高中数学必修一第二章复习题(1)
高中数学必修一第二章一元二次函数方程和不等式典型例题(带答案)
高中数学必修一第二章一元二次函数方程和不等式典型例题单选题1、已知x >0,则下列说法正确的是( ) A .x +1x −2有最大值0B .x +1x −2有最小值为0 C .x +1x−2有最大值为-4D .x +1x−2有最小值为-4答案:B分析:由均值不等式可得x +1x ≥2√x ×1x =2,分析即得解 由题意,x >0,由均值不等式x +1x≥2√x ×1x=2,当且仅当x =1x,即x =1时等号成立故x +1x −2≥0,有最小值0 故选:B2、不等式x (2x +7)≥−3的解集为( ) A .(−∞,−3]∪[−12,+∞)B .[−3,−12] C .(−∞,−2]∪[−13,+∞)D .[−2,−13] 答案:A分析:解一元二次不等式即可.x (2x +7)≥−3可变形为2x 2+7x +3≥0, 令2x 2+7x +3=0,得x 1=−3,x 2=−12,所以x ≤−3或x ≥−12,即不等式的解集为(−∞,−3]∪[−12,+∞).故选:A.3、已知命题“∀x ∈R ,4x 2+(a −2)x +14>0”是假命题,则实数a 的取值范围为( ) A .(−∞,0]∪[4,+∞)B .[0,4] C .[4,+∞)D .(0,4)答案:A分析:先求出命题为真时实数a的取值范围,即可求出命题为假时实数a的取值范围.若“∀x∈R,4x2+(a−2)x+14>0”是真命题,即判别式Δ=(a−2)2−4×4×14<0,解得:0<a<4,所以命题“∀x∈R,4x2+(a−2)x+14>0”是假命题,则实数a的取值范围为:(−∞,0]∪[4,+∞).故选:A.4、设a>b>c>0,则2a2+1ab +1a(a−b)−10ac+25c2取得最小值时,a的值为()A.√2B.2C.4D.2√5答案:A解析:转化条件为原式=1ab +ab+1a(a−b)+a(a−b)+(a−5c)2,结合基本不等式即可得解.2a2+1ab+1a(a−b)−10ac+25c2=1ab+ab+1a(a−b)+a(a−b)−ab−a(a−b)+2a2−10ac+25c2 =1ab+ab+1a(a−b)+a(a−b)+a2−10ac+25c2=1ab+ab+1a(a−b)+a(a−b)+(a−5c)2≥2√1ab ⋅ab+2√1a(a−b)⋅a(a−b)+0=4,当且仅当{ab=1a(a−b)=1a=5c,即a=√2,b=√22,c=√25时,等号成立.故选:A.小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.5、若“﹣2<x <3”是“x 2+mx ﹣2m 2<0(m >0)”的充分不必要条件,则实数m 的取值范围是( ) A .m ≥1B .m ≥2C .m ≥3D .m ≥4 答案:C分析:x 2+mx ﹣2m 2<0(m >0),解得﹣2m <x <m .根据“﹣2<x <3”是“x 2+mx ﹣2m 2<0(m >0)”的充分不必要条件,可得﹣2m ≤﹣2,3≤m ,m >0.解出即可得出. 解:x 2+mx ﹣2m 2<0(m >0),解得﹣2m <x <m .∵“﹣2<x <3”是“x 2+mx ﹣2m 2<0(m >0)”的充分不必要条件,∴﹣2m ≤﹣2,3≤m ,(两个等号不同时取)m >0. 解得m ≥3.则实数m 的取值范围是[3,+∞). 故选:C.6、关于x 的不等式ax 2−(a 2+1)x +a <0的解集为{x|x 1<x <x 2},且x 2−x 1=1,则a 2+a −2=( ) A .3B .32C .2D .23答案:A分析:根据一元二次不等式与解集之间的关系可得x 1+x 2=a +1a 、x 1x 2=1,结合 (x 2−x 1)2=(x 1+x 2)2−4x 1x 2计算即可.由不等式ax 2−(a 2+1)x +a <0的解集为{x |x 1<x <x 2}, 得a >0,不等式对应的一元二次方程为ax 2−(a 2+1)x +a =0, 方程的解为x 1、x 2,由韦达定理,得x 1+x 2=a 2+1a=a +1a ,x 1x 2=1,因为x 2−x 1=1,所以(x 2−x 1)2=(x 1+x 2)2−4x 1x 2=1, 即(a +1a )2−4=1,整理,得a 2+a −2=3. 故选:A7、已知关于x 的不等式ax 2+bx +c <0的解集为{x|x <−1或x >4},则下列说法正确的是( )A.a>0B.不等式ax2+cx+b>0的解集为{x|2−√7<x<2+√7}C.a+b+c<0D.不等式ax+b>0的解集为{x|x>3}答案:B分析:根据解集形式确定选项A错误;化不等式为x2−4x−3<0,即可判断选项B正确;设f(x)=ax2+ bx+c,则f(1)>0,判断选项C错误;解不等式可判断选项D错误.解:因为关于x的不等式ax2+bx+c<0的解集为{x|x<−1或x>4},所以a<0,所以选项A错误;由题得{a<0−1+4=−ba−1×4=ca,∴b=−3a,c=−4a,所以ax2+cx+b>0为x2−4x−3<0,∴2−√7<x<2+√7.所以选项B正确;设f(x)=ax2+bx+c,则f(1)=a+b+c>0,所以选项C错误;不等式ax+b>0为ax−3a>0,∴x<3,所以选项D错误.故选:B8、不等式1+x1−x≥0的解集为()A.{x|x≥1或x≤−1}B.{x∣−1≤x≤1} C.{x|x≥1或x<−1}D.{x|−1≤x<1}答案:D分析:不等式等价于x+1x−1≤0,即(x+1)(x−1)≤0,且x−1≠0,由此求得不等式的解集.不等式等价于x+1x−1≤0,即(x+1)(x−1)≤0,且x−1≠0,解得−1≤x<1,故不等式的解集为{x|−1≤x<1},故选:D.多选题9、已知关于x的不等式ax2+bx+c>0解集为{x|−2<x<3},则()A.a>0B.不等式ax+c>0的解集为{x|x<6}C.a+b+c>0D.不等式cx2−bx+a<0的解集为{x|−13<x<12}答案:BCD解析:根据已知条件得−2和3是方程ax2+bx+c=0的两个实根,且a<0,根据韦达定理可得b=−a,c=−6a,根据b=−a,c=−6a且a<0,对四个选项逐个求解或判断可得解.因为关于x的不等式ax2+bx+c>0解集为{x|−2<x<3},所以−2和3是方程ax2+bx+c=0的两个实根,且a<0,故A错误;所以−2+3=−ba ,−2×3=ca,所以b=−a,c=−6a,所以不等式ax+c>0可化为ax−6a>0,因为a<0,所以x<6,故B正确;因为a+b+c=a−a−6a=−6a,又a<0,所以a+b+c>0,故C正确;不等式cx2−bx+a<0可化为−6ax2+ax+a<0,又a<0,所以−6x2+x+1>0,即6x2−x−1<0,即(3x+1)(2x−1)<0,解得−13<x<12,故D正确.故选:BCD.小提示:利用一元二次不等式的解集求出参数a,b,c的关系是解题关键.本题根据韦达定理可得所要求的关系,属于中档题.10、设0<b<a<1,则下列不等式不成立的是()A.ab<b2<1B.√a<√b<1C.1<1a <1bD.a2<ab<1答案:ABD分析:对于ABD举例判断即可,对于C,利用不等式的性质判断对于A,取a=12,b=13,则ab=16>b2=19,所以A错误,对于B,取a=14,b=19,则√a=12>√b=13,所以B错误,对于C,因为0<b<a<1,所以1ab >0,所以b⋅1ab<a⋅1ab,即1a<1b,因为0<a<1,所以0<a⋅1a <1×1a,即1<1a,综上1<1a<1b,所以C正确,对于D,取a=12,b=13,则ab=16<a2=14,所以D错误,故选:ABD11、下面所给关于x的不等式,其中一定为一元二次不等式的是()A.3x+4<0B.x2+mx-1>0C.ax2+4x-7>0D.x2<0答案:BD分析:利用一元二次不等式的定义和特征对选项逐一判断即可.选项A是一元一次不等式,故错误;选项B,D,不等式的最高次是二次,二次项系数不为0,故正确;当a=0时,选项C是一元一次不等式,故不一定是一元二次不等式,即错误.故选:BD.填空题12、若x>0,y>0,xy=10,则2x +5y的最小值为_____.答案:2分析:化简2x +5y=2x+102y=2x+xy2y=2x+x2,结合基本不等式,即可求解.由x>0,y>0,xy=10,则2x +5y=2x+102y=2x+xy2y=2x+x2≥2√2x×x2=2,当且仅当x=2时取“=”,即2x +5y的最小值为2.所以答案是:2.13、已知x,y为正数,且12+x +4y=1,则x+y的最小值为________.答案:7解析:由题设等式有x+y+2=5+y2+x +4(x+2)y,利用基本不等式可求x+y+2的最小值,从而可得x+y的最小值.x+y+2=[(x+2)+y]×(1x+2+4y)=5+y2+x+4(x+2)y,由基本不等式有y2+x +4(x+2)y≥4,当且仅当x=1,y=6时等号成立,故x+y+2的最小值为9即x+y的最小值为7.所以答案是:7.小提示:应用基本不等式求最值时,需遵循“一正二定三相等”,如果原代数式中没有积为定值或和为定值,则需要对给定的代数变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.14、已知函数f(x)=√mx2+mx+1的定义域是R,则m的取值范围为______.答案:[0,4]分析:根据函数的定义域为R可得mx2+mx+1≥0对x∈R恒成立,对参数m的取值范围分类讨论,分别求出对应m 的范围,进而得出结果.因为函数f(x)=√mx2+mx+1的定义域为R,所以mx2+mx+1≥0对x∈R恒成立,当m=0时,mx2+mx+1=1>0,符合题意;当m>0时,由Δ=m2-4m≤0,解得0<m≤4;当m<0时,显然mx2+mx+1不恒大于或等于0.综上所述,m的取值范围是[0,4].所以答案是:[0,4].解答题15、设a,b,c∈R,a+b+c=0,abc=1.(1)证明:ab+bc+ca<0;(2)用max{a,b,c}表示a,b,c中的最大值,证明:max{a,b,c}≥√43.答案:(1)证明见解析(2)证明见解析.分析:(1)方法一:由(a+b+c)2=a2+b2+c2+2ab+2ac+2bc=0结合不等式的性质,即可得出证明;(2)方法一:不妨设max{a,b,c}=a,因为a+b+c=0,abc=1,所以a>0,b<0,c<0,a=(−b)+(−c)≥2√bc=2√1a ,则a3≥4,a≥√43.故原不等式成立.(1)[方法一]【最优解】:通性通法∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc=0,∴ab+bc+ca=−12(a2+b2+c2).∵abc=1,∴a,b,c均不为0,则a2+b2+c2>0,∴ab+bc+ca=−12(a2+b2+c2)<0.[方法二]:消元法由a+b+c=0得b=−(a+c),则ab+bc+ca=b(a+c)+ca=−(a+c)2+ac=−(a2+ac+c2)=−(a +c 2)2−34c 2≤0,当且仅当a =b =c =0时取等号,又abc =1,所以ab +bc +ca <0. [方法三]:放缩法方式1:由题意知a ≠0, a +b +c =0, a =−(c +b ), a 2=(c +b )2=c 2+b 2+2cb ≥4bc ,又ab +bc +ca =a (b +c )+bc =−a 2+bc ≤−a 2+a 24=−3a 24<0,故结论得证.方式2:因为a +b +c =0,所以0=(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ca=12[(a 2+b 2)+(b 2+c 2)+(c 2+a 2)]+2ab +2bc +2ca ≥12(2ab +2bc +2ca )+2ab +2bc +2ca =3(ab +bc +ca ).即ab +bc +ca ≤0,当且仅当a =b =c =0时取等号, 又abc =1,所以ab +bc +ca <0. [方法四]:因为a +b +c =0,abc =1,所以a ,b ,c 必有两个负数和一个正数,不妨设a ≤b <0<c,则a =−(b +c ), ∴ab +bc +ca =bc +a (c +b )=bc −a 2<0. [方法五]:利用函数的性质方式1:6b =−(a +c ),令f (c )=ab +bc +ca =−c 2−ac −a 2, 二次函数对应的图像开口向下,又abc =1,所以a ≠0, 判别式Δ=a 2−4a 2=−3a 2<0,无根, 所以f (c )<0,即ab +bc +ca <0.方式2:设f (x )=(x −a )(x −b )(x −c )=x 3+(ab +bc +ca )x −1, 则f (x )有a ,b ,c 三个零点,若ab +bc +ca ≥0, 则f (x )为R 上的增函数,不可能有三个零点, 所以ab +bc +ca <0.(2)[方法一]【最优解】:通性通法不妨设max {a,b,c }=a ,因为a +b +c =0,abc =1,所以a >0, b <0, c <0, a =(−b )+(−c )≥2√bc =2√1a,则a 3≥4,a ≥√43.故原不等式成立. [方法二]:不妨设max {a,b,c }=a ,因为a +b +c =0,abc =1,所以a >0,且{b +c =−a,bc =1a , 则关于x 的方程x 2+ax +1a =0有两根,其判别式Δ=a 2−4a ≥0,即a ≥√43. 故原不等式成立. [方法三]:不妨设max {a,b,c }=a ,则a >0, b =−(a +c ), abc =1, −(a +c )ac =1, ac 2+a 2c +1=0,关于c 的方程有解,判别式Δ=(a 2)2−4a ≥0,则a 3≥4,a ≥√43.故原不等式成立. [方法四]:反证法假设max {a,b,c }<√43,不妨令a ≤b <0<√43,则ab =1c >√43,−a −b =c <√43,又√43>−a −b ≥2√ab >√√43=21−13=√43,矛盾,故假设不成立.即max {a,b,c }≥√43,命题得证.【整体点评】(1)方法一:利用三项平方和的展开公式结合非零平方为正数即可证出,证法常规,为本题的通性通法,也是最优解法;方法二:利用消元法结合一元二次函数的性质即可证出;方法三:利用放缩法证出;方法四:利用符号法则结合不等式性质即可证出;方法五:利用函数的性质证出. (2)方法一:利用基本不等式直接证出,是本题的通性通法,也是最优解;方法二:利用一元二次方程根与系数的关系以及方程有解的条件即可证出;方法三:利用消元法以及一元二次方程有解的条件即可证出;方法四:利用反证法以及基本不等式即可证出.。
高中数学必修一第二章 一元二次函数、方程和不等式 复习与测试(含答案)
高中数学必修一第二章一、单选题1.已知a≥0,b≥0,且a+b=2,则( )A.ab≤12B.ab≥12C.a2+b2≥2D.a2+b2≤32.已知正数x,y满足x+1y=1,则1x+4y的最小值为( )A.9B.10C.6D.83.在实数集上定义运算⊗:x⊗y=x(1﹣y),若不等式(x﹣a)⊗(x+a)<1对任意实数x都成立,则实数a的取值范围是( )A.(﹣1,1)B.(0,2)C.(―12,32)D.(―32,12)4.已知1≤a+b≤5,―1≤a―b≤3,则3a―2b的取值范围是( )A.[―6,14]B.[―2,14]C.[―2,10]D.[―6,10] 5.若关于x的不等式x2―4x―2―a>0在区间(1,4)内有解,则实数a的取值范围是( )A.a<―2B.a>―2C.a>―6D.a<―6 6.若x=5―2,y=2―3,则x,y满足( )A.x>y B.x≥y C.x<y D.x=y7.正数a,b满足9a +1b=2,若a+b≥x2+2x对任意正数a,b恒成立,则实数x的取值范围是( )A.[―4,2]B.[―2,4]C.(―∞,―4]∪[2,+∞)D.(―∞,―2]∪[4,+∞)8.设正数a,b满足b―a<2,若关于x的不等式(a2―4)x2+4bx―b2<0的解集中的整数解恰有4个,则a的取值范围是( )A.(2,3)B.(3,4)C.(2,4)D.(4,5)二、多选题9.下列函数最小值为2的是( )A.y=x2+1x2B.y=x2+3+1x2+3C.y=2x+12x D.y=x2+1x,x>010.已知a>0,b>0.若4a+b=1,则( )A.14a +1b的最小值为9B.1a+1b的最小值为9C.(4a+1)(b+1)的最大值为94D.(a+1)(b+1)的最大值为9411.已知a>0,b>0,则下列式子一定成立的有( )A.2aba+b ≤ab B.a2+b22≤a+b2C.1a +1b≤4a+bD.a2+b22≤a2+b2a+b12.已知正数a,b满足a(a+b)=1,下列结论中正确的是( )A.a2+b2的最小值为22―2B.2a+b的最小值为2C.1a +1b的最小值为332D.a―b的最大值为1三、填空题13.设一元二次不等式ax2+bx+1>0的解集为{x|―1<x<13},则ab的值是 .14.已知x,y为正实数,且x+4y=1x+1y=m,则m的最小值为 .15.已知实数a,b满足ab>0,则aa+b―aa+2b的最大值为 16.已知实数x,y,z满足:{x+y+z=3x2+y2+z2=36,则|x|+|y|+|z|的最大值为 .四、解答题17.已知集合A={x|―2<x<5},B={x|m+1≤x≤2m―1}.(1)当m=3时,求(∁R A)∩B;(2)若A∪B=A,求实数m的取值范围.18.求证下列问题:(1)已知a,b,c均为正数,求证:bca +acb+abc≥a+b+c.(2)已知xy>0,求证:1x>1y的充要条件是x<y.19.已知不等式组{―x<2,x2+7x―8<0的解集为A,集合B={x|a―5<x<3a―5}.(1)求A;(2)若A∪B=B,求a的取值范围.20.已知函数g(x)=k2x+k,ℎ(x)=x2―2(k2―k+1)x+4.(1)当k=1时,求函数y=ℎ(x)g(x),x∈(―∞,―1)的最大值;(2)令f(x)={g(x),x>0ℎ(x),x<0,求证:对任意给定的非零实数x1,存在惟一的实数x2(x1≠x2)使得f(x1)=f(x2)成立的充要条件是k=4.21.若函数f(x)=a x2―(2a+1)x+2.(1)讨论f(x)>0的解集;(2)若a=1时,总∃x∈[13,1],对∀m∈[1,4],使得f(1x)+3―2mx≤b2―2b―2恒成立,求实数b的取值范围.22.已知函数f(x)=2|x+1|―|x―a|(a∈R).(Ⅰ)当a=2时,求不等式f(x)⩾x+2的解集;(Ⅱ)设函数g(x)=f(x)+3|x―a|,当a=1时,函数g(x)的最小值为t,且2m +12n=t(m>0,n>0),求m+n的最小值.答案解析部分1.【答案】C 2.【答案】A 3.【答案】C 4.【答案】C 5.【答案】A 6.【答案】C 7.【答案】A 8.【答案】C 9.【答案】A,C 10.【答案】B,C 11.【答案】A,D 13.【答案】614.【答案】315.【答案】3―2216.【答案】1+22217.【答案】(1)解:∵集合A ={x|―2<x <5},B ={x|m +1≤x ≤2m ―1}.∴∁R A ={x|x ≤―2或x ≥5},m =3时,B ={x|4≤x ≤5},∴(∁R A )∩B ={5}(2)解:若A ∪B =A ,则B ⊆A ,当B =∅时,m +1>2m ―1,解得m <2,成立;当B ≠∅时,{m +1≤2m ―1m +1>―22m ―1<5,解得2≤m <3,综上实数m 的取值范围为(―∞,3)18.【答案】(1)证明:bc a +ac b +ab c =2bc a +2ac b +2ab c 2=bc a +ac b +bc a +ab c +ac b +ab c 2≥2bc a ⋅ac b+2bc a ⋅ab c+2ac b ⋅ab c=a +b +c ,当且仅当bc a =ac b ,bc a=ab c ,acb =abc ,即a =b =c 时等号成立.