34y .当y =0时,sin α=0,cos α=-1,tan α=0.当y ≠0时,由y 3+y2=3y 4,解得y =±213. 当y =213时,P ⎝⎛⎭⎫-3,213,r =433.∴cos α=-34,tan α=-73.当y =-213时,P (-3,-213),r =433,∴cos α=-34,tan α=73.13.③⑤解析 ∵θ为第一象限角,∴2k π<θ<2k π+π2,k ∈Z .∴k π<θ2<k π+π4,k ∈Z ,4k π<2θ<4k π+π,k ∈Z .sin 2θ>0.当k =2n (n ∈Z )时,2n π<θ2<2n π+π4(n ∈Z ).∴θ2为第一象限角, ∴sin θ2>0,cos θ2>0,tan θ2>0.当k =2n +1 (n ∈Z )时,2n π+π<θ2<2n π+54π (n ∈Z ).∴θ2为第三象限角, ∴sin θ2<0,cos θ2<0,tan θ2>0,从而tan θ2>0,而4k π<2θ<4k π+π,k ∈Z ,cos 2θ有可能取负值.14.解 ∵x =-15a ,y =8a ,∴r =(-15a )2+(8a )2=17|a | (a ≠0).(1)若a >0,则r =17a ,于是sin α=817,cos α=-1517,tan α=-815.(2)若a <0,则r =-17a ,于是sin α=-817,cos α=1517,tan α=-815.1.2.1 任意角的三角函数(二)课时目标1.掌握正弦、余弦、正切函数的定义域.2.了解三角函数线的意义,能用三角函数线表示一个角的正弦、余弦和正切.3.会用三角函数线比较三角函数值的大小.1.三角函数的定义域正弦函数y =sin x 的定义域是________;余弦函数y =cos x 的定义域是________;正切函数y =tan x 的定义域是________________. 2.三角函数线如图,设单位圆与x 轴的正半轴交于点A ,与角α的终边交于P 点.过点P 作x 轴的垂线PM ,垂足为M ,过A 作单位圆的切线交OP 的延长线(或反向延长线)于T 点.单位圆中的有向线段________、________、________分别叫做角α的正弦线、余弦线、正切线.记作:sin α=________,cos α=________,tan α=________.一、填空题 1.如图在单位圆中角α的正弦线、正切线完全正确的是________.①正弦线PM ,正切线A ′T ′;②正弦线MP ,正切线A ′T ′;③正弦线MP ,正切线AT ;④正弦线PM ,正切线AT . 2.角α(0<α<2π)的正、余弦线的长度相等,且正、余弦符号相异,那么α的值为________.3.在[0,2π]上满足sin x ≥12的x 的取值范围为______.4.利用正弦线比较sin 1,sin 1.2,sin 1.5的大小关系是________(用“>”连接). 5.集合A =[0,2π],B ={α|sin α<cos α},则A ∩B =________________.6.若0<α<2π,且sin α<32,cos α>12,则角α的取值范围是________.7.如果π4<α<π2,那么sin α,tan α,cos α按从小到大的顺序排列为________.8.不等式tan α+33>0的解集是______________.9.已知α,β均为第二象限角,若sin α<sin β,则tan α与tan β的大小关系是tan α____tan β.10.求函数f (x )=lg(3-4sin 2x )的定义域为________. 二、解答题11.在单位圆中画出适合下列条件的角α终边的范围,并由此写出角α的集合.(1)sin α≥32; (2)cos α≤-12.12.设θ是第二象限角,试比较sin θ2,cos θ2,tan θ2的大小.能力提升13.求下列函数的定义域.f (x )=1-2cos x +ln ⎝⎛⎭⎫sin x -22.14.如何利用三角函数线证明下面的不等式?当α∈⎝⎛⎭⎫0,π2时,求证:sin α<α<tan α.1.三角函数线的意义三角函数线是用单位圆中某些特定的有向线段的长度和方向表示三角函数的值,三角函数线的长度等于三角函数值的绝对值,方向表示三角函数值的正负,具体地说,正弦线、正切线的方向同纵坐标轴一致,向上为正,向下为负;余弦线的方向同横坐标轴一致,向右为正,向左为负,三角函数线将抽象的数用几何图形表示出来了,使得问题更形象直观,为从几何途径解决问题提供了方便. 2.三角函数的画法定义中不仅定义了什么是正弦线、余弦线、正切线,同时也给出了角α的三角函数线的画法即先找到P 、M 、T 点,再画出MP 、OM 、AT .注意三角函数线是有向线段,要分清始点和终点,字母的书写顺序不能颠倒.1.2.1 任意角的三角函数(二)知识梳理1.R R {x |x ∈R 且x ≠k π+π2,k ∈Z }2.MP OM AT MP OM AT 作业设计 1.③ 2.3π4或7π4解析 角α终边落在直线y =-x 上. 3.⎣⎡⎦⎤π6,5π64.sin 1.5>sin 1.2>sin 1解析 ∵1,1.2,1.5均在⎝⎛⎭⎫0,π2内,正弦线在⎝⎛⎭⎫0,π2内随α的增大而逐渐增大, ∴sin 1.5>sin 1.2>sin 1.5.⎣⎡⎭⎫0,π4∪⎝⎛⎦⎤54π,2π6.⎝⎛⎭⎫0,π3∪⎝⎛⎭⎫5π3,2π 7.cos α<sin α<tan α 解析如图所示,在单位圆中分别作出α的正弦线MP 、余弦线OM 、正切线AT ,很容易地观察出OM <MP <AT ,即cos α<sin α<tan α.8.⎩⎨⎧⎭⎬⎫α|k π-π6<α<k π+π2,k ∈Z 解析 不等式的解集如图所示(阴影部分),∴⎩⎨⎧⎭⎬⎫α|k π-π6<α<k π+π2,k ∈Z .9.>解析 作出符合题意的正弦线后,再作出α,β的正切线得tan α>tan β.10.⎝⎛⎭⎫k π-π3,k π+π3,k ∈Z 解析 如图所示.∵3-4sin 2x >0,∴sin 2x <34,∴-32<sin x <32.∴x ∈⎝⎛⎭⎫2k π-π3,2k π+π3∪⎝⎛⎭⎫2k π+2π3,2k π+4π3 (k ∈Z ). 即x ∈⎝⎛⎭⎫k π-π3,k π+π3 (k ∈Z ). 11.解 (1)图1作直线y =32交单位圆于A 、B ,连结OA 、OB ,则OA 与OB 围成的区域(图1阴影部分),即为角α的终边的范围. 故满足条件的角α的集合为{α|2k π+π3≤α≤2k π+2π3,k ∈Z }.(2)图2作直线x =-12交单位圆于C 、D ,连结OC 、OD ,则OC 与OD 围成的区域(图2阴影部分),即为角α的终边的范围.故满足条件的角α的集合为{α|2k π+2π3≤α≤2k π+4π3,k ∈Z }.12.解 ∵θ是第二象限角,∴2k π+π2<θ<2k π+π (k ∈Z ),故k π+π4<θ2<k π+π2(k ∈Z ).作出θ2所在范围如图所示.当2k π+π4<θ2<2k π+π2 (k ∈Z )时,cos θ2<sin θ2<tan θ2.当2k π+5π4<θ2<2k π+32π (k ∈Z )时,sin θ2<cos θ2<tan θ2.13.解 由题意,自变量x 应满足不等式组 ⎩⎪⎨⎪⎧1-2cos x ≥0,sin x -22>0. 即⎩⎨⎧sin x >22,cos x ≤12.则不等式组的解的集合如图(阴影部分)所示,∴⎩⎨⎧⎭⎬⎫x |2k π+π3≤x <2k π+34π,k ∈Z .14.证明如图所示,在直角坐标系中作出单位圆,α的终边与单位圆交于P ,α的正弦线、正切线为有向线段MP ,AT ,则MP =sin α,AT =tan α.因为S △AOP =12OA ·MP=12sin α, S 扇形AOP =12αOA 2=12α,S △AOT =12OA ·AT =12tan α,又S △AOP <S 扇形AOP <S △AOT ,所以12sin α<12α<12tan α,即sin α<α<tan α.1.2.2 同角三角函数关系课时目标 1.理解同角三角函数的基本关系式.2.会运用平方关系和商的关系进行化简、求值和证明.1.同角三角函数的基本关系式 (1)平方关系:________________.(2)商数关系:________________(α≠k π+π2,k ∈Z )2.同角三角函数基本关系式的变形 (1)sin 2α+cos 2α=1的变形公式:sin 2α=________;cos 2α=________; (sin α+cos α)2=________________; (sin α-cos α)2=________________;(sin α+cos α)2+(sin α-cos α)2=________; sin α·cos α=____________=__________.(2)tan α=sin αcos α的变形公式:sin α=____________;cos α=____________.一、填空题1.化简sin 2α+cos 4α+sin 2αcos 2α的结果是________.2.已知α是第四象限角,tan α=-512,则sin α=______.3.若sin α+sin 2α=1,,则cos 2α+cos 4α=________.4.若sin α=45,且α是第二象限角,则tan α的值等于________.5.已知tan α=-12,则1+2sin αcos αsin 2α-cos 2α的值为________.6.已知sin α-cos α=-52,则tan α+1tan α的值为________.7.已知tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ=______.8.已知sin αcos α=18且π4<α<π2,则cos α-sin α=________.9.若sin θ=k +1k -3,cos θ=k -1k -3,且θ的终边不落在坐标轴上,则tan θ的值为________.10.若cos α+2sin α=-5,则tan α=____. 二、解答题11.化简:1-cos 4α-sin 4α1-cos 6α-sin 6α.12.求证:1-2sin 2x cos 2x cos 2 2x -sin 2 2x =1-tan 2x1+tan 2x.能力提升 13.证明:(1)1-cos 2αsin α-cos α-sin α+cos αtan 2α-1=sin α+cos α; (2)(2-cos 2α)(2+tan 2α)=(1+2tan 2α)(2-sin 2α).14.已知sin θ、cos θ是关于x 的方程x 2-ax +a =0的两个根(a ∈R ). (1)求sin 3θ+cos 3θ的值;(2)求tan θ+1tan θ的值.1.同角三角函数的基本关系式揭示了“同角不同名”的三角函数的运算规律,它的精髓在“同角”二字上,如sin 22α+cos 22α=1,sin 8αcos 8α=tan 8α等都成立,理由是式子中的角为“同角”. 2.已知角α的某一种三角函数值,求角α的其余三角函数值时,要注意公式的合理选择.一般是先选用平方关系,再用商数关系.在应用平方关系求sin α或cos α时,其正负号是由角α所在象限来决定,切不可不加分析,凭想象乱写公式.3.在进行三角函数式的求值时,细心观察题目的特征,灵活、恰当的选用公式,统一角、统一函数、降低次数是三角函数关系变形的出发点.1.2.2 同角三角函数关系知识梳理1.(1)sin 2α+cos 2α=1 (2)tan α=sin αcos α2.(1)1-cos 2α 1-sin 2α 1+2sin αcos α1-2sin αcos α 2 (sin α+cos α)2-121-(sin α-cos α)22 cos αtan α sin αtan α作业设计1.1 2.-513 3.1 4.-435.-13解析 1+2sin αcos αsin 2α-cos 2α=(sin α+cos α)(sin α+cos α)(sin α+cos α)(sin α-cos α)=sin α+cos αsin α-cos α=tan α+1tan α-1=-12+1-12-1=-13.6.-8解析 tan α+1tan α=sin αcos α+cos αsin α=1sin αcos α.∵sin αcos α=1-(sin α-cos α)22=-18,∴tan α+1tan α=-8.7.45解析 sin 2θ+sin θcos θ-2cos 2θ =sin 2θ+sin θcos θ-2cos 2θsin 2θ+cos 2θ=tan 2θ+tan θ-2tan 2θ+1,又tan θ=2,故原式=4+2-24+1=45.8.-32解析 (cos α-sin α)2=1-2sin αcos α=34,∵π4<α<π2,∴cos α<sin α.∴cos α-sin α=-32. 9.34解析 ∵sin 2θ+cos 2θ=⎝ ⎛⎭⎪⎫k +1k -32+⎝ ⎛⎭⎪⎫k -1k -32=1,∴k 2+6k -7=0,∴k 1=1或k 2=-7. 当k =1时,cos θ不符合,舍去.当k =-7时,sin θ=35,cos θ=45,tan θ=34.10.2解析 方法一 由⎩⎨⎧cos α+2sin α=-5cos 2α+sin 2α=1联立消去cos α后得(-5-2sin α)2+sin 2α=1. 化简得5sin 2α+45sin α+4=0 ∴(5sin α+2)2=0,∴sin α=-255.∴cos α=-5-2sin α=-55.∴tan α=sin αcos α=2.方法二 ∵cos α+2sin α=-5, ∴cos 2α+4sin αcos α+4sin 2α=5, ∴cos 2α+4sin αcos α+4sin 2αcos 2α+sin 2α=5,∴1+4tan α+4tan 2α1+tan 2α=5,∴tan 2α-4tan α+4=0,∴(tan α-2)2=0,∴tan α=2.11.解 原式=(1-cos 4α)-sin 4α(1-cos 6α)-sin 6α=(1-cos 2α)(1+cos 2α)-sin 4α(1-cos 2α)(1+cos 2α+cos 4α)-sin 6α=sin 2α(1+cos 2α)-sin 4αsin 2α(1+cos 2α+cos 4α)-sin 6α=1+cos 2α-sin 2α1+cos 2α+cos 4α-sin 4α=2cos 2α1+cos 2α+(cos 2α+sin 2α)(cos 2α-sin 2α)=2cos 2α1+cos 2α+cos 2α-sin 2α=2cos 2α3cos 2α=23. 12.证明 左边=cos 2 2x +sin 2 2x -2sin 2x cos 2xcos 22x -sin 22x=(cos 2x -sin 2x )2(cos 2x -sin 2x )(cos 2x +sin 2x ) =cos 2x -sin 2x cos 2x +sin 2x =1-tan 2x 1+tan 2x =右边. ∴原等式成立.13.证明 (1)左边=sin 2αsin α-cos α-sin α+cos αsin 2αcos 2α-1=sin 2 αsin α-cos α-sin α+cos αsin 2α-cos 2αcos 2α=sin 2αsin α-cos α-cos 2α(sin α+cos α)sin 2α-cos 2α =sin 2αsin α-cos α-cos 2αsin α-cos α =sin 2α-cos 2αsin α-cos α=sin α+cos α=右边. ∴原式成立.(2)∵左边=4+2tan 2α-2cos 2α-sin 2α =2+2tan 2α+2sin 2α-sin 2α =2+2tan 2α+sin 2α,右边=(1+2tan 2α)(1+cos 2α)=1+2tan 2α+cos 2α+2sin 2α=2+2tan 2α+sin 2α ∴左边=右边,∴原式成立.14.解 (1)由韦达定理知:sin θ+cos θ=a ,sin θ·cos θ=a . ∵(sin θ+cos θ)2=1+2sin θcos θ,∴a 2=1+2a . 解得:a =1-2或a =1+ 2 ∵sin θ≤1,cos θ≤1, ∴sin θcos θ≤1,即a ≤1, ∴a =1+2舍去.∴sin 3θ+cos 3θ=(sin θ+cos θ)(sin 2θ-sin θcos θ+cos 2θ) =(sin θ+cos θ)(1-sin θcos θ) =a (1-a )=2-2.(2)tan θ+1tan θ=sin θcos θ+cos θsin θ=sin 2θ+cos 2θsin θcos θ=1sin θcos θ=1a =11-2=-1- 2.1.2.3 三角函数的诱导公式(一)课时目标1.借助单位圆及三角函数定义理解三组公式的推导过程.2.运用所学四组公式进行求值、化简与证明.1.设α为任意角,则π+α,-α,π-α的终边与α的终边之间的对称关系.相关角 终边之间的对称关系 π+α与α 关于________对称 -α与α 关于________对称 π-α与α 关于________对称2.诱导公式一~四(1)公式一:sin(α+2k π)=________, cos(α+2k π)=________,tan(α+2k π)=________,其中k ∈Z . (2)公式二:sin(-α)=________, cos(-α)=________, tan(-α)=________.(3)公式三:sin(π-α)=________, cos(π-α)=________, tan(π-α)=________.(4)公式四:sin(π+α)=________,cos(π+α)=______, tan(π+α)=________.一、填空题 1.sin 585°的值为________.2.已知cos(π6+θ)=33,则cos(5π6-θ)=________.3.若n 为整数,则代数式sin (n π+α)cos (n π+α)的化简结果是________.4.三角函数式cos (α+π)sin 2(α+3π)tan (α+π)cos 3(-α-π)的化简结果是______.5.若cos(π+α)=-12,32π<α<2π,则sin(2π+α)=________.6.tan(5π+α)=2,则sin (α-3π)+cos (π-α)sin (-α)-cos (π+α)的值为________.7.记cos(-80°)=k ,那么tan 100°=________.(用k 表示)8.代数式1+2sin 290°cos 430°sin 250°+cos 790°的化简结果是______.9.设f (x )=a sin(πx +α)+b cos(πx +β)+2,其中a 、b 、α、β为非零常数.若f (2 011)=1,则f (2 012)=____.10.若sin(π-α)=log 8 14,且α∈⎝⎛⎭⎫-π2,0,则cos(π+α)的值为________. 二、解答题11.若cos(α-π)=-23,求sin (α-2π)+sin (-α-3π)cos (α-3π)cos (π-α)-cos (-π-α)cos (α-4π)的值.12.已知sin(α+β)=1,求证:tan(2α+β)+tan β=0. 能力提升13.化简:sin[(k+1)π+θ]·cos[(k+1)π-θ]sin(kπ-θ)·cos(kπ+θ)(其中k∈Z).14.在△ABC中,若sin(2π-A)=-2sin(π-B),3cos A=-2cos(π-B),求△ABC的三个内角.1.诱导公式 作用公式一 将角转化为0~2π求值 公式二将负角转化为正角求值公式三将角转化为0~π2求值公式四将0~2π内的角转化为0~π之间的角求值2.这组诱导公式的记忆口诀是“函数名不变,符号看象限”.其含义是诱导公式两边的函数名称一致,符号则是将α看成锐角时原角所在象限的三角函数值的符号.α看成锐角,只是公式记忆的方便,实际上α可以是任意角.1.2.3 三角函数的诱导公式(一)知识梳理1.原点 x 轴 y 轴 2.(1)sin α cos α tan α (2)-sin α cos α -tan α (3)sin α -cos α -tan α (4)-sin α -cos α tan α 作业设计1.-22 2.-33 3.tan α4.tan α解析 原式=-cos α·sin 2αtan α·cos 3(α+π)=-cos α·sin 2α-tan α·cos 3α=cos α·sin 2αsin α·cos 2α=sin αcos α=tan α. 5.-32解析 由cos(π+α)=-12,得cos α=12,∴sin(2π+α)=sin α=-1-cos 2 α=-32 (α为第四象限角).6.3解析 原式=sin α+cos αsin α-cos α=tan α+1tan α-1=2+12-1=3.7.-1-k 2k解析 ∵cos(-80°)=k ,∴cos 80°=k ,∴sin 80°=1-k 2.∴tan 80°=1-k 2k .∴tan 100°=-tan 80°=-1-k 2k.8.-1解析 原式=1+2sin (180°+110°)·cos (360°+70°)sin (180°+70°)+cos (720°+70°)=1-2sin 110°cos 70°-sin 70°+cos 70°=1-2sin 70°cos 70°cos 70°-sin 70°=|sin 70°-cos 70°|cos 70°-sin 70°=sin 70°-cos 70°cos 70°-sin 70°=-1. 9.3解析 f (2 011)=a sin(2 011π+α)+b cos(2 011π+β)+2=a si n(π+α)+b cos(π+β)+2 =2-(a sin α+b cos β)=1, ∴a sin α+b cos β=1,f (2 012)=a sin(2 012π+α)+b cos(2 012π+β)+2 =a sin α+b cos β+2=3.10.-53解析 ∵sin(π-α)=sin α=232log 2-=-23,∴cos(π+α)=-cos α=-1-sin 2 α=-1-49=-53.11.解 原式=-sin (2π-α)-sin (3π+α)cos (3π-α)-cos α-(-cos α)cos α=sin α-sin αcos α-cos α+cos 2α =sin α(1-cos α)-cos α(1-cos α) =-tan α.∵cos(α-π)=cos(π-α)=-cos α=-23,∴cos α=23.∴α为第一象限角或第四象限角.当α为第一象限角时,cos α=23,sin α=1-cos 2α=53,∴tan α=sin αcos α=52,∴原式=-52.当α为第四象限角时,cos α=23,sin α=-1-cos 2α=-53,∴tan α=sin αcos α=-52,∴原式=52.综上,原式=±52.12.证明 ∵sin(α+β)=1,∴α+β=2k π+π2 (k ∈Z ),∴α=2k π+π2-β (k ∈Z ).tan(2α+β)+tan β=tan ⎣⎡⎦⎤2⎝⎛⎭⎫2k π+π2-β+β+tan β=tan(4k π+π-2β+β)+tan β =tan(4k π+π-β)+tan β =tan(π-β)+tan β =-tan β+tan β=0, ∴原式成立.13.解 当k 为偶数时,不妨设k =2n ,n ∈Z ,则原式=sin[(2n +1)π+θ]·cos[(2n +1)π-θ]sin (2n π-θ)·cos (2n π+θ)=sin (π+θ)·cos (π-θ)-sin θ·cos θ=-sin θ·(-cos θ)-sin θ·cos θ=-1.当k 为奇数时,设k =2n +1,n ∈Z ,则原式=sin[(2n +2)π+θ]·cos[(2n +2)π-θ]sin[(2n +1)π-θ]·cos[(2n +1)π+θ]=sin[2(n +1)π+θ]·cos[2(n +1)π-θ]sin (π-θ)·cos (π+θ)=sin θ·cos θsin θ·(-cos θ)=-1. ∴原式的值为-1.14.解 由条件得sin A =2sin B ,3cos A =2cos B ,平方相加得2cos 2A =1,cos A =±22,又∵A ∈(0,π),∴A =π4或34π.当A =34π时,cos B =-32<0,∴B ∈⎝⎛⎭⎫π2,π, ∴A ,B 均为钝角,不合题意,舍去.∴A =π4,cos B =32,∴B =π6,∴C =712π.1.2.3 三角函数的诱导公式(二)课时目标1.借助单位圆及三角函数定义理解公式五、公式六的推导过程.2.运用公式五、公式六进行有关计算与证明.1.诱导公式五~六(1)公式五:sin ⎝⎛⎭⎫π2-α=________; cos ⎝⎛⎭⎫π2-α=________.以-α替代公式五中的α,可得公式六.(2)公式六:sin ⎝⎛⎭⎫π2+α=________; cos ⎝⎛⎭⎫π2+α=________.2.诱导公式五~六的记忆π2-α,π2+α的三角函数值,等于α的________三角函数值,前面加上一个把α看成锐角时原函数值的________,记忆口诀为“函数名改变,符号看象限”.一、填空题1.已知f (sin x )=cos 3x ,则f (cos 10°)的值为______.2.若sin ⎝⎛⎭⎫α+π12=13,则cos ⎝⎛⎭⎫α+7π12=________. 3.若sin(3π+α)=-12,则cos ⎝⎛⎭⎫72π-α=________. 4.已知sin ⎝⎛⎭⎫α-π4=13,则cos ⎝⎛⎭⎫π4+α的值等于________. 5.若sin(π+α)+cos ⎝⎛⎭⎫π2+α=-m ,则cos ⎝⎛⎭⎫32π-α+2sin(2π-α)的值为________. 6.代数式sin 2(A +15°)+sin 2(A -45°)的化简结果是________.7.已知cos ⎝⎛⎭⎫π2+φ=32,且|φ|<π2,则tan φ=______. 8.已知cos(75°+α)=13,则sin(α-15°)+cos(105°-α)的值是________.9.sin 21°+sin 22°+…+sin 288°+sin 289°=________.10.已知tan(3π+α)=2,则sin (α-3π)+cos (π-α)+sin ⎝⎛⎭⎫π2-α-2cos ⎝⎛⎭⎫π2+α-sin (-α)+cos (π+α)=________.二、解答题11.求证:tan (2π-α)sin (-2π-α)cos (6π-α)sin ⎝⎛⎭⎫α+3π2cos ⎝⎛⎭⎫α+3π2=-tan α.12.已知sin ⎝⎛⎭⎫-π2-α·cos ⎝⎛⎭⎫-5π2-α=60169,且π4<α<π2,求sin α与cos α的值.能力提升13.化简:sin ⎝⎛⎭⎫4k -14π-α+cos ⎝⎛⎭⎫4k +14π-α (k ∈Z ).14.是否存在角α,β,α∈⎝⎛⎭⎫-π2,π2,β∈(0,π),使等式⎩⎪⎨⎪⎧ sin (3π-α)=2cos ⎝⎛⎭⎫π2-β3cos (-α)=-2cos (π+β)同时成立.若存在,求出α,β的值;若不存在,说明理由.1.学习了本节知识后,连同前面的诱导公式可以统一概括为“k ·π2±α(k ∈Z )”的诱导公式.当k 为偶数时,得α的同名函数值;当k 为奇数时,得α的异名函数值,然后前面加一个把α看成锐角时原函数值的符号.2.诱导公式统一成“k ·π2±α(k ∈Z )”后,记忆口诀为“奇变偶不变,符号看象限”.1.2.3 三角函数的诱导公式(二)知识梳理1.(1)cos α sin α (2)cos α -sin α2.异名 符号作业设计1.-12解析 f (cos 10°)=f (sin 80°)=cos 240°=cos(180°+60°)=-cos 60°=-12. 2.-13解析 cos ⎝⎛⎭⎫α+7π12=cos ⎣⎡⎦⎤π2+⎝⎛⎭⎫α+π12 =-sin ⎝⎛⎭⎫α+π12=-13. 3.-12解析 ∵sin(3π+α)=-sin α=-12,∴sin α=12. ∴cos ⎝⎛⎭⎫7π2-α=cos ⎝⎛⎭⎫32π-α=-cos ⎝⎛⎭⎫π2-α =-sin α=-12. 4.-13解析 cos ⎝⎛⎭⎫π4+α=sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫π4+α =sin ⎝⎛⎭⎫π4-α=-sin ⎝⎛⎭⎫α-π4=-13. 5.-3m 2解析 ∵sin(π+α)+cos ⎝⎛⎭⎫π2+α =-sin α-sin α=-m ,∴sin α=m 2.cos ⎝⎛⎭⎫32π-α+2sin(2π-α) =-sin α-2sin α=-3sin α=-32m . 6.1解析 原式=sin 2(A +45°)+sin 2(45°-A )=sin 2(A +45°)+cos 2(A +45°)=1.7.- 3解析 由cos ⎝⎛⎭⎫π2+φ=-sin φ=32, 得sin φ=-32, 又∵|φ|<π2,∴φ=-π3,∴tan φ=- 3. 8.-23解析 sin(α-15°)+cos(105°-α)=sin[(75°+α)-90°]+cos[180°-(75°+α)]=-sin[90°-(75°+α)]-cos(75°+α)=-cos(75°+α)-cos(75°+α)=-2cos(75°+α)=-23. 9.892解析 原式=(sin 21°+sin 289°)+(sin 22°+sin 288°)+…+(sin 244°+sin 246°)+sin 245°=44+12=892. 10.2解析 原式=sin αsin α-cos α=tan αtan α-1=22-1=2. 11.证明 左边=tan (-α)·sin (-α)·cos (-α)sin ⎣⎡⎦⎤2π-⎝⎛⎭⎫π2-α·cos ⎣⎡⎦⎤2π-⎝⎛⎭⎫π2-α =(-tan α)·(-sin α)·cos αsin ⎣⎡⎦⎤-⎝⎛⎭⎫π2-αcos ⎣⎡⎦⎤-⎝⎛⎭⎫π2-α =sin 2α-sin ⎝⎛⎭⎫π2-αcos ⎝⎛⎭⎫π2-α =sin 2α-cos α·sin α=-sin αcos α=-tan α=右边. ∴原等式成立.12.解 sin ⎝⎛⎭⎫-π2-α=-cos α, cos ⎝⎛⎭⎫-5π2-α=cos ⎝⎛⎭⎫2π+π2+α=-sin α. ∴sin α·cos α=60169,即2sin α·cos α=120169.① 又∵sin 2α+cos 2α=1,②①+②得(sin α+cos α)2=289169, ②-①得(sin α-cos α)2=49169, 又∵α∈⎝⎛⎭⎫π4,π2,∴sin α>cos α>0,即sin α+cos α>0,sin α-cos α>0,∴sin α+cos α=1713,③ sin α-cos α=713,④ ③+④得sin α=1213,③-④得cos α=513. 13.解 原式=sin ⎣⎡⎦⎤k π-⎝⎛⎭⎫π4+α+cos ⎣⎡⎦⎤k π+⎝⎛⎭⎫π4-α. 当k 为奇数时,设k =2n +1 (n ∈Z ),则原式=sin ⎣⎡⎦⎤(2n +1)π-⎝⎛⎭⎫π4+α +cos ⎣⎡⎦⎤(2n +1)π+⎝⎛⎭⎫π4-α =sin ⎣⎡⎦⎤π-⎝⎛⎭⎫π4+α+cos ⎣⎡⎦⎤π+⎝⎛⎭⎫π4-α=sin ⎝⎛⎭⎫π4+α+⎣⎡⎦⎤-cos ⎝⎛⎭⎫π4-α =sin ⎝⎛⎭⎫π4+α-cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫π4+α =sin ⎝⎛⎭⎫π4+α-sin ⎝⎛⎭⎫π4+α=0; 当k 为偶数时,设k =2n (n ∈Z ),则原式=sin ⎣⎡⎦⎤2n π-⎝⎛⎭⎫π4+α+cos ⎣⎡⎦⎤2n π+⎝⎛⎭⎫π4-α =-sin ⎝⎛⎭⎫π4+α+cos ⎝⎛⎭⎫π4-α =-sin ⎝⎛⎭⎫π4+α+cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫π4+α =-sin ⎝⎛⎭⎫π4+α+sin ⎝⎛⎭⎫π4+α=0. 综上所述,原式=0.14.解 由条件,得⎩⎨⎧sin α=2sin β, ①3cos α=2cos β. ②①2+②2,得sin 2α+3cos 2α=2,③又因为sin 2α+cos 2α=1,④ 由③④得sin 2α=12,即sin α=±22, 因为α∈⎝⎛⎭⎫-π2,π2,所以α=π4或α=-π4. 当α=π4时,代入②得cos β=32,又β∈(0,π), 所以β=π6,代入①可知符合. 当α=-π4时,代入②得cos β=32,又β∈(0,π), 所以β=π6,代入①可知不符合. 综上所述,存在α=π4,β=π6满足条件.。