(2)证明:依题意xy >0,则{x >0y >0或{x <0y <0,所以:1x >1y ⇔1x ―1y =y ―x xy >0⇔y ―x >0⇔x <y ,所以:1x>1y 的充要条件是x <y .19.【答案】(1)解:由{―x <2x 2+7x ―8<0,得{x >―2―8<x <1,得―2<x <1,所以A ={x |―2<x <1}.(2)解:由A ∪B =B ,得A ⊆B ,所以{a ―5≤―23a ―5≥1,得2≤a ≤3,故a 的取值范围为[2,3].20.【答案】(1)解:当 k =1 时,函数 y =x 2―2x +4x +1, x ∈(―∞,―1) ,令 t =x +1<0 ,则 y =t +7t―4 ,此时 ―t >0 ,由 (―t )+(―7t )≥2(―t )×7―t =27 ,即 t +7t≤―27 ,当且仅当 t =―7 ,即 x =―7―1 时取等号,综上,当 x =―7―1 时, y 最大值是 ―27―4 .(2)解:充分性:当 k =4 时, f (x )={16x +4,x >0x 2―26x +4,x <0 , 当 x >0 时, y =16x +4 在 (0,+∞) 单调递增,且 y >4 ,当 x <0 时, y =x 2―26x +4 在 (―∞,0) 单调递减,且 y >4 ,若 x 1>0 ,则存在惟一的 x 2<0 ,使得 f (x 1)=f (x 2) ,同理 x 1<0 时也成立,必要性:当 x >0 时, y =k 2x +k ,当 k =0 时, f (x ) 在 (0,+∞) 上的值域为 {0} ,显然不符合题意,因此 k ≠0 ,当 x >0 时, f (x ) 在 f (x ) 的取值集合 A =(k ,+∞) ,x <0 , f (x )=x 2―2(k 2―k +1)x +4 的对称轴 x =k 2―k +1>0 , f (x ) 在 (―∞,0) 上递减, f (x )>f (0)=4 ,所以 f (x ) 的取值集合 B =(4,+∞) ,①若 x 1>0 , f (x ) 且在 (0,+∞) 上单调递增,要使 f (x 1)=f (x 2) ,则 x 2<0 ,且 A ⊆B ,有 k ≥4 .②若 x 1<0 , f (x ) 且在 (―∞,0) 上单调递减,要使 f (x 1)=f (x 2) ,则 x 2>0 ,且 B ⊆A ,有 k ≤4 .综上: k =4 .21.【答案】(1)已知f (x )=a x 2―(2a +1)x +2,①当a =0时,f (x )=―x +2>0时,即x <2;②当a ≠0时,f (x )=a (x ―1a )(x ―2),若a <0,f (x )>0,解得 1a <x <2,若0<a <12,f (x )>0,解得x <2或x >1a ,若a =12,f (x )>0,解得x ≠2,若a >12时,f (x )>0,解得x <1a 或x >2,综上所述:当a <0时,f (x )>0的解集为(1a ,2);当a =0时,f (x )>0的解集为(―∞,2);当0<a <12时,f (x )>0的解集为(―∞,2)∪(1a ,+∞);当a =12时,f (x )>0的解集为(―∞,2)∪(2,+∞);当a >12时,f (x )>0的解集为(―∞,1a )∪(2,+∞).(2)若a =1,则f (x )=x 2―3x +2,∴f (1x )+3―2m x =1x 2―2m x +2,令t =1x ,原题等价于∃t ∈[1,3],对∀m ∈[1,4]使得t 2―2mt +2≤b 2―2b ―2恒成立,令g (m )=―2tm +t 2+2,∴g (m )是关于m 的减函数,∴对∀m ∈[1,4],g (m )≤b 2―2b ―2恒成立,即b 2―2b ―2≥g (m )max =g (1)=t 2―2t +2,又∃t ∈[1,3],b 2―2b ―2≥t 2―2t +2,即b 2―2b ―2≥(t 2―2t +2)min =12―2×1+2=1,故b 2―2b ―3=(b ―3)(b +1)≥0,解得b ≤―1或b ≥3.22.【答案】解:(Ⅰ)当 a =2 时, f (x )⩾x +2 化为 2|x +1|―|x ―2|≥x +2 ,当 x⩽―1 时,不等式化为 ―x ―4⩾x +2 ,解得 x⩽―3 ;当 ―1<x <2 时,不等式化为 3x⩾x +2 ,解得 1⩽x <2 ;当 x⩾2 时,不等式化为 x +4⩾x +2 ,解得 x⩾2 ,综上不等式 f (x )⩾x +2 的解集是 {x |x⩽―3或x⩾1}(Ⅱ)当 a =1 时, g (x )=2|x +1|+2|x ―1|⩾2|x +1+1―x |=4 ,当且仅当 (x +1)(x ―1)⩽0 ,即 ―1⩽x⩽1 时,等号成立.所以,函数 g (x ) 的最小值 t =4 ,所以 2m +12n =4 , 12m +18n=1 .m +n =(m +n )(12m +18n )=n 2m +m 8n +58⩾2n 2m ⋅m 8n +58=98 ,当且仅当 {12m +18n =1,n 2m =m 8n 即 {m =34,n =38时等号成立,所以 m +n 的最小值为 98.。
人教版A版高中数学必修第一册 第二章综合测试01试题试卷含答案 答案在前
第二章综合测试答案解析一、 1.【答案】D【解析】当0c <时,A 选项不正确;当0a <时,B 选项不正确;两边同时加上一个数,不等号方向不改变,故C 选项错误.故选D . 2.【答案】D【解析】2=()=a b +-+-+(.+ ,a ∴,b 必须满足的条件是0a ≥,0b ≥,且a b ≠.故选D .3.【答案】A【解析】当=0k 时,不等式2680kx kx k -++≥化为80≥,恒成立,当0k <时,不等式2680kx kx k -++≥不能恒成立,当0k >时,要使不等式2680kx kx k -++≥对任意x ∈R 恒成立,需22=36480k k k ∆-+()≤,解得01k ≤≤,故01k <≤.综上,k 的取值范围是01k ≤≤.故选A . 4.【答案】A【解析】由311x +<,得3101x -+<,201x x -++,解得1x -<或2x >.因为“x k >”是“311x +”的充分不必要条件,所以2k ≥.5.【答案】B【解析】不等式2x ax b +<可化为20x ax b --<,其解集是{}|13x x <<,那么由根与系数的关系得13=13=a b +⎧⎨-⎩⨯,,解得=4=3a b ⎧⎨-⎩,,所以4=3=81a b -().故选B . 6.【答案】D【解析】选项A ,c 为实数,∴取=0c ,此时22=ac bc ,故选项A 不成立;选项B ,11=b a a b ab--,0a b <<,0b a ∴->,0ab >,0b a ab -∴,即11a b>,故选项B 不成立;选项C ,0a b <<,∴取=2a -,=1b -,则11==22b a --,2==21a b --,∴此时b aa b ,故选项C 不成立;选项D ,0a b <<,2=0a ab a a b ∴--()>,2=0ab b b a b --()>,22a ab b ∴>>,故选项D 正确.7.【答案】D【解析】210x a x a -++ ()<,10x x a ∴--()()<,当1a >时,1x a <<,此时解集中的整数为2,3,4,故45a <≤.当1a <时,1a x <<,此时解集中的整数为2-,1-,0,故32a --≤<.故a 的取值范围是32a --≤<或45a <≤.故选D . 8.【答案】B【解析】不等式210x ax ++≥对一切02x <<恒成立,1a x x∴--≥在02x <<时恒成立.11=2x x x x ---+-- ((当且仅当=1x 时取等号),2a ∴-≥,∴实数a 的最小值是2-.故选B . 9.【答案】A【解析】由题知{}=20N -,,则{}=0M N .故选A . 10.【答案】C【解析】2x >,20x ∴->.11==222=422y x x x x ∴+-+++--()≥,当且仅当12=2x x --,即=3x 时等号成立.=3a ∴. 11.【答案】B【解析】由已知及三角形三边关系得3a b c a a b c a c b +⎧⎪+⎨⎪+⎩<≤,>,>,即1311b ca abc a a c b a a⎧+⎪⎪⎪+⎨⎪⎪+⎪⎩<,>>1311b c a ac b a a ⎧+⎪⎪∴⎨⎪--⎪⎩<≤,<,两式相加得024c a ⨯<<.c a ∴的取值范围为02ca<<.12.【答案】D【解析】 二次三项式220ax x b ++≥对一切实数x 恒成立,0a ∴>,且=440ab ∆-≤,1ab ∴≥.又0x ∃∈R ,使2002=0ax x b ++成立,则=0∆,=1ab ∴,又a b >,0a b ∴->.22222==a b a b ab a b a b a b a b +-+∴-+---()(),当且仅当a b -时等号成立.22a b a b+∴-的最小值为D .二、 13.【答案】111a a-+ 【解析】由1a <,得11a -<<.10a ∴+>,10a ->.2111=11a a a +--.2011a - <≤,2111a∴-,111a a∴-+≥.14.【答案】a【解析】不等式22210x ax -+≥对一切实数x 都成立,则2=44210a ∆-⨯⨯≤,解得a ,∴实数a 的取值范围是a .15.【答案】3【解析】若①②成立,则cd ab ab a b --((),即bc ad --<,bc ad ∴>,即③成立;若①③成立,则bc ad ab ab>,即c d a b >,c d a b ∴--<,即②成立;若②③成立,则由②得c d a b >,即0bc adab->, ③成立,0bc ad ∴->,0ab ∴>,即①成立.故可组成3个正确命题.16.【答案】42x -<< 【解析】不等式2162ab x x b a ++<对任意0a >,0b >恒成立,等价于2162a bx x b a++min <().因为16a b b a +≥(当且仅当=4a b 时等号成立).所以228x x +<,解得42x -<<. 三、17.【答案】(1)当=0a 时,31=0x +只有一解,满足题意;当0a ≠时,=94=0a ∆-,9=4a . 所以满足题意的实数a 的值为0或94.(5分)(2)若A 中只有一个元素,则由(1)知实数a 的值为0或94. 若=A ∅,则=940a ∆-<,解得94a >.所以满足题意的实数a 的取值范围为=0a 或94a ≥.(10分) 18.【答案】(1)2560x x --+ <,2560x x ∴+->,160x x ∴-+()()>,解得6x -<或1x >,∴不等式2560x x --+<的解集是{|6x x -<或}1x >.(4分)(2)当0a <时,=2y a x a x --()()的图象开口向下,与x 轴的交点的横坐标为1=x a ,2=2x ,且2a <,20a x a x ∴--()()>的解集为{}|2x a x <<.(6分)当=0a 时,2=0a x a x --()(),20a x a x ∴--()()>无解.(8分)当0a >时,抛物线=2y a x a x --()()的图象开口向上,与x 轴的交点的横坐标为=x a ,=2x .当=2a 时,原不等式化为2220x -()>,解得2x ≠.当2a >时,解得2x <或x a >. 当2a <时,解得x a <或2x >.(10分)综上,当0a <时,原不等式的解集是{}|2x a x <<; 当=0a 时,原不等式的解集是∅;当02a <<时,原不等式的解集是{|x x a <或}2x >; 当=2a 时,原不等式的解集是{}|2x x ≠;当2a >时,原不等式的解集是{|2x x <或}x a >.(12分)19.【答案】23=12y x x -+, 配方得237=416y x -+(). 因为324x ≤≤,所以min 7=16y ,max =2y .所以7216y ≤.所以7=|216A y y ⎧⎫⎨⎬⎩⎭≤≤.(6分) 由21x m +≥,得21x m -≥, 所以{}2=|1B x x m -≥.(8分) 因为p 是q 的充分条件, 所以A B ⊆. 所以27116m -≤,(10分) 解得实数m 的取值范围是34m ≥或34m -≤.(12分) 20.【答案】(1)由题意知{}=|03A x x ≤≤,{}=|24B x x ≤≤, 则{}=|23A B x x ≤≤.(3分) (2)因为=A B A ,所以B A ⊆.①当=B ∅,即23a a +>,3a >时,B A ⊆成立,符合题意.(8分)②当=B ∅,即23a a +≤,3a ≤时, 由B A ⊆,有0233a a ⎧⎨+⎩≤,≤,解得=0a .综上,实数a 的取值范围为=0a 或3a >.(12分)21.【答案】(1)a 、b 为正实数,且11a b+.11a b ∴+(当且仅当=a b 时等号成立), 即12ab ≥.(3分)2221122=a b ab +⨯ ≥≥(当且仅当=a b 时等号成立),22a b ∴+的最小值为1.(6分)(2)11a b+,a b ∴+.234a b ab - ()≥(), 2344a b ab ab ∴+-()≥(),即2344ab ab -()≥(), 2210ab ab -+()≤, 210ab -()≤,a 、b 为正实数,=1ab ∴.(12分)22.【答案】(1)当=0a 时,原不等式可化为10-<,所以x ∈R .当0a <时,解得1a x a +>. 当0a >时,解得1a x a+<.综上,当=0a 时,原不等式的解集为R ; 当0a <时,原不等式的解集为1|a x x a +⎧⎫⎨⎬⎩⎭>; 当0a >时,原不等式的解集为1|a x x a +⎧⎫⎨⎬⎩⎭<.(6分) (2)由21ax a x x a -+--()≤,得21ax x x -+≤.因为0x >,所以211=1x x a x x x-++-≤, 因为2y x x a --≤在0+∞(,)上恒成立, 所以11a x x+-≤在0+∞(,)上恒成立. 令1=1t x x+-,只需min a t ≤, 因为0x >,所以1=11=1t x x +-≥,当且仅当=1x 时等式成立. 所以a 的取值范围是1a ≤.(12分)第二章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列结论正确的是( ) A .若ac bc >,则a b >B .若22a b >,则a b >C .若a b >,0c <,则a c b c ++<D ,则a b <2.若++,则a ,b 必须满足的条件是( ) A .0a b >> B .0a b <<C .a b >D .0a ≥,0b ≥,且a b ≠3.已知关于x 的不等式2680kx kx k -++≥对任意x ∈R 恒成立,则k 的取值范围是( ) A .01k ≤≤ B .01k <≤ C .0k <或1k >D .0k ≤或1k ≥4.已知“x k >”是“311x +<”的充分不必要条件,则k 的取值范围是( ) A .2k ≥B .1k ≥C .2k >D .1k -≤5.如果关于x 的不等式2x ax b +<的解集是{}|13x x <<,那么a b 等于( ) A .81-B .81C .64-D .646.若a ,b ,c 为实数,且0a b <<,则下列命题正确的是( ) A .22ac bc <B .11a b<C .b aab>D .22a ab b >> 7.关于x 的不等式210x a x a -++()<的解集中恰有3个整数,则a 的取值范围是( )A .45a <<B .32a --<<或45a <<C .45a <≤D .32a --≤<或45a <≤8.若不等式210x ax ++≥对一切02x <<恒成立,则实数a 的最小值是( ) A .0B .2-C .52-D .3-9.已知全集=U R ,则下列能正确表示集合{}=012M ,,和{}2=|+2=0N x x x 关系的Venn 图是( )A BCD10.若函数1=22y x x x +-(>)在=x a 处取最小值,则a 等于( )A .1+B .1或3C .3D .411.已知ABC △的三边长分别为a ,b ,c ,且满足3b c a +≤,则ca 的取值范围为( ) A .1c a>B .02c a<<C .13c a <<D .03c a<<12.已知a b >,二次三项式220ax x b ++≥对一切实数x 恒成立,又0x ∃∈R ,使202=0ax x b ++成立,则22a b a b+-的最小值为( )A .1BC .2D .二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已经1a <,则11a+与1a -的大小关系为________. 14.若不等式22210x ax -+≥对一切实数x 都成立,则实数a 的取值范围是________.15.已知三个不等式:①0ab >,②c da b--<,③bc ad >.以其中两个作为条件,余下一个作为结论,则可以组成________个正确命题. 16.若不等式2162a bx x b a++<的对任意0a >,0b >恒成立,则实数x 的取值范围是________. 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知集合{2=|31=0A x ax x ++,}x ∈R ,(1)若A 中只有一个元素,求实数a 的值;(2)若A 中至多有一个元素,求实数a 的取值范围.18.(本小题满分12分)解下列不等式. (1)2560x x --+<;(2)20a x a x --()()>.19.(本小题满分12分)已知集合23=|=12A y y x x ⎧-+⎨⎩,324x ⎫⎬⎭≤≤,{}2=|1B x x m +≥.p x A ∈:,q x B ∈:,并且p 是q 的充分条件,求实数m 的取值范围.20.(本小题满分12分)已知集合{}2=|30A x x x -≤,{=|23B x a x a +≤≤,}a ∈R .(1)当=1a 时,求A B ;(2)若=A B A ,求实数a 的取值范围.21.(本小题满分12分)设a 、b 为正实数,且11a b+. (1)求22a b +的最小值;(2)若234a b ab -()≥(),求ab 的值.22.(本小题满分12分)已知函数=1y ax a -+().(1)求关于x 的不等式0y <的解集;(2)若当0x >时,2y x x a --≤恒成立,求a 的取值范围.。
高中数学 必修1 第二章 基本初等函数(Ⅰ) 2.1.1(一)
本课结束
n
(2)( a)n= a (n∈N*,且 n>1); 的奇数);
n
a a≥0 (4) an=|a|= (n 为大于 1 的偶数). -a a<0
n
题型探究
类型一 根式的意义
例 1 求使等式 a-3a2-9=(3-a) a+3成立的实数 a 的取值范围.
n 为偶数时,a≥0, n
而 a 为任意实数 an均有意义,且 an=|a|.
跟踪训练2 求下列各式的值:
(1) -2 ;
7
7
解
4
7
-27=-2.
(2) 3a-34(a≤1); 解
3
4
3a-34=|3a-3|=3|a-1|=3-3a.
4
(3) a + 1-a4.
3
解
3
∴( x-1) + x2-4x+43
4
4
6
=x-1+ x-26
=x-1-(x-2) =1.
6
解析
答案
当堂训练
1.已知x5=6,则x等于
A. 6 C.- 6
5
√
B. 6 D.± 6
5
5
1
2
3
4
5
答案
2.m是实数,则下列式子中可能没有意义的是
A. m2
4
B. m D. -m
5
3
√
C. m
6
原式=-(x-1)-(x+3)=-2x-2;
当1≤x<3时,原式=(x-1)-(x+3)=-4.
-2x-2,-3<x<1, ∴原式= -4,1≤x<3.
解答
引申探究
例3中,若将“-3<x<3”变为“x≤-3”,则结果又是什么?
高中数学必修一第二章一元二次函数方程和不等式知识点总结全面整理(带答案)
高中数学必修一第二章一元二次函数方程和不等式知识点总结全面整理单选题1、已知x>0,y>0,x+2y=1,则1x +1y的最小值为()A.3+2√2B.12C.8+4√3D.6答案:A分析:根据基本不等中“1”的用法,即可求出结果. 因为x>0,y>0,x+2y=1,所以(1x +1y)(x+2y)=3+2yx+xy≥3+2√2,当且仅当2yx =xy,即x=√2−1,y=2−√22时,等号成立.故选:A.2、当0<x<2时,x(2−x)的最大值为()A.0B.1C.2D.4答案:B分析:利用基本不等式直接求解.∵0<x<2,∴2−x>0,又x+(2−x)=2∴x(2−x)≤[x+(2−x)]24=1,当且仅当x=2−x,即x=1时等号成立,所以x(2−x)的最大值为1故选:B3、已知x∈R,则“(x−2)(x−3)≤0成立”是“|x−2|+|x−3|=1成立”的()条件.A.充分不必要B.必要不充分C.充分必要D.既不充分也不必要答案:C分析:先证充分性,由(x−2)(x−3)≤0求出x的取值范围,再根据x的取值范围化简|x−2|+|x−3|即可,再证必要性,若|x−2|+|x−3|=1,即|x−2|+|x−3|=|(x−2)−(x−3)|,再根据绝对值的性质可知(x−2)(x−3)≤0.充分性:若(x−2)(x−3)≤0,则2≤x≤3,∴|x−2|+|x−3|=x−2+3−x=1,必要性:若|x−2|+|x−3|=1,又∵|(x−2)−(x−3)|=1,∴|x−2|+|x−3|=|(x−2)−(x−3)|,由绝对值的性质:若ab≤0,则|a|+|b|=|a−b|,∴(x−2)(x−3)≤0,所以“(x−2)(x−3)≤0成立”是“|x−2|+|x−3|=1成立”的充要条件,故选:C.4、若非零实数a,b满足a<b,则下列不等式成立的是()A.ab <1B.ba+ab>2C.1ab2<1a2bD.a2+a<b2+b答案:C分析:举出符合条件的特例即可判断选项A,B,D,对于C,作出不等式两边的差即可判断作答.取a=−2,b=−1,满足a<b,而ab=2>1,A不成立;取a=−2,b=1,满足a<b,而ba +ab=−12+(−2)=−52<2,B不成立;因1ab2−1a2b=a−ba2b2<0,即有1ab2<1a2b,C成立;取a=−2,b=−1,满足a<b,而a2+a=2,b2+b=0,即a2+a>b2+b,D不成立.故选:C5、对∀x∈R,不等式(a−2)x2+2(a−2)x−4<0恒成立,则a的取值范围是()A.−2<a≤2B.−2≤a≤2C.a<−2或a≥2D.a≤−2或a≥2答案:A分析:对a讨论,结合二次函数的图象与性质,解不等式即可得到a的取值范围.不等式(a−2)x2+2(a−2)x−4<0对一切x∈R恒成立,当a −2=0,即a =2时,−4<0恒成立,满足题意;当a −2≠0时,要使不等式恒成立,需{a −2<0Δ<0,即有{a <24(a −2)2+16(a −2)<0 , 解得−2<a <2.综上可得,a 的取值范围为(−2,2].故选:A.6、已知实数x ,y 满足x 2+y 2=2,那么xy 的最大值为( )A .14B .12C .1D .2答案:C分析:根据重要不等式x 2+y 2≥2xy 即可求最值,注意等号成立条件.由x 2+y 2=2≥2xy ,可得xy ≤1,当且仅当x =y =1或x =y =−1时等号成立.故选:C.7、设a >b >c >0,则2a 2+1ab +1a(a−b)−10ac +25c 2取得最小值时,a 的值为( )A .√2B .2C .4D .2√5答案:A解析:转化条件为原式=1ab +ab +1a(a−b)+a(a −b)+(a −5c)2,结合基本不等式即可得解.2a 2+1ab +1a (a −b )−10ac +25c 2 =1ab +ab +1a(a −b)+a(a −b)−ab −a(a −b)+2a 2−10ac +25c 2 =1ab +ab +1a(a −b)+a(a −b)+a 2−10ac +25c 2 =1ab +ab +1a(a −b)+a(a −b)+(a −5c)2 ≥2√1ab ⋅ab +2√1a(a−b)⋅a(a −b)+0=4,当且仅当{ab =1a(a −b)=1a =5c ,即a =√2,b =√22,c =√25时,等号成立.小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.8、若x<0,则x+14x−2有()A.最小值−1B.最小值−3C.最大值−1D.最大值−3答案:D分析:根据基本不等式,首先取相反数,再尝试取等号,可得答案.因为x<0,所以x+14x −2=−(−x+1−4x)−2≤−2√−x⋅1−4x−2=−3,当且仅当−x=1−4x,即x=−12时等号成立,故x+14x−2有最大值−3.故选:D.多选题9、对于任意实数a,b,c,d,则下列命题正确的是()A.若ac2>bc2,则a>b B.若a>b,c>d,则a+c>b+dC.若a>b,c>d,则ac>bd D.若a>b,则1a >1b答案:AB分析:可由性质定理判断A、B对,可代入特例判断选项C、D错.解:若ac2>bc2,两边同乘以1c2则a>b,A对,由不等式同向可加性,若a>b,c>d,则a+c>b+d,B对,当令a=2,b=1,c=﹣1,d=﹣2,则ac=bd,C错,令a=﹣1,b=﹣2,则1a <1b,D错.10、关于x的一元二次不等式x2−2x−a≤0的解集中有且仅有5个整数,则实数a的值可以是()A.2B.4C.6D.8答案:BC解析:求出不等式的解,分析其中只有5个整数解,得a的不等式,解之,然后判断各选项可得.易知Δ=4+4a≥0,即a≥−1,解原不等式可得1−√1+a≤x≤1+√1+a,而解集中只有5个整数,则2≤√1+a<3,解得3≤a<8,只有BC满足.故选:BC.11、已知实数a,b,c满足c<b<a,且ac<0,则下列不等式一定成立的是()A.ab>ac B.c(b−a)>0C.ac(a−c)<0D.cb2<ab2答案:ABC分析:根据c<b<a,且ac<0,得到a>0,c<0,然后利用不等式的基本性质,逐项判断.因为实数a,b,c满足c<b<a,且ac<0,所以a>0,c<0,由b>c,a>0,得ab>ac,故A正确;由b<a,c<0,得c(b−a)>0,故B正确;由a>c,ac<0,得ac(a−c)<0,故C正确;由a>c,b2≥0,得cb2≤ab2,当b=0时,等号成立,故D错误;故选:ABC填空题12、若不等式x2−2>mx对满足|m|≤1的一切实数m都成立,则x的取值范围是___________答案:x<−2或x>2分析:令f(m)=mx−x2+2,依题意可得−1≤m≤1时f(m)<0恒成立,则{f(1)<0f(−1)<0,即可得到关于x 的一元二次不等式组,解得即可;解:因为x2−2>mx,所以mx−x2+2<0令f(m)=mx−x2+2,即f(m)<0在|m|≤1恒成立,即−1≤m≤1时f(m)<0恒成立,所以{f(1)<0f(−1)<0,即{x−x 2+2<0−x−x2+2<0,解x−x2+2<0得x>2或x<−1;解−x−x2+2<0得x>1或x<−2,所以原不等式组的解集为x∈(−∞,−2)∪(2,+∞)所以答案是:(−∞,−2)∪(2,+∞)13、已知−1<x+y<4,2<x−y<4,则3x+2y的取值范围是_____.答案:(−32,12)解析:利用换元法,结合不等式的性质进行求解即可.设x+y=m,x−y=n,因此得:x=m+n2,y=m−n2,−1<m<4,2<n<4,3x+2y=3⋅m+n2+2⋅m−n2=5m2+n2,因为−1<m<4,2<n<4,所以−52<5m2<10,1<n2<2,因此−32<5m2+n2<12,所以−32<3x+2y<12.所以答案是:(−32,12)14、关于x的不等式x2−4x+4a≥a2在[1,6]内有解,则a的取值范围为________.答案:[−2,6]分析:根据不等式有解可得当x∈[1,6]时,a2−4a≤(x2−4x)max,结合二次函数的最值可求得结果. ∵x2−4x+4a≥a2在[1,6]内有解,∴a2−4a≤(x2−4x)max,其中x∈[1,6];设y=x2−4x(1≤x≤6),则当x=6时,y max=36−24=12,∴a2−4a≤12,解得:−2≤a≤6,∴a的取值范围为[−2,6].所以答案是:[−2,6].解答题15、若0<a<b,则下列不等式哪些是成立的?若成立,给予证明;若不成立,请举出反例.(1)a+1b <b+1a;(2)a2+1a2≥a+1a;(3)a2b +b2a>a+b.答案:(1)正确,证明见解析;(2)正确,证明见解析;(3)正确,证明见解析. 解析:(1)作差分解因式,即可得出答案;(2)作差分解因式,即可得出答案;(3)用基本不等式,即可得出答案.(1)正确a+1b −b−1a=(a−b)(1+1ab)<0(2)正确a2+1a2−(a+1a)=(a+1a)2−(a+1a)−2=(a+1a−2)(a+1a+1)≥0(3)正确a2b +b>2a,b2a+a>2b∴a2b+b2a+a+b>2a+2b∴a2b+b2a>a+b小提示:本题考查证明不等式,一般采用作差法、作商法、基本不等式,属于容易题.。
(必考题)高中数学必修一第二单元《函数》测试卷(答案解析)(1)
一、选择题1.已知函数()1,0112,12x x x f x x +≤<⎧⎪=⎨-≥⎪⎩,若0a b >≥,()()f a f b =,则()bf a 的取值范围是( )A .3,24⎛⎤⎥⎝⎦B .1,22⎡⎤⎢⎥⎣⎦C .(]1,2D .3,24⎡⎫⎪⎢⎣⎭2.下列函数中既是奇函数,又在区间[]1,1-上单调递减的是( )A .1()()2xf x =B .()lg f x x =C .()f x x =-D .1()f x x=3.已知函数()y f x =是定义在R 上的单调函数,()0,2A ,()2,2B -是其函数图像上的两点,则不等式()12f x ->的解集为( ) A .()1,3 B .()(),31,-∞-⋃+∞ C .()1,1-D .()(),13,-∞+∞4.下列函数中,在其定义域内既是奇函数又是减函数的是( ) A .1y x=B.y =C .2x y =D .||y x x =-5.已知2()25x f x +=-,()()20g x ax a =+>,若对任意的[]11,2x ∈-,存在[]00,1x ∈,使()()10g x f x =,则a 的取值范围是( )A .1(0,]2B .1[,3]2C .[)3,+∞D .(]0,36.符号[]x 表示不超过x 的最大整数,如[]3π=,[]1.082-=-,定义函数{}[]x x x =-.给出下列结论:①函数{}x 的定义域是R ,值域为0,1;②方程{}12x =有无数个解;③函数{}x 是增函数;④函数{}x 为奇函数,其中正确结论的个数是( )A .0B .1C .2D .37.若函数2()34f x x x =--的定义域为[]0m ,,值域为2544⎡⎤--⎢⎥⎣⎦,,则m 的取值范围是( ) A .3,42⎡⎤⎢⎥⎣⎦B .3,32⎡⎤⎢⎥⎣⎦C .(]0,4 D .3,2⎡⎫+∞⎪⎢⎣⎭8.若函数()f x =的值域为0,,则实数m 的取值范围是( )A .()1,4B .()(),14,-∞⋃+∞C .(][)0,14,+∞D .[][)0,14,+∞ 9.已知函数()()220f x x mx m =-+>满足:①[]()0,2,9x f x ∀∈≤;②[]()000,2,9x f x ∃∈=,则m 的值为( ) A .1或3B .3或134C .3D .13410.若函数()y f x =为奇函数,且在(),0∞-上单调递增,若()20f =,则不等式()0f x >的解集为( )A .()()2,02,∞-⋃+B .()(),22,∞∞--⋃+C .()(),20,2∞--⋃D .()()2,00,2-⋃11.已知偶函数()f x 在 [0,)+∞上是增函数,且(2)0f =,则不等式 (1)0f x +<的解集是( ) A .[0,2)B .[]3,1-C .(1,3)-D .(2,2)-12.定义{},,max a b c 为,,a b c 中的最大值,设()28,,63⎧⎫=-⎨⎬⎩⎭h x max x x x ,则()h x 的最小值为( ) A .1811B .3C .4811D .4二、填空题13.已知函数211,0,22()13,,12x x f x x x ⎧⎡⎫+∈⎪⎪⎢⎪⎣⎭=⎨⎡⎤⎪∈⎢⎥⎪⎣⎦⎩,若存在12x x <,使得()()12f x f x =,则()12x f x ⋅的取值范围为_____________.14.函数1,1()32,12x a x f x a x x ⎧+>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数,则实数a 取值范围为________.15.()f x 为定义在R 上的偶函数,2()()2=-g x f x x 在区间[0,)+∞上是增函数,则不等式()1246()f x f x x +-+>--的解集为___________. 16.自然下垂的铁链;空旷的田野上,两根电线杆之间的电线等这些现象中都有相似的曲线形态.事实上,这些曲线在数学上常常被称为悬链线.悬链线的相关理论在工程、航海、光学等方面有广泛的应用.在恰当的坐标系中,这类函数的表达式可以为()xxf ae ex b -=+(其中a ,b 是非零常数,无理数 2.71828e =…)(1)如果()f x 为单调函数.写出满足条件的一-组值:a =______,b =______. (2)如果()f x 的最小值为2,则+a b 的最小值为______.17.定义在R 上的奇函数()f x 在(0,)+∞上是增函数,又(3)0f -=,则不等式()0xf x <的解集为______. 18.函数21y ax ax =++R ,则a 的取值范围是_________.19.已知函数()2()10f x x ax a =++>,若“()f x 的值域为[)0,+∞”为真命题,则()3f =________.20.若4183y x x =--y 的取值范围是________三、解答题21.已知函数()21axf x x =-(0a ≠). (1)判断函数()f x 的奇偶性并给予证明;(2)若函数()f x 满足()1242f f ⎛⎫-= ⎪⎝⎭,判断函数()f x 在区间()1,+∞的单调性,并用单调性的定义证明.22.已知函数()f x x x a =-,a ∈R ,()21g x x =-.(1)当1a =-时,解不等式()()f x g x ≥;(2)当4a >时,记函数()f x 在区间[]0,4上的最大值为()F a ,求()F a 的表达式. 23.已知a R ∈,函数2()25f x x ax =-+.(1)若不等式()0f x >对任意的x ∈R 恒成立,求实数a 的取值范围; (2)若1a >,且函数()f x 的定义域和值域都是[1,]a ,求实数a 的值; (3)函数()f x 在区间[1,1]a +的最大值为()g a ,求()g a 的表达式. 24.已知定义在()0,∞+上的函数()f x 满足:①对任意的(),0,x y ∈+∞,都有()()()f xy f x f y =+;②当且仅当1x >时,()0f x <成立.(1)求()1f ;(2)设()12,0,x x ∈+∞,若()()12f x f x <,试比较1x ,2x 的大小关系,并说明理由;(3)若对任意的[]1,1x ∈-,不等式()()22333310xxxx f f m --⎡⎤+≤+-⎣⎦恒成立,求实数m 的取值范围.25.已知一次函数()y f x =满足()12f x x a -=+, . 在所给的三个条件中,任选一个补充到题目中,并解答. ①()5f a =,②142a f ⎛⎫=⎪⎝⎭,③()()41226f f -=. (1)求函数()y f x =的解析式;(2)若()()()g x x f x f x x λ=⋅++在[]0,2上的最大值为2,求实数λ的值. 26.已知函数6()f x x=,2()1g x x =+. (1)求函数()()f g x 的解析式; (2)关于x 的不等式()()af g x x>解集中正整数解恰有3个,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由()f x 在每一段上单调递增可知01b a ≤<≤,由()f x 每一段上的值域可知()3,22f b ⎡⎫∈⎪⎢⎣⎭,进一步确定112b ≤<,由()()()1bf a bf b b b ==+,根据二次函数的值域得到结果. 【详解】()f x 在[)0,1和[)1,+∞上单调递增,∴由()()f a f b =得:01b a ≤<≤,当[)0,1x ∈时,()[)1,2f x ∈;当[)1,x ∈+∞时,()3,2f x ⎡⎫∈+∞⎪⎢⎣⎭, 若()()f a f b =,则()3,22f x ⎡⎫∈⎪⎢⎣⎭,即()31,22f b b ⎡⎫=+∈⎪⎢⎣⎭,解得:112b ≤<, ()()()2211124bf a bf b b b b b b ⎛⎫==+=+=+- ⎪⎝⎭,∴当112b ≤<时,()3,24bf a ⎡⎫∈⎪⎢⎣⎭. 故选:D. 【点睛】易错点点睛:本题解题关键是能够将()bf a 转化为关于b 的函数,易错点是没有对b 的范围进行细化,造成函数值域求解错误.2.C解析:C 【分析】根据函数的单调性和奇偶性,排除选项得到答案. 【详解】A. 1()()2xf x =,非奇非偶函数,排除;B. ()lg ||lg ||()f x x x f x -=-==,函数为偶函数,排除;C. ()()f x x f x -==-,函数为奇函数,且单调递减,正确;D. 1()()f x f x x-=-=-,函数为奇函数,在[1,0)-和(0,1] 单调递减,排除. 故选:C 【点睛】熟悉函数的单调性和奇偶性是解题关键.3.D解析:D 【分析】根据题意可得出(0)2,(2)2f f ==-,从而得出()f x 在R 上为减函数,从而根据不等式()12f x ->得,(1)(2)f x f -<或(1)(0)f x f ->,从而得出12x ->或10x -<,解出x 的范围 【详解】解:由题意得(0)2,(2)2f f ==-, 因为函数()y f x =是定义在R 上的单调函数, 所以()f x 在R 上为减函数,由()12f x ->,得(1)2f x ->或(1)2f x -<-, 所以(1)(0)f x f ->或(1)(2)f x f -<, 所以10x -<或12x ->, 解得1x <或3x >,所以不等式()12f x ->的解集为()(),13,-∞+∞,故选:D【点睛】关键点点睛:此题考查函数单调性的应用,考查绝对值不等式的解法,解题的关键是把()12f x ->转化为(1)(0)f x f ->或(1)(2)f x f -<,再利用()f x 在R 上为减函数,得10x -<或12x ->,考查数学转化思想,属于中档题4.D解析:D 【分析】利用奇函数的定义和常见基本初等函数的性质,对选项逐一判断即可. 【详解】 选项A 中,函数1y x =,由幂函数性质知1y x=是奇函数,且其在()(),0,0,-∞+∞两个区间上递减,不能说在定义域内是减函数,故错误;选项B 中,函数y =[)0,+∞,不对称,故不具有奇偶性,,且在定义域内是增函数,故错误;选项C 中,指数函数2x y =,22x x -≠,且22x x -≠-,故不是奇函数,故错误;选项D 中,函数22,0,0x x y x x x x ⎧-≥=-=⎨<⎩,记()y f x =,当0x >时,0x -<,故22(),()f x x f x x =--=,故()()f x f x -=-, 当0x =时,(0)0f =,故()()f x f x -=-,当0x <时,0x ->,故22(),()f x x f x x =-=-,故()()f x f x -=-,综上,()y f x =是奇函数,又0x ≥时,2()f x x =-是开口向下的抛物线的一部分,是减函数,由奇函数性质知()y f x =在定义域R 上是减函数,故正确. 故选:D. 