苏教版数学高一苏教版必修4导学案任意角的三角函数

苏教版数学高一苏教版必修4导学案任意角的三角函数

1.2.1 任意角的三角函数1.三角函数的定义如图:P (x ,y ),OP =r ,一般地,对任意角α,我们规定:(1)比值y r 叫做α的正弦,记作sin α,即sin α=yr ;(2)比值x r 叫做α的余弦,记作cos α,即cos α=xr;(3)比值y x (x ≠0)叫做α的正切,记作tan α,即tan α=yx.预习交流1三角函数值的大小与P 点位置的选取有关系吗?提示:三角函数值是比值,是一个实数,这个实数的大小与点P (x ,y )在终边上的位置无关,只由角α的终边位置决定,即三角函数值的大小只与角有关.2.三角函数值在各象限的符号正弦函数值的符号与y 的符号相同,余弦函数值的符号与x 的符号相同.此符号规律可用口诀:“一全正、二正弦、三两切、四余弦”来记忆(只记函数值为正的情况,“一、二、三、四”指象限).预习交流2 三角函数值在各象限的符号由什么来确定?提示:由三角函数的定义可知,三角函数值在各象限的符号由角α终边上任意一点P 的坐标x ,y 的正负来确定.3.有向线段与三角函数线(1)有向线段:规定了方向(即规定了起点和终点)的线段叫做有向线段.类似地,把规定了正方向的直线称为有向直线.若有向线段AB 在有向直线l 上或与有向直线l 平行,根据有向线段AB 与有向直线l 的方向相同或相反,分别把它的长度添上正号或负号.这样所得的数,叫做有向线段的数量,记为AB .(2)三角函数线:如图,把有向线段MP ,OM ,AT 分别叫做角α的正弦线、余弦线和正切线.它们统称为三角函数线.当角α在不同象限时,其三角函数线见课本第13页图128.当角α的终边在x 轴上时,正弦线、正切线分别变成一个点;当角α的终边在y 轴上时,余弦线变成一个点,正切线不存在.预习交流3 正弦线、余弦线、正切线方向有何特点?提示:正弦线方向由垂足指向α的终边与单位圆的交点;余弦线方向由原点指向垂足;正切线方向由切点指向切线与α的终边(或反向延长线)的交点.预习交流4(1)角α终边上一点P (3,n ),且sin α=45,则n =______;(2)若角α的终边过点(sin 30°,-cos 30°),则sin α=______;(3)若-π2<α<0,则点(tan α,cos α)位于第______象限.提示:(1)4 (2)-32(3)二一、利用定义求三角函数值已知角θ的终边上有一点P (-3,m ),且sin θ=24m ,求cos θ与tan θ的值. 思路分析:此类问题的解答一般根据三角函数的定义求解.对于本题可由定义求出m 的值,再求cos θ与tan θ的值.解:由已知有,24m =m3+m 2,得m =0,或m =±5.(1)当m =0时,cos θ=-1,tan θ=0;(2)当m =5时,cos θ=-64,tan θ=-153;(3)当m =-5时,cos θ=-64,tan θ=153.已知点P (5,a )是角α的终边上一点,且tan α=-125,求sin α+cos α的值.解:∵x =5,y =a ,∴tan α=y x =a 5=-125,∴a =-12,r =52+(-12)2=13.则sin α=y r =-1213,cos α=x r =513,sin α+cos α=-1213+513=-713.已知角的终边上一点,求该角的三角函数值,一般是先求出该点到原点的距离r ,再由三角函数的定义,求出三角函数值.若点的坐标有字母时,由于字母符号未知,所以点所在象限不确定,因此要根据情况进行分类讨论,避免漏解.二、三角函数值的符号的应用判断下列各式的符号:(1)tan 120°·sin 269°;(2)cos 4·tan ⎝⎛⎭⎫-23π4. 思路分析:此类问题的解决一是要弄清角的终边所在的象限,二是要熟记三角函数值在各象限的符号.解:(1)∵120°是第二象限角,∴tan 120°<0; ∵269°是第三象限角,∴sin 269°<0, ∴tan 120°·sin 269°>0.(2)∵π<4<3π2,∴4弧度角是第三象限角,∴cos 4<0;∵-23π4=-6π+π4,∴-23π4是第一象限角,∴tan ⎝⎛⎭⎫-23π4>0,∴cos 4·tan ⎝⎛⎭⎫-23π4<0.1.若角α的终边经过点P (-2,-1),则①sin α·tan α>0;②cos α·tan α>0,③sin α·cos α>0;④sin α·tan α<0中成立的是__________(填序号).答案:③④解析:∵P (-2,-1)是第三象限内的点,∴角α为第三象限角,∴sin α<0,cos α<0,tan α>0,∴①②不正确,③④正确.2.已知点P (tan α,cos α)在第三象限,求角α的终边所在的象限. 解:方法一:∵P (tan α,cos α)在第三象限,∴tan α<0且cos α<0.由tan α<0,知α为第二或第四象限角,由cos α<0,知α为第二或第三象限角,∴α的终边在第二象限.方法二:由P 为第三象限,知tan α<0且cos α<0.设角α终边上一点的坐标为(x ,y ),则由三角函数定义知,tan α=y x <0,cos α=xr <0,∴x <0且y >0.故α的终边在第二象限.三角函数值“符号看象限”:根据符号规律,结合具体函数及角的所在象限进行判断,如第二象限角,其正弦值为正,而余弦与正切值为负.由点所在象限求角所在象限时,关键是弄清已知点的坐标符号,以此判定点所在象限即知角的终边所在象限.三、作三角函数线作出3π4的正弦线、余弦线和正切线.思路分析:利用三角函数线的作法即可完成.解:在直角坐标系中作单位圆,如图所示.以x 轴正半轴为始边作3π4角,角的终边与单位圆交于点P .作PM ⊥x 轴,垂足为M ,过单位圆与x 轴正方向的交点A 作x 轴的垂线与OP的反向延长线交于点T ,则sin 3π4=MP ,cos 3π4=OM ,tan 3π4=AT ,即3π4的正弦线为MP ,余弦线为OM ,正切线为AT .在单位圆中画出满足sin α=12的角α的终边.解:所给函数是正弦函数,故作直线y =12交单位圆于点P ,Q ,连结OP ,OQ ,则射线OP ,OQ 即为角α的终边.作正弦线、余弦线时,首先找到角的终边与单位圆的交点,然后过此点作x 轴的垂线,得垂足,从而可得正弦线与余弦线.作正切线时,应从A (1,0)点引单位圆的切线,与角的终边(角α为第一或第四象限角时)或终边的反向延长线(角α为第二或第三象限角时)交于一点T ,即可得到正切线AT .三角函数线的主要作用是求函数定义域、值域、解三角不等式、比较两三角函数值的大小等.1.已知在△ABC 中,sin A ·cos B <0,则△ABC 的形状是__________. 答案:钝角三角形解析:在△ABC 中,由sin A ·cos B <0,可知sin A >0,cos B <0,故∠B 为钝角,即此三角形为钝角三角形.2.已知角α的终边经过点P (5,12),则sin α=______,cos α=______,tan α=______.答案:1213 513 125解析:由x =5,y =12,得r =52+122=13.∴sin α=y r =1213,cos α=x r =513,tan α=y x =125.3.已知cos θ·tan θ<0,那么θ是第______或第______象限角. 答案:三 四 解析:由cos θ·tan θ<0,知sin θ<0,且θ的终边不在坐标轴上,由此知θ的终边在第三或第四象限.4.若600°角的终边上有一点(-4,a ),则a 的值是__________. 答案:-4 3解析:在坐标系中把600°角的终边找到,看其在第几象限,再利用数形结合思想来求a 的值.因为600°=360°+240°,所以600°的终边与240°的终边重合,如图所示,设P (-4, a ),作PM ⊥x 轴于M ,由sin 240°=a 16+a 2=-32,得a =-4 3.5.已知角θ的终边上一点P (5a,12a ),且a ≠0,180°<θ<270°,求角θ的三个三角函数值.解:因为180°<θ<270°,所以a <0,从而r =(5a )2+(12a )2=-13a ,所以sin θ=y r =-1213,cos θ=x r =-513,tan θ=y x =125.。

苏教版高中数学必修4教学案:第一章三角函数第4课时 任意角的三角函数(2)

苏教版高中数学必修4教学案:第一章三角函数第4课时 任意角的三角函数(2)

第4课时 任意角的三角函数(2)【学习目标】1、掌握任意角三角函数的定义,并能借助单位圆理解任意角三角函数的定义2、会用三角函数线表示任意角三角函数的值3、掌握正弦、余弦、正切函数的定义域和这三种函数的值在各象限的符号【学习重点、难点】会用三角函数线表示任意角三角函数的值【自主学习】一、复习回顾1.单位圆的概念:在平面直角坐标系中,以________为圆心,以_______为半径的圆。

2.有向线段的概念:把规定了正方向的直线称为___________________;规定了___________(即规定了起点和终点)的线段称为有向线段。

3.有向线段的数量:若有向线段AB 在有向直线l 上或与有向直线l _____________,根据有向线段AB 与有向直线l 的方向_____________或_____________,分别把它的长度添上______或_______,这样所得的__________叫做有向线段的数量。

4.三角函数线的定义:设任意角α的顶点在原点O ,始边与x 轴非负半轴重合,终边与单位圆相交于点(,)P x y ,过点P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,设它与α的终边(当α为第_______象限角时)或其反向延长线(当α为第______象限角时)相交于点T 。

根据三角函数的定义:sin y α==________;cos x α==_______;tan y xα==__________。

【典型例题】例1.作出下列各角的正弦线、余弦线、正切线:()31π()π652()π323-()64π-例2.利用三角函数线比较大小 () 30sin 1______ 150sin : () 25sin 2______ 150sin : ()π32cos 3______π54cos ; ()π32tan 4______π32tan例3.解下列三角方程()23sin 1=x ()21cos 2=x ()1tan 3=x变题1.解下列三角不等式()23sin 1>x ()21cos 2≤x ()1tan 3>x变题2.求函数()x x y cos 211sin 2lg ++-=的定义域.【巩固练习】1.作出下列各角的正弦线、余弦线、正切线 ()π6111-()π3222.利用余弦线比较cos 64,cos 285的大小;3.若42ππθ<<,则比较sin θ、cos θ、tan θ的大小;4.分别根据下列条件,写出角θ的取值范围:(1)cos θ<; (2)tan 1θ>- ; (3)sin θ>5.当角α,β满足什么条件时,有βαsin sin =6.若cos θ<,sin θ>,写出角θ的取值范围。