【点睛】本题解题关键是熟练掌握常见的基本初等函数的性质,易错点是分段函数奇偶性的判断,分段函数必须判断定义域内的每一段均满足()()f x f x -=-(或()()f x f x -=)才能判定其是奇函数(或偶函数).5.A解析:A 【分析】根据指数函数的性质求出()f x 在[0,1]上的值域A ,利用一次函数的单调性求出()g x 在[1,2]-上的值域B ,由题得B A ⊆,再根据集合的包含关系即可求解.【详解】2()25x f x +=-,[]00,1x ∈,()()min 01f x f ∴==-,()()max 13f x f ==,∴()f x 在[0,1]上的值域为[]1,3A =-,又()2(0)g x ax a =+>在[1,2]-上单调递增,∴()g x 在[1,2]-上的值域为[]2,22B a a =-++,由题意可得B A ⊆,021223a a a >⎧⎪∴-+≥-⎨⎪+≤⎩,解得102a <≤.故选:A 【点睛】本题考查函数的单调性求值域、集合的包含关系求参数的取值范围.探讨方程()()0f x g m -=解的存在性,通常可将方程转化为()()f x g m =,通过确认函数()f x 或()g m 的值域,从而确定参数或变量的范围6.B解析:B 【分析】根据函数性质判断[]x 是一个常见的新定义的形式,按照新定义,符号[]x 表示不超过x 的最大整数,由此可以得到函数的性质,又定义函数{}[]x x x =-,当0x ≥时,表示x 的小数部分,由于①③是错误的,举例可判断②,根据单调性定义可判断④. 【详解】①函数{}x 的定义域是R ,但[]01x x ≤-<,其值域为)01⎡⎣,,故错误; ②由{}[]12x x x =-=,可得[]12x x =+,则 1.52.5x =,……都是方程的解,故正确; ③由②可得{}11.52=,{}12.52=……当 1.52.5x =,……时,函数{}x 的值都为12,故不是增函数,故错误; ④函数{}x 的定义域是R ,而{}[]{}x x x x -=---≠-,故函数不是奇函数,故错误;综上,故正确的是②. 故选:B. 【点睛】本题以新定义函数{}[]x x x =-的意义为载体,考查了分段函数和函数的值域、单调性等性质得综合类问题,在解答的过程中体现了分类讨论和数形结合的思想,还可以利用函数的图象进行解题.7.B解析:B 【分析】求出(0)4f =-,再计算出最小值为32524f ⎛⎫=- ⎪⎝⎭,然后求出()4f m =-的值后可得m 的范围. 【详解】2325()24f x x ⎛⎫=-- ⎪⎝⎭,()f x 在3,2⎛⎫-∞ ⎪⎝⎭上递减,在3,2⎛⎫+∞ ⎪⎝⎭上递增, (0)4f =-,又32524f ⎛⎫=- ⎪⎝⎭,所以32m ≥,由2()344f m m m =--=-解得0m =或3m =, 因此332m ≤≤. 故选:B . 【点睛】方程点睛:本题考查二次函数的性质,掌握其对称轴、单调性是解题关键.由此可得二次函数2()f x ax bx c =++在区间[,]m n 上的最值求法: 设0a >,函数的对称轴0x x =(02bx a=-), 当0x m <时,min ()()f x f m =,0m x n ≤≤时,min 0()()f x f x =,0x n >时,min ()()f x f n =,当02m n x +≤时,max ()()f x f n =,当02m nx +>时,max ()()f x f m =. 0a <类似讨论.8.D解析:D 【分析】令t =()0,t ∈+∞()0,+∞,记函数()22(2)1g x mx m x =+-+的值域为A ,则()0,A +∞⊆,进而分0m =和0m ≠两种情况,分别讨论,可求出m 的取值范围. 【详解】令t =1y t=的值域为0,,根据反比例函数的性质,可知()0,t ∈+∞()0,+∞, 记函数()22(2)1g x mx m x =+-+的值域为A ,则()0,A +∞⊆,若0m =,则()41g x x =-+,其值域为R ,满足()0,A +∞⊆;若0m ≠,则00m >⎧⎨∆≥⎩,即()24240m m m >⎧⎪⎨--≥⎪⎩,解得4m ≥或01m <≤. 综上所述,实数m 的取值范围是[][)0,14,+∞.故选:D.9.D解析:D 【分析】依题意可得()f x 在[]0,2上的最大值为9,求出函数的对称轴,通过讨论m 的范围,求出函数的单调区间,求出函数的最大值,得到关于m 的方程,解出即可. 【详解】解:因为函数()()220f x x mx m =-+>满足:①[]()0,2,9x f x ∀∈≤;②[]()000,2,9x f x ∃∈=,即函数()()220f x x mx m =-+>在[]0,2上的最大值为9,因为222()2()f x x mx x m m =-+=--+,对称轴是x m =,开口向下, 当02m <<时,()f x 在[0,)m 递增,在(m ,2]递减, 故2()()9max f x f m m ===,解得:3m =,不合题意,2m 时,()f x 在[0,2]递增,故()()2449max f x f m ==-=,解得:134m =,符合题意, 故选:D . 【点睛】本题考查了二次函数的性质,考查函数的单调性、最值问题,考查导数的应用,属于中档题.10.A解析:A 【分析】根据题意,由奇函数的性质可得f (﹣2)=﹣f (2)=0,结合函数的单调性分析可得在区间(﹣∞,﹣2)上,f (x )<0,在(﹣2,0)上,f (x )>0,再结合函数的奇偶性可得在区间(0,2)上,f (x )<0,在(2,+∞)上,f (x )>0,综合即可得答案. 【详解】根据题意,函数y=f (x )为奇函数,且f (2)=0, 则f (﹣2)=﹣f (2)=0,又由f (x )在(﹣∞,0)上单调递增,则在区间(﹣∞,﹣2)上,f (x )<0,在(﹣2,0)上,f (x )>0, 又由函数y=f (x )为奇函数,则在区间(0,2)上,f (x )<0,在(2,+∞)上,f (x )>0,综合可得:不等式f (x )>0的解集(﹣2,0)∪(2,+∞); 故选A . 【点睛】本题考查函数单调性奇偶性的应用,关键是掌握函数的奇偶性与单调性的定义,属于基础题.11.B解析:B 【详解】由()f x 在[0,)+∞上是增函数,且(2)0f = 当0x >时,()0f x <的解集[0,2]; 当时()f x 为减函数,(2)0f -=,()0f x <的解集[2,0]-.综上()0f x <的解集[2,2]-,所以(1)0f x +<满足212,31x x -≤+≤∴-≤≤. 故选:B .12.C解析:C 【分析】首先根据题意画出()h x 的图象,再根据图象即可得到()h x 的最小值. 【详解】 分别画出2yx ,83y x =,6y x =-的图象, 则函数()h x 的图象为图中实线部分.由图知:函数()h x 的最低点为A ,836y x y x ⎧=⎪⎨⎪=-⎩,解得1848,1111⎛⎫⎪⎝⎭A .所以()h x 的最小值为4811. 故选:C. 【点睛】本题主要考查根据函数的图象求函数的最值,考查了数形结合的思想,属于中档题.二、填空题13.【分析】根据条件作出函数图象求解出的范围利用和换元法将变形为二次函数的形式从而求解出其取值范围【详解】由解析式得大致图象如下图所示:由图可知:当时且则令解得:又令则即故答案为:【点睛】思路点睛:根据解析:31,162⎡⎫⎪⎢⎣⎭【分析】根据条件作出函数图象求解出1x 的范围,利用()()12f x f x =和换元法将()12x f x ⋅变形为二次函数的形式,从而求解出其取值范围. 【详解】由解析式得()f x 大致图象如下图所示:由图可知:当12x x <时且()()12f x f x =,则令211322x ⎛⎫+=⋅ ⎪⎝⎭,解得:14x =, 111,42x ⎡⎫∴∈⎪⎢⎣⎭,又()()12f x f x =,221221333,124x x x ⎛⎫⎡⎫∴+=∈⎪ ⎪⎢⎣⎭⎝⎭,()2222121332x f x x x ⎛⎫∴⋅=⋅- ⎪⎝⎭,令2233,14x t ⎡⎫=∈⎪⎢⎣⎭,则()()2211113,124164x f x g t t t t t ⎛⎫⎛⎫⎛⎫⎡⎫⋅==-=--∈ ⎪ ⎪⎪ ⎪⎢⎝⎭⎝⎭⎣⎭⎝⎭, ()31,162g t ⎡⎫∴∈⎪⎢⎣⎭,即()2131,162x f x ⎡⋅⎫∈⎪⎢⎣⎭.故答案为:31,162⎡⎫⎪⎢⎣⎭ 【点睛】思路点睛:根据分段函数的函数值相等关系可将所求式子统一为一个变量表示的函数的形式,进而根据函数值域的求解方法求得结果;易错点是忽略变量的取值范围,造成值域求解错误.14.【分析】根据指数函数和一次函数的性质得出关于的不等式组即可求解【详解】由题意函数是上的单调递增函数可得解得即实数取值范围故答案为:【点睛】利用函数的单调性求解参数的取值范围:根据函数的单调性将题设条解析:8[,6)3【分析】根据指数函数和一次函数的性质,得出关于a 的不等式组,即可求解. 【详解】由题意,函数1,1()32,12x a x f x a x x ⎧+>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数, 可得13021322a aa a ⎧⎪>⎪⎪->⎨⎪⎪+≥-+⎪⎩,解得863a ≤<,即实数a 取值范围8[,6)3.故答案为:8[,6)3. 【点睛】利用函数的单调性求解参数的取值范围:根据函数的单调性,将题设条件转化为函数的不等式(组),即可求出参数的值或范围; 若分段函数是单调函数,则不仅要保证在各区间上单调性一致,还要确保在整个定义域内是单调的.15.;【分析】根据题意判断出为偶函数且在上先减再增把转化为进行求解即可【详解】由为偶函数可知也为偶函数且在上先减再增由可知即可知解得故答案为:【点睛】关键点睛利用函数的性质得到的单调性通过化简把问题转化解析:3,2⎛⎫-∞- ⎪⎝⎭; 【分析】根据题意,判断出()g x 为偶函数,且在R 上先减再增,把(1)(2)46f x f x x +-+>--转化为(1)(2)g x g x +>+,进行求解即可【详解】由()f x 为偶函数,可知()g x 也为偶函数,且在R 上先减再增, 由(1)(2)46f x f x x +-+>--,可知22(1)2(1)(2)2(2)f x x f x x +-+>+-+,即(1)(2)g x g x +>+, 可知12x x +>+,解得32x <-. 故答案为:3,2⎛⎫-∞- ⎪⎝⎭【点睛】关键点睛,利用函数的性质,得到()g x 的单调性,通过化简把问题转化为(1)(2)g x g x +>+,进而利用()g x 的单调性求解,属于中档题16.2【分析】(1)取结合函数是单调函数利用复合函数的单调性求解的值即可;(2)根据的最小值为2分类讨论确定结合基本不等式进行求解即可【详解】(1)令则是增函数是减函数要使是单调函数只需综上当时时为增函解析:1- 2 【分析】(1)取1a =,结合函数是单调函数,利用复合函数的单调性求解b 的值即可; (2)根据()f x 的最小值为2,分类讨论确定0a >,0b >,结合基本不等式进行求解即可. 【详解】(1)令1a =,则()x x f x e be -=+,x y e =是增函数,x y e -=是减函数,要使()x x f x e be -=+是单调函数, 只需1b =-.综上,当1a =时,1b =-时,()x x f x e e -=-为增函数. (2)当0ab 时,()f x 为单调函数,此时函数没有最小值, 当0a <,0b <,()f x 有最大值,无最小值, 所以,若()f x 有最小值为2,则必有0a >,0b >,此时()22x x x f x ae be ae be -=+⨯=,1=,即1ab =,则22a b ab +=,当1a b ==时等号成立, 即+a b 的最小值为2. 故答案为:1,1,2- 【点睛】利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数是否在定义域内,二是多次用≥或≤时等号能否同时成立).17.【分析】由条件确定原点两侧函数的单调性和零点由函数的草图确定不等式的解集【详解】在R 上是奇函数且在上是增函数∴在上也是增函数由得由得作出的草图如图所示:则或由图象得所以或所以的解集为故答案为:【点睛 解析:(3,0)(0,3)-⋃【分析】由条件确定原点两侧函数的单调性和零点,由函数()f x 的草图确定不等式的解集. 【详解】()f x 在R 上是奇函数,且()f x 在(0,)+∞上是增函数,∴()f x 在(,0)-∞上也是增函数,由(3)0f -=,得(3)0f =,由(0)(0)f f =--,得(0)0f =, 作出()f x 的草图,如图所示:()0xf x <,则0()0x f x >⎧⎨<⎩ 或0()0x f x <⎧⎨>⎩,由图象得,所以03x <<或30x -<<,所以()0xf x <的解集为(3,0)(0,3)-⋃. 故答案为:(3,0)(0,3)-⋃. 【点睛】本题考查函数奇偶性、单调性的综合应用,考查数形结合思想,灵活作出函数的草图是解题关键.属于中档题.18.【分析】根据函数的解析式可知当定义域为时说明在上恒成立则对进行分类讨论确定满足条件的的范围【详解】由题意可得在上恒成立①当时则恒成立符合题意;②当时则解得综上可得∴实数的取值范围为故答案为:【点睛】 解析:[)0,4【分析】根据函数的解析式,可知当定义域为R 时,说明210ax ax ++>在R 上恒成立,则对a 进行分类讨论,确定满足条件的a 的范围. 【详解】由题意可得210ax ax ++>在R 上恒成立. ①当0a =时,则10>恒成立,0a ∴=符合题意;②当0a ≠时,则2040a a a >⎧⎨-<⎩,解得04a <<.综上可得04a ≤<,∴实数a 的取值范围为[)0,4. 故答案为:[)0,4. 【点睛】不等式20ax bx c ++>的解是全体实数(或恒成立)的条件是:当0a =时,00b c >=,;当0a ≠时,00a >⎧⎨∆<⎩; 不等式20ax bx c ++<的解是全体实数(或恒成立)的条件是当0a =时,00bc <=,;当0a ≠时,00a <⎧⎨∆<⎩.19.16【分析】二次函数的值域为得到求得值得解【详解】因为的值域为所以则又所以故答案为:16【点睛】二次函数的值域为得到是解题关键解析:16 【分析】二次函数()f x 的值域为[)0,+∞得到240a ∆=-=求得a 值得解 【详解】因为()2()10f x x ax a =++>的值域为[0,)+∞,所以240a ∆=-=,则2a =±.又0a >,所以2,a =.22()21,(3)323116f x x x f ∴=++∴=+⨯+=故答案为:16 【点睛】二次函数()f x 的值域为[)0,+∞得到0∆=是解题关键.20.【分析】首先求出的取值范围令将函数转化为三角函数再根据三角恒等变换及三角函数的性质计算可得;【详解】解:因为所以解得令则所以因为所以所以所以故答案为:【点睛】本题考查函数的值域的计算换元法的应用三角解析:【分析】首先求出x 的取值范围,令242sin x t =+,0,2t π⎡⎤∈⎢⎥⎣⎦将函数转化为三角函数,再根据三角恒等变换及三角函数的性质计算可得;【详解】解:因为y 所以401830x x -≥⎧⎨-≥⎩解得46x ≤≤,令242sin x t =+,0,2t π⎡⎤∈⎢⎥⎣⎦则y t t ==+3t π⎛⎫=+ ⎪⎝⎭所以3y t π⎛⎫=+ ⎪⎝⎭, 因为0,2t π⎡⎤∈⎢⎥⎣⎦,所以5,336t πππ⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦,所以1sin ,132t π⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦所以y ∈故答案为:【点睛】本题考查函数的值域的计算,换元法的应用,三角函数及三角恒等变换公式的应用,属于中档题.三、解答题21.(1)奇函数,证明见解析;(2)在区间()1,+∞单调递减,证明见解析. 【分析】(1)求出函数的定义域,直接得到()f x 和()f x -的关系即可得结果; (2)由题意解出a 的值,由单调性的定义即可得结果. 【详解】(1)函数()y f x =是奇函数,证明如下:()y f x =的定义域为{}1x x ≠±,又()()()()2211a x axf x f x x x --==-=--+-+ ∴()y f x =是定义在{}1x x ≠±的奇函数.(2)∵()1242f f ⎛⎫-= ⎪⎝⎭,即21242433112aa a -==⎛⎫- ⎪⎝⎭,解得:3a = ∴()231xf x x =-,1x ,()21,x ∈+∞且12x x <()()()()()()()()()()1212221222122112212222121231313111331111x x x x x x x x x x x x f x f x x x x x -=----+-=---=--- ∵1x ,()21,x ∈+∞且12x x <,∴2110x ->,2210x ->,1210x x ->,210x x ->∴()()12f x f x >,∴()y f x =在区间()1,+∞单调递减. 【点睛】利用定义证明函数单调性的步骤:(1)取值;(2)作差;(3)化简;(4)下结论.22.(1){}1x x ≥-;(2)()2,484416,8a x F a a a ⎧<<⎪=⎨⎪-≥⎩【分析】(1)由1a =-,得211x x x +≥-,进而分1x ≥-和1x <-两种情况,分别解不等式,进而可求出原不等式的解集;(2)由[]0,4x ∈,且4a >,可得()2f x x ax =-+,进而结合二次函数的性质,分类讨论,可求出()f x 在区间[]0,4上的最大值的表达式. 【详解】(1)当1a =-时,()1f x x x =+,则211x x x +≥-.①当1x ≥-时,不等式为221x x x +≥-,解得1x ≥-,所以1x ≥-; ②当1x <-时,不等式为221x x x --≥-,解得112x ≤≤-,所以解集为空集. 综上,不等式的解集为{}1x x ≥-.(2)因为[]0,4x ∈,且4a >,所以()()2f x x a x x ax =-=-+,①当48a <<时,242a <<,则()224a aF a f ⎛⎫== ⎪⎝⎭;②当8a ≥时,42a≥,则()()4416F a f a ==-. 综上()2,48{4416,8a a F a a a <<=-≥. 【点睛】方法点睛:“动轴定区间”型二次函数最值的方法: (2)根据对称轴与区间的位置关系,进行分类讨论;(2)根据二次函数的单调性,分别讨论参数在不同取值下的最值,必要时需要结合区间端点对应的函数值进行分析.23.(1)(a ∈;(2)2;(3)()g a 262,26,2a a a a ->⎧=⎨-⎩. 【分析】(1)利用二次函数的性质列出关系式求解即可.(2)根据二次函数定义域和值域之间的关系进行判断即可. (3)对对称轴分类讨论,得到最大值. 【详解】解:(1)a R ∈,函数2()25f x x ax =-+.开口向上,不等式()0f x >对任意的x ∈R 恒成立,可得:24200a -<,解得(a ∈.(2)函数2()25f x x ax =-+的对称轴为x a =,则函数在[1,]a 上为减函数, 函数的值域为[1,]a ,∴()1f a =,即22251a a -+=,即24a =, 解得2a =-(舍)或2a =.(3)函数2()25f x x ax =-+的对称轴为x a =,开口向上, ①当12aa +,即2a 时,()f x 在区间[1,1]a +上的最大值为2(1)6f a a +=-; ②2a >时,()f x 在区间[1,1]a +上的最大值为(1)f 62a =-.所以()g a 262,26,2a a a a ->⎧=⎨-⎩. 【点睛】方法点睛:求二次函数的最值或值域时,关键在于确定二次函数的对称轴与所求的区间的关系,也即是二次函数在所求区间上的单调性,利用单调性求得值域.24.(1)()10f =;(2)12x x >,理由见解析;(3)5m <≤ 【分析】(1)令1x y ==,代入可得(1)f ;(2)记12x kx =,代入已知等式,由12()()f x f x <可得()0f k <,从而有1k >,得结论12x x >;(3)根据函数的性质,不等式变形为()223333100xx x x m --+≥+->恒成立,然后设33x x t -=+后转化为一元二次不等式和一元不次不等式恒成立,再转化为求函数的最值,可求得参数范围. 