高中数学苏教版必修4第1章《1.2.1 任意角的三角函数》优质课教案省级比赛获奖教案公开课教师面试试讲教案

高中数学苏教版必修4第1章《1.2.1 任意角的三角函数》优质课教案省级比赛获奖教案公开课教师面试试讲教案

高中数学苏教版必修4第1章《1.2.1 任意角的三角函数》优质课教案省级比赛获奖教案公开课教师面试试讲教案
【名师授课教案】
1教学目标
1、知识与技能:
理解并掌握任意角的三角函数(正弦、余弦、正切)的定义;根据任意角的三角函数的定义认识其定义域,能够判断三角函数值的符号.
2、过程与方法:
学生经历从锐角三角函数定义过渡到任意角三角函数定义,体验三角函数概念的形成、发展过程,领悟直角坐标系的工具功能,渗透函数思想和数形结合的思想方法.
3、情感态度价值观:
通过学生积极参与知识的“再创造”过程,从中感悟数学概念的严谨性与科学性.
2学情分析
对于学习任意角三角函数而言,学生的认知困难主要体现在用终边上点的坐标表示三角函数,把锐角三角函数线段比的感性认识上升到坐标化的理性高度,这种由形到数的翻译,从直观到抽象的转变对高一的学生来说比较困难.
3重点难点
1、教学重点
任意角的正弦、余弦、正切函数的定义.
2、教学难点
用角终边上点的坐标定义任意角的三角函数.
4教学过程
4.1第一学时
教学活动
1【导入】一、设置情境引入新课
情景1.感受生活中周期性现象:周二的七天一循环、一岁一枯荣的小草、摩天轮等。

高中数学苏教版必修四第一章1.2.1 任意角的三角函数(2)导学案设计(无答案)

高中数学苏教版必修四第一章1.2.1 任意角的三角函数(2)导学案设计(无答案)

1.2.1 任意角的三角函数(2)【目标要求】1.掌握三角函数线的定义,会画三角函数线;2.利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值用几何形式表示.【重点、难点】三角函数线的应用。

【预学单】1.有向线段:规定了_____________________的线段成为有向线段;规定与坐标轴___________相同为正,与坐标轴___________相反为负.2.三角函数线:在图中作出角α的正弦线、余弦线、正切线.3.根据三角函数线探究:正弦、余弦、正切、函解析式y=sinx y=cosx y=tanx定义域值域例1、作出下列各角的正弦线、余弦线、正切线.3π56π23π-136π-变式:利用三角函数线比较下列各组数的大小:(1) 32sinπ与54sinπ(2) tan32π与tan54πxyOxyo xyoyo x例2.利用单位圆分别写出符合下列条件的角α的集合:(1)21sin =α; (2)22cos =α; (3)3tan =α.例3.在单位圆中画出适合下列条件的角α的终边的范围,并由此写出角α的集合:(1)sin α≥23; (2)cos α≤21-. .【续学单】1. 如果角α(πα20<<)的正弦线与余弦线的长度相等,且符号相异,则α的值为______.2. 利用单位圆比较大小:(1)00150sin _________25sin ; (2)34cos ______32cosππ; (3)54tan _________32tan ππ; (4)0025tan ______25sin . 3.求下列函数的定义域:(1)y=1cos 2-x ; (2)y=lg(3-4sin 2x )。

高中数学1.2.1 任意角的三角函数(一) 教案(苏教版必修4)

高中数学1.2.1 任意角的三角函数(一)  教案(苏教版必修4)

第 3 课时: 1.2.1 任意角的三角函数(一)【三维目标】: 一、知识与技能1.掌握任意角的正弦、余弦、正切的定义;2.掌握正弦、余弦、正切函数的定义域和这三种函数的值在各象限的符号。

3.树立映射观点,正确理解三角函数是以实数为自变量的函数; 二、过程与方法1.通过网络载体,利用几何画板的直观演示,培养学生主动探索、善于发现的创新意识和创新精神;2.在学习过程中通过相互讨论培养学生的团结协作精神;3.通过学生积极参与知识的“发现”与“形成”的过程,培养合情猜测的能力,从中感悟数学概念的严谨性与科学性。

三、情感、态度与价值观1.使学生认识到事物之间是有联系的,三角函数就是角度(自变量)与比值(函数值)的一种联系方式;2.学习转化的思想,培养学生严谨治学、一丝不苟的科学精神;3.让学生在任意角三角函数概念的形成过程中,体会函数思想,体会数形结合思想。

【教学重点与难点】:重点:任意角三角函数的定义(包括这三种三角函数的定义域和函数值在各象限的符号)。

难点:任意角的三角函数概念的建构过程 【学法与教学用具】: 1. 学法:2. 教学用具:多媒体、实物投影仪.3. 教学模式:启发、诱导发现教学. 【授课类型】:新授课 【课时安排】:1课时 【教学思路】:一、创设情景,揭示课题用),(αr 与用坐标),(y x 均可表示圆周上点P ,那么,这两种表示有什么内在的联系?确切地说,● 用怎样的数学模型刻画),(y x 与),(αr 之间的关系? 二、研探新知 1.三角函数的定义 【提问】:初中锐角的三角函数是如何定义的?在平面直角坐标系中,设α的终边上任意一点P 的坐标是),(y x ,它与原点的距离是)0(22>+=y x r r 。

当α为锐角时,过P 作x PM ⊥轴,垂足为M ,在OPM Rt ∆中,sin y r α=,cos x r α=,tan yx α=●怎样将锐角的三角函数推广到任意角的三角函数?一般地,对任意角α,我们规定:(1)比值yr叫做α的正弦,记作sinα,即sinyrα=;(2)比值xr叫做α的余弦,记作cosα,即cosxrα=;(3)比值yx叫做α的正切,记作tanα,即tanyxα=;【说明】:①α的始边与x轴的非负半轴重合,α的终边没有表明α一定是正角或负角,以及α的大小,只表明与α的终边相同的角所在的位置;②根据相似三角形的知识,对于确定的角α,三个比值不以点(,)P x y在α的终边上的位置的改变而改变大小;③当()2k k Zπαπ=+∈时,α的终边在y轴上,终边上任意一点的横坐标x都等于0,所以tanyxα=无意义;④除以上两种情况外,对于确定的值α,比值yr、xr、yx、分别是一个确定的实数,所以正弦、余弦、正切是以角为自变量,一比值为函数值的函数,以上三种函数统称为三角函数。

数学苏教版必修4学案:第1章 1.2 1.2.1 第一课时 任意角的三角函数

数学苏教版必修4学案:第1章 1.2 1.2.1 第一课时 任意角的三角函数

任意角的三角函数1.2.1任意角的三角函数第一课时任意角的三角函数预习课本P11~12,思考并完成下列问题1. 在初中,如何求角的正弦、余弦、正切值?2.在平面直角坐标系中,如何定义角的正弦、余弦、正切值?3.三角函数值在各象限内的符号是什么?[新知初探]1.任意角的三角函数的定义前提如图,设α是一个任意角,P(x,y)是它的终边上任意一点定义正弦比值yr叫做α的正弦,记作sin α,即sin α=yr余弦比值xr叫做α的余弦,记作cos α,即cos α=xr正切比值yx(x≠0)叫做α的正切,记作tan α,即tan α=yx(x≠0) 三角函数正弦、余弦、正切都是以角为自变量,以角的终边上点的坐标的比值为函数值的函数,将它们统称为三角函数[点睛]三角函数值只与角α的大小有关,即由角α的终边位置决定.2.三角函数值的符号如图所示:正弦:一二象限正,三四象限负;余弦:一四象限正,二三象限负;正切:一三象限正,二四象限负.[点睛]一全正、二正弦、三正切、四余弦.[小试身手]1.若角α的终边上一点的坐标为(1,-1),则cos α=________.★答案★:222.已知角α的终边上有一点P⎝⎛⎭⎫55,-255,则sin α+cos α=________.★答案★:-553.若sin α<0,tan α>0,则α在第__________象限.★答案★:三4.若角α的终边上有一点P(-4,a),且sin α·cos α=34,则a=________.解析:因为点P(-4,a)且sin α·cos α=34,所以a<0,根据定义可得aa2+16·-4a2+16=34,解得a=-43或-433.★答案★:-43或-433求任意角的三角函数值[典例] 已知角α的终边经过点P (-4a,3a )(a ≠0),求sin α,cos α,tan α的值. [解] r =(-4a )2+(3a )2=5|a |.若a >0,则r =5a ,故sin α=y r =3a 5a =35,cos α=x r =-4a 5a =-45,tan α=y x =3a -4a =-34.若a <0,则r =-5a .同理可得sin α=-35,cos α=45,tan α=-34.求任意角的三角函数值的步骤(1)求角的终边上一点到原点的距离r ; (2)根据三角函数的定义求出三角函数值;(3)当点的坐标有字母时,要根据情况进行分类讨论,避免漏解. 1.如果α的终边过点P (2sin 30°,-2cos 30°),则sin α=________. 解析:由题意知P (1,-3), 所以r =12+(-3)2=2,所以sin α=-32. ★答案★:-322.已知角θ的终边经过点P (-3,m )(m ≠0)且sin θ=24m ,试判断角θ所在的象限,并求cos θ和tan θ的值.解:由题意,得r =3+m 2, 所以m 3+m 2=24m . 因为m ≠0, 所以m =±5,故角θ是第二或第三象限角.当m =5时,r =22,点P 的坐标为(-3,5),角θ是第二象限角, 所以cos θ=x r =-322=-64,tan θ=y x =5-3=-153;当m =-5时,r =22,点P 的坐标为(-3,-5),角θ是第三象限角, 所以cos θ=x r =-322=-64,tan θ=y x =-5-3=153.三角函数值的符号的判定[典例] 判断下列式子的符号:(1)tan 108°·cos 305°;(2)cos 5π6·tan11π6sin2π 3;(3)tan 191°-cos 191°;(4)sin 3·cos 4·tan 5. [解] (1)∵108°是第二象限角, ∴tan 108°<0.∵305°是第四象限角,∴cos 305°>0. 从而tan 108°·cos 305°<0,∴式子符号为负. (2)∵5π6是第二象限角,11π6是第四象限角,2π3是第二象限角. ∴cos5π6<0,tan 11π6<0,sin 2π3>0. 从而cos 5π6·tan11π6sin2π3>0.∴式子符号为正. (3)∵191°是第三象限角, ∴tan 191°>0,cos 191°<0. ∴tan 191°-cos 191°>0. ∴式子符号为正.(4)∵π2<3<π,π<4<3π2,3π2<5<2π,∴sin 3>0,cos 4<0,tan 5<0. ∴sin 3·cos 4·tan 5>0. ∴式子符号为正.三角函数值的符号的判定方法(1)确定α是第几象限角.(2)利用定义或利用口诀“一全正、二正弦、三正切、四余弦”来确定. 判断下列各式的符号: (1)sin 105°·cos 230°; (2)cos 6·tan ⎝⎛⎭⎫-2π3. 解:(1)∵105°,230°分别为第二、第三象限角, ∴sin 105°>0,cos 230°<0. 于是sin 105°·cos 230°<0. ∴式子符号为负. (2)∵3π2<6<2π,∴6是第四象限角, ∴cos 6>0,又-2π3是第三象限角,∴tan ⎝⎛⎭⎫-2π3>0, ∴cos 6·tan ⎝⎛⎭⎫-2π3>0. ∴式子符号为正.层级一 学业水平达标1.已知角α的终边经过点(-4,3),则cos α=________. 解析:由题意知,r =(-4)2+32=5,故cos α=x r =-45.★答案★:-452.若角θ同时满足sin θ<0且tan θ<0,则角θ的终边一定位于第________象限. 解析:由sin θ<0知角α的终边在第三或第四象限,或y 轴负半轴上,由tan θ<0知角α的终边在第二或第四象限,所以角θ的终边位于第四象限.★答案★:四 3.sin 3π2=________.解析:∵α=3π2,在α的终边上取一点(0,-1),∴sin 3π2=-1(-1)2+02=-1. ★答案★:-14.已知角α的终边经过点(3a -9,a +2),且sin α>0,cos α≤0,则a 的取值范围是________.解析:由cos α≤0及sin α>0知角α的终边在第二象限或y 轴的正半轴上.故⎩⎪⎨⎪⎧3a -9≤0,a +2>0,∴-2<a ≤3. ★答案★:(-2,3]5.若α是第二象限角,则点P (sin α,cos α)在第________象限.解析:因为α为第二象限角,则sin α>0,cos α<0,所以P 点在第四象限. ★答案★:四6.已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若P (4,y )是角θ终边上一点,且sin θ=-255,则y =________.解析:|OP |=42+y 2.根据任意角三角函数的定义得,y 42+y 2=- 255,解得y =±8.又∵sin θ=-255<0及P (4,y )是角θ终边上一点,可知θ为第四象限角,∴y =-8.★答案★:-87.已知角α的终边过点P (4,-3),则下面各式中正确的是________.(只填序号) ①sin α=-35;②cos α=45;③tan α=-34;④tan α=-43.解析:易知x =4,y =-3,r =5,所以sin α=-35,cos α=45,tan α=-34.★答案★: ①②③ 8.有下列命题:①若sin α>0,则α是第一或第二象限角; ②若α是第一或第二象限角,则sin α>0; ③三角函数值不能取负值;④若α是第二象限角,且P (x ,y )是其终边上一点,则cos α=-x x 2+y 2.其中正确命题的序号是________.解析:∵sin π2=1>0,但π2不是第一或第二象限角,∴①不正确;三角函数值可正可负,也可为0, ∴③不正确;④应是cos α=xx 2+y 2,∴④不正确. ★答案★:②9.已知角α的终边经过点P (x ,-2)(x ≠0),且cos α=x3,求sin α和tan α.解:因为r =|OP |=x 2+(-2)2, 所以由cos α=x3,得x x 2+(-2)2=x3,解得x =±5.当x =5时,sin α=-23,tan α=-255;当x =-5时,sin α=-23,tan α=255.10.已知角α的终边与函数y =32x 的图象重合,求α的正弦、余弦和正切值.解:函数y =32x 的图象是过原点和第一、三象限的直线,因此α的终边在第一或第三象限.(1)当α终边落在第一象限时,在终边上取点P (2,3), 则r =22+32=13, 于是,sin α=313=31313,cos α=213=21313,tan α=32.(2)当α终边落在第三象限时,在终边上取点P (-2,-3), 则r =(-2)2+(-3)2=13, 于是sin α=-313=-31313,cos α=-213=-21313,tan α=-3-2=32.层级二 应试能力达标1.若角α的终边在直线y =-2x 上,则sin α=________.解析:在α的终边上任取一点P (-1,2),则r =(-1)2+22=5,所以sin α=y r =25=255.或者取P (1,-2),则r =5,所以sin α=y r =-25=-255.★答案★:±2552.角α的终边上有一点P (a,4),且tan α=43,则3sin α-2cos α的值为________. 解析:∵tan α=43,∴a =3.∴r =32+42=5,sin α=45,cos α=35,∴3sin α-2cos α=125-65=65. ★答案★:653.角α的终边过点P (-8m ,-6cos 60°)且cos α=-45,则m 的值为____________.解析:由题意,P (-8m ,-3), 由cos α=-45可得-8m 64m 2+9=-45,解得m =12⎝⎛⎭⎫m =-12不合题意,舍去. ★答案★:124.已知角α的终边上一点的坐标为⎝⎛⎭⎫sin 2π3,cos 2π3,则角α的最小正值为________. 解析:由题意知角α的终边的一点的坐标为⎝⎛⎭⎫32,-12,故α是第四象限角,所以角α的最小正值为11π6.★答案★:11π65.已知x 为终边不在坐标轴上的角,则函数f (x )=|sin x |sin x +cos x |cos x |+|tan x |tan x的值域是________.解析:若x 为第一象限角,则f (x )=3;若x 为第二、三、四象限角,则f (x )=-1.所以函数f (x )的值域为{-1,3}.★答案★:{-1,3}6.设α是第三象限角,且⎪⎪⎪⎪cos α2=-cos α2,则α2所在象限是________.解析:因为α是第三象限角, 所以2k π+π<α<2k π+3π2,k ∈Z. 所以k π+π2<α2<k π+3π4,k ∈Z.所以α2在第二、四象限.又因为⎪⎪⎪⎪cos α2=-cos α2, 所以cos α2<0.所以α2在第二象限.★答案★:第二象限7.已知角θ的终边上有一点P (x ,-1)(x ≠0),且tan θ=-x . (1)求x 的值;(2)求sin θ+cos θ的值.解:(1)因为θ的终边过点(x ,-1)(x ≠0), 所以tan θ=-1x . 又tan θ=-x , 所以x 2=1,即x =±1. (2)当x =1时,sin θ=-22,cos θ=22. 因此sin θ+cos θ=0; 当x =-1时,sin θ=-22,cos θ=-22, 因此sin θ+cos θ=- 2. 故sin θ+cos θ的值为0或- 2.8.已知点M 是圆x 2+y 2=1上的点,以射线OM 为终边的角α的正弦值为-22,求cos α和tan α的值.解:设点M 的坐标为(x 1,y 1). 由题意,可知sin α=-22, 即y 1=-22. ∵点M 在圆x 2+y 2=1上,∴x 21+y 21=1,即x 21+⎝⎛⎭⎫-222=1, 解得x 1=22或-22. ∴cos α=22或cos α=-22, ∴tan α=-1或tan α=1.。

苏教版高中数学必修四任意角的三角函数教案(1)(1)

苏教版高中数学必修四任意角的三角函数教案(1)(1)

1.2.1 任意角的三角函数(1)一、课题:任意角的三角函数(1)二、教学目标:1.掌握任意角的三角函数的定义;2.已知角α终边上一点,会求角α的各三角函数值;3.记住三角函数的定义域、值域,诱导公式(一)。

三、教学重、难点:根据定义求三角函数值。

四、教学过程:(一)复习:初中锐角的三角函数是如何定义的?在Rt ABC ∆中,设A 对边为a ,B 对边为b ,C 对边为c ,锐角A 的正弦、余弦、正切依次为,,a b a sinA cosA tanA c c b=== . 角推广后,这样的三角函数的定义不再适用,我们必须对三角函数重新定义。

(二)新课讲解:1.三角函数定义在直角坐标系中,设α是一个任意角,α终边上任意一点P (除了原点)的坐标为(,)x y ,它与原点的距离为(0)r r ==>,那么(1)比值y r 叫做α的正弦,记作sin α,即sin y rα=; (2)比值x r 叫做α的余弦,记作cos α,即cos x rα=; (3)比值y x 叫做α的正切,记作tan α,即tan y xα=; (4)比值x y 叫做α的余切,记作cot α,即cot x yα=; (5)比值r x 叫做α的正割,记作sec α,即sec r xα=; (6)比值r y 叫做α的余割,记作csc α,即csc r yα=. 说明:①α的始边与x 轴的非负半轴重合,α的终边没有表明α一定是正角或负角,以及α的大小,只表明与α的终边相同的角所在的位置;②根据相似三角形的知识,对于确定的角α,六个比值不以点(,)P x y 在α的终边上的位置的改变而改变大小;③当()2k k Z παπ=+∈时,α的终边在y 轴上,终边上任意一点的横坐标x 都等于0,所以tan y x α=与sec r x α=无意义;同理,当()k k Z απ=∈时,x coy y α=与csc r yα=无意义; ④除以上两种情况外,对于确定的值α,比值y r 、x r 、y x 、x y 、r x 、r y 分别是一个确定的实数,所以正弦、余弦、正切、余切、正割、余割是以角为自变量,一比值为函数值的函数,以上六种函数统称为三角函数。