【详解】(1)令1x y ==,则(1)(1)(1)f f f =+,所以()10f =.(2)12x x >,理由如下:记12x kx =,则()()()122()f x f kx f k f x ==+, 由()()12f x f x <可得:()0f k <,则1k >,故12x x >.(3)由(2)得()223333100xx x x m --+≥+->恒成立,令10332,3xxt -⎡⎤=+∈⎢⎥⎣⎦,则222332x x t -+=-,原不等式可化为:22100t mt -≥->, 由2210t mt -≥-恒成立可得:min 8m t t ⎛⎫≤+ ⎪⎝⎭,8t t +≥=,当且仅当8t t=,即t =m ≤ 由100mt ->恒成立可得:max 10m t ⎛⎫>⎪⎝⎭,102,3t ⎡⎤∈⎢⎥⎣⎦,则2t =时,max 105t ⎛⎫= ⎪⎝⎭,于是5m >.综上:实数m的取值范围是5m <≤ 【点睛】方法点睛:本题考查抽象函数的单调性,考查不等式恒成立问题,在解决不等式恒成立时,利用已求得的结论(函数的单调性),把问题进行转化,再用换元法转化为一元二次不等式和一元一次不等式恒成立,然后又由分离参数法转化为求函数的最值. 25.(1)()23f x x =+(2)2λ=- 【分析】利用待定系数法求出()22f x x a =++,(1)根据所选条件,都能求出1a =,可得()23f x x =+;(2)根据对称轴与区间中点值的大小分两种情况讨论求出最大值,结合已知最大值可求得λ的值.【详解】设()f x kx b =+(0)k ≠,则(1)2k x b x a -+=+,即2kx k b x a -+=+, 所以2k =,2b a ,所以()22f x x a =++,若选①,(1)由()5f a =得225a a ++=,得1a =,所以()23f x x =+. (2)()(23)(23)g x x x x x λ=++++=22(42)3x x λλ+++, 区间[]0,2的中点值为1,对称轴为()22x λ+=-,当()212λ+-≤,即4λ≥-时,max()(2)8843716f x f λλλ==+++=+,所以7162λ+=,解得2λ=-;当()212λ+->,即4λ<-时,max()(0)3f x f λ==,所以32λ=,解得23λ=(舍),综上所述:2λ=-. 若选②, (1)由142a f ⎛⎫=⎪⎝⎭得14222a a =⨯++,解得1a =,所以()23f x x =+; (2)()(23)(23)g x x x x x λ=++++=22(42)3x x λλ+++, 区间[]0,2的中点值为1,对称轴为()22x λ+=-,当()212λ+-≤,即4λ≥-时,max()(2)8843716f x f λλλ==+++=+,所以7162λ+=,解得2λ=-;当()212λ+->,即4λ<-时,max()(0)3f x f λ==,所以32λ=,解得23λ=(舍),综上所述:2λ=-. 若选③,(1)由()()41226f f -=得4(22)2(42)6a a ++-++=,解得1a =,所以()23f x x =+;(2)()(23)(23)g x x x x x λ=++++=22(42)3x x λλ+++, 区间[]0,2的中点值为1,对称轴为()22x λ+=-,当()212λ+-≤,即4λ≥-时,max()(2)8843716f x f λλλ==+++=+,所以7162λ+=,解得2λ=-;当()212λ+->,即4λ<-时,max()(0)3f x f λ==,所以32λ=,解得23λ=(舍),综上所述:2λ=-. 【点睛】关键点点睛:第二问,讨论对称轴与区间中点值的大小求最大值是解题关键. 26.(1)()2()61f x xg =+;(2)249175a ≤<. 【分析】(1)代入函数解析式运算即可得解; (2)转化条件为1116x x a ⎛⎫>+ ⎪⎝⎭恰有三个正整数解,结合对勾函数的性质即可得解. 【详解】(1)因为函数6()f x x =,2()1g x x =+, 所以()()()2661f g x g x x ==+; (2)由(1)得()()a f g x x >即261a x x >+, 当0x >时,有261x a x <+恰有三个正整数解, 当0a ≤时,不合题意;当0a >时,则1116x x a ⎛⎫>+ ⎪⎝⎭恰有三个正整数解, 设不等式1116x x a ⎛⎫>+ ⎪⎝⎭的解集为12(,)x x , 则由函数1y x x =+的性质可得(]12(0,1),3,4x x ∈∈, 所以11111346364a ⎛⎫⎛⎫+<≤+ ⎪ ⎪⎝⎭⎝⎭,解得249175a ≤<, 所以实数a 的取值范围为249175a ≤<. 【点睛】 关键点点睛:解决本题的关键是转化条件为1116x x a ⎛⎫>+ ⎪⎝⎭恰有三个正整数解及对勾函数性质的应用.。
高中数学必修一第二章一元二次函数方程和不等式知识点总结(超全)(带答案)
高中数学必修一第二章一元二次函数方程和不等式知识点总结(超全) 单选题1、已知−1≤x+y≤1,1≤x−y≤5,则3x−2y的取值范围是()A.[2,13]B.[3,13]C.[2,10]D.[5,10]答案:A分析:设3x−2y=m(x+y)−n(x−y)=(m−n)x+(m+n)y,求出m,n的值,根据x+y,x−y的范围,即可求出答案.设3x−2y=m(x+y)−n(x−y)=(m−n)x+(m+n)y,所以{m−n=3m+n=−2,解得:{m=12n=−52,3x−2y=12(x+y)+52(x−y),,因为−1≤x+y≤1,1≤x−y≤5,所以3x−2y=12(x+y)+52(x−y)∈[2,13],故选:A.2、前后两个不等式解集相同的有()①x+52x−1≥0与(2x−1)(x+5)≥0②x+52x−1>0与(2x−1)(x+5)>0③x2(2x−1)(x+5)≥0与(2x−1)(x+5)≥0④x2(2x−1)(x+5)>0与(2x−1)(x+5)>0A.①②B.②④C.①③D.③④答案:B分析:由不含参的一元二次不等式,分式不等式、高次不等式的解法解出各个不等式,对选项一一判断即可得出答案.对于①,由x+52x−1≥0可得{2x−1≠0(x+5)(2x−1)≥0,解得:x>12或x≤−5.(2x−1)(x+5)≥0的解集为:{x|x≥12或x≤−5},故①不正确;对于②,由x+52x−1>0可得{2x−1≠0(x+5)(2x−1)>0,解得:x>12或x<−5.(2x−1)(x+5)>0的解集为:{x|x>12或x<−5},故②正确;对于③,x2(2x−1)(x+5)≥0的解集为:{x|x=0或x≤−5或x≥12},(2x−1)(x+5)≥0的解集为:{x|x≥12或x≤−5},故③不正确;对于④,x2(2x−1)(x+5)>0的解集为:{x|x<−5或x>12},(2x−1)(x+5)>0的解集为:{x|x>12或x<−5},故④正确;故选:B.3、y=x+4x(x≥1)的最小值为()A.2B.3C.4D.5答案:C分析:利用均值不等式求解即可.因为y=x+4x (x≥1),所以x+4x≥2√x×4x=4,当且仅当x=4x即x=2时等号成立.所以当x=2时,函数y=x+4x有最小值4.故选:C.4、若不等式x2+ax+1≥0对于一切x∈(0,12]恒成立,则a的最小值是()A.0B.−2C.−52D.−3答案:C解析:采用分离参数将问题转化为“a≥−(x+1x )对一切x∈(0,12]恒成立”,再利用基本不等式求解出x+1x的最小值,由此求解出a的取值范围.因为不等式x2+ax+1≥0对于一切x∈(0,12]恒成立,所以a≥−(x+1x )对一切x∈(0,12]恒成立,所以a≥[−(x+1x )]max(x∈(0,12]),又因为f(x)=x+1x 在(0,12]上单调递减,所以f(x)min=f(12)=52,所以a ≥−52,所以a 的最小值为−52,故选:C.小提示:本题考查利用基本不等式求解最值,涉及不等式在给定区间上的恒成立问题,难度一般.不等式在给定区间上恒成立求解参数范围的两种方法:参变分离法、分类讨论法.5、已知x ∈R ,则“(x −2)(x −3)≤0成立”是“|x −2|+|x −3|=1成立”的( )条件. A .充分不必要B .必要不充分 C .充分必要D .既不充分也不必要 答案:C分析:先证充分性,由(x −2)(x −3)≤0 求出x 的取值范围,再根据x 的取值范围化简|x −2|+|x −3|即可,再证必要性,若|x −2|+|x −3|=1,即|x −2|+|x −3|=|(x −2)−(x −3)|,再根据绝对值的性质可知(x −2)(x −3)≤0.充分性:若(x −2)(x −3)≤0,则2≤x ≤3, ∴|x −2|+|x −3|=x −2+3−x =1,必要性:若|x −2|+|x −3|=1,又∵|(x −2)−(x −3)|=1, ∴|x −2|+|x −3|=|(x −2)−(x −3)|, 由绝对值的性质:若ab ≤0,则|a |+|b |=|a −b|, ∴(x −2)(x −3)≤0,所以“(x −2)(x −3)≤0成立”是“|x −2|+|x −3|=1成立”的充要条件, 故选:C .6、若非零实数a ,b 满足a <b ,则下列不等式成立的是( ) A .ab <1B .ba +ab >2C .1ab 2<1a 2b D .a 2+a <b 2+b 答案:C分析:举出符合条件的特例即可判断选项A ,B ,D ,对于C ,作出不等式两边的差即可判断作答.取a=−2,b=−1,满足a<b,而ab=2>1,A不成立;取a=−2,b=1,满足a<b,而ba +ab=−12+(−2)=−52<2,B不成立;因1ab2−1a2b=a−ba2b2<0,即有1ab2<1a2b,C成立;取a=−2,b=−1,满足a<b,而a2+a=2,b2+b=0,即a2+a>b2+b,D不成立.故选:C7、已知函数y=x−4+9x+1(x>−1),当x=a时,y取得最小值b,则a+b=()A.−3B.2C.3D.8答案:C分析:通过题意可得x+1>0,然后由基本不等式即可求得答案解:因为x>−1,所以9x+1>0,x+1>0,所以y=x−4+9x+1=x+1+9x+1−5≥2√(x+1)⋅9x+1−5=1,当且仅当x+1=9x+1即x=2时,取等号,所以y的最小值为1,所以a=2,b=1,所以a+b=3,故选:C8、小李从甲地到乙地的平均速度为a,从乙地到甲地的平均速度为b(a>b>0),他往返甲乙两地的平均速度为v,则()A.v=a+b2B.v=√abC.√ab<v<a+b2D.b<v<√ab答案:D分析:平均速度等于总路程除以总时间设从甲地到乙地的的路程为s,从甲地到乙地的时间为t1,从乙地到甲地的时间为t2,则t1=sa ,t2=sb,v=2st1+t2=2s sa+sb=21a+1b,∴v =21a +1b>21b +1b=b ,v =21a +1b=2ab a+b <2√ab=√ab ,故选:D. 多选题9、若a >0,b >0,a +b =2,则( )A .ab ≤1B .√a +√b ≤√2C .a 2+b 2≥2D .1a +1b ≥2 答案:ACD分析:根据基本不等式依次讨论各选项即可得答案.对于A ,由基本不等式得,2=a +b ≥2√ab 则ab ≤1,当且仅当a =b =1时等号成立,故A 正确; 对于B ,令a =32, b =12时,√a +√b =√6+√22>√2=√2+√22,故√a +√b ≤√2不成立,故B 错误;对于C ,由A 选项得ab ≤1,所以a 2+b 2=(a +b)2−2ab =4−2ab ≥2,当且仅当a =b =1时等号成立,故C 正确;对于D ,根据基本不等式的“1”的用法得(1a +1b )(a+b 2)=12(1a +1b )(a +b ) =12(1+1+b a +a b ) =1+12(b a +ab )≥1+12⋅2√1=2,当且仅当ba =ab ,即a =b =1时等号成立,故D 正确. 故选:ACD .10、若方程x 2+2x +λ=0在区间(−1,0)上有实数根,则实数λ的取值可以是( ) A .−3B .18C .14D .1答案:BC解析:分离参数得λ=−x 2−2x ,求出−x 2−2x 在(−1,0)内的值域即可判断. 由题意λ=−x 2−2x 在(−1,0)上有解.∵x ∈(−1,0),∴λ=−x 2−2x =−(x +1)2+1∈(0,1), 故选:BC .11、不等式ax 2+bx +c ≥0的解集是{x |−1≤x ≤2},则下列结论正确的是( ) A .a +b =0B .a +b +c >0 C .c >0D .b <0答案:ABC分析:根据二次函数图像与二次不等式关系求解即可. 解:因为不等式ax 2+bx +c ≥0的解集是{x |−1≤x ≤2},所以a <0,且{−ba=−1+2=1>0c a =−2<0,所以{b >0,b =−a,c >0, 所以a +b =0,c >0,b >0,故AC 正确,D 错误.因为二次函数y =ax 2+bx +c 的两个零点为−1,2,且图像开口向下, 所以当x =1时,y =a +b +c >0,故B 正确. 故选:ABC . 填空题 12、不等式x 2+2x−3x+1≥0的解集为__________.答案:[−3,−1)∪[1,+∞) 分析:将x 2+2x−3x+1≥0等价转化为{x 2+2x −3≥0x +1>0 或{x 2+2x −3≤0x +1<0,解不等式组可得答案.原不等式等价于{x 2+2x −3≥0x +1>0 或{x 2+2x −3≤0x +1<0,解得x ≥1 或−3≤x <−1 , 所以答案是:[−3,−1)∪[1,+∞)13、x −y ≤0,x +y −1≥0,则z =x +2y 的最小值是___________. 答案:32##1.5分析:分析可得x +2y =32(x +y )−12(x −y ),利用不等式的基本性质可求得z =x +2y 的最小值. 设x +2y =m (x +y )+n (x −y )=(m +n )x +(m −n )y ,则{m +n =1m −n =2 ,解得{m =32n =−12, 所以,z =x +2y =32(x +y )−12(x −y )≥32,因此,z=x+2y的最小值是32.所以答案是:32.14、某校生物兴趣小组为开展课题研究,分得一块面积为32m2的矩形空地,并计划在该空地上设置三块全等的矩形试验区(如图所示).要求试验区四周各空0.5m,各试验区之间也空0.5m.则每块试验区的面积的最大值为___________m2.答案:6分析:设矩形空地的长为x m,根据图形和矩形的面积公式表示出试验区的总面积,利用基本不等式即可求出结果.设矩形空地的长为x m,则宽为32xm,依题意可得,试验区的总面积S=(x−0.5×4)(32x −0.5×2)=34−x−64x≤34−2√x⋅64x=18,当且仅当x=64x即x=8时等号成立,所以每块试验区的面积的最大值为183=6m2.所以答案是:6解答题15、已知一元二次函数f(x)=ax2+bx+c (a>0,c>0)的图像与x轴有两个不同的公共点,其中一个公共点的坐标为(c,0),且当0<x<c时,恒有f(x)>0.(1)当a=1,c=12时,求出不等式f(x)<0的解;(2)求出不等式f(x)<0的解(用a,c表示);(3)若以二次函数的图象与坐标轴的三个交点为顶点的三角形的面积为8,求a的取值范围;(4)若不等式m2−2km+1+b+ac≥0对所有k∈[−1, 1]恒成立,求实数m的取值范围.答案:(1)(12,1);(2)(c,1a);(3)a∈(0, 18];(4)m≤−2 或 m=0 或m≥2.分析:(1)根据根与系数的关系,求出f(x)=0的另一根,得到不等式f(x)<0的解;(2)根据根与系数的关系,求出f(x)=0另一根,并判断两根的大小,得到不等式f(x)<0的解;(3)先求出f(x)的图像与坐标轴的交点,表示出以这些点组成的三角形的面积,再将a 用c 表示出来,再求得a 的范围;(4)根据f(c)=0,得到a,b,c 的关系式,化简不等式,将k,m 分离,分离时注意讨论m 的符号,求得实数m 的范围.(1)当a =1,c =12时,f(x)=x 2+bx +12,f(x)的图像与x 轴有两个不同交点, ∵f(12)=0设另一个根为x 2,则12x 2=12,∴x 2=1,则f(x)<0的解集为(12,1). (2)f(x)的图像与x 轴有两个交点,∵f(c)=0,设另一个根为x 2, 则cx 2=c a ∴x 2=1a 又当0<x <c 时,恒有f(x)>0,则1a >c , ∴f(x)<0的解集为(c,1a ).(3)由(2)的f(x)的图像与坐标轴的交点分别为(c,0),(1a ,0),(0,c) 这三交点为顶点的三角形的面积为S =12(1a −c)c =8, ∴a =c 16+c2≤2√16c=18,故a ∈(0, 18].(4)∵f(c)=0,∴ac 2+bc +c =0,又∵c >0,∴ac +b +1=0, 要使m 2−2k m ≥0,对所有k ∈[−1, 1]恒成立,则 当m >0时,m ≥(2k)max =2; 当m <0时,m ≤(2k)min =−2;当m =0时,02≥2k ⋅0,对所有k ∈[−1, 1]恒成立. 从而实数m 的取值范围为m ≤−2 或 m =0 或m ≥2.小提示:本题考查了二次函数,一元二次方程,一元二次不等式三个二次之间关系及应用,根与系数的关系,恒成立求参问题,参变分离技巧,属于中档题.。
高中数学必修一第二章一元二次函数方程和不等式经典大题例题(带答案)