苏教版数学高一数学苏教版必修4教学案1.2任意角的三角函数

苏教版数学高一数学苏教版必修4教学案1.2任意角的三角函数

第1课时 任意角的三角函数如图,直角△ABC .问题1:如何表示角A 的正弦、余弦、正切值? 提示:sin A =a c ,cos A =b c ,tan A =ab.问题2:如图,锐角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,在α终边上任取一点P (a ,b ),作PM ⊥x 轴,如何用图中的数据表示sin α,cos α,tan α?提示:∵PM ⊥x 轴,∴△OPM 为直角三角形, ∴|OP |=|OM |2+|PM |2=a 2+b 2,∴sin α=|PM ||OP |=b a 2+b 2,cos α=|OM ||OP |=aa 2+b 2,tan α=|MP ||OM |=ba.在平面直角坐标系中,设α的终边上任意一点P 的坐标是(x ,y ),它与原点的距离为r (r =x 2+y 2>0)规定:三角函数定义定义域正弦 sin α=y rR 余弦 cos α=xrR正切tan α=y x{α|α≠k π+π2,k ∈Z }问题1:由三角函数的定义知sin α在什么条件下函数值为正? 提示:α的终边在第一、二象限或y 轴正半轴. 问题2:tan α在什么情况下为负数?提示:因tan α=yx,则x 、y 异号为负数,即α的终边在二、四象限为负数.三角函数值在各象限内的符号,如图所示:如图,由单位圆中的三角函数的定义可知sin α=y ,cos α=x ,tan α=yx .问题:sin α是否等于PM 的长?若不等,怎样才能相等?提示:不一定,可能等于PM 的长,也可能等于PM 长的相反数,把MP 看成有向线段即可.1.有向线段规定了方向(即规定了起点和终点)的线段. 2.有向线段数量根据有向线段AB 与有向直线l 的方向相同或相反,分别把它的长度添上正号或负号,这样所得的数,叫做有向线段的数量.3.单位圆圆心在原点,半径等于单位长度的圆.4.三角函数线设角α的终边与单位圆的交点为P,过点P作x轴的垂线,垂足为M.(1)则有向线段MP、OM就分别是角α的正弦线与余弦线,即MP=sin α,OM=cos α;(2)过点A(1,0)作单位圆的切线,设这条切线与角α的终边或角α终边的反向延长线交于点T,则有向线段AT就是角α的正切线,即AT=tan_α.1.三角函数值是比值,是一个实数,这个实数的大小与点P(x,y)在终边上的位置无关,只由角α的终边位置确定,即三角函数值的大小只与角有关.2.三角函数值的符号,用角α的终边所处的位置确定,即“一全正,二正弦,三正切,四余弦”.3.正弦线、余弦线、正切线这三种三角函数线都是一些特殊的有向线段,是与坐标轴垂直的线段.这些线段分别可以表示相应三角函数的值,它们是三角函数的一种几何表示.[例1]已知角α的终边上有一点P(-3a,4a)(a≠0),求2sin α+cos α的值.[思路点拨]由三角函数的定义求三角函数时,应先确定α终边位置.由于含有参数a,而a的条件为a≠0,所以必须对a进行分类讨论.[精解详析]∵x=-3a,y=4a,∴r =(-3a )2+(4a )2=5|a |.当a >0时,r =5a ,角α为第二象限角, ∴sin α=y r =4a 5a =45,cos α=x r =-3a 5a =-35,∴2sin α+cos α=2×45-35=1.当a <0时,r =-5a ,角α为第四象限角, ∴sin α=y r =4a -5a =-45,cos α=x r =-3a -5a =35,∴2sin α+cos α=2×⎝⎛⎭⎫-45+35=-1. [一点通] 已知角的终边上一点,求该角的三角函数值,一般是先求出该点到原点的距离r ,再由三角函数的定义求出三角函数值.当点的坐标有字母时,由于字母符号未知,所以点所在象限不确定,因此要根据情况进行分类讨论,避免漏解.1.角α的终边过点P (-8m ,-6cos 60°)且cos α=-45,则m 的值是____________.解析:P (-8m ,-3),由cos α=-45可得-8m 64m 2+9=-45,解得m =12(m =-12不合题意,舍去).答案:122.已知角α终边上点P (x,3)(x ≠0),且cos α=1010x ,求sin α,tan α. 解:∵r =x 2+9,cos α=xr ,∴1010x =xx 2+9. 又x ≠0,则x =±1. ∵y =3>0,∴α在第一或第二象限. 当α在第一象限时,sin α=31010,tan α=3.当α在第二象限时,sin α=31010,tan α=-3. 3.已知角的终边落在直线y =2x 上,求sin α,cos α,tan α的值.解:(1)当角的终边在第一象限时,在角的终边上取点P (1,2),由r =|OP |=12+22=5, 得sin α=25=255,cos α=15=55,tan α=2.(2)当角的终边在第三象限时,在角的终边上取点Q (-1,-2),由r =|OQ |= (-1)2+(-2)2=5,得sin α=-25=-255,cos α=-15=-55,tan α=2.[例2] 确定下列式子的符号: (1)tan 108°·cos 305°;(2)cos 5π6·tan11π6sin2π 3;(3)tan 191°-cos 191°;(4)sin 3·cos 4·tan 5.[思路点拨] 角度确定了,所在的象限就确定了,三角函数值的符号也就确定了,因此只需确定角所在象限,即可进一步确定各式的符号.[精解详析] (1)∵108°是第二象限角,∴tan 108°<0. ∵305°是第四象限角,∴cos 305°>0. 从而tan 108°·cos 305°<0,∴式子符号为负. (2)∵5π6是第二象限角,11π6是第四象限角,2π3是第二象限角. ∴cos5π6<0,tan 11π6<0,sin 2π3>0. 从而cos 5π6·tan11π6sin2π3>0.∴式子符号为正. (3)∵191°是第三象限角, ∴tan 191°>0,cos 191°<0. ∴tan 191°-cos 191°>0. ∴式子符号为正.(4)∵π2<3<π,π<4<3π2,3π2<5<2π,∴sin 3>0,cos 4<0,tan 5<0.∴sin 3·cos 4·tan 5>0. ∴式子符号为正.[一点通] 对于已知角α,判断α的相应三角函数值的符号问题,常依据三角函数的定义,或利用口诀“一全正、二正弦、三正切、四余弦”来处理.4.判断下列各式的符号: (1)sin 105°·cos 230°; (2)cos 3·tan ⎝⎛⎭⎫-2π3. 解:(1)∵105°、230°分别为第二、第三象限角, ∴sin 105°>0,cos 230°<0. 于是sin 105°·cos 230°<0.(2)∵π2<3<π,∴3是第二象限角,∴cos 3<0,又-2π3是第三象限角,∴tan ⎝⎛⎭⎫-2π3>0, ∴cos 3·tan ⎝⎛⎭⎫-2π3<0. 5.已知sin α·tan α>0,则α是第几象限角?解:∵sin α·tan α>0,∴⎩⎪⎨⎪⎧ sin α>0,tan α>0,或⎩⎪⎨⎪⎧sin α<0,tan α<0.当sin α>0,且tan α>0时,α为第一象限角; 当sin α<0,且tan α<0时,α为第四象限角. ∴α为第一、四象限角.[例3] 分别作出2π3和4π5的正弦线、余弦线和正切线,并比较sin 2π3与sin 4π5,cos 2π3与cos 4π5,tan 2π3与tan 4π5的大小.[思路点拨] 作三角函数线的关键是画出单位圆和角的终边;比较三角函数值的大小时依据三角函数线的长度和正负.[精解详析] 在直角坐标系中作单位圆如图,以Ox 轴正方向为始边作2π3的终边与单位圆交于P 点,作PM ⊥Ox 轴,垂足为M ,由单位圆与Ox 正方向的交点A 作Ox 轴的垂线与OP 的反向延长线交于T 点,则sin 2π3=MP ,cos 2π3=OM ,tan 2π3=AT .同理,可作出4π5的正弦线、余弦线和正切线,sin4π5=M ′P ′,cos 4π5=OM ′,tan 4π5=AT ′. 由图形可知:MP >M ′P ′,符号相同⇒sin 2π3>sin 4π5,OM >OM ′,符号相同⇒cos 2π3>cos 4π5,AT <AT ′,符号相同⇒tan 2π3<tan 4π5.[一点通] 利用三角函数线比较三角函数值的大小,关键在于准确作出正弦线、余弦线、正切线,并注意它们为有向线段,方向代表三角函数值的符号,然后结合图形作出判断.6.sin 1,sin 1.2,sin 1.5三者的大小关系是________. 解析:在同一单位圆中画出三个角的正弦线作出比较可得. 答案:sin 1.5>sin 1.2>sin 17.利用三角函数线,求满足下列条件的角x 的集合. (1)sin x ≤12; (2)cos x <32.解:(1)利用角x 的正弦线,作出满足sin x ≤12的角x 的终边所在位置的范围.如图(1)的阴影部分,由图形得角x 的集合为⎩⎨⎧x ⎪⎪⎭⎬⎫2k π-7π6≤x ≤2k π+π6,k ∈Z . (2)利用角x 的余弦线,作出满足cos x <32的角x 的终边所在位置的范围,如图(2)的阴影部分,由图形得角x 的集合为⎩⎨⎧x ⎪⎪⎭⎬⎫2k π+π6<x <2k π+11π6,k ∈Z .1.准确理解三角函数的定义根据三角函数的定义,各三角函数值的大小与在终边上所取的点的位置无关,只与角α的大小有关,即它们都是以角为自变量,以比值为函数值的函数.定义中的α是任意角,但对于一个确定的角,只要各个三角函数有意义,其值就是唯一的.2.确定三角函数的符号根据三角函数的定义可知,正弦值、余弦值的符号分别取决于纵坐标y 、横坐标x 的符号;正切值则是纵坐标y 、横坐标x 同号时为正,异号时为负.3.三角函数线的应用三角函数线的方向和长短直观反映了三角函数值的符号和绝对值的大小,从三角函数线的方向可以看出三角函数值的符号,从三角函数线的长度可以看出三角函数值的绝对值大小.课下能力提升(三)一、填空题1.若α是第三象限角,则|sin α|sin α-cos α|cos α|=________.解析:∵α是第三象限角, ∴sin α<0,cos α<0, ∴|sin α|sin α-cos α|cos α|=-1-(-1)=0. 答案:0 2.有下列命题:(1)若sin α>0,则α是第一、二象限的角; (2)若α是第一、二象限角,则sin α>0; (3)三角函数线不能取负值;(4)若α是第二象限角,且P (x ,y )是其终边上一点,则cos α=-x x 2+y 2.其中正确的序号是________.解析:只有(2)正确;∵sin π2=1>0,但π2不是第一、二象限角,∴(1)不正确;三角函数线是三角函数值的几何表示,其数量可正可负,也可为0,∴(3)不正确;(4)应是cos α=xx 2+y 2(∵α是第二象限角,已有x <0),∴(4)不正确.答案:(2)3.已知角α的终边经过点(3a -9,a +2),且sin α>0,cos α≤0,则α的取值范围是________.解析:由cos α≤0及sin α>0知角α的终边在第二象限或y 轴的正半轴上.故⎩⎪⎨⎪⎧3a -9≤0,a +2>0,∴-2<a ≤3. 答案:(-2,3]4.角α的终边上有一点P (a,4),且tan α=43,则3sin α-2cos α的值为________. 解析:∵tan α=43,∴a =3.∴r =32+42=5,sin α=45,cos α=35,∴3sin α-2cos α=125-65=65.答案:655.依据三角函数线,作出如下四个判断: ①sin π6=sin 7π6;②cos ⎝⎛⎭⎫-π4=cos π4; ③tan π8>tan 3π8;④sin3π5>sin 4π5. 其中判断正确的有________.解析:分别作出各角的三角函数线,可知:sin π6=-sin 7π6,cos ⎝⎛⎭⎫-π4=cos π4,tan π8<tan 3π8,sin 3π5>sin 4π5, ∴②④正确. 答案:②④二、解答题6.已知角α的顶点在原点,始边为x 轴的正半轴,若角α终边过点P (-3,y ),且sin α=34y (y ≠0),判断角α所在的象限,并求cos α的值. 解:依题意,P 到原点O 的距离 r =|OP |=(-3)2+y 2=3+y 2. ∴sin α=y r =y 3+y 2=34y .∵y ≠0,∴9+3y 2=16. ∴y 2=73,y =±213.∴点P 在第二或第三象限, 且cos α=-33+y 2=-33+73=-34.7.已知角α的终边在直线3x +4y =0上,求sin α,cos α,tan α的值.解:∵角α的终边在直线3x +4y =0上,∴在角α的终边上任取一点P (4t ,-3t )(t ≠0),则x =4t ,y =-3t ,r =x 2+y 2=(4t )2+(-3t )2=5|t |,当t >0时,r =5t ,sin α=y r =-3t 5t =-35,cos α=x r =4t 5t =45,tan α=y x =-3t 4t =-34;当t <0时,r =-5t ,sin α=y r =-3t -5t =35,cos α=x r =4t -5t =-45,tan α=y x =-3t 4t =-34.综上可知,sin α=-35,cos α=45,tan α=-34;或sin α=35,cos α=-45,tan α=-34.8.已知π4<θ<π2,试用三角函数线比较sin θ,cos θ,tan θ的大小.解:如图,在单位圆中作出正弦线、余弦线、正切线, sin θ=MP >0, cos θ=OM >0, tan θ=AT >0,由图知OM <MP <AT , 即cos θ<sin θ<tan θ.第2课时 同角三角函数关系若角α的终边与单位圆交于P (x ,y ),如图.问题1:角α的三角函数值是什么? 提示:sin α=y .cos α=x .tan α=yx .问题2:sin α与cos α有什么关系? 提示:sin 2α+cos 2α=y 2+x 2=1. 问题3:sin αcos α的值与tan α有什么关系?提示:sin αcos α=yx=tan α.同角三角函数的基本关系式平方关系 sin 2_α+cos 2_α=1商数关系tan α=sin αcos α,其中α≠π2+k π,k ∈Z同角三角函数的基本关系式成立的条件是使式子两边都有意义.所以sin 2α+cos 2α=1对于任意角α∈R 都成立,而tan α=sin αcos α并不是对任意角α∈R 都成立,此时α≠k π+π2,k ∈Z .[例1] (1)若sin α=-45,且α是第三象限角,求cos α,tan α的值;(2)已知tan α=2,求2sin α-2cos α4sin α-9cos α的值.[思路点拨] 第(1)题应先利用平方关系求余弦,再由商的关系求正切; 第(2)问先把所求式化为只含tan α的代数式,再代入求值. [精解详析] (1)∵sin α=-45,α是第三象限角,∴cos α=-1-sin 2α=-1-⎝⎛⎭⎫-452=-35, tan α=sin αcos α=-45×⎝⎛⎭⎫-53=43. (2)∵tan α=2, ∴2sin α-2cos α4sin α-9cos α=2tan α-24tan α-9=2×2-24×2-9=-2.[一点通] 已知某角的一个三角函数值,求该角的其他三角函数值时要注意: (1)角所在的象限;(2)用平方关系求值时,所求三角函数的符号由角所在的象限决定;(3)用商数关系时,不要另加符号,只需用公式tan α=sin αcos α代入sin α、cos α的值即可求得tan α.1.已知sin α+cos α=12,则sin αcos α=________.解析:∵sin α+cos α=12,∴(sin α+cos α)2=14,即1+2sin αcos α=14.∴sin αcos α=-38.答案:-382.若sin θ-cos θ=2,则tan θ+1tan θ=__________.解析:由已知得(sin θ-cos θ)2=2, ∴sin θcos θ=-12.∴tan θ+1tan θ=sin θcos θ+cos θsin θ=1sin θcos θ=-2.答案:-23.若cos α=513,求sin α和tan α.解:∵cos α=513>0,∴α是第一或第四象限角.当α是第一象限角时,sin α=1-cos 2α=1-⎝⎛⎭⎫5132=1213,∴tan α=sin αcos α=125;当α是第四象限角时, sin α=-1-cos 2 α=-1-(513)2=-1213.∴tan α=sin αcos α=-125.4.保持本例(2)的条件不变,求4sin 2α-3sin αcos α-5cos 2α的值. 解:4sin 2α-3sin αcos α-5cos 2α =4sin 2α-3sin αcos α-5cos 2αsin 2α+cos 2α=4tan 2α-3tan α-5tan 2α+1=4×4-3×2-54+1=1.[例2] 化简:tan α+tan αsin αtan α+sin α·⎝⎛⎭⎫1+1cos α·sin α1+sin α.[思路点拨] 采用切化弦,减少函数种类,以达到化简的目的.[精解详析] 原式=tan α(1+sin α)tan α+sin α·1+cos αcos α·sin α1+sin α=sin αcos αsin αcos α+sin α·1+cos αcos α· sin α=11+cos α·1+cos αcos α·sin α=sin αcos α=tan α.[一点通] 化简三角函数式的常用方法:(1)切化弦,即把非正、余弦函数都化成正、余弦函数,从而减少函数种类以便化简. (2)对含有根号的,常把根号下式子化成完全平方式,然后去根号达到化简的目的. (3)对于化简高次的三角函数式,往往借助于因式分解,或用“1”的代换,以降低函数次数,达到化简目的.5.sin θ-cos θtan θ-1=________.解析:sin θ-cos θtan θ-1=sin θ-cos θsin θcos θ-1=sin θ-cos θsin θ-cos θcos θ=cos θ.答案:cos θ6.化简1-2sin 10°cos 10°sin 10°-1-sin 210°的值为________.解析:原式=sin 210°-2 sin 10°cos 10°+cos 210°sin10°-cos 210°=(sin 10°-cos 10°)2sin 10°-cos 10°=cos 10°-sin 10°sin 10°-cos 10°=-1.答案:-17.若3π2<α<2π,化简:1-cos α1+cos α+1+cos α1-cos α.解:∵3π2<α<2π,∴0<cos α<1,-1<sin α<0,∴原式= (1-cos α)2(1+cos α)(1-cos α)+(1+cos α)2(1-cos α)(1+cos α)=(1-cos α)21-cos 2 α+(1+cos α)21-cos 2 α= (1-cos α)2sin 2α+(1+cos α)2sin 2α=-1-cos αsin α-1+cos αsin α=-2sin α.[例3] 求证:sin θ(1+tan θ)+cos θ⎝⎛⎭⎫1+1tan θ=1sin θ+1cos θ.[思路点拨] 从较复杂的一边入手,采用切化弦的方式,即把左边的正切值用tan θ=sin θcos θ替换. [精解详析] 左边=sin θ⎝⎛⎭⎫1+sin θcos θ+cos θ⎝⎛⎭⎫1+cos θsin θ =sin θ+sin 2θcos θ+cos θ+cos 2θsin θ=⎝⎛⎭⎫sin θ+cos 2θsin θ+⎝⎛⎭⎫sin 2θcos θ+cos θ =⎝⎛⎭⎫sin 2θ+cos 2θsin θ+⎝⎛⎭⎫sin 2θ+cos 2θcos θ =1sin θ+1cos θ=右边. ∴原式成立.[一点通] 证明三角恒等式的原则是由繁到简,常用的方法有: (1)从一边开始证明它等于另一边; (2)证明左右两边都等于同一个式子;(3)变更论证,采用左右相减,化除为乘等方法,转化成与原结论等价的命题形式.8.求证:1+2sin x cos x cos 2x -sin 2 x =1+tan x1-tan x .证明:法一:右边=1+sin x cos x 1-sin x cos x =cos x +sin xcos x -sin x=(cos x +sin x )2(cos x -sin x )(cos x +sin x )=cos 2x +sin 2x +2sin x cos x cos 2x -sin 2x =1+2sin x cos x cos 2x -sin 2x =左边,∴原式成立.法二:左边=sin 2x +cos 2x +2sin x cos xcos 2x -sin 2x=(sin x +cos x )2(cos x +sin x )(cos x -sin x )=sin x +cos xcos x -sin x =tan x cos x +cos x cos x -tan x cos x =1+tan x1-tan x=右边,∴原式成立.9.求证:sin α-cos α+1sin α+cos α-1=1+sin αcos α.证明:左边=(sin α-cos α+1)(sin α+cos α+1)(sin α+cos α-1)(sin α+cos α+1)=(sin α+1)2-cos 2α(sin α+cos α)2-1=sin 2α+2sin α+1-cos 2α1+2sin αcos α-1=2sin α(1+sin α)2sin αcos α=1+sin αcos α=右边. ∴原等式成立.1.对同角三角函数的基本关系式的理解“同角”有两层含义,一是“角相同”,如sin 2 α+cos 2 β=1就不一定成立;二是对“任意”一个角(在使函数有意义的前提下)关系式都成立,与角的表达形式无关.如:sin 23α+cos 23α=1,tan α2=sinα2cosα2.2.同角三角函数的基本关系式的应用(1)应用同角三角函数关系式时,应灵活选择和使用.如cos 2α=1-sin 2 α,sin 2α=1-cos 2 α,cos α=sin αtan α,sin α=tan α·cos α等,上述关系都必须在定义域允许的范围内才成立.(2)由一个角的任一三角函数值可求出这个角的另外的三角函数值,且因为利用“平方”关系公式,最终需求平方根,会出现两解,所以要注意角所在的象限.这类问题通常会出现以下这几种情况:①如果已知三角函数值,且角的象限已被指定,那么只有一组解;②如果已知三角函数值,但没有指定角所在的象限,那么先由三角函数值确定角所在的象限,然后再求解,这种情况一般有两组解;③如果所给的三角函数值是用字母表示的,且没有指定角所在的象限,则需要分类讨论.课下能力提升(四)一、填空题1.已知sin θ=m -3m +5,cos θ=4-2m m +5,则m =________.解析:∵sin 2θ+cos 2θ=1, ∴⎝⎛⎭⎪⎫m -3m +52+⎝ ⎛⎭⎪⎫4-2m m +52=1. 即(m -3)2+(4-2m )2=(m +5)2,∴4m 2-32m =0. ∴m =0或m =8 答案:0或82.若sin α+cos α2sin α-cos α=2,则tan α=________.解析:∵sin α+cos α2sin α-cos α=2,∴tan α+12tan α-1=2.∴tan α+1=4tan α-2 即3tan α=3,∴tan α=1. 答案:13.化简:cos 4α+sin 2α·cos 2α+sin 2α=________. 解析:cos 4α+sin 2αcos 2α+sin 2α =cos 2α(cos 2α+sin 2α)+sin 2α =cos 2α+sin 2α=1. 答案:14.已知tan α=m (π<α<3π2),则sin α=________.解析:∵tan α=m ,π<α<3π2. ∴m >0且sin α<0. 又tan 2α=sin 2αcos 2α=sin 2α1-sin 2α=m 2. ∴sin 2α=m 21+m 2. ∵sin α<0,∴sin α=-m1+m 2. 答案:-m1+m25.若角α的终边在直线x +y =0上,则sin α1-cos 2α+1-sin 2αcos α=________.解析:∵sin α1-cos 2α+1-sin 2αcos α=sin α|sin α|+|cos α|cos α. 又角α的终边落在x +y =0上, 故角α的终边在第二、四象限. 当α在第二象限时, 原式=sin αsin α+-cos αcos α=0,当α在第四象限时, 原式=sin α-sin α+cos αcos α=0. 答案:0二、解答题6.已知tan x =2,求: (1)cos x +sin x cos x -sin x 的值; (2)23sin 2x +14cos 2x 的值. 解:(1)cos x +sin x cos x -sin x =1+tan x 1-tan x =1+21-2=-3.(2)23sin 2x +14cos 2x =23sin 2x +14cos 2xsin 2x +cos 2x =23tan 2x +14tan 2x +1=23×4+144+1=712.7.求证:tan α·sin αtan α-sin α=tan α+sin αtan α·sin α.证明:法一:左边=sin 2αsin α-sin α cos α=sin α1-cos α,右边=sin α+sin α cos αsin 2α=1+cos αsin α,而sin 2α=1-cos 2α, ∴sin α1-cos α=1+cos αsin α,故左边=右边,∴原式成立.法二:tan α·sin αtan α-sin α-tan α+sin αtan α·sin α=tan 2αsin 2α-(tan 2α-sin 2α)(tan α-sin α)tan αsin α=tan 2α(sin 2α-1)+sin 2α(tan α-sin α)tan αsin α=-tan 2αcos 2α+sin 2α(tna α-sin α)tan αsin α=-sin 2α+sin 2α(tan α-sin α)tan αsin α=0, ∴tan α·sin αtan α-sin α=tan α+sin αtan α·sin α.8.已知-π2<x <0,sin x +cos x =15.求sin x -cos x 的值.解:法一:由sin x +cos x =15,平方得sin 2x +2sin x cos x +cos 2x =125,即2sin x cos x =-2425,∴(sin x -cos x )2=1-2sin x cos x =4925.