高中数学必修一第二章一元二次函数方程和不等式经典大题例题单选题1、实数a,b满足a>b,则下列不等式成立的是()A.a+b<ab B.a2>b2C.a3>b3D.√a2+b2<a+b答案:C分析:利用不等式的性质逐一判断即可.A,若a=1,b=0,则a+b>ab,故A错误;B,若a=1,b=−2,则a2<b2,故B错误;C,若a>b,则a3−b3=(a−b)(a2+ab+b2)=(a−b)[(a+b2)2+3b24]>0,所以a3>b3,故C正确;D,若a=1,b=−2,则√a2+b2>a+b,故D错误.故选:C2、将进货价为每个80元的商品按90元一个出售时,能卖出400个,每涨价1元,销售量就减少20个,为了使商家利润有所增加,则售价a(元/个)的取值范围应是()A.90<a<100B.90<a<110C.100<a<110D.80<a<100答案:A分析:首先设每个涨价x元,涨价后的利润与原利润之差为y元,结合条件列式,根据y>0,求x的取值范围,即可得到a的取值范围.设每个涨价x元,涨价后的利润与原利润之差为y元,则a=x+90,y=(10+x)⋅(400−20x)−10×400=−20x2+200x.要使商家利润有所增加,则必须使y>0,即x2−10x<0,得0<x<10,∴90<x+90<100,所以a的取值为90<a<100.故选:A3、已知y=(x−m)(x−n)+2022(n>m),且α,β(α<β)是方程y=0的两实数根,则α,β,m,n的大小关系是()A.α<m<n<βB.m<α<n<βC.m<α<β<n D.α<m<β<n答案:C分析:根据二次函数图像特点,结合图像平移变换即可得到答案.∵α,β为方程y=0的两实数根,∴α,β为函数y=(x−m)(x−n)+2022的图像与x轴交点的横坐标,令y1=(x−m)(x−n),∴m,n为函数y1=(x−m)(x−n)的图像与x轴交点的横坐标,易知函数y= (x−m)(x−n)+2022的图像可由y1=(x−m)(x−n)的图像向上平移2022个单位长度得到,所以m<α<β<n.故选:C.4、关于x的不等式ax2−|x|+2a≥0的解集是(−∞,+∞),则实数a的取值范围为()A.[√24,+∞)B.(−∞,√24]C.[−√24,√24]D.(−∞,−√24]∪[√24,+∞)答案:A分析:不等式ax2−|x|+2a≥0的解集是(−∞,+∞),即对于∀x∈R,ax2−|x|+2a≥0恒成立,即a≥|x|x2+2,分x=0和a≠0两种情况讨论,结合基本不等式即可得出答案.解:不等式ax2−|x|+2a≥0的解集是(−∞,+∞),即对于∀x∈R,ax2−|x|+2a≥0恒成立,即a≥|x|x2+2,当x=0时,a≥0,当a≠0时,a≥|x|x2+2=1|x|+2|x|,因为1|x|+2|x|≤2√|x|⋅2|x|=√24,所以a≥√24,综上所述a∈[√24,+∞). 故选:A.5、不等式1+5x −6x 2>0的解集为( )A .{x|x >1或x <−16}B .{x |−16<x <1 }C .{x|x >1或x <−3}D .{x |−3<x <2 } 答案:B分析:解一元二次不等式,首先确保二次项系数为正,两边同时乘−1,再利用十字相乘法,可得答案, 法一:原不等式即为6x 2−5x −1<0,即(6x +1)(x −1)<0,解得−16<x <1,故原不等式的解集为{x |−16<x <1 }.法二:当x =2时,不等式不成立,排除A ,C ;当x =1时,不等式不成立,排除D . 故选:B .6、已知正实数a ,b 满足a +1b=2,则2ab +1a的最小值是( )A .52B .3C .92D .2√2+1 答案:A分析:由已知得, a =2−1b 代入得2ab +1a =2(2b −1)+b2b−1,令2b −1=t ,根据基本不等式可求得答案. 解:因为a +1b=2,所以a =2−1b>0,所以0<b <2 ,所以2ab +1a =2(2−1b )b +b 2b−1=2(2b −1)+b2b−1, 令2b −1=t ,则b =t +12,且−1<t <3 ,所以2ab +1a =2t +t +12t=2t +12t +12≥2√2t ⋅12t +12=52,当且仅当2t =12t ,即t =12,b =34,a =23时,取等号,所以2ab +1a 的最小值是52. 故选:A.7、已知−1≤x +y ≤1,1≤x −y ≤5,则3x −2y 的取值范围是( ) A .[2,13]B .[3,13]C .[2,10]D .[5,10] 答案:A分析:设3x −2y =m (x +y )−n (x −y )=(m −n )x +(m +n )y ,求出m,n 的值,根据x +y,x −y 的范围,即可求出答案.设3x −2y =m (x +y )−n (x −y )=(m −n )x +(m +n )y ,所以{m −n =3m +n =−2,解得:{m =12n =−52,3x −2y =12(x +y )+52(x −y ), , 因为−1≤x +y ≤1,1≤x −y ≤5,所以3x −2y =12(x +y )+52(x −y )∈[2,13], 故选:A.8、已知a >b >0,下列不等式中正确的是( ) A .ca >cb B .ab <b 2C .a −b +1a−b ≥2D .1a−1<1b−1 答案:C分析:由a >b >0,结合不等式的性质及基本不等式即可判断出结论. 解:对于选项A ,因为a >b >0,0<1a<1b,而c 的正负不确定,故A 错误;对于选项B ,因为a >b >0,所以ab >b 2,故B 错误;对于选项C ,依题意a >b >0,所以a −b >0,1a−b >0,所以a −b +1a−b ≥2√(a −b )×1a−b =2,故C 正确; 对于选项D ,因为a >b >0,a −1>b −1>−1,1a−1与1b−1正负不确定,故大小不确定,故D 错误;故选:C. 多选题9、已知函数y =ax 2+bx -3,则下列结论正确的是( ) A .关于x 的不等式ax 2+bx -3<0的解集可以是{x |x >3 } B .关于x 的不等式ax 2+bx -3>0的解集可以是∅C .函数y =ax 2+bx -3的图象与x 轴正半轴可以有两个交点D .“关于x 的方程ax 2+bx -3=0有一个正根和一个负根”的充要条件是“a >0” 答案:BCD分析:根据不等式的解集求出a 、b ,再解不等式ax 2+bx -3<0可判断A ;取a =-1,b =0,解不等式-x 2-3>0可判断B ;取a =-1,b =4可判断C ;根据根的分布、充要条件的定义可判断D . 若不等式ax 2+bx -3<0的解集是{x |x >3},则a =0且3b -3=0,得b =1,而当a =0,b =1时,不等式ax 2+bx -3<0,即x -3<0,得x <3,与x >3矛盾,故A 错误; 取a =-1,b =0,此时不等式-x 2-3>0的解集为∅,故B 正确;函数y =ax 2+bx -3的图象与x 轴正半轴可以有两个交点,即ax 2+bx -3=0可以有2个正根,取a =-1,b =4,则由y =-x 2+4x -3=0,得x =1或3,故C 正确;若关于x 的方程ax 2+bx -3=0有一个正根和一个负根,则{a ≠0,−3a<0,得a >0,若a >0,则Δ=b 2+12a >0,故关于x 的方程ax 2+bx -3=0有两个不等的实根x 1,x 2, 且x 1x 2=-3a <0,即关于x 的方程ax 2+bx -3=0有一个正根和一个负根.因此“关于x 的方程ax 2+bx -3=0有一个正根和一个负根”的充要条件是“a >0”,故D 正确. 故选:BCD .10、已知x ,y 是正实数,则下列选项正确的是( ) A .若x +y =2,则1x+1y 有最小值2B .若x +y =3,则x(y +1)有最大值5C .若4x +y =1,则2√x +√y 有最大值√2D .x4+y 2x+1y有最小值94答案:AC分析:将已知转化,再利用基本不等式可判断ABC 选项;利用特值法判断选项D 。
(常考题)人教版高中数学必修第一册第二单元《一元一次函数,方程和不等式》测试卷(有答案解析)(1)
一、选择题1.如果两个正方形的边长之和为1,那么它们的面积之和的最小值是( ) A .14B .12C .1D .22.在弹性限度内,弹簧拉伸的距离与所挂物体的质量成正比,即md k=,其中d 是距离(单位cm ),m 是质量(单位g ),k 是弹簧系数(单位g/cm ).弹簧系数分别为1k ,2k 的两个弹簧串联时,得到的弹簧系数k 满足12111k k k =+,并联时得到的弹簧系数k 满足12k k k =+.已知物体质量为20g ,当两个弹簧串联时拉伸距离为1cm ,则并联时弹簧拉伸的最大距离为( ) A .1cm 4B .1cm 2C .1cmD .2cm3.小明从甲地到乙地前后半程的速度分别为a 和()b a b <,其全程的平均速度为v ,则下列不正确的是( ) A.a v <<B.v <C2a bv +<<D .2abv a b=+ 4.若正数x ,y 满足40x y xy +-=,则3x y+的最大值为( ) A .1B .38C .37D .135.若正数a ,b 满足21a b +=,则下列说法正确的是( ) A .ab 有最大值12B .224a b +有最小值12C .ab 有最小值18 D .224a b +有最大值146.对于实数x ,规定[]x 表示不大于x 的最大整数,那么不等式[][]2463450x x -+<成立的x 的取值范围是( ) A .[)1,15B .[]2,8C .[)2,8D .[)2,15 7.下列命题中是真命题的是( )A.y =的最小值为2;B .当a >0,b >0时,114a b++;C .若a 2+b 2=2,则a +b 的最大值为2;D .若正数a ,b 满足2,a b +=则11+4+22a b +的最小值为12.8.若关于x 的不等式20x px q ++<的解集为{|23}x x <<,则关于x 的不等式22028x px qx x ++>--的解集是( ) A .()2,3 B .()(),24,-∞-+∞C .()()2,23,4-D .()()(),22,34,-∞-+∞9.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,90ACB ∠=︒,D 为AB 边上的一点,30ACD ∠=︒,且2CD =,则a 的最小值为( )A .4B .4+C .8D .8+10.若a >b ,则下列不等式一定成立的是( ). A .11a b< B .55a b > C .22ac bc >D .a b >11.已知关于x 的不等式()()224210a x a x -+--≥的解集为空集,则实数a 的取值范围是( ) A .62,5⎡⎤-⎢⎥⎣⎦B .62,5⎡⎫-⎪⎢⎣⎭C .6,25⎛⎤-⎥⎝⎦D .(][),22,-∞+∞12.若关于x 的不等式0ax b ->的解集是(),2-∞-,关于x 的不等式201ax bxx +>+的解集为( )A .(,1)(1,2)-∞-⋃B .(1,0)(2,)-+∞C .(,1)(0,2)-∞-⋃D .(0,1)(2,)+∞二、填空题13.已知3x <,则函数4()3f x x x =+-的最大值是________. 14.若0a >,0b >,且4a b +=,则下列不等式中恒成立的是_______.①112ab >;②228a b +≥;2≥;④111a b+≥. 15.已知32310x x k --+⋅->对任意实数x 恒成立,则实数k 的取值范围是________.16.已知a ,b ,c 均为正数,且abc =4a +9b ,则a +b +c 的最小值为_____.17.已知实数0a >,0b >是8a 与2b 的等比中项,则62a b+的最小值是_________. 18.若ad bc ≠,则()()2222a b cd ++__________()2ac bd +.(选“≥”、“≤”、“>”、“<”其一填入)19.设函数1e exx y a =+-的值域为A ,若[)0,A ⊂+∞,则实数a 的取值范围是________.20.已知a ,b 均为正实数,且1a b +=,则231a ab+的最小值为__________,此时a 的值为__________.三、解答题21.设2()(1)2f x x a x a =--+-.(1)若不等式()2f x ≥-对一切实数x 恒成立,求实数a 的取值范围; (2)解关于x 的不等式()0f x <(a R ∈).22.已知二次函数()f x 满足(1)8f -=且(0)(4)3f f == (1)求()f x 的解析式;(2)若[],1x t t ∈+,试求()y f x =的最小值. 23.已知0,0x y >>,且440x y +=. (1)求xy 的最大值; (2)求11x y+的最小值.24.已知函数2(),(,)f x x ax b a b R =-+∈. (Ⅰ)不等式()0f x ≤的解集为[1,2]-,求a ,b 的值; (Ⅱ)令函数()()2xg x f =,对于任意的实数12,[1,2]x x∈,不等式()()125g x g x -≤恒成立,求a 的取值范围.25.设m ∈R ,不等式()()231210mx m x m -+++>的解集记为集合P .(1)若{}12P x x =-<<,求m 的值; (2)当0m >时,求集合P .26.设全集U =R ,集合2A={x|x -4x-12<0},B={x|(x-a)(x-2a)<0}. (1)当a=1时,求集合UA B ⋂;(2)若B A ⊆,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】设两个正方形的边长分别为x 、y ,可得1x y +=,利用基本不等式可求得两个正方形的面积之和22x y +的最小值.【详解】设两个正方形的边长分别为x 、y ,则0x >,0y >且1x y +=,由基本不等式可得222x y xy +≥,所以,()()22222221x yxy xy x y +≥++=+=,所以,2212x y +≥,当且仅当12x y ==时,等号成立,因此,两个正方形的面积之和22x y +的最小值为12. 故选:B. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.A解析:A 【分析】先利用串联列关系()121220k k k k +=,结合基本不等式求得12k k +最小值,再利用并联关系得到12k k k '=+最小时求得弹簧拉伸的最大距离即可. 【详解】依题意设两个弹簧的弹簧系数分别为1k ,2k ,串联时弹簧系数为k ,并联时弹簧系数为k '. 两个弹簧串联时,由m d k =知,20201m k d ===,则12111k k k =+即12121211120k kk k k k +=+=, 即()()2121212204k k k k k k ++=≤,故1280k k +≥,当且仅当1240k k ==时等号成立,两个弹簧并联时,12k k k '=+,拉伸距离12m m d k k k '==+',要是d '最大,则需12k k k '=+最小,而1240k k ==时()12min 80k k +=,故此时d '最大,为284001m d k '==='cm. 故选:A. 【点睛】 思路点睛:利用基本不等式求最值时,需注意取等号条件是否成立. (1)积定,利用x y +≥,求和的最小值;(2)和定,利用()24x y xy +≤,求积的最大值;(3)妙用“1”拼凑基本不等式求最值.3.C解析:C 【分析】根据题意,求得v ,结合基本不等式即可比较大小. 【详解】设甲、乙两地之间的距离为2s ,则全程所需的时间为s sa b+, 22s abv s s a b a b∴==++,故D 正确;0b a >>2a b+<,2ab v a b ∴=<=+C 错误;又22222a b ab a b v a b a b +⎛⎫⋅ ⎪+⎝⎭=<=<++B 正确; 22220ab ab a a a v a a a b a b a b---=-=>=+++,v a ∴>,则a v <<A 正确.故选:C 【点睛】关键点点睛:由基本不等式可得22ab a b a b +≤≤≤+等式比较大小,属中档题.4.D解析:D 【分析】已知等式变形为411x y+=,然后用“1”的代换求出x y +的最小值即可得.【详解】∵x ,y 均为正数,40x y xy +-=,∴411x y+=,∴414()559y x x y x y x y x y ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当4y x x y =,即6,3x y ==时等号成立,∴33193x y ≤=+,所求最大值为13. 故选:D . 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方5.B解析:B 【分析】利用基本不等式分析22,4ab a b +的最值,注意取等条件的分析,由此得到结果. 【详解】因为21a b +=,所以12a b =+≥18ab ≤,取等号时11,24a b ==, 所以ab 有最大值18,所以A ,C 错误; 又因为()22211241414824a b ab b a ab =+-=-≥-⨯=+,取等号时11,24a b ==, 所以224a b +有最小值12,所以B 正确,D 错误, 故选:B. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.6.A解析:A 【分析】先由不等式[][]2463450x x -+<得出[]x 的取值范围,再由[]x 的定义得出x 的取值范围. 【详解】不等式[][]2463450x x -+<即为[]()[]()43150x x --<,解得[]3154x <<, 则[]{}1,2,3,,14x ∈,因此,115x ≤<,故选A.【点睛】本题考查一元二次不等式的解法,同时也考查了取整函数的定义,解题的关键要结合不等式得出[]x 的取值,考查计算能力,属于中等题.7.B解析:BCD 【分析】利用基本不等式分别判断A 、B 、D 选项,C选项可设,a b αα==,利用三角函数的值域求范围. 【详解】 A 选项,222x +≥0>,∴2y =≥==,即221x +=±时成立,又222x ≥+,故A 错;B 选项,当a >0,b >0时,1124a b +++≥⨯=,当且仅当1a b =⎧=,即1a b ==时等号成立,B 正确;C选项,设,a b αα==,则2sin 24a b πααα⎛⎫+==+≤ ⎪⎝⎭,C 正确;D 选项,2a b +=,()212192a b ⎡⎤⎛⎫∴+++= ⎪⎢⎥⎝⎭⎣⎦, 则()121252229291111++4+22442+2242a b a b a b a b a b ⎛⎫+ ⎪⎡⎤+⎛⎫⎛⎫+++=⨯++ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝=+⎣+⎭⎦ ⎪⎝⎭251942⎛ ≥⨯+= ⎝⎭,当且仅当122422a b a b ++=++且2a b +=时等号成立,解得1a b ==,故D 正确. 故选:BCD 【点睛】本题考查基本不等式的应用、利用三角函数的值域求范围,注意取等号的条件,属于中档题.8.D解析:D 【分析】根据关于x 的不等式20x px q ++<的解集为{|23}x x <<,利用韦达定理得到5,6p q =-=,则不等式22028x px q x x ++>--转化为 2256028x x x x -+>--,再利用穿根法求解.【详解】因为关于x 的不等式20x px q ++<的解集为{|23}x x <<, 所以由韦达定理得:5,6p q =-=,所以22028x px q x x ++>--,即为2256028x x x x -+>--,即为()()()()23042x x x x -->-+,即为()()()()23420x x x x ---+>用穿根法得不等式的解集为:()()(),22,34,-∞-+∞,故选:D 【点睛】本题主要考查一元二次不等式的解集的应用以及穿根法求高次不等式,属于中档题.9.B解析:B 【分析】设,0,2A παα⎛⎫∠=∈ ⎪⎝⎭,在ACD △中,利用正弦定理得()2sin 150sin b αα=︒-,化简得到1tan b α=ABC 中,有tan a b α=⋅,然后将a +转化为4ta n a αα=++利用基本不等式求解. 【详解】设,0,2A παα⎛⎫∠=∈ ⎪⎝⎭,在ACD △中,由正弦定理得:()2sin 150sin b αα=︒-,所以()2sin 1501sin tan b ααα︒-==+,在直角ABC 中,tan a b α=⋅,所以(1tan tan 4tan tan a b ααααα⎛⋅==+⎝+=44≥+=+an α=,即4πα=时取等号,故选:B【点睛】本题主要考查正弦定理和基本不等式的解三角形中的应用,还考查了运算求解的能力,属于中档题.10.B解析:B 【分析】利用函数的单调性、不等式的基本性质即可判断出结论. 【详解】 a >b ,则1a 与1b的大小关系不确定;由函数y =x 5在R 上单调递增,∴a 5>b 5; c =0时,ac 2=bc 2;取a =-1,b =-2,|a |>|b |不成立.因此只有B 成立. 故选B . 【点睛】本题考查了函数的单调性、不等式的基本性质,考查了推理能力与计算能力,属于基础题.11.C解析:C 【分析】由题意得出关于x 的不等式()()224210a x a x -+--<的解集为R ,由此得出240a -=或2400a ⎧-<⎨∆<⎩,在240a -=成立时求出实数a 的值代入不等式进行验证,由此解不等式可得出实数a 的取值范围. 【详解】由题意知,关于x 的不等式()()224210a x a x -+--<的解集为R .(1)当240a -=,即2a =±.当2a =时,不等式()()224210a x a x -+--<化为10-<,合乎题意;当2a =-时,不等式()()224210a x a x -+--<化为410x --<,即14x >-,其解集不为R ,不合乎题意;(2)当240a -≠,即2a ≠±时.关于x 的不等式()()224210a x a x -+--<的解集为R .2400a ⎧-<∴⎨∆<⎩,解得265a -<<.综上可得,实数a 的取值范围是6,25⎛⎤- ⎥⎝⎦.故选C .【点睛】本题考查二次不等式在R 上恒成立问题,求解时根据二次函数图象转化为二次项系数和判别式的符号列不等式组进行求解,考查化归与转化思想,属于中等题.12.C解析:C 【分析】根据不等式及解集,可得2b a =-,将不等式201ax bxx +>+化简后,结合穿根法即可求得解集.