又∵-π2<x <0,∴sin x <0,cos x >0,∴sin x -cos x <0, ∴sin x -cos x =-75.法二:联立方程⎩⎪⎨⎪⎧sin x +cos x =15 ①,sin 2x +cos 2x =1 ②,由①得sin x =15-cos x ,将其代入②,整理得25cos 2x -5cos x -12=0, 解得cos x =-35,或cos x =45.∵-π2<x <0,∴⎩⎨⎧cos x =45,sin x =-35,∴sin x -cos x =-75.第3课时 三角函数的诱导公式一~四对于任意角α.问题1:2k π+α(k ∈Z )与α的三角函数之间有什么关系?提示:由于α与2k π+α(k ∈Z )的终边相同,所以三角函数值对应相等.问题2:观察下图,角π-α,π+α,-α的终边与角α的终边之间有什么关系?你能利用它们与单位圆的交点的坐标之间的关系推导出它们的三角函数之间的关系吗?提示:π-α,π+α,-α的终边与α的终边分别关于y轴,坐标原点,x轴对称.能.诱导公式角的终边间关系公式公式一终边相同sin(α+2kπ)=sin_α(k∈Z)cos(α+2kπ)=cos_α(k∈Z)tan(α+2kπ)=tan_α(k∈Z) 公式二终边关于x轴对称sin(-α)=-sin_αcos(-α)=cos_αtan(-α)=-tan_α公式三终边关于y轴对称sin(π-α)=sin_αcos(π-α)=-cos_αtan(π-α)=-tan_α公式四终边关于原点对称sin(π+α)=-sin_αcos(π+α)=-cos_αtan(π+α)=tan_α公式一、二、三、四都叫诱导公式,它们可概括如下:(1)记忆方法:2kπ+α,-α,π±α的三角函数值等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号,一句话概括:即“函数名不变,符号看象限”.(2)解释:“函数名不变”是指等式两边的三角函数同名;“符号”是指等号右边是正号还是负号;“看象限”是指假设α是锐角,要看原函数名在本公式中角的终边所在象限是取正值还是负值,如sin(π+α),若α看成锐角,则π+α在第三象限,正弦在第三象限取负值,故sin(π+α)=-sin α.[例1] 求下列各三角函数式的值:(1)sin 1 320°;(2)cos ⎝⎛⎭⎫-31π6;(3)tan(-945°). [思路点拨] 利用诱导公式进行化简求值.[精解详析] (1)法一:sin 1 320°=sin(3×360°+240°)=sin 240°=sin(180°+60°)=-sin 60°=-32. 法二:sin 1 320°=sin(4×360°-120°)=sin(-120°) =-sin(180°-60°)=-sin 60°=-32. (2)法一:cos ⎝⎛⎭⎫-31π6=cos 31π6=cos ⎝⎛⎭⎫4π+7π6=cos ⎝⎛⎭⎫π+π6=-cos π6=-32. 法二:cos ⎝⎛⎭⎫-31π6=cos ⎝⎛⎭⎫-6π+5π6 =cos ⎝⎛⎭⎫π-π6=-cos π6=-32. (3)tan(-945°)=-tan 945° =-tan(225°+2×360°) =-tan 225°=-tan(180°+45°) =-tan 45°=-1.[一点通] 此问题为已知角求值,主要是利用诱导公式把任意角的三角函数值转化为锐角的三角函数值求解.如果是负角,一般先将负角的三角函数化为正角的三角函数.要准确记忆特殊角的三角函数值.1.tan 690°的值为________.解析:tan 690°=tan(720°-30°)=-tan 30°=-33. 答案:-332.cos 29π6=________.解析:cos 29π6=cos ⎝⎛⎭⎫4π+5π6=cos 5π6 =cos(⎝⎛⎭⎫π-π6=-cos π6=-32.答案:-323.求下列各式的值: (1)sin π4cos 19π6tan 21π4;(2)3sin(-1 200°)tan19π6-cos 585°tan ⎝⎛⎭⎫-37π4. 解:(1)原式=sin π4cos ⎝⎛⎭⎫2π+7π6tan ⎝⎛⎭⎫5π+π4 =22cos 7π6tan π4 =22cos ⎝⎛⎭⎫π+π6 =22(-cos π6) =-22×32=-64. (2)原式=-3sin(4×360°-240°)tan ⎝⎛⎭⎫3π+π6- cos(360°+225°)⎝⎛⎭⎫-tan 37π4 =-3sin(-240°)tan π6-cos 45°tan ⎝⎛⎭⎫9π+π4 =3×33sin(180°+60°)-22tan π4 =-3×33sin 60°-22=-2+32.[例2] 化简下列各式: (1)cos (π+α)·sin (α+2π)sin (-α-π)·cos (-π-α); (2)cos 190°·sin (-210°)cos (-350°)·tan (-585°). [思路点拨] 利用诱导公式一、二、四将函数值化为α角的三角函数值或锐角的三角函数值,再约分化简.[精解详析] (1)原式=(-cos α)·sin α-sin (α+π)·cos (π+α)=-cos α·sin αsin α·(-cos α)=1.(2)原式=cos 190°·(-sin 210°)cos 350°·(-tan 585°)=cos (180°+10°)·sin (180°+30°)cos (360°-10°)·tan (360°+225°)=(-cos 10°)·(-sin 30°)cos 10°·tan 225°=sin 30°tan (180°+45°)=sin 30°tan 45°=12.[一点通] 三角函数式的化简有如下方法:(1)依据所给式子合理选用诱导公式将所给角的三角函数转化为角α的三角函数. (2)切化弦:一般需将表达式中的切函数转化为弦函数. (3)注意“1”的应用:1=sin 2α+cos 2α=tan π4.4.化简:sin (540°+α)·cos (-α)tan (α-180°)=____________.解析:sin (540°+α)·cos (-α)tan (α-180°)=sin[360°+(180°+α)]cos α-tan (180°-α)=sin (180°+α)cos αtan α=-sin αcos αtan α=-sin αcos αcos αsin α=-cos 2α.答案:-cos 2α5.设k 为整数,化简:sin (k π-α)cos[(k -1)π-α]sin[(k +1)π+α]cos (k π+α).解:当k 为偶数时,设k =2m (m ∈Z ), 原式=sin (2m π-α)cos[(2m -1)π-α]sin[(2m +1)π+α]cos (2m π+α)=sin (-α)cos (π+α)sin (π+α)cos α=-sin α(-cos α)-sin αcos α=-1.当k 为奇数时,设k =2m +1(m ∈Z ), 原式=sin (2m π+π-α)cos (2m π-α)sin[(2m +2)π+α]cos[(2m +1)π+α]=sin (π-α)cos (-α)sin αcos (π+α)=sin αcos αsin α(-cos α)=-1.综上可知,当k 为整数时sin (k π-α)cos[(k -1)π-α]sin[(k +1)π+α]cos (k π+α)=-1.6.若sin(α-π)=2cos(2π-α),求sin (π-α)+5cos (2π-α)3cos (π-α)-sin (-α)的值.解:由sin(α-π)=2cos(2π-α), 得-sin α=2cos α,所以tan α=-2.所以原式=sin α+5cos α-3cos α+sin α=tan α+5-3+tan α=-2+5-3+(-2)=-35.[例3] 判断下列函数的奇偶性. (1)f (x )=3cos x -1; (2)g (x )=x 3sin x ;(3)h (x )=sin 2(π+x )+cos(π-x )cos(-x )-3. [思路点拨](1)判断函数的定义域是否关于原点对称. (2)通过判断f (-x )与f (x )的关系得出结论. [精解详析] (1)∵x ∈R ,又f (-x )=3cos(-x )-1=3cos x -1=f (x ), ∴f (x )为偶函数. (2)∵x ∈R ,又g (-x )=(-x )3sin(-x )=x 3sin x =g (x ), ∴g (x )为偶函数.(3)∵x ∈R ,h (x )=sin 2x -cos 2x -3, 又h (-x )=sin 2x -cos 2x -3=h (x ), ∴h (x )为偶函数.[一点通] 根据诱导公式可知,正弦函数f (x )=sin x 为奇函数,余弦函数y =cos x 为偶函数,正切函数y =tan x 为奇函数.7.函数y =cos(sin x )的奇偶性为________. 解析:令f (x )=cos(sin x ),则f (-x )=cos[sin(-x )]=cos(-sin x )=cos(sin x )=f (x ). ∴f (x )为偶函数. 答案:偶函数8.若函数f (x )=2cos 3x -sin 2(x +π)-2cos (-x -π)+12+2cos 2(7π+x )+cos (-x ),(1)求证:y =f (x )是偶函数;(2)求f ⎝⎛⎭⎫π3的值.解:(1)证明:∵f (x )=2cos 3x -sin 2x +2cos x +12+2cos 2x +cos x=2cos 3x -(1-cos 2x )+2cos x +12+2cos 2x +cos x=2cos 3x +cos 2x +2cos x 2+2cos 2x +cos x=cos x (2cos 2x +cos x +2)2cos 2x +cos x +2=cos x ,即f (x )=cos x ,x ∈R .则f (-x )=cos(-x )=cos x =f (x ), ∴y =f (x )是偶函数. (2)f ⎝⎛⎭⎫π3=cos π3=12.诱导公式的应用利用诱导公式把任意角的三角函数转化为锐角三角函数的基本步骤是: 任意负角的三角函数――→用公式一或二任意正角的三角函数――→用公式一0~2π的角的三角函数――→用公式三或四锐角三角函数可以看出,这些步骤体现了把未知问题化归为已知问题的数学思想.可以简单记为“负化正,大化小,化成锐角再求值”.课下能力提升(五)一、填空题1.sin 480°的值等于________. 解析:sin 480°=sin(360°+120°) =sin 120°=sin(180°-60°)=sin 60°=32. 答案:322.化简:cos (-α)tan (7π+α)sin (π+α)=________.解析:原式=cos α·tan (π+α)sin (π+α)=cos αtan α-sin α=sin α-sin α=-1.答案:-13.已知cos(π+α)=-12,3π2<α<2π,则si n(2π-α)的值是________.解析:由cos(π+α)=-12,得cos α=12,又3π2<α<2π,∴sin α=-32, ∴sin(2π-α)=-sin α=32. 答案:324.已知cos(508°-α)=1213,则cos(212°+α)=________.解析:∵cos(508°-α)=1213,∴cos[360°+(148°-α)]=1213, 即cos(148°-α)=1213.∴cos(212°+α)=cos[360°-(148°-α)] =cos(148°-α)=1213.答案:12135.设函数f (x )=a sin(πx +α)+b cos(πx +β),其中a ,b ,α,β都是非零实数,且满足f (2 013)=-1,则f (2 014)的值为________.解析:∵f (2 013)=a s in(2 013π+α)+b cos(2 013π+β)=-1,∴f (2 014)=a sin(2 014π+α)+b cos(2 014π+β) =a sin [π+(2 013π+α)]+b cos [π+(2 013π+β)] =-[a sin(2 013π+α)+b cos(2 013π+β)]=1. 答案:1 二、解答题 6.求值:(1)cos 25π3+tan ⎝⎛⎭⎫-15π4; (2)sin 420°cos 750°+sin(-690°)cos(-660°). 解:(1)∵cos 25π3=cos ⎝⎛⎭⎫π3+8π=cos π3=12, tan ⎝⎛⎭⎫-15π4=tan ⎣⎡⎦⎤π4+(-4π)=tan π4=1, ∴cos 25π3+tan ⎝⎛⎭⎫-15π4=12+1=32. (2)原式=sin(60°+360°)cos(30°+2×360°)+sin[30°+(-2)×360°]cos[60°+(-2)×360°] =sin 60°cos 30°+sin 30°cos 60° =32×32+12×12=1. 7.已知sin(3π+θ)=14,求cos (π+θ)cos θ[cos (π+θ)-1]+cos (θ-2π)cos (θ+2π)cos (π+θ)+cos (-θ)的值.解:sin(3π+θ)=-sin θ,∴sin θ=-14.原式=-cos θcos θ(-cos θ-1)+cos θcos θ(-cos θ)+cos θ=11+cos θ+11-cos θ=21-cos 2θ=2sin 2 θ=32. 8.已知cos(75°+α)=13,其中α为第三象限角.求cos(105°-α)+sin(α-105°)的值.解:∵cos(105°-α)=cos[180°-(75°+α)] =-cos(75°+α)=-13,sin(α-105°)=-sin(105°-α)=-sin[180°-(75°+α)]=-sin(75°+α).又cos(75°+α)=13>0,α为第三象限角,可知角75°+α为第四象限角, 则有sin(75°+α)=-1-cos 2(75°+α)=-1-⎝⎛⎭⎫132=-223. ∴cos(105°-α)+sin(α-105°)=-13+223=22-13.第4课时 三角函数的诱导公式五~六如图,设角α,π2-α,π2+α的终边分别与单位圆交于P 1,P 2,P 3.问题1:若点P 1的坐标为(x ,y ),那么P 2,P 3的坐标分别是什么? 提示:P 2(y ,x ),P 3(-y ,x ).问题2:你能根据P 1,P 2,P 3的坐标间的关系得出α,π2-α,π2+α的三角函数之间的关系吗?提示:根据三角函数的定义可求出α,π2-α,π2+α的三角函数值,从而可推出它们之间的关系.诱导公式角的终边间关系公式 公式五 角的终边关于y =x 对称sin ⎝⎛⎭⎫π2-α=cos_α cos ⎝⎛⎭⎫π2-α=sin_α 公式六π2+α的终边与π2-α的终边关于y 轴对称 sin ⎝⎛⎭⎫π2+α=cos_αcos ⎝⎛⎭⎫π2+α=-sin_α诱导公式五~六的巧记方法π2±α的正弦(余弦)函数值,分别等于α的余弦(正弦)函数值,前面加一个把α看成锐角时原函数值的符号,简记为“函数名改变,符号看象限”或“正变余,余变正,符号看象限”.[例1] 化简:tan (3π-α)sin (π-α)sin ⎝⎛⎭⎫3π2-α+sin (2π-α)cos ⎝⎛⎭⎫α-7π2sin ⎝⎛⎭⎫3π2+αcos (2π+α). [思路点拨] 充分利用诱导公式及同角三角函数的基本关系进行化简. [精解详析] ∵tan(3π-α)=-tan α, sin(π-α)=sin α,sin(2π-α)=-sin α,cos(2π+α)=cos α, sin ⎝⎛⎭⎫3π2-α=-cos α, cos ⎝⎛⎭⎫α-7π2=cos ⎝⎛⎭⎫7π2-α =cos ⎝⎛⎭⎫4π-π2-α=cos ⎝⎛⎭⎫π2+α=-sin α, sin ⎝⎛⎭⎫3π2+α=-cos α,∴原式=-tan αsin α(-cos α)+-sin α(-sin α)-cos α·cos α=1cos 2α-sin 2αcos 2α=1-sin 2αcos 2α=cos 2αcos 2α=1. [一点通] (1)本题化简主要采用“异角化同角,导名化同名”的解题策略. (2)注意同角三角函数关系的应用,如sin 2α+cos 2α=1,tan α=sin αcos α等.1.化简sin(π+α)·cos ⎝⎛⎭⎫3π2+α+sin ⎝⎛⎭⎫π2+α·cos(π+α)=________. 解析:原式=(-sin α)·sin α+cos α·(-cos α) =-(sin 2α+cos 2α)=-1. 答案:-12.化简:sin (π-α)·cos (π+α)·cos ⎝⎛⎭⎫3π2+αcos (3π-α)·sin (3π+α)·sin ⎝⎛⎭⎫5π2-α=________. 解析:原式=sin α·(-cos α)·sin α-cos α·(-sin α)·cos α=-tan α.答案:-tan α3.已知α为第三象限角, f (α)=sin ⎝⎛⎭⎫α-π2cos ⎝⎛⎭⎫3π2+αtan (π-α)tan (-α-π)sin (-α-π).(1)化简f (α);(2)若cos ⎝⎛⎭⎫α-3π2=15,求f (α)的值. 解:(1)f (α)=-sin ⎝⎛⎭⎫π2-α·cos ⎣⎡⎦⎤π+⎝⎛⎭⎫π2+α(-tan α)tan (π+α)·sin (π+α)=-cos α·⎣⎡⎦⎤-cos ⎝⎛⎭⎫π2+α·(-tan α)tan α·(-sin α)=cos α·sin α-sin α=-cos α.(2)由于cos ⎝⎛⎭⎫α-3π2=cos ⎝⎛⎭⎫3π2-α=cos ⎣⎡⎦⎤π+⎝⎛⎭⎫π2-α =-cos ⎝⎛⎭⎫π2-α=-sin α=15, 所以sin α=-15.又α是第三象限角, 所以cos α=-1-⎝⎛⎭⎫-152=-265, 故f (α)=-cos α=265.[例2] 若sin α=55,求cos (3π-α)sin ⎝⎛⎭⎫π2+α⎣⎡⎦⎤sin ⎝⎛⎭⎫7π2+α-1+sin ⎝⎛⎭⎫5π2-αcos (3π+α)sin ⎝⎛⎭⎫5π2+α-sin ⎝⎛⎭⎫7π2+α的值.[思路点拨] 可利用诱导公式首先把所求式进行化简,使化简的结果与已知条件sin α=55建立联系,最后求得数值. [精解详析] cos (3π-α)sin ⎝⎛⎭⎫π2+α⎣⎡⎦⎤sin ⎝⎛⎭⎫7π2+α-1+ sin ⎝⎛⎭⎫5π2-αcos (3π+α)sin ⎝⎛⎭⎫5π2+α-sin ⎝⎛⎭⎫7π2+α=cos[2π+(π-α)]cos α⎣⎡⎦⎤sin ⎝⎛⎭⎫3π+π2+α-1+ sin ⎣⎡⎦⎤2π+⎝⎛⎭⎫π2-αcos (π+α)sin ⎣⎡⎦⎤2π+⎝⎛⎭⎫π2+α-sin ⎣⎡⎦⎤3π+⎝⎛⎭⎫π2+α =-cos αcos α(-cos α-1)+cos α-cos αcos α+cos α =11+cos α+11-cos α=2sin 2α. ∵sin α=55,∴2sin 2α=10. 即原式=10.[一点通] (1)利用公式五、六化简时一定要注意符号的准确性及名称的变化.(2)求值时整体把握角与角之间的相互关系及恒等变形,这是常用的解题策略.4.若cos ⎝⎛⎭⎫π2+α=12,则sin(3π-α)=________. 解析:∵cos ⎝⎛⎭⎫π2+α=12,∴-sin α=12,即sin α=-12. ∴sin(3π-α)=sin(π-α)=sin α=-12. 答案:-125.已知sin (2π+θ)tan (π+θ)tan (3π-θ)cos ⎝⎛⎭⎫π2-θtan (-π-θ)=1,求3sin 2θ+3sin θ cos θ+2cos 2θ的值. 解:∵sin (2π+θ)tan (π+θ)tan (3π-θ)cos ⎝⎛⎭⎫π2-θtan (-π-θ)=sin θtan θtan (π-θ)-sin θtan (π+θ)=-sin θtan 2θ-sin θtan θ=tan θ=1.∴3sin 2θ+3sin θ cos θ+2cos 2θ=3sin 2θ+3cos 2θsin 2θ+3sin θcos θ+2cos 2θ=3tan 2θ+3tan 2θ+3tan θ+2=3+31+3+2=1. 6.已知cos ⎝⎛⎭⎫π6-α=33,求cos ⎝⎛⎭⎫5π6+α+sin ⎝⎛⎭⎫2π3-α的值. 解:因为cos ⎝⎛⎭⎫5π6+α=cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π6-α =-cos ⎝⎛⎭⎫π6-α =-33, sin ⎝⎛⎭⎫2π3-α=sin ⎣⎡⎦⎤π2+⎝⎛⎭⎫π6-α =cos ⎝⎛⎭⎫π6-α=33. ∴cos ⎝⎛⎭⎫5π6+α+sin ⎝⎛⎭⎫2π3-α=-33+33=0.[例3] 求证:tan (2π-α)sin (-2π-α)cos (6π-α)sin ⎝⎛⎭⎫α+3π2cos ⎝⎛⎭⎫α+3π2=-tan α. [思路点拨] 解答本题可直接把左边利用诱导公式进行化简推出右边.[精解详析]左边=tan (-α)·sin (-α)·cos (-α)sin ⎣⎡⎦⎤2π-⎝⎛⎭⎫π2-α·cos ⎣⎡⎦⎤2π-⎝⎛⎭⎫π2-α =(-tan α)·(-sin α)·cos αsin ⎣⎡⎦⎤-⎝⎛⎭⎫π2-αcos ⎣⎡⎦⎤-⎝⎛⎭⎫π2-α =sin 2α-sin ⎝⎛⎭⎫π2-αcos ⎝⎛⎭⎫π2-α =sin 2α-cos α·sin α=-sin αcos α =-tan α=右边.∴原等式成立. [一点通] 利用诱导公式证明等式问题,关键在于公式的灵活运用,其主要思路是利用诱导公式化同角后,利用同角三角函数关系进行化简证明,可从左边推得右边,也可从右边推得左边.7.已知△ABC 的三个内角分别为A ,B ,C ,求证:sin B +C 2=cos A 2. 证明:∵A +B +C =π,∴B +C =π-A .∴B +C 2=π2-A 2∴sinB +C 2=sin ⎝⎛⎭⎫π2-A 2=cos A 2. 8.求证:2sin ⎝⎛⎭⎫θ-3π2cos ⎝⎛⎭⎫θ+π2-11-2sin 2(π+θ)=tan (9π+θ)+1tan (π+θ)-1. 证明:左边=-2sin ⎝⎛⎭⎫3π2-θ·(-sin θ)-11-2sin 2θ=2sin ⎣⎡⎦⎤π+⎝⎛⎭⎫π2-θsin θ-11-2sin 2θ=-2sin ⎝⎛⎭⎫π2-θsin θ-11-2sin 2θ=-2cos θsin θ-1cos 2θ+sin 2θ-2sin 2θ=(sin θ+cos θ)2sin 2θ-cos 2θ=sin θ+cos θsin θ-cos θ. 右边=tan (9π+θ)+1tan (π+θ)-1=tan θ+1tan θ-1=sin θ+cos θsin θ-cos θ. ∴左边=右边,故原式成立.1.利用诱导公式解决条件求值问题的基本思路化简条件三角代数式的常见思路有:(1)若条件简单,结论复杂,可从化简结论入手,用上条件;(2)若条件复杂,结论简单,可从化简条件入手,转化出结论的形式;(3)若条件、结论都比较复杂,可同时化简它们,直到找出它们间的联系为止.2.利用诱导公式证明三角恒等式(1)三角函数式证明的过程也是化简的过程,它是一个经历多次化归,由负角变正角,由大角变小角,一直变到0°~90°角的过程.对同一角的化归方式可以多种多样. (2)证明条件等式,一般有两种方法:一是从被证等式一边推向另一边的适当时候,将条件代入,推出被证式的另一边,这种方法称作代入法;二是直接将条件等式变形,变形为被证的等式,这种方法称作推出法.课下能力提升(六)一、填空题1.化简cos ⎝⎛⎭⎫α-π2sin ⎝⎛⎭⎫52π+α·sin(α-π)·cos(2π-α)的结果为________. 解析:原式=cos ⎝⎛⎭⎫π2-αsin ⎝⎛⎭⎫2π+π2+α·(-sin α)·cos(-α) =sin αsin ⎝⎛⎭⎫π2+α·(-sin α)·cos α=sin αcos α·(-sin α)·cos α =-sin 2α.答案:-sin 2α2.已知tan θ=2,则sin ⎝⎛⎭⎫π2+θ-cos (π-θ)sin ⎝⎛⎭⎫π2-θ-sin (π-θ)=________. 解析:sin ⎝⎛⎭⎫π2+θ-cos (π-θ)sin ⎝⎛⎭⎫π2-θ-sin (π-θ)=cos θ+cos θcos θ-sin θ =2cos θcos θ-sin θ=21-tan θ=21-2=-2. 答案:-23.若sin ⎝⎛⎭⎫π6-α=a ,则cos ⎝⎛⎭⎫23π-α=________. 解析:cos ⎝⎛⎭⎫2π3-α=sin ⎝⎛⎭⎫π2-2π3+α =sin ⎝⎛⎭⎫-π6+α=-sin ⎝⎛⎭⎫π6-α=-a . 答案:-a4.若f (x )=sin ⎝⎛⎭⎫π2x +α+1,且f (2 013)=2,则f (2 015)=________. 解析:∵f (2 013)=sin ⎝⎛⎭⎫π2×2 013+α+1 =sin ⎝⎛⎭⎫1 006π+π2+α+1 =sin ⎝⎛⎭⎫π2+α+1=cos α+1=2,∴cos α=1.∴f (2 015)=sin ⎝⎛⎭⎫π2×2 015+α+1=sin ⎝⎛⎭⎫1 007π+π2+α+1=-sin ⎝⎛⎭⎫π2+α+1 =-cos α+1=0.答案:05.f (cos x )=cos 2x ,则f (sin 15°)的值为________. 解析:∵sin 15°=cos 75°,∴f (sin 15°)=f (cos 75°)=cos 150°=-32.答案:-32二、解答题6.若sin(180°+α)=-1010(0°<α<90°),求sin (-α)+sin (-90°-α)cos (540°-α)+cos (-270°-α)的值.解:由sin(180°+α)=-1010(0°<α<90°),得sin α=1010,cos α=31010,∴原式=-sin α-sin (90°+α)cos (360°+180°-α)+cos (270°+α)=-sin α-cos α-cos α+sin α =-1010-31010-31010+1010=2.7.已知sin α是方程5x 2-7x -6=0的根,且α为第三象限角,求sin ⎝⎛⎭⎫α+3π2·sin ⎝⎛⎭⎫3π2-α·tan 2(2π-α)·tan (π-α)cos ⎝⎛⎭⎫π2-α·cos ⎝⎛⎭⎫π2+α的值.解:∵5x 2-7x -6=0的两根x =2或x =-35,∴sin α=-35.又∵α为第三象限角,∴cos α=-1-sin 2α=-45.∴tan α=34.∴原式=(-cos α)·(-cos α)·tan 2α·(-tan α)sin α·(-sin α)=tan α=34.8.已知sin(α+β)=1,求tan(2α+β)+tan β的值. 解:∵sin(α+β)=1,。