【详解】关于x 的不等式0ax b ->变形可得ax b >,因为其解集为(),2-∞- 所以0a <,且2ba=- 关于x 的不等式201ax bxx +>+变形可得201b a x x a x ⎛⎫+ ⎪⎝⎭>+ 即()2120a x x x >+-,所以()120ax x x >+-因为0a <,不等式可化为()120x x x <+-可化为()()210x x x -+< 利用穿根法可得1x <-或02x << 即()(),10,2x ∈-∞-⋃ 故选:C 【点睛】本题考查了含参数的不等式解法,注意不等式的符号变化,属于中档题.二、填空题13.【分析】配凑成再用利用均值不等式直接求解【详解】因为所以当且仅当即时等号成立故答案为:【点睛】此题考查利用基本不等式求最值属于基础题方法点睛:均值不等式成立的3个条件一正二定三相等一正:的范围要为正 解析:1-【分析】配凑成()4()333f x x x ⎡⎤=--+⎢⎥-⎣⎦,再用利用均值不等式直接求解. 【详解】 因为3x <,所以()()43333413f x x x ⎡⎤=--+≤-=-=-⎢⎥-⎣⎦.当且仅当43=3x x --,即1x =时等号成立, 故答案为: 1- 【点睛】此题考查利用基本不等式求最值,属于基础题.方法点睛:均值不等式a b +≥成立的3个条件“一正、二定、三相等”. 一正:,a b 的范围要为正值二定:当,a b 为大于零的变量,那么a b +、最值.三相等:验证均值不等式在给定的范围内能否满足取等号的条件.14.②④【分析】利用基本不等式和题设得到答案即可【详解】解:且即当且仅当时取等号故选项①错误;当且仅当时取等号选项②正确;即选项③错误;当且仅当时取等号选项④正确故答案为:②④【点睛】利用基本不等式求最解析:②④ 【分析】利用基本不等式和题设得到答案即可. 【详解】解:0a >,0b >,且4a b +=,42a b ab ∴+=,即4ab ,当且仅当2a b ==时取等号,∴114ab,故选项①错误; 222()82a b a b++=,当且仅当2a b ==时取等号,∴选项②正确;42a b ab +=,即2,∴选项③错误;1111111()()(2)(221444b a a b a b a b a b +=++=+++=,当且仅当2a b ==时取等号,∴选项④正确, 故答案为:②④. 【点睛】利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方15.【分析】由题意可得利用基本不等式可求得的最小值由此可求得实数的取值范围【详解】由于不等式对任意实数恒成立则由基本不等式可得当且仅当时即当时等号成立所以因此实数的取值范围是故答案为:【点睛】本题考查利解析:(),1-∞【分析】由题意可得3231x x k -<+⋅-,利用基本不等式可求得3231x x -+⋅-的最小值,由此可求得实数k 的取值范围. 【详解】由于不等式32310x x k --+⋅->对任意实数x 恒成立,则3231x x k -<+⋅-,由基本不等式可得323111x x -+⋅-≥=,当且仅当323x x -=⋅时,即当31log 22x =时,等号成立,所以,1k <,因此,实数k 的取值范围是(),1-∞.故答案为:(),1-∞. 【点睛】本题考查利用基本不等式求解不等式恒成立问题,考查参变量分离法的应用,考查计算能力,属于中等题.16.10【分析】由得出利用基本不等式即可得出答案【详解】(当且仅当时取等号)故答案为:10【点睛】本题主要考查了基本不等式的应用属于中档题【分析】由49abc a b =+得出94c a b=+,利用基本不等式即可得出答案. 【详解】49abc a b =+4994a b c ab a b+∴==+9410a b c a b a b ++=+++≥=(当且仅当3,2a b ==时,取等号) 故答案为:10 【点睛】本题主要考查了基本不等式的应用,属于中档题.17.32【分析】由是与的等比中项求得化简结合基本不等式即可求解【详解】由题意实数是与的等比中项可得解得所以当且仅当时即时等号成立所以的最小值是故答案为:【点睛】本题主要考查了利用基本不等式求最值以及等比解析:32 【分析】8a 与2b 的等比中项,求得31a b +=,化简626266()(3)20b aa b a b a b a b +=++=++,结合基本不等式,即可求解. 【详解】由题意,实数0a >,0b >8a 与2b 的等比中项,可得23228a b a b +=⨯=,解得31a b +=,所以626266()(3)202032b a a b a b a b a b +=++=++≥+=, 当且仅当66b a a b +时,即14a b ==时,等号成立, 所以62a b+的最小值是32. 故答案为:32.【点睛】本题主要考查了利用基本不等式求最值,以及等比中项公式的应用,其中解答中熟记等比中项公式,合理利用“1”的代换,结合基本不等式求解是解答的关键,着重考查推理与运算能力.18.>【分析】作差分析差的正负即可求解【详解】因为又所以所以故答案为:>【点睛】本题主要考查了比较法判断两个式子的大小考查了运算能力属于解析:> 【分析】作差,分析差的正负即可求解. 【详解】 因为()()()22222a b c d ac bd ++-+()()2222222222222a c a d b c b d a c b d acbd +=+++-+22222b c a d abcd =+-20(bc ad )=-≥,又ad bc ≠所以2()0bc ad ->所以()()22222()a bcd ac bd ++>+,故答案为:> 【点睛】本题主要考查了比较法判断两个式子的大小,考查了运算能力,属于中档题.19.【解析】因为a 所以则 解析:(,2]-∞【解析】 因为1e 2exx y a =+-≥-a ,所以[)[)2,0,,A a =-+∞⊂+∞则20,2a a -≥≤. 20.6【分析】首先由条件变形为化简后利用基本不等式求最小值【详解】所以当时等号成立即解得:所以即的最小值为6此时故答案为:6;【点睛】本题考查基本不等式求最值重点考查转化思想计算能力属于基础题型本题的关解析:6 13【分析】首先由条件变形为()222331a a b a ab ab+++=,化简后利用基本不等式求最小值. 【详解】1a b +=,()21a b ∴+=所以()222223314242a a b a a b ab a b ab ab ab b a+++++===++,44a b b a +≥=,当4a b b a =时,等号成立,即120,0a b b a a b +=⎧⎪=⎨⎪>>⎩,解得:12,33a b ==, 所以231426a ab+≥+=,即231a ab+的最小值为6,此时13a =.故答案为:6;13【点睛】本题考查基本不等式求最值,重点考查转化思想,计算能力,属于基础题型,本题的关键是利用()21a b =+变形,化简.三、解答题21.(1)33a -≤≤+2)答案见解析. 【分析】(1)一元二次不等式恒成立问题,由判别式可得参数范围.(2)不等式变形为[(2)](1)0x a x ---<,根据2a -和1的大小分类讨论得解集. 【详解】解:(1)由题意,不等式()2f x ≥-对于一切实数x 恒成立,等价于2(1)0x a x a --+≥对于一切实数x 恒成立.所以20(1)40a a ∆≤⇔--≤⇔33a -≤≤+(2)不等式()0f x <等价于2(1)20[(2)](1)0x a x a x a x --+-<⇔---<.当21a ->即3a >时,不等式可化为12x a <<-,不等式的解集为{}12x x a <<-; 当21a -=即3a =时,不等式可化为2(10)x -<,不等式的解集为∅; 当21a -<即3a <时,不等式可化为21a x -<<,此时{}21x a x -<<. 综上所述:当3a <时,不等式的解集为{}21x a x -<<; 当3a =时,不等式的解集为∅;当3a >时,不等式的解集为{}12x x a <<-. 【点睛】本题考查解一元二次不等式.掌握三个二次伯关系是解题关键.对含参数的一元二次不等式求解时需分类讨论,分类讨论一般有三个层次:一是二次项系数是否为0,不为0时二次项系数的正负,二是一元二次方程的判别式,三是在判别式大于0时,方程两根的大小.注意灵活分类.22.(1)2()43f x x x =-+;(2)2min 243,2()1,122,1t t t f x t t t t ⎧-+≥⎪=-<<⎨⎪-≤⎩. 【分析】(1)设二次函数()f x 的解析式为:2()(0)f x ax bx c a =++≠,由(1)8f -=、(0)(4)3f f ==列方程组即可求出,,a b c 得值进而可得()f x 的解析式;(2)由(1)知2()43f x x x =-+,对称轴为2x =,分情况讨论对称轴和区间的关系即可求解. 【详解】(1)设二次函数()f x 的解析式为:2()(0)f x ax bx c a =++≠,因为(1)8f -=,且(0)(4)3f f ==,则有813416433a b c a c b a b c c -+==⎧⎧⎪⎪=⇒=-⎨⎨⎪⎪++==⎩⎩, 于是二次函数解析式为:2()43f x x x =-+(2)由(1)知2()43f x x x =-+,对称轴为2x =,若2t ≥,则()f x 在[],1t t +上单调递增,所以2min ()()43f x f t t t ==-+;若12t +≤,即1t ≤时,()f x 在[],1t t +上单调递减,所以22min ()(1)(1)4(1)32f x f t t t t t =+=+-++=-;若21t t <<+,即12t <<时,2min ()(2)24231f x f ==-⨯+=-综上,2min 243,2()1,122,1t t t f x t t t t ⎧-+≥⎪=-<<⎨⎪-≤⎩【点睛】方法点睛:求函数解析式的方法(1)待定系数法:已知函数类型,可用待定系数法求解,先设出()f x ,再利用题目中给的已知条件,列出关于待定系数的方程组,进而求出待定的系数;(2)换元法:主要用于解决已知复合函数()f g x ⎡⎤⎣⎦的表达式求()f x 的解析式的问题,令()g x t =,解出x ,然后代入()f g x ⎡⎤⎣⎦中即可求得()f t ,从而求得()f x ,要注意新元的取值范围;(3)配凑法:配凑法是将()f g x ⎡⎤⎣⎦右端的代数式配凑成关于()g x 的形式,进而求出()f x 的解析式;(4)构造方程组法(消元法):主要解决已知抽象函数关系式求解函数解析式的问题.方法是根据不同的变量之间的关系,利用变换形式构造不同的等式,通过解方程组求解. 23.无24.无25.无26.无。
新版高一数学必修第一册第二章全部配套练习题(含答案和解析)
新版高一数学必修第一册第二章全部配套练习题(含答案和解析)2.1 等式性质与不等式性质基 础 练巩固新知 夯实基础1.若1a <1b <0,则下列结论中不正确的是( )A .a 2<b 2B .ab <b 2C .a +b <0D .|a |+|b |>|a +b |2.已知a >b >0,则下列不等式一定成立的是( ) A .a +1b >b +1aB .a +1a ≥b +1bC .b a >b +1a +1D .b -1b >a -1a3.下列说法正确的是( )A .若a >b ,c >d ,则ac >bdB .若1a >1b,则a <bC .若b >c ,则|a |b ≥|a |cD .若a >b ,c >d ,则a -c >b -d 4.若y 1=3x 2-x +1,y 2=2x 2+x -1,则y 1与y 2的大小关系是( ) A .y 1<y 2 B .y 1=y 2C .y 1>y 2D .随x 值变化而变化 5.一辆汽车原来每天行驶x km ,如果这辆汽车每天行驶的路程比原来多19 km ,那么在8天内它的行程就超过2 200 km ,写成不等式为________;如果它每天行驶的路程比原来少12 km ,那么它原来行驶8天的路程就得花9天多的时间,用不等式表示为________.6.已知三个不等式①ab >0;①c a >db ;①bc >ad .若以其中的两个作为条件,余下的一个作为结论,则可以组成________个正确命题.7.若x ①R ,则x 1+x2与12的大小关系为________. 8.已知1<α<3,-4< β <2,若z =12α-β,则z 的取值范围是________.9.已知a >b ,1a <1b ,求证:ab >0.10.已知-2<a ≤3,1≤b <2,试求下列代数式的取值范围.(1)|a |; (2)a +b ; (3)a -b ; (4)2a -3b .能 力 练综合应用 核心素养11.设a >b >c ,且a +b +c =0,则下列不等式恒成立的是( ) A .ab >bc B .ac >bc C .ab >acD .a |b |>c |b |12.若abcd <0,且a >0,b >c ,d <0,则( ) A .b <0,c <0 B .b >0,c >0 C .b >0,c <0D .0<c <b 或c <b <013.实数a ,b ,c ,d 满足下列三个条件:①d >c ;①a +b =c +d ;①a +d <b +c .则将a ,b ,c ,d 按照从小到大的次序排列为________. 14.已知|a |<1,则11+a 与1-a 的大小关系为________.15.已知a ,b ①R ,a +b >0,试比较a 3+b 3与ab 2+a 2b 的大小.16.已知0<a <b 且a +b =1,试比较: (1)a 2+b 2与b 的大小; (2)2ab 与12的大小.17.已知1≤a -b ≤2,2≤a +b ≤4,求4a -2b 的取值范围.18.建筑设计规定,民用住宅的窗户面积必须小于地板面积.但按采光标准,窗户面积与地板面积的比值应不小于10%,且这个比值越大,住宅的采光条件就越好,试问:同时增加相等的窗户面积和地板面积,住宅的采光条件是变好了,还是变坏了?请说明理由.【参考答案】1. D 解析: ①1a <1b <0,①b <a <0,①b 2>a 2,ab <b 2,a +b <0,①A 、B 、C 均正确,①b <a <0,①|a |+|b |=|a +b |,故D 错误.2. A 解析:因为a >b >0,所以1b >1a >0,所以a +1b >b +1a,故选A.3. C 解析 A 项:a ,b ,c ,d 的符号不确定,故无法判断;B 项:不知道ab 的符号,无法确定a ,b 的大小;C 项:|a |≥0,所以|a |b ≥|a |c 成立;D 项:同向不等式不能相减.4. C 解析y 1-y 2=(3x 2-x +1)-(2x 2+x -1)=x 2-2x +2=(x -1)2+1>0, 所以y 1>y 2.故选C.5. 8(x +19)>2 200 8x >9(x -12) 解析:①原来每天行驶x km ,现在每天行驶(x +19)km.则不等关系“在8天内的行程超过2 200 km”,写成不等式为8(x +19)>2 200.①若每天行驶(x -12)km ,则不等关系“原来行驶8天的路程现在花9天多时间”, 写成不等式为8x >9(x -12). 6. 3 解析:①①①①,①①①①.(证明略)由①得bc -ad ab >0,又由①得bc -ad >0.所以ab >0①①.所以可以组成3个正确命题.7. x 1+x 2≤12 解析:①x 1+x 2-12=2x -1-x 22(1+x 2)=-(x -1)22(1+x 2)≤0,①x 1+x 2≤12. 8. ⎩⎨⎧⎭⎬⎫z ⎪⎪-32<z <112 解析:①1<α<3,①12<12α<32,又-4<β<2,①-2<-β<4.①-32<12α-β<112,即-32<z <112. 9.证明:①1a <1b ,①1a -1b <0,即b -a ab<0,而a >b ,①b -a <0,①ab >0. 10. 解:(1)|a |①[0,3].(2)-1<a +b <5.(3)依题意得-2<a ≤3,-2<-b ≤-1,相加得-4<a -b ≤2;(4)由-2<a ≤3得-4<2a ≤6,①由1≤b <2得-6<-3b ≤-3,①由①+①得,-10<2a -3b ≤3. 11. C 解析:选C.因为a >b >c ,且a +b +c =0,所以a >0,c <0,b 可正、可负、可为零. 由b >c ,a >0知,ab >ac .12. D 解析: 由a >0,d <0,且abcd <0,知bc >0,又①b >c ,①0<c <b 或c <b <0. 13. a <c <d <b 解析:由①得a =c +d -b 代入①得c +d -b +d <b +c ,①c <d <b .由①得b =c +d -a 代入①得a +d <c +d -a +c ,①a <c .①a <c <d <b . 14.11+a≥1-a 解析:由|a |<1,得-1<a <1. ①1+a >0,1-a >0.即11+a 1-a =11-a 2①0<1-a 2≤1,①11-a 2≥1,①11+a≥1-a . 15.解:因为a +b >0,(a -b )2≥0,所以a 3+b 3-ab 2-a 2b =a 3-a 2b +b 3-ab 2=a 2(a -b )+b 2(b -a )=(a -b )(a 2-b 2)=(a -b )(a -b )(a +b )=(a -b )2(a +b )≥0,所以a 3+b 3≥ab 2+a 2b .16.解:(1)因为0<a <b 且a +b =1,所以0<a <12<b ,则a 2+b 2-b =a 2+b (b -1)=a 2-ab =a (a -b )<0,所以a 2+b 2<b .(2)因为2ab -12=2a (1-a )-12=-2a 2+2a -12=-2⎝⎛⎭⎫a 2-a +14=-2⎝⎛⎭⎫a -122<0,所以2ab <12.17.解:令4a -2b =m (a -b )+n (a +b ),①⎩⎪⎨⎪⎧ m +n =4,-m +n =-2,解得⎩⎪⎨⎪⎧m =3,n =1.又①1≤a -b ≤2,①3≤3(a -b )≤6,又①2≤a +b ≤4,①5≤3(a -b )+(a +b )≤10,即5≤4a -2b ≤10. 故4a -2b 的取值范围为5≤4a -2b ≤10.18.解:设住宅窗户面积、地板面积分别为a ,b ,同时增加的面积为m ,根据问题的要求a <b ,且ab ≥10%.由于a +mb +m -a b =m (b -a )b (b +m )>0,于是a +m b +m >a b .又a b ≥10%,因此a +m b +m >ab≥10%.所以同时增加相等的窗户面积和地板面积后,住宅的采光条件变好了.2.2 第1课时 基本不等式的证明基 础 练巩固新知 夯实基础1.已知a ,b ①R ,且ab >0,则下列结论恒成立的是( )A .a 2+b 2>2abB .a +b ≥2ab C.1a +1b >2ab D.b a +a b ≥2 2.不等式a 2+1≥2a 中等号成立的条件是( )A .a =±1B .a =1C .a =-1D .a =03.对x ①R 且x ≠0都成立的不等式是( )A .x +1x ≥2B .x +1x ≤-2C.|x |x 2+1≥12D.⎪⎪⎪⎪x +1x ≥2 4.已知x >0,y >0,x ≠y ,则下列四个式子中值最小的是( )A.1x +yB.14⎝⎛⎭⎫1x +1yC. 12(x 2+y 2)D.12xy5.给出下列不等式:①x +1x ≥2; ①⎪⎪⎪⎪x +1x ≥2; ①x 2+y 2xy ≥2; ①x 2+y 22>xy ; ①|x +y |2≥|xy |.其中正确的是________(写出序号即可).6.若a >0,b >0,a +b =2,则下列不等式对一切满足条件的a ,b 恒成立的是________(填序号).①ab ≤1; ①a +b ≤2; ①a 2+b 2≥2; ①a 3+b 3≥3; ①1a +1b≥2.7.设a ,b ,c 都是正数,求证:bc a +ac b +abc≥a +b +c .能 力 练综合应用 核心素养8.若0<a <b ,a +b =1,则a ,12,2ab 中最大的数为( )A .aB .2ab C.12D .无法确定9.