高中数学 1.2.1 任意角的三角函数(1)教案 苏教版必修4(2021年整理)

高中数学 1.2.1 任意角的三角函数(1)教案 苏教版必修4(2021年整理)

阅,最后祝您生活愉快业绩进步,以下为江苏省镇江市丹徒镇高中数学1.2.1 任意角的三角函数(1)教案苏教版必修4的全部内容。

教学目标:1.通过借助单位圆理解并掌握任意角的三角函数定义,理解三角函数是以实数为自变量的函数,并从任意角的三角函数定义认识正弦、余弦、正切函数的定义域,理解并掌握正弦、余弦、正切函数在各象限内的符号.2.能初步应用定义分析和解决与三角函数值有关的一些简单问题.教学重点:任意角的正弦、余弦、正切的定义.教学难点:用角的终边上的点的坐标来刻画三角函数及三角函数符号.教学过程备课札记一、问题情境问题:用(r, )与用坐标(x, y)均可表示圆周上点P,这两种表示有什么内在联系?确切地说,●用怎样的数学模型刻画(x,y)与(r,)之间的关系?引导学生画出单位圆,作出对应的图形,在为锐角时,学生可以发现:(x,y)与(r,)之间具有的关系正是初中学习了的锐角三角函数.提问题:●在初中时我们学了锐角三角函数,你能回忆一下锐角三角函数的定义吗?二、学生活动1.用直角坐标系中角的终边上的点的坐标来表示锐角三角函数.2.引导学生思考:如果改变终边上的点的位置,这三个比值会改变吗?为什么?3.引导学生思考:能否利用已学知识通过取适当点而将上述三角函数的表达式简化?三、建构数学1.三角函数定义(1)比值错误!叫做α的正弦,记作sinα,即sinα=错误!。

(2)比值错误!叫做α的余弦,记作cosα,即cosα=错误!.(3)比值yx叫做α的正切,记作tanα,即tanα=错误!。

2.我们可以利用单位圆定义任意角的三角函数。

如图1所示,设α是一个任意角,它的终边与单位圆交于点P(x,y),那么:(1)y叫做α的正弦,记作sinα,即sinα=y;(2)x叫做α的余弦,记作cosα,即cosα=x;(3) 错误!叫做α的正切,记作tanα,即tanα= 错误! (x≠0).3.探究三角函数值在各象限的符号:一全正,二正弦,三正切,四余弦.4.探究三角函数的定义域:四、数学应用例1已知角α的终边经过点P(2,-3),求角α的正弦、余弦、正切值.变式:已知角α的终边经过点P(﹣2a,3a)(a〉0),求角α的正弦、余弦、正切值.例2确定下列三角函数值的符号:(1)cos错误!(2)sin(—465°) (3)tan 错误!变式:若cosα<0且tanα<0,试确定α为第几象限角.2.练习.(1)已知α的终边经过P(—3,4),求2sinα+cosα的值.(2)试判断下列三角函数值的符号.sin256°; cos(-406°); tan错误!课题。

苏教版必修4高中数学第1章《三角函数》任意角的三角函数(2)教学案

苏教版必修4高中数学第1章《三角函数》任意角的三角函数(2)教学案

高中数学 第1章《三角函数》任意角的三角函数(2)教学案
苏教版必修4
教学目标:了解如何运用与单位圆有关的有向线段,将任意角的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来,并能作出三角函数线。

促进学生对数形结合
思想的理解与感悟。

教学重点:三角函数线的探究与作法 教学难点:三角函数线的探究与作法
教学过程:
一、问题情境:
设点P(x,y)是α终边上的任意一点(r=22x y +),
sin α=_____,cos α=_____,tan α=_____.
问题:三角函数的几何表示又如何呢?
二、学生活动:
探究:1、为简化上式可令r=____,则sin α=_____,cos α=_____,tan α=_____.此时,点P 的位置在哪?可如何取得?
2、在上述条件下,若α是锐角,sin α=____=_____,cos α=____=______,
tan α=____=_____.若α是任意角,结论还成立吗?
3、如何解决这个问题?
三、知识建构:
1、有向线段:
有向线段的数量:
2、正弦线:
3、余弦线:
4、正切线:
x y O M P
四、知识运用:
例1、比较大小:(1)sin1______sin60°(2)c os 4
7
π______cos
5
7
π
练习:书 P15 7、 8
五、回顾反思:
知识:思想方法:
六、作业布置:
书P22 习题1.2 2(2)(4)、 3。

苏教版高中数学必修四任意角的三角函数教案(5)

苏教版高中数学必修四任意角的三角函数教案(5)

1.2.1任意角的三角函数(2)学习目标:1.通过对任意角的三角函数定义的理解,掌握终边相同角的同一三角函数值相等.2.正确利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值表示出来,即用正弦线、余弦线、正切线表示出来.教学重点:终边相同的角的同一三角函数值相等.教学难点:利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值用几何形式表示.教学方法:启发式教学.教学过程:一、问题情境1. 三角函数(正弦,余弦,正切函数)的概念.(两个定义)2. 三角函数(正弦,余弦,正切函数)的定义域.3.三角函数(正弦,余弦,正切函数)值在各象限的符号.二、学生活动议一议:是否可以在角α的终边上取一个特殊点,使得三角函数值的表达式更为简单?三、建构数学1.问题引导学习单位圆,有向线段.2.三角函数线的定义:(1)(2)(3)(4)设任意角α的顶点在原点O,始边与x轴非负半轴重合,终边与单位圆相交点P(x,y).过P作x轴的垂线,垂足为M;过点A(1,0)作单位圆的切线,它与角α的终边或其反向延长线交与点T.由四个图看出:当角 的终边不在坐标轴上时,有向线段OM=x,MP=y,于是sinα=yr=y1=y=MP,cosα=xr=x1=x=OM,tanα=yx=MPOM=ATOA=AT.我们就分别称有向线段MP,OM,AT为正弦线、余弦线、正切线.3.几点说明.①三条有向线段的位置:正弦线为α的终边与单位圆的交点到x轴的垂直线段;余弦线在x轴上;正切线在过单位圆与x轴正方向的交点的切线上,三条有向线段中两条在单位圆内,一条在单位圆外.②三条有向线段的方向:正弦线由垂足指向α的终边与单位圆的交点;余弦线由原点指向垂足;正切线由切点指向与α的终边的交点.③三条有向线段的正负:三条有向线段凡与x轴或y轴同向的为正值,与x 轴或y轴反向的为负值.④三条有向线段的书写:有向线段的起点字母在前,终点字母在后面.四、数学应用1.例题.例1作出下列各角的正弦线、余弦线、正切线.(1)π3;(2)5π6;(3)﹣2π3;(4)﹣13π6.例2 若0<α<π2,证明sinα+cosα>1.例3 比较大小ππππππ54tan 32tan )(354cos 32cos )(254sin 32sin )(1与与与例4 利用单位圆写出符合下列条件的角x 的范围.;21sin )1(-<x .21cos )2(>x 2.练习(1)利用三角函数线比较下列各组数的大小: ①54sin 32sin ππ与 ②54tan 32tan ππ与 (2)若α∈(0,2π),sinα<cosα,求α的范围五、要点归纳与方法小结:本节课学习了以下内容:1. 三角函数线的定义;2. 会画任意角的三角函数线;3. 利用单位圆比较三角函数值的大小,求角的范围.。

2020-2021学年苏教版必修4 1.2.1 任意角的三角函数 教案

2020-2021学年苏教版必修4 1.2.1 任意角的三角函数  教案

《任意角的三角函数》教学设计一、教材分析《任意角的三角函数》选自苏教版高中数学教材必修四第一章第二节,这是第一课时。

一方面,三角函数是学生学完函数概念,函数的性质,以及指数函数,对数函数和幂函数之后的另一基本函数。

任意角的概念也已经学过;另一方面,任意角的三角函数的概念是研究三角函数的基础,为后面推导同角三角函数关系以及三角函数诱导公式做好铺垫。

二、学情分析学生已有的知识基础:函数的概念、性质,指数函数,对数函数和幂函数的概念及性质;已有的活动经验:学生在初中时研究过直角三角形中的锐角的三角函数的定义以及特殊的锐角的三角函数值。

学生已有的知识基础和活动经验也为本节课做好铺垫。

三、教学目标基于本节课的教材分析和学情分析,本节课的教学目标如下:经历由研究直角三角形中锐角三角函数值到任意角的三角函数的过程,体会从特殊到一般的数学研究方法,感受其合理性;掌握任意角的正弦、余弦、正切的定义,会根据定义求特殊角的三角函数值,会判断三种函数的值在各象限的符号;体会数学研究中的特殊与一般的思想方法,培养学生的数学素养。

四、教学过程主要以问题导学的形式开展新授课的学习。

【新课引入】问题1:锐角三角函数是怎么定义的?【概念探究】问题2:锐角三角函数怎样推广到任意角的三角函数?任意角的三角函数的定义:问题3:判别是否为函数?问题4:三类函数的定义域【例题讲解】例1:已知角α的终边经过点)3P,求α的正弦、余弦、正切值。

,2(-变式:点0aaP3(≠a),4,例2:填表:例3:确定下列三角函数值的符号 (1)π127cos(2))465sin(︒- (3)π311tan 小结:正弦函数、余弦函数、正切函数的值在各象限的符号y yαsin αcos αtan【课堂小结】知识方面:任意角的正弦、余弦、正切的定义,根据定义求特殊角的三角函数值以及判断三角函数值在各个象限的符号;思想方法:根据定义求特殊角的三角函数值的方法,从特殊到一般的数学研究方法。

高中数学 第1章 三角函数 1.2 任意角的三角函数 1.2.2 同角三角函数关系学案 苏教版必修4

高中数学 第1章 三角函数 1.2 任意角的三角函数 1.2.2 同角三角函数关系学案 苏教版必修4

1.2.2 同角三角函数关系1.理解同角三角函数的两种基本关系.2.了解同角三角函数的基本关系的常见变形形式.3.学会应用同角三角函数的基本关系化简、求值与证明.同角三角函数的基本关系式1.判断(正确的打“√”,错误的打“×”)(1)对任意角α,sin 24α+cos 24α=1都成立.( ) (2)对任意角α,sinα2cosα2=tan α2都成立.( )(3)对任意的角α,β有sin 2α+cos 2β=1.( ) (4)sin 2α与sin α2所表达的意义相同.( )解析:(1)正确.当角α∈R 时,sin 24α+cos 24α=1都成立,所以正确.(2)错误.当α2=k π+π2,k ∈Z ,即α=2k π+π,k ∈Z 时,tan α2没意义,故sinα2cosα2=tanα2不成立,所以错误.(3)错误.当α=π2,β=0时,sin 2α+cos 2β≠1,故此说法是错误的.(4)错误.sin 2α是(sin α)2的缩写,表示角α的正弦的平方,sin α2表示角α2的正弦,故两者意义不同,此说法是错误的.答案:(1)√ (2)× (3)× (4)×2.已知α∈⎝ ⎛⎭⎪⎫π2,π,sin α=35,则cos α等于( )A .45B .-45C .-17D .35答案:B3.化简:(1+tan 2 α)·cos 2α等于( ) A .-1 B .0 C .1 D .2答案:C4.已知tan α=1,则2sin α-cos αsin α+cos α=________.解析:原式=2tan α-1tan α+1=2-11+1=12.答案:12已知一个三角函数值求其他三角函数值已知cos α=-35,求sin α,tan α的值.【解】 因为cos α<0且cos α≠-1, 所以α是第二或第三象限角. 所以当α为第二象限角时, sin α=1-cos 2α=1-⎝ ⎛⎭⎪⎫-352=45, tan α=sin αcos α=-43.当α为第三象限角时, sin α=-1-cos 2α=-1-⎝ ⎛⎭⎪⎫-352= -45,tan α=sin αcos α=43.已知角α的某一三角函数值,求角α的其余三角函数值时,要注意公式的合理选择;若角所在的象限已经确定,求另两种三角函数值时,只有一组结果;若角所在的象限不确定,应分类讨论.1.(1)已知α是第二象限角,且tan α=-724,则cos α=________.(2)已知sin θ=a (a ≠0),且tan θ>0,求cos θ、tan θ. 解:(1)因为α是第二象限角, 故sin α>0,cos α<0, 又tan α=-724,所以sin αcos α=-724,又sin 2α+cos 2α=1,解得cos α=-2425.故填-2425.(2)因为tan θ>0,则θ在第一、三象限,所以a ≠±1. ①若θ在第一象限,sin θ=a >0,且a ≠1时, cos θ=1-sin 2θ=1-a 2. 所以tan θ=sin θcos θ=a1-a2. ②若θ在第三象限,sin θ=a <0,且a ≠-1时, cos θ=-1-sin 2θ=-1-a 2. 所以tan θ=sin θcos θ=-a1-a2. 利用同角三角函数关系化简化简下列各式: (1)1-2sin 10°cos 10°sin 10°-1-sin 210°; (2)1-sin α1+sin α+1+sin α1-sin α,其中sin αtan α<0.【解】 (1)1-2sin 10°cos 10°sin 10°-1-sin 210° =(cos 10°-sin 10°)2sin 10°-cos 210°=|cos 10°-sin 10°|sin 10°-cos 10°=cos 10°-sin 10°sin 10°-cos 10°=-1. (2)由于sin αtan α<0,则sin α,tan α异号, 所以α是第二、三象限角,所以cos α<0.所以1-sin α1+sin α+1+sin α1-sin α=(1-sin α)21-sin 2α+ (1+sin α)21-sin 2α=|1-sin α||cos α|+|1+sin α||cos α|=1-sin α+1+sin α-cos α=-2cos α.(1)三角函数式的化简过程中常用的方法①化切为弦,即把非正弦、非余弦的函数都化成正弦、余弦函数,从而减少函数名称,达到化简的目的.②对于含有根号的,常把根号下式子化成完全平方式,然后去根号,达到化简的目的. ③对于化简含高次的三角函数式,往往借助于因式分解,或构造sin 2α+cos 2α=1,以降低函数次数,达到化简的目的.(2)对三角函数式化简的原则 ①使三角函数式的次数尽量低. ②使式中的项数尽量少. ③使三角函数的种类尽量少. ④使式中的分母尽量不含有三角函数. ⑤使式中尽量不含有根号和绝对值符号.⑥能求值的要求出具体的值,否则就用三角函数式来表示.2.化简:1-sin 4x -cos 4x1-sin 6x -cos 6x.解:原式=1-[(sin 2x +cos 2x )2-2sin 2x cos 2x ]1-(sin 2x +cos 2x )(sin 4x +cos 4x -sin 2x cos 2x ) =1-1+2sin 2x cos 2x1-[(sin 2x +cos 2x )2-3sin 2x cos 2x ] =2sin 2x cos 2x 3sin 2x cos 2x =23. 利用同角三角函数关系式证明求证:(1)1+tan 2α=1cos 2α;(2)sin α1-cos α=1+cos αsin α. 【证明】 证明:(1)因为1+tan 2α=1+sin 2αcos 2α= cos 2α+sin 2αcos 2α=1cos 2α, 所以原式成立.(2)法一:由sin α≠0知,cos α≠-1, 所以1+cos α≠0.于是左边=sin α(1+cos α)(1-cos α)(1+cos α)=sin α(1+cos α)1-cos 2α=sin α(1+cos α)sin 2α=1+cos αsin α=右边. 所以原式成立.法二:因为sin 2α+cos 2α=1,所以sin 2α=1-cos 2α, 即sin 2α=(1-cos α)(1+cos α). 因为1-cos α≠0,sin α≠0, 所以sin α1-cos α=1+cos αsin α.证明恒等式的过程就是分析、转化、消去等式两边差异来促成统一的过程,证明时常用的方法有:(1)从一边开始,证明它等于另一边,遵循由繁到简的原则. (2)证明左右两边等于同一个式子.(3)证明左边减去右边等于零或左、右两边之比等于1.(4)证明与原式等价的另一个式子成立,从而推出原式成立.3.(1)求证:1-2sin x cos x cos 2x -sin 2x =1-tan x1+tan x. (2)求证:tan αsin αtan α-sin α=tan α+sin αtan αsin α.证明:(1)左边=sin 2x -2sin x cos x +cos 2xcos 2x -sin 2x=tan 2x -2tan x +11-tan 2x=(tan x -1)2(1-tan x )(1+tan x )=1-tan x1+tan x =右边. 所以原式成立.(2)因为右边=tan 2α-sin 2α(tan α-sin α)tan αsin α=tan 2α-tan 2αcos 2α(tan α-sin α)tan αsin α =tan 2α(1-cos 2α)(tan α-sin α)tan αsin α =tan 2αsin 2α(tan α-sin α)tan αsin α =tan αsin αtan α-sin α =左边, 所以原等式成立.1.同角三角函数的基本关系式揭示了“同角不同名”的三角函数的运算规律,这里,“同角”有两层含义:一是“角相同”,二是对“任意”一个角(在使函数有意义的前提下).关系式成立与角的表达形式无关,如sin 23α+cos 23α=1.2.在使用同角三角函数关系式时要注意使式子有意义,如式子tan 90°=sin 90°cos 90°不成立.3.注意公式的变形,如sin 2α=1-cos 2α,cos 2α=1-sin 2α,sin α=cos αtan α,cosα=sin αtan α等. 4.在应用平方关系式求sin α或cos α时,其正负号是由角α所在的象限决定的,不可凭空想象.已知sin α+cos α=13,其中0<α<π,求sin α-cos α的值.【解】 因为sin α+cos α=13,所以(sin α+cos α)2=19,可得:sin α·cos α=-49.因为0<α<π,且sin α·cos α<0,所以sin α>0,cos α<0.所以sin α-cos α>0, 又(sin α-cos α)2=1-2sin αcos α=179,所以sin α-cos α=173.(1)在处得到sin α·cos α<0,为判断sin α,cos α的具体符号提供了条件,是解答本题的关键;若没有判断出处的关系式,则下一步利用平方关系求解sin α-cos α的值时,可能会出现两个,是解答本题的易失分点;若前边的符号问题都正确,但在处书写不正确,没有考虑前面的符号而出现sin α-cos α=±173,则是解答本题的又一易失分点. (2)在解题过程中要充分利用题中的条件,判断出所求的三角函数式的符号.1.已知sin α=23,tan α=255,则cos α=( )A .13 B .53 C .73D .55解析:选B .因为tan α=sin αcos α,所以cos α=sin αtan α=23255=53.2.化简:⎝⎛⎭⎪⎫1sin α+1tan α(1-cos α)=( )A .sin αB .cos αC .1+sin αD .1+cos α解析:选A .⎝⎛⎭⎪⎫1sin α+1tan α(1-cos α)=⎝ ⎛⎭⎪⎫1sin α+cos αsin α(1-cos α)=1-cos 2αsin α=sin α. 3.已知cos θ=35,且3π2<θ<2π,那么tan θ的值为________.解析:因为θ为第四象限角, 所以tan θ<0,sin θ<0,sin θ=-1-cos 2θ=-45,所以tan θ=sin θcos θ=-43.答案:-434.已知tan α=43,且α是第三象限角,求sin α,cos α的值.解:由tan α=sin αcos α=43,得sin α=43cos α,①又sin 2α+cos 2α=1,② 由①②得169cos 2α+cos 2α=1,即cos 2α=925.又α是第三象限角,所以cos α=-35,sin α=-45.[学生用书P83(单独成册)])[A 基础达标]1.若cos α=13,则(1+sin α)(1-sin α)等于( )A .13B .19C .223D .89解析:选B .原式=1-sin 2α=cos 2α=19,故选B .2.若α是第四象限角,tan α=-512,则sin α=( )A .15B .-14C .513D .-513解析:选D .因为tan α=sin αcos α=-512,sin 2α+cos 2α=1,所以sin α=±513.因为α是第四象限角,所以sin α=-513.3.已知θ是第三象限角,且sin 4θ+cos 4θ=59,则sin θcos θ的值为( )A .23B .-23C .13D .-13解析:选A .由sin 4θ+cos 4θ=59,得(sin 2θ+cos 2θ)2-2sin 2θcos 2θ=59,所以sin 2θcos 2θ=29.因为θ是第三象限角,所以sin θ<0,cos θ<0,所以sin θcos θ=23. 4.如果tan θ=2,那么1+sin θcos θ=( ) A .73 B .75 C .54D .53解析:选B .法一:1+sin θcos θ=1+sin θcos θ1=sin 2θ+cos 2θ+sin θcos θsin 2θ+cos 2θ =tan 2θ+tan θ+1tan 2θ+1, 又tan θ=2,所以1+sin θcos θ=22+2+122+1=75.法二:tan θ=2,即sin θ=2cos θ, 又sin 2θ+cos 2θ=1, 所以(2cos θ)2+cos 2θ=1, 所以cos 2θ=15.又tan θ=2>0,所以θ为第一或第三象限角. 当θ为第一象限角时,cos θ=55,此时sin θ=1-cos 2θ=255,则1+sin θcos θ=1+255×55=75;当θ为第三象限角时,cos θ=-55, 此时sin θ=-1-cos 2θ=-255,则1+sin θcos θ=1+(-255)×(-55)=75.5.若cos α+2sin α=-5,则tan α=( ) A .12 B .2C .-12D .-2解析:选B .由⎩⎨⎧cos α+2sin α=-5,sin 2α+cos 2α=1得(5sin α+2)2=0. 所以sin α=-255,cos α=-55.所以tan α=2.6.已知tan α=m ⎝⎛⎭⎪⎫π<α<3π2,则sin α=________.解析:因为tan α=m ,所以sin 2αcos 2α=m 2,又sin 2α+cos 2α=1,所以cos 2α=1m 2+1,sin 2α=m 2m 2+1.又因为π<α<3π2,所以tan α>0,即m >0.因而sin α=-mm 2+1. 答案:-m1+m27.已知sin α-cos αsin α+cos α=2,则sin αcos α的值为________.解析:由sin α-cos αsin α+cos α=2,等式左边的分子分母同除以cos α,得tan α-1tan α+1=2,所以tanα=-3,所以sin αcos α=sin αcos αsin 2α+cos 2α=tan αtan 2α+1=-310. 答案:-310 8.已知α是第二象限角,则sin α1-cos 2 α+21-sin 2 αcos α=________. 解析:因为α是第二象限角,所以sin α>0,cos α<0,所以sin α1-cos 2α+21-sin 2αcos α=sin αsin α+-2cos αcos α=-1. 答案:-19.化简:sin 2x sin x -cos x -sin x +cos x tan 2x -1. 解:原式=sin 2x sin x -cos x -sin x +cos x sin 2xcos 2x-1 =sin 2x sin x -cos x -cos 2x (sin x +cos x )sin 2x -cos 2x=sin 2x -cos 2x sin x -cos x=sin x +cos x . 10.已知tan α=2,求下列各式的值:(1)2sin 2α-3cos 2α4sin 2α-9cos 2α; (2)sin 2α-3sin αcos α+1.解:(1)因为tan α=2,所以cos α≠0.所以2sin 2α-3cos 2α4sin 2α-9cos 2α=2tan 2α-34tan 2α-9 =2×22-34×22-9=57. (2)因为tan α=2,所以cos α≠0.所以sin 2α-3sin αcos α+1=sin 2α-3sin αcos α+(sin 2α+cos 2α)=2sin 2α-3sin αcos α+cos 2α=2sin 2α-3sin αcos α+cos 2αsin 2α+cos 2α=2tan 2α-3tan α+1tan 2α+1=2×22-3×2+122+1=35. [B 能力提升]1.若△ABC 的内角A 满足sin A cos A =13,则sin A +cos A 的值为( ) A .153 B .-153 C .53 D .-53解析:选A .因为A 为△ABC 的内角,且sin A cos A =13>0,所以A 为锐角,所以sin A +cos A >0.又1+2sin A cos A =1+23,即(sin A +cos A )2=53,所以sin A +cos A =153. 2.已知tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ=________.解析:因为tan θ=2,所以cos θ≠0,则原式可化为sin 2θ+sin θcos θ-2cos 2θsin 2θ+cos 2θ=sin 2θcos 2θ+sin θcos θcos 2θ-2cos 2θcos 2θsin 2θcos 2θ+cos 2θcos 2θ=tan 2θ+tan θ-2tan 2θ+1=22+2-222+1=45. 答案:453.已知2sin θ-cos θ=1,3cos θ-2sin θ=a ,记数a 形成的集合为A ,若x ∈A ,y ∈A ,则以点P (x ,y )为顶点的平面图形是什么图形?解:联立⎩⎪⎨⎪⎧2sin θ-cos θ=1,sin 2θ+cos 2θ=1,解得⎩⎪⎨⎪⎧sin θ=0,cos θ=-1,或⎩⎪⎨⎪⎧sin θ=45,cos θ=35.所以a =3cos θ-2sin θ=-3或15,即A =⎩⎨⎧⎭⎬⎫-3,15.因此,点P (x ,y )可以是P 1(-3,-3),P 2⎝ ⎛⎭⎪⎫-3,15,P 3⎝ ⎛⎭⎪⎫15,15,P 4⎝ ⎛⎭⎪⎫15,-3.经分析知,这四个点构成一个正方形.4.(选做题)已知关于x 的方程2x 2-(3+1)x +m =0的两根分别为sin θ和cos θ,θ∈(0,2π),求:(1)sin θ1-1tan θ+cosθ1-tan θ的值;(2)m 的值;(3)方程的两根及此时θ的值.解:由根与系数的关系,可得⎩⎪⎨⎪⎧sin θ+cos θ=3+12,①sin θ·cos θ=m2,②Δ=4+23-8m ≥0.③(1)sin θ1-1tan θ+cos θ1-tan θ=sin 2θsin θ-cos θ+cos 2θcos θ-sin θ=sin 2θ-cos 2θsin θ-cos θ=sin θ+cos θ=3+12.(2)由①平方,得1+2sin θcos θ=2+32,所以sin θcos θ=34.又由②,得m 2=34,所以m =32,由③,得m ≤2+34, 所以m =32符合题意; (3)当m =32时,原方程变为2x 2-(3+1)x +32=0,解得x 1=32,x 2=12. 所以⎩⎪⎨⎪⎧sin θ=32,cos θ=12或⎩⎪⎨⎪⎧cos θ=32,sin θ=12. 又因为θ∈(0,2π),所以θ=π3或π6.。

苏教版数学高一-必修4导学案 任意角的三角函数(1)学生版

苏教版数学高一-必修4导学案  任意角的三角函数(1)学生版

课题:§1.2.1任意角的三角函数(1) 总第____课时班级_______________ 姓名_______________【学习目标】1.掌握任意角的正弦,余弦,正切的定义;2.掌握正弦,余弦,正切函数的定义域和这三种函数的值在各象限的符号. 【重点难点】学习重点:任意角的正弦,余弦,正切的定义.学习难点: 理解三角函数的定义,掌握三角函数的定义域和值域. 【学习过程】一、自主学习与交流反馈问题1:初中课本中是如何定义锐角三角函数的?问题2:如右图,点P 是半径为R 的圆O 上一点,点P 在圆O 上运动,当点P 从点A 位置运动到点P 位置时,∠AOP =α. 如果我们以O 为坐标原点,OA 为x 轴正方向建立平面直角坐标系。

我们是不是可以用(r ,α)来准确地表示点P 的位置?点P 的位置可以用它的坐标(x ,y)来表示,你能找出(r ,α)与(x ,y)的关系吗?问题3:填表(课前先完成30°,45°,60°填空):cb a αCA二、知识建构与应用:1.给出任意角三角函数的定义:如图: 在平面直角坐标系中, 设角α的终边上除原点外任意一点P 的坐标是),(y x , 它与原点的距离是)0(22>+=y x r r 。

我们规定:αsin = ;αcos = ,αtan = .问题:点P 的位置不同,会不会改变三角函数值?2.三角函数的定义域3.由定义指出每个象限内的角对应的三角函数值的符号,总结规律.三、例题例1 已知α的终边经过点P(2,-3),分别求α的正弦、余弦、正切值.变式⑴: 已知角α的终边经过P(4,-3),求2sin α+cos α的值.变式⑵: 已知角α的终边经过P(4a,-3a),(a ≠0) 求2sin α+cos α的值.例2 确定下列三角函数值的符号:(1)cos 7π12 ; (2)sin(-465°) ; (3) tan 11π3例3 (1)若0sin <α且0tan <α,试确定α为第几象限角. (2)使0cos sin <⋅αα成立的角α的集合.例4 确定下列三角函数的符号:(1)sin2 (2)cos(-3) (3) )108tan(310cos 0-四、巩固练习1.已知角α的终边经过点P ,求α的正弦、余弦、正切值。

高中数学苏教版必修4教案:第一章 三角函数 第1课时 1.1任意角

高中数学苏教版必修4教案:第一章 三角函数 第1课时 1.1任意角

第1课时§1.1 任意角【教学目标】一、知识与技能1.推广角的概念,引入正角、负角、零角的定义;象限角、坐标轴上的角的概念;终边相同角的表示方法.2.理解并掌握正角、负角、零角的定义;理解任意角的概念,掌握所有与α角终边相同的角(包括α角)的表示方法.二、过程与方法:渗透数形结合的数学思想,考虑问题要细致,说理要明确三、情感、态度与价值观:体会运动变化观点,深刻理解推广后的角的概念。

【教学重点难点】:(1)正角、负角、零角的定义;(2)终边相同的角的表示方法【教学过程】【问题情境】通过周期运动的实例引人三角函数.让学生对本章有一个初步印象.【学生活动】初中我们已给角下了定义.我们把“有公共端点的两条射线组成的图形叫做角α.角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置的图形(先后用教具和多媒体给学生演示:逆时针转动形成角,顺时针转动而成角,转几圈也形成角,为推广角的概念做好准备).讲解新课:1.角的概念的推广⑴“旋转”形成角一条射线OA绕着______________________,就形成角α.____ _叫做角α的始边,______叫做角α的终边,_____叫做角α的顶点.⑵.“正角”与“负角”“0角”我们把_______________________叫做正角,把_______________________叫做负角,如图,以OA为始边的角α=210°,β=-150°,γ=660°,⑶意义用“旋转”定义角之后,角的范围大大地扩大了。

1角有正负之分 2 角可以任意大 3可以为零角2.“象限角及轴线角”建立平面直角坐标系,角的顶点重合于___________,角的始边重合于_______,这样一来,角的终边落在第几象限,我们就说这个角是第几象限的角(角的终边落在坐标轴上,则此角不属于任何一个象限,称之为________)3.终边相同的角(1)在平面直角坐标系中作出30, 390,330角⑴观察:390,330角,它们的终边都与________角的终边相同⑵探究:终边相同的角都可以表示成一个0到360的角与)(Z k k ∈个周角的和: 390=______+____360 330=______+_____360 ⑶结论:所有与终边相同的角连同在内可以构成一个集合: }{__________==ββS 例题分析:例1、在0到360度范围内,找出与下列各角终边相同的角,并判断它是哪个象限的角(1)120(2)640(3)95012'-︒︒-︒例2、写出与下列各角终边相同的角的集合S ,并把S 中在360~720-︒︒间的角写出来:(1)60︒ (2)21-︒ (3)36314︒'。

苏教版数学高一苏教版必修4学案任意角的三角函数

苏教版数学高一苏教版必修4学案任意角的三角函数

课堂导学三点剖析1.任意角的正弦、余弦、正切的定义【例1】有下列命题,其中正确的命题的个数是( )①终边相同的角的同名三角函数的值相同②终边不同的角的同名三角函数的值不等③若sinα>0,则α是第一、二象限的角④若α是第二象限的角,且P (x,y )是其终边上一点,则cosα=22y x x+-A.1B.2C.3D.4思路分析:运用概念判断.解析:由任意角三角函数定义知①正确;对②,我们举出反例sin3π=sin 32π; 对③,可指出sin 2π>0,但2π不是第一、二象限的角;对④,应是cosα=22y x x +. 综上选A.答案:A温馨提示要准确地理解任意角的三角函数定义,可与三角函数线结合记忆.2.角、实数和三角函数值之间的对应关系【例2】 判断下列各式的符号.(1)tan250°·cos(-350°);(2)sin151°cos230°;(3)sin3cos4tan5;(4)sin(cosθ)·cos(sinθ)(θ是第二象限角).思路分析:本题主要考查三角函数的符号.角度确定了,所在的象限也就确定了.三角函数的符号也就确定了.进一步再确定各式的符号.对于(4),视sinθ、cosθ为弧度数.解:(1)∵tan250°>0,cos(-350°)>0,∴tan250°·cos(-350°)>0.(2)∵sin151°>0,cos230°<0,∴sin151°·cos230°<0.(3)∵2π<3<π,π<4<23π,23π<5<2π, ∴sin3>0,cos4<0,tan5<0,∴sin3·cos4·tan5>0.(4)∵θ是第二象限角,∴0<sinθ<1<2π, ∴cos(sinθ)>0.同理,-2π<-1<cosθ<0, ∴sin(c osθ)<0,故sin (cosθ)·cos(sinθ)<0.温馨提示(1)判断各三角函数值的符号,须判断角所在的象限.(2)sinθ既表示角θ的正弦值,同时也可以表示[-1,1]上的一个角的弧度数.(3)中解题的关键是将cosθ、sinθ视为角的弧度数.【例3】求函数y=)1cos2lg(sin)4tan(-•-xxxπ的定义域.思路分析:运用等价及集合的思想.解:只需满足条件⎪⎪⎩⎪⎪⎨⎧≠-<≥+≠⇒⎪⎪⎩⎪⎪⎨⎧≠-≥∈+≠-,11cos2,0sin43,0)1cos2lg(,0sin,,24xkxxxZkkxπππππ⎪⎪⎩⎪⎪⎨⎧∈≠+<<-∈+≤≤∈+≠⇔.,2,3232,,)12(2,,43ZkkxkxkZkkxkZkkxπππππππππ且∴函数的定义域为{x|2kπ<x<2kπ+3π,k∈Z}.温馨提示利用图形,可直观找出不等式组的解集,体现了数形结合思想.各个击破类题演练1已知角α的终边经过点P(-6,-2),求α的三个三角函数值.解:已知x=-6,y=-2,所以r=102,于是sinα=10101022-=-=ry,cosα=,101031026-=-=rxtanα=3162=--=xy.变式提升1已知角α的终边经过点P(2t,-3t)(t<0),求sinα,cosα,tanα.解:∵x=2t,y=-3t∴r=||13)3()2(22ttt=-+-∵t <0 ∴r=t 13-∴sinα=,13133133=--=t t r y cosα=13132132-=-=t t r x , tanα=2323-=-=t x y . 类题演练2判断下列各式的符号(1)sin105°·cos230°;(2)sin87π·tan 87π; (3)cos6·tan 6;(4)sin4·tan(π423-). 解:(1)∵105°、230°分别为第二、第三象限角,∴sin105°>0.cos230°<0.sin105°·cos230°<0.(2)∵2π<87π<π,∴87π是第二象限角. ∴sin 87π>0,tan 87π<0. ∴sin 87π·tan 87π<0. (3)∵23π<6<2π,∴6弧度的角是第四象限角. ∴cos6>0,tan6<0.∴cos6·tan6<0.(4)∵π<4<23π,∴sin4<0. 又π423-=-6π+4π,∴π423-与4π终边相同. ∴tan(π423-)>0. ∴sin4·tan(π423-)<0. 变式提升2已知α是第三象限角,试判断sin (cosα)·cos (sinα)的符号.解:∵α是第三象限角.∴cosα<0,sinα<0.又|sinα|<1,|cosα|<1,∴-1<cosα<0,-1<sinα<0,∴sin(cosα)<0,cos(sinα)>0.∴sin(cosα)·cos (sinα)<0.类题演练3 已知角α的终边在直线y=-3x 上,求10sinα+3cosα的值. 解:设α终边上任意一点P (k,-3k ),则 r=|,|10)3(2222k k k y x =-+=+当k >0时,r=k 10,∴sinα=103103-=-kk, cosα=10110=k k. ∴10sinα+3cosα=10102710103103-=+-. 当k <0时,r=-10k,∴sinα=103103=--k k,cosα=101010110-=-=-k k. ∴10sinα+3cosα=10102710103103=-. 变式提升3已知α∈(0,2π),试比较α、sinα、tanα的大小. 解:如右图,设锐角α的终边交单位圆于点P ,过单位圆与x 轴正半轴的交点A 作圆的切线交OP 延长线于T ,并过点P 作PM ⊥x 轴,则|MP|=s inα,|AT|=tanα,的长为α.连PA ,∵S △OAP <S 扇形OAP <S △OAT ,即21|OA|·|MP|<21|OA|2·a <21|OA|·|AT|,|MP|<α<|AT|, ∴sinα<α<tanα.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2任意角的三角函数1.2.1任意角的三角函数1.理解三角函数的定义,会使用定义求三角函数值.(重点、易错点)2.会判断给定角的三角函数值的符号.(重点)3.会利用三角函数线比较两个同名三角函数值的大小及表示角的范围.(难点)[基础·初探]教材整理1任意角三角函数的定义阅读教材P11~P12第一自然段的有关内容,完成下列问题.在平面直角坐标系中,设α的终边上任意一点P的坐标是(x,y),它与原点的距离是r(r=x2+y2>0),那么名称定义定义域正弦sin α=yr R余弦cos α=xr R正切tan α=yx⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪α≠π2+kπ,k∈Zsin α函数.若角α的终边经过点P ⎝⎛⎭⎪⎫22,-22,则sin α=________;cos α=________;tan α=________. 【解析】 由题意可知 |OP |=⎝ ⎛⎭⎪⎫22-02+⎝ ⎛⎭⎪⎫-22-02=1, ∴sin α=-221=-22; cos α=221=22; tan α=-2222=-1.【答案】 -22 22 -1 教材整理2 三角函数值的符号阅读教材P 12第二自然段的有关内容,完成下列问题. 三角函数在各象限符号:图1-2-1(1)若α在第三象限,则sin αcos α________0;(填“>”,“<”) (2)若α在第二象限,则sin αtan α________0.(填“>”“<”) 【解析】 (1)∵α在第三象限,∴sin α<0,cos α<0,∴sin αcos α>0.(2)∵α在第二象限,∴sin α>0,tan α<0.∴sin αtan α<0.【答案】(1)>(2)<教材整理3三角函数线阅读教材P12第三自然段~P14例1以上部分的内容,完成下列问题.1.有向线段:规定了方向(即规定了起点和终点)的线段.2.三角函数线判断(正确的打“√”,错误的打“×”)(1)α一定时,单位圆的正弦线一定.()(2)在单位圆中,有相同正弦线的角必相等.()(3)α与α+π有相同的正切线.()【解析】结合三角函数线可知(1)(3)正确,(2)错误.【答案】(1)√(2)×(3)√[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:[小组合作型]三角函数的定义及应用在平面直角坐标系中,角α的终边在直线y=-2x上,求sin α,cos α,tan α的值.【精彩点拨】以α的终边分别在第二、四象限为依据,分别取特殊点求sin α,cos α,tan α的值.【自主解答】当α的终边在第二象限时,在α终边上取一点P(-1,2),则r=(-1)2+22=5,所以sin α=25=255,cos α=-15=-55,tan α=2-1=-2.当α的终边在第四象限时,在α终边上取一点P′(1,-2),则r=12+(-2)2=5,所以sin α=-25=-255,cos α=15=55,tan α=-21=-2.1.已知角α的终边在直线上的问题,常分两类情况分别计算sin α,cos α,tan α的值.2.当角α的终边上点的坐标以参数形式给出时,要根据问题的实际情况对参数进行分类讨论.[再练一题]1.已知角α的终边上有一点P (-3a,4a )(a ≠0),求2sin α+cos α的值.【导学号:06460006】【解】 ∵x =-3a ,y =4a , ∴r =(-3a )2+(4a )2=5|a |.当a >0时,r =5a ,角α为第二象限角, ∴sin α=y r =4a 5a =45, cos α=x r =-3a 5a =-35, ∴2sin α+cos α=2×45-35=1.当a <0时,r =-5a ,角α为第四象限角, ∴sin α=y r =4a -5a =-45,cos α=x r =-3a -5a =35,∴2sin α+cos α=2×⎝ ⎛⎭⎪⎫-45+35=-1.三角函数值的符号(1)α是第四象限角,sin α·tan α; (2)sin 3·cos 4·tan ⎝ ⎛⎭⎪⎫-23π4.【精彩点拨】 先确定各角所在象限,再判定各个三角函数值符号,然后判定三角函数式的符号.【自主解答】(1)∵α是第四象限角, ∴sin α<0,tan α<0, ∴sin α·tan α>0. (2) ∵π2<3<π,π<4<3π2, ∴sin 3>0,cos 4<0. 又∵-23π4=-6π+π4, ∴tan ⎝ ⎛⎭⎪⎫-23π4>0,∴sin 3·cos 4·tan ⎝ ⎛⎭⎪⎫-23π4<0.对于已知角α,判断α的相应三角函数值的符号问题,常依据三角函数的定义,或利用口诀“一全正、二正弦、三正切、四余弦”来处理.[再练一题]2.确定下列式子的符号:(1)tan 108°·cos 305°;(2)cos 5π6·tan 11π6sin 2π3;(3)tan 120°·sin 269°.【解】 (1)∵108°是第二象限角,∴tan 108°<0. ∵305°是第四象限角,∴cos 305°>0. 从而tan 108°·cos 305°<0.(2)∵5π6是第二象限角,11π6是第四象限角,2π3是第二象限角,∴cos 5π6<0,tan11π6<0,sin 2π3>0.从而cos5π6·tan11π6sin2π3>0.(3)∵120°是第二象限角,∴tan 120°<0,∵269°是第三象限角,∴sin 269°<0.从而tan 120°sin 269°>0.[探究共研型]应用三角函数线解三角不等式探究1在单位圆中,满足sin α=12的正弦线有几条?试在图中明确.图1-2-2【提示】两条,如图所示,MP1与NP2都等于12.探究2满足sin α≥12的角的范围是多少?试在上述单位圆中给予明确.【提示】如图中阴影部分所示,所求角α的取值范围为α⎪⎪⎪2kπ+π6≤α≤2kπ+5π6,k∈Z.求函数f (x )=1-2cos x +ln ⎝ ⎛⎭⎪⎫sin x -22的定义域.【精彩点拨】 借助单位圆解不等式组⎩⎨⎧1-2cos x ≥0sin x -22>0便可.【自主解答】 由题意,自变量x 应满足不等式组⎩⎨⎧1-2cos x ≥0,sin x -22>0,即⎩⎪⎨⎪⎧cos x ≤12,sin x >22.则不等式组的解的集合如图(阴影部分)所示,∴⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π+π3≤x <2k π+34π,k ∈Z .求三角函数定义域时,一般应转化为求不等式(组)的解的问题.利用数轴或三角函数线是解三角不等式常用的方法.解多个三角不等式时,先在单位圆中作出使每个不等式成立的角的范围,再取公共部分.[再练一题]3.在单位圆中画出适合下列条件的角α的终边的范围,并由此写出角α的集合:(1)sin α≥32;(2)cos α≤-12.【解】 (1)作直线y =32交单位圆于A ,B 两点,连接OA ,OB ,则OA 与OB 围成的区域(图①阴影部分)即为角α的终边的范围,故满足条件的角α的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪2k π+π3π≤α≤2k π+2π3π,k ∈Z.(2)作直线x =-12交单位圆于C 、D 两点,连接OC 、OD ,则OC 与OD 围成的区域(图②阴影部分)即为角α终边的范围,故满足条件的角α的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪2k π+23π≤α≤2k π+43π,k ∈Z. [构建·体系]1.若角α的终边经过点P (-2,2),则sin θ=________. 【解析】 由题意可知,OP =(-2)2+22=8,∴sin θ=28=22. 【答案】 222.若sin α<0,tan α>0,则α为第________象限角.【解析】 由sin α<0可知α的终边落在第三、四象限及y 轴的负半轴上. 由tan α>0可知α的终边落在第一、三象限内.故同时满足sin α<0,tan α>0的角α为第三象限角. 【答案】 三3.角α的终边经过点P (-b,4)且cos α=-35,则b 的值为________.【导学号:06460007】【解析】 由三角函数的定义可知 -bb 2+16=-35, ∴⎩⎪⎨⎪⎧b >0,b 2b 2+16=925,解得b =3.【答案】 34.利用三角函数线比较下列各组数的大小(用“>”或“<”连接): (1)sin 2π3________sin 4π5; (2)cos 2π3________cos 4π5; (3)tan 2π3________tan 4π5.【解析】 借助单位圆中的三角函数线易得sin 2π3>sin 4π5;cos 2π3>cos 4π5;tan 2π3<tan 4π5.【答案】 (1)> (2)> (3)<5.已知角α的终边在直线3x +4y =0上,求sin α,cos α,tan α的值. 【解】 ∵角α的终边在直线3x +4y =0上,∴在角α的终边上任取一点P (4t ,-3t )(t ≠0),则x =4t ,y =-3t ,r =x 2+y 2=(4t )2+(-3t )2=5|t |,当t >0时,r =5t ,sin α=y r =-3t 5t =-35,cos α=x r =4t 5t =45,tan α=y x =-3t4t =-34.当t <0时,r =-5t ,sin α=y r =-3t -5t =35,cos α=x r =4t -5t=-45,tan α=y x =-3t 4t =-34.综上可知,sin α=-35,cos α=45,tan α=-34;或sin α=35,cos α=-45,tan α=-34.我还有这些不足:(1)(2)我的课下提升方案:(1)(2)学业分层测评(三) 任意角的三角函数(建议用时:45分钟)[学业达标]一、填空题1.已知sin α=35,cos α=-45,则角α终边在第________象限.【解析】 由sin α=35>0得,角α的终边在第一或第二象限;由cos α=-45<0得,角α的终边在第二或第三象限,故角α的终边在第二象限.【答案】 二2.若角α的终边落在y =-x 上,则tan α的值为________.【解析】设P(a,-a)是角α上任意一点,若a>0,P点在第四象限,tan α=-aa=-1,若a<0,P点在第二象限,tan α=-aa=-1.【答案】-13.有三个结论:①π6与5π6的正弦线相等;②π3与4π3的正切线相等;③π4与5π4的余弦线相等.其中正确的是________.【解析】在单位圆中画出相应角的正弦线、正切线,余弦线,分析可知①正确,②正确,③错误.【答案】①②4.在△ABC中,若sin A·cos B·tan C<0,则△ABC是________三角形.【解析】∵A,B,C是△ABC的内角,∴sin A>0.∵sin A·cos B·tan C<0,∴cos B·tan C<0,∴cos B和tan C中必有一个小于0,即B,C中必有一个钝角,故△ABC是钝角三角形.【答案】钝角5.(2016·扬州高一检测)如果α的终边过点P(2sin 30°,-2cos 30°),则sin α的值等于________.【解析】∵P(1,-3),∴r=12+(-3)2=2,∴sin α=-32.【答案】-3 26.(2016·南通高一检测)在(0,2π)内,使sin α>cos α成立的α的取值范围是________.【解析】 如图所示,当α∈⎝ ⎛⎭⎪⎫π4,5π4时,恒有MP >OM ,而当α∈⎝ ⎛⎭⎪⎫0,π4∪⎝ ⎛⎭⎪⎫5π4,2π时,则是MP <OM . 【答案】 ⎝ ⎛⎭⎪⎫π4,5π4 7.若α为第二象限角,则|sin α|sin α-cos α|cos α|=________.【解析】 由已知sin α>0,cos α<0,∴|sin α|sin α-cos α|cos α|=sin αsin α-cos α(-cos α)=1+1=2. 【答案】 28.(2016·无锡高一检测)已知角α的终边经过点(3a -9,a +2),且sin α>0,cos α≤0,则α的取值范围是________.【解析】 因为cos α≤0,sin α>0,所以角α的终边在第二象限或y 轴非负半轴上.因为α的终边过点(3a -9,a +2),所以{3a -9≤0,a +2>0,所以-2<a ≤3. 【答案】 (-2,3]二、解答题9.判断下列各式的符号:(1)sin 340°cos 265°;(2)sin (cos θ)cos (sin θ)(θ为第二象限角). 【导学号:06460008】 【解】 (1)∵340°是第四象限角,265°是第三象限角,∴sin 340°<0,cos 265°<0,∴sin 340°cos 265°>0.(2)∵θ为第二象限角,∴0<sin θ<1<π2,-π2<-1<cos θ<0,∴sin(cos θ)<0,cos(sin θ)>0,∴sin (cos θ)cos (sin θ)<0. 10.已知1|sin α|=-1sin α,且lg cos α有意义.(1)试判断角α所在的象限;(2)若角α的终边上一点M ⎝ ⎛⎭⎪⎫35,m ,且|OM |=1(O 为坐标原点),求m 的值及sin α的值.【解】 (1)由1|sin α|=-1sin α可知sin α<0,∴α是第三或第四象限角或终边在y 轴的负半轴上的角.由lg cos α有意义可知cos α>0,∴α是第一或第四象限角或终边在x 轴的正半轴上的角.综上可知角α是第四象限的角.(2)∵|OM |=1,∴⎝ ⎛⎭⎪⎫352+m 2=1, 解得m =±45.又α是第四象限角,故m <0,从而m =-45.由正弦函数的定义可知sin α=y r =m |OM |=-451=-45.[能力提升]1.(2016·南京高一检测)若α为第四象限角,则下列函数值一定是负值的是________.(填序号)①sin α2;②cos α2;③tan α2;④cos 2α.【解析】 由α为第四象限角,得2k π+3π2<α<2k π+2π(k ∈Z ),故k π+3π4<α2<k π+π(k ∈Z ).当k =2n (n ∈Z )时,α2∈⎝ ⎛⎭⎪⎫2n π+3π4,2n π+π, 此时,α2是第二象限角;当k =2n +1(n ∈Z )时,α2∈⎝ ⎛⎭⎪⎫2n π+7π4,2n π+2π,此时,α2是第四象限角. 故无论α2落在第二还是第四象限,tan α2<0恒成立.又4k π+3π<2α<4k π+4π,(k ∈Z ).故cos 2α有可能为正也有可能为负.【答案】 ③2.若角α的终边与直线y =3x 重合,且sin α<0,又P (m ,n )是角α终边上一点,且|OP |=10,则m -n 等于________.【解析】 由题意得{ n =3m <0,m 2+n 2=10, ∴⎩⎪⎨⎪⎧m =-1,n =-3,∴m -n =2. 【答案】 23.点P 从(1,0)出发,沿单位圆x 2+y 2=1逆时针方向运动23π弧长到达点Q ,则点Q 的坐标为________.【解析】 设Q (cos α,sin α),由2π3=α·1可知α=2π3,所以Q ⎝ ⎛⎭⎪⎫cos 2π3,sin 2π3,即Q ⎝ ⎛⎭⎪⎫-12,32. 【答案】 ⎝ ⎛⎭⎪⎫-12,32 4.已知:cos α<0,tan α<0.(1)求角α的集合;(2)试判断角α2是第几象限角;(3)试判断sin α2,cos α2,tan α2的符号.【解】 (1)因为cos α<0,所以角α的终边位于第二或第三象限或x 轴负半轴上.因为tan α<0,所以角α的终边位于第二或第四象限,所以角α的终边只能位于第二象限.故角α的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪ π2+2k π<α<π+2k π,k ∈Z . (2)因为π2+2k π<α<π+2k π(k ∈Z ),所以π4+k π<α2<π2+k π(k ∈Z ).当k =2n (n ∈Z )时,π4+2n π<α2<π2+2n π(n ∈Z ).所以α2是第一象限角;当k =2n +1(n ∈Z ),5π4+2n π<α2<3π2+2n π(n ∈Z ),所以α2是第三象限角.(3)当α2为第一象限角时,sin α2>0,cos α2>0,tan α2>0.当α2为第三象限角时,sin α2<0,cos α2<0,tan α2>0.。

相关文档
最新文档