已知a >0,b >0,则a +b2,ab ,a 2+b 22,2aba +b中最小的是( ) A.a +b 2B.abC.a 2+b 22D.2aba +b10.设a >0,b >0,则下列不等式中不一定成立的是( )A .a +b +1ab≥22 B.2ab a +b ≥abC.a 2+b 2ab ≥a +b D .(a +b )⎝⎛⎭⎫1a +1b ≥4 11.已知a ,b ①(0,+∞),且a +b =1,则下列各式恒成立的是( )A.1ab≥8 B.1a +1b≥4C.ab ≥12D.1a 2+b2≤12 12.若a <1,则a +1a -1与-1的大小关系是________.13.给出下列结论:①若a >0,则a 2+1>a .①若a >0,b >0,则⎝⎛⎭⎫1a +a ⎝⎛⎭⎫b +1b ≥4. ①若a >0,b >0,则(a +b )⎝⎛⎭⎫1a +1b ≥4. ①若a ①R 且a ≠0,则9a +a ≥6.其中恒成立的是________.14.已知x >0,y >0,z >0.求证:⎝⎛⎭⎫y x +z x ⎝⎛⎭⎫x y +z y ⎝⎛⎭⎫x z +y z ≥8.15.已知a >0,b >0,a +b =1,求证⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b ≥9.【参考答案】1. D 解析:选D.对于A ,当a =b 时,a 2+b 2=2ab ,所以A 错误;对于B ,C ,虽然ab >0,只能说明a ,b 同号,当a ,b 都小于0时,B ,C 错误;对于D ,因为ab >0,所以b a >0,a b >0,所以b a +ab ≥2b a ·a b ,即b a +a b≥2成立.2. B [解析] a 2+1-2a =(a -1)2≥0,①a =1时,等号成立.3. D [解析] 因为x ①R 且x ≠0,所以当x >0时,x +1x ≥2;当x <0时,-x >0,所以x +1x =-⎝⎛⎭⎫-x +1-x ≤-2,所以A 、B 都错误;又因为x 2+1≥2|x |,所以|x |x 2+1≤12,所以C 错误,故选D. 4. C [解析] 解法一:①x +y >2xy ,①1x +y <12xy,排除D ;①14⎝⎛⎭⎫1x +1y =x +y 4xy =14xy x +y >1(x +y )2x +y =1x +y ,①排除B ;①(x +y )2=x 2+y 2+2xy <2(x 2+y 2),①1x +y>12(x 2+y 2),排除A.解法二:取x =1,y =2.则1x +y =13;14⎝⎛⎭⎫1x +1y =38;12(x 2+y 2)=110;12xy =122=18.其中110最小. 5. ① 解析:当x >0时,x +1x ≥2;当x <0时,x +1x≤-2,①不正确;因为x 与1x 同号,所以⎪⎪⎪⎪x +1x =|x |+1|x |≥2,①正确; 当x ,y 异号时,①不正确; 当x =y 时,x 2+y 22=xy ,①不正确;当x =1,y =-1时,①不正确.6. ①①① [解析] 令a =b =1,排除①①;由2=a +b ≥2ab ①ab ≤1,①正确;a 2+b 2=(a +b )2-2ab =4-2ab ≥2,①正确;1a +1b =a +b ab =2ab≥2,①正确.7.[证明] 因为a ,b ,c 都是正数,所以bc a ,ac b ,ab c 也都是正数.所以bc a +ac b ≥2c ,ac b +ab c ≥2a ,bc a +abc≥2b ,三式相加得2⎝⎛⎭⎫bc a +ac b +ab c ≥2(a +b +c ),即bc a +ac b +abc ≥a +b +c ,当且仅当a =b =c 时取等号. 8. C 解析:选C.因为0<a <b ,a +b =1,所以a <12,因为ab <⎝⎛⎭⎫a +b 22=14,所以2ab <12,则a ,12,2ab 中最大的数为12,故选C.9. D [解析] 因为a >0,b >0,所以2ab a +b ≤2ab2ab =ab ,a +b 2≥ab ,a 2+b 22=2(a 2+b 2)4≥(a +b )24=a +b2(当且仅当a =b >0时,等号成立).所以a +b2,ab ,a 2+b 22,2ab a +b 中最小的是2aba +b,故选D. 10. B 解析:选B.因为a >0,b >0,所以a +b +1ab ≥2ab +1ab ≥22,当且仅当a =b 且2ab =1ab即a =b =22时取等号,故A 一定成立.因为a +b ≥2ab >0,所以2ab a +b ≤2ab2ab =ab ,当且仅当a =b 时取等号,所以2ab a +b ≥ab 不一定成立,故B 不成立.因为2ab a +b ≤2ab 2ab=ab ,当且仅当a =b 时取等号,所以a 2+b 2a +b =(a +b )2-2ab a +b =a +b -2ab a +b ≥2ab -ab ,当且仅当a =b 时取等号,所以a 2+b 2a +b ≥ab ,所以a 2+b 2ab≥a +b ,故C 一定成立.因为(a +b )⎝⎛⎭⎫1a +1b =2+b a +ab≥4,当且仅当a =b 时取等号,故D 一定成立,故选B. 11. B [解析] ①当a ,b ①(0,+∞)时,a +b ≥2ab ,又a +b =1,①2ab ≤1,即ab ≤12.①ab ≤14.①1ab ≥4.故选项A 不正确,选项C 也不正确.对于选项D ,①a 2+b 2=(a +b )2-2ab =1-2ab ,当a ,b ①(0,+∞)时,由ab ≤14可得a 2+b 2=1-2ab ≥12.所以1a 2+b 2≤2,故选项D 不正确.对于选项B ,①a >0,b >0,a +b =1,①1a +1b =⎝⎛⎭⎫1a +1b (a +b )=1+b a +ab+1≥4,当且仅当a =b 时,等号成立.故选B.12. a +1a -1≤-1 解析:因为a <1,即1-a >0,所以-⎝⎛⎭⎫a -1+1a -1=(1-a )+11-a≥2(1-a )·11-a=2.即a +1a -1≤-1.13.①①① [解析] 因为(a 2+1)-a =⎝⎛⎭⎫a -122+34>0,所以a 2+1>a ,故①恒成立. 因为a >0,所以a +1a ≥2,因为b >0,所以b +1b ≥2,所以当a >0,b >0时,⎝⎛⎭⎫a +1a ⎝⎛⎭⎫b +1b ≥4,故①恒成立. 因为(a +b )⎝⎛⎭⎫1a +1b =2+b a +a b ,又因为a ,b ①(0,+∞),所以b a +ab ≥2,所以(a +b )⎝⎛⎭⎫1a +1b ≥4,故①恒成立. 因为a ①R 且a ≠0,不符合基本不等式的条件,故9a+a ≥6是错误的.14.证明:因为x >0,y >0,z >0,所以y x +z x ≥2yz x >0,x y +z y ≥2xz y >0,x z +y z ≥2xyz >0,所以⎝⎛⎭⎫y x +z x ⎝⎛⎭⎫x y +z y ⎝⎛⎭⎫x z +y z ≥8yz ·xz ·xyxyz=8,当且仅当x =y =z 时等号成立. 15.[证明] 证法一:因为a >0,b >0,a +b =1,所以1+1a =1+a +b a =2+b a ,同理1+1b =2+a b,故⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =⎝⎛⎭⎫2+b a ⎝⎛⎭⎫2+a b =5+2⎝⎛⎭⎫b a +a b ≥5+4=9.所以⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b ≥9(当且仅当a =b =12时取等号).证法二:因为a ,b 为正数,a +b =1.所以⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =1+1a +1b +1ab =1+a +b ab +1ab =1+2ab , ab ≤⎝⎛⎭⎫a +b 22=14,于是1ab ≥4,2ab ≥8,因此⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b ≥1+8=9⎝⎛⎭⎫当且仅当a =b =12时等号成立.2.2 第2课时 基本不等式的综合应用基 础 练巩固新知 夯实基础1.(3-a )(a +6)(-6≤a ≤3)的最大值为( )A .9 B.92 C .3 D.3222.设x >0,则y =3-3x -1x的最大值是( )A .3B .3-22C .3-2 3D .-1 3.若0<x <12,则函数y =x 1-4x 2的最大值为( )A .1 B.12 C.14D.184.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( )A .60件B .80件C .100件D .120件5.已知a >0,b >0,2a +1b =16,若不等式2a +b ≥9m 恒成立,则m 的最大值为( )A .8B .7C .6D .56.已知y =4x +ax (x >0,a >0)在x =3时取得最小值,则a =________.7.已知y =x +1x.(1)已知x >0,求y 的最小值;(2)已知x <0,求y 的最大值.8.已知a >0,b >0,且2a +b =ab .(1)求ab 的最小值; (2)求a +2b 的最小值.能 力 练综合应用 核心素养9.已知a <b ,则b -a +1b -a+b -a 的最小值为( )A .3B .2C .4D .110.已知实数x ,y 满足x >0,y >0,且2x +1y=1,则x +2y 的最小值为( )A .2B .4C .6D .811.设x >0,则函数y =x +22x +1-32的最小值为( ) A .0 B.12C .1D.3212.已知x ≥52,则y =x 2-4x +52x -4有( )A .最大值54B .最小值54za C .最大值1D .最小值113.已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( )A .2B .4C .6D .814.已知x >0,y >0,2x +3y =6,则xy 的最大值为________.15.若点A (-2,-1)在直线mx +ny +1=0上,其中mn >0,则1m +2n的最小值为________.16.设a>b>c,且1a-b+1b-c≥ma-c恒成立,求m的取值范围.17.(1)若x<3,求y=2x+1+1x-3的最大值;(2)已知x>0,求y=2xx2+1的最大值.【参考答案】1. B 解析:选B.因为-6≤a ≤3,所以3-a ≥0,a +6≥0,所以(3-a )(a +6)≤(3-a )+(a +6)2=92.即(3-a )(a +6)(-6≤a ≤3)的最大值为92.2. C 解析:y =3-3x -1x=3-⎝⎛⎭⎫3x +1x ≤3-2 3x ·1x =3-23,当且仅当3x =1x ,即x =33时取等号. 3. C 解析:因为0<x <12,所以1-4x 2>0,所以x 1-4x 2=12×2x 1-4x 2≤12×4x 2+1-4x 22=14,当且仅当2x=1-4x 2,即x =24时等号成立,故选C. 4. B 解析:设每件产品的平均费用为y 元,由题意得y =800x +x 8≥2800x ·x8=20. 当且仅当800x =x8(x >0),即x =80时“=”成立,故选B.5. C 解析:可得6⎝⎛⎭⎫2a +1b =1,所以2a +b =6⎝⎛⎭⎫2a +1b ·(2a +b )=6⎝⎛⎭⎫5+2a b +2b a ≥6×(5+4)=54,当且仅当2ab =2ba时等号成立,所以9m ≤54,即m ≤6,故选C. 6. 36 解析:y =4x +ax≥24x ·a x =4a (x >0,a >0),当且仅当4x =a x ,即x =a2时等号成立,此时y 取得最小值4a . 又由已知x =3时,y 的最小值为4a ,所以a2=3,即a =36. 7. 解:(1)因为x >0,所以x +1x≥2x ·1x =2,当且仅当x =1x,即x =1时等号成立.所以y 的最小值为2. (2)因为x <0,所以-x >0.所以f (x )=-⎣⎡⎦⎤(-x )+1-x ≤-2(-x )·1-x =-2,当且仅当-x =1-x,即x =-1时等号成立.所以y 的最大值为-2. 8. 解:因为2a +b =ab ,所以1a +2b=1;(1)因为a >0,b >0, 所以1=1a +2b≥22ab ,当且仅当1a =2b =12,即a =2,b =4时取等号,所以ab ≥8,即ab 的最小值为8;(2)a +2b =(a +2b )⎝⎛⎭⎫1a +2b =5+2b a +2ab ≥5+22b a ·2ab=9, 当且仅当2b a =2ab ,即a =b =3时取等号,所以a +2b 的最小值为9.9. A 解析:因为a <b ,所以b -a >0,由基本不等式可得b -a +1b -a +b -a =1+1b -a+(b -a )≥1+21b -a·(b -a )=3, 当且仅当1b -a =b -a (b >a ),即当b -a =1时,等号成立,因此,b -a +1b -a +b -a 的最小值为3,故选A.10. D 解析:因为x >0,y >0,且2x +1y =1,所以x +2y =(x +2y )⎝⎛⎭⎫2x +1y =4+4y x +xy≥4+24y x ·xy=8, 当且仅当4y x =xy时等号成立.故选D.11. A 解析:选A.因为x >0,所以x +12>0,所以y =x +22x +1-32=⎝⎛⎭⎫x +12+1x +12-2≥2⎝⎛⎭⎫x +12·1x +12-2=0,当且仅当x +12=1x +12,即x =12时等号成立,所以函数的最小值为0. 12. D 解析:y =x 2-4x +52x -4=(x -2)2+12(x -2)=12⎣⎡⎦⎤(x -2)+1x -2,因为x ≥52,所以x -2>0,所以12⎣⎡⎦⎤(x -2)+1x -2≥12·2(x -2)·1x -2=1,当且仅当x -2=1x -2,即x =3时取等号.故y 的最小值为1.13. B 解析 (x +y )⎝⎛⎭⎫1x +a y =1+a +ax y +y x ≥1+a +2a =(a +1)2⎝⎛⎭⎫当且仅当y x =a 时取等号 .①(x +y )⎝⎛⎭⎫1x +a y ≥9对任意正实数x ,y 恒成立,①(a +1)2≥9.①a ≥4.14. 32 解析:因为x >0,y >0,2x +3y =6,所以xy =16(2x ·3y )≤16·⎝⎛⎭⎫2x +3y 22=16·⎝⎛⎭⎫622=32.当且仅当2x =3y ,即x =32,y =1时,xy 取到最大值32.15. 8 解析:因为点A (-2,-1)在直线mx +ny +1=0上,所以2m +n =1, 所以1m +2n =2m +n m +2(2m +n )n=4+⎝⎛⎭⎫n m +4m n ≥8. 16.解 由a >b >c ,知a -b >0,b -c >0,a -c >0.因此,原不等式等价于a -c a -b +a -c b -c≥m .要使原不等式恒成立,只需a -c a -b +a -cb -c的最小值不小于m 即可. 因为a -c a -b +a -c b -c =(a -b )+(b -c )a -b +(a -b )+(b -c )b -c =2+b -c a -b +a -b b -c≥2+2b -c a -b ×a -bb -c=4, 当且仅当b -c a -b =a -b b -c,即2b =a +c 时,等号成立.所以m ≤4,即m ①{m |m ≤4}.17.解:(1)因为x <3,所以3-x >0.又因为y =2(x -3)+1x -3+7=-⎣⎡⎦⎤2(3-x )+13-x +7,由基本不等式可得2(3-x )+13-x≥22(3-x )·13-x =22,当且仅当2(3-x )=13-x,即x =3-22时,等号成立,于是-⎣⎡⎦⎤2(3-x )+13-x ≤-22,-⎣⎡⎦⎤2(3-x )+13-x +7≤7-22,故y 的最大值是7-2 2.(2)y =2x x 2+1=2x +1x .因为x >0,所以x +1x ≥2x ·1x =2,所以0<y ≤22=1,当且仅当x =1x,即x =1时,等号成立.故y 的最大值为1.2.3 第1课时 二次函数与一元二次方程、不等式基 础 练巩固新知 夯实基础1.已知集合M={x|x2-3x-28≤0},N={x|x2-x-6>0},则M∩N为()A.{x|-4≤x<-2或3<x≤7} B.{x|-4<x≤-2或3≤x<7}C.{x|x≤-2或x>3} D.{x|x<-2或x≥3}2.一元二次方程ax2+bx+c=0的根为2,-1,则当a<0时,不等式ax2+bx+c≥0的解集为() A.{x|x<-1或x>2} B.{x|x≤-1或x≥2}C.{x|-1<x<2} D.{x|-1≤x≤2}3.一元二次方程ax2+bx+c=0的根为2,-1,则当a<0时,不等式ax2+bx+c≥0的解() A.{x|x<-1或x>2} B.{x|x≤-1或x≥2}C.{x|-1<x<2} D.{x|-1≤x≤2}4.关于x的不等式ax-b>0的解集是(1,+∞),则关于x的不等式(ax+b)(x-3)>0的解集是() x|x<-1或x>3B.{x|-1<x<3}A.{}C.{x|1<x<3} D.{x|x<1或x>3}5.若不等式ax2-x-c>0的解集为{x|-2<x<1},则函数y=ax2-x-c的图象为()6.设集合A={x|(x-1)2<3x+7,x①R},则集合A∩Z中有________个元素.7.不等式-1<x2+2x-1≤2的解集是________.8.解关于x的不等式:x2+(1-a)x-a<0.9. 解不等式:x 2-3|x |+2≤0.能 力 练综合应用 核心素养10. 若0<t <1,则关于x 的不等式(t -x )(x -1t)>0的解集是( )A.⎩⎨⎧⎭⎬⎫x |1t <x <tB.⎩⎨⎧⎭⎬⎫x |x >1t 或x <tC.⎩⎨⎧⎭⎬⎫x |x <1t 或x >tD.⎩⎨⎧⎭⎬⎫x |t <x <1t11.设函数f (x )=⎩⎪⎨⎪⎧x 2-4x +6,x ≥0,x +6, x <0,则不等式f (x )>f (1)的解集是( )A .(-3,1)①(3,+∞)B .(-3,1)①(2,+∞)C .(-1,1)①(3,+∞)D .(-∞,-3)①(1,3)12.不等式x 2-px -q <0的解集是{x |2<x <3},则不等式qx 2-px -1>0的解是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪ x <-12或x >-13 B.⎩⎨⎧⎭⎬⎫x ⎪⎪-12<x <-13 C.⎩⎨⎧⎭⎬⎫x ⎪⎪13<x <12 D.{}x | x <2或x >3 13.已知x =1是不等式k 2x 2-6kx +8≥0的解,则k 的取值范围是______________.14.方程x 2+(m -3)x +m =0的两根都是负数,则m 的取值范围为________.15.若关于x 的不等式ax 2-6x +a 2>0的解集为{x |1<x <m },则a =________,m =________. 16.若不等式ax 2+bx +c ≥0的解集为⎩⎨⎧⎭⎬⎫x |-13≤x ≤2,求关于x 的不等式cx 2-bx +a <0的解集.17.解关于x 的不等式ax 2-2(a +1)x +4>0.【参考答案】1. A 解析 ①M ={x |x 2-3x -28≤0}={x |-4≤x ≤7},N ={x |x 2-x -6>0}={x |x <-2或x >3},①M ∩N ={x |-4≤x <-2或3<x ≤7}.2. D 解析 由题意知,-b a =1,ca =-2,①b =-a ,c =-2a ,又①a <0,①x 2-x -2≤0,①-1≤x ≤2.3. D 解析 由方程ax 2+bx +c =0的根为2,-1,知函数y =ax 2+bx +c 的零点为2,-1,又①a <0,①函数y =ax 2+bx +c 的图象是开口向下的抛物线,①不等式ax 2+bx +c ≥0的解集为{x |-1≤x ≤2}.4. A 解析 由题意,知a >0,且1是ax -b =0的根,所以a =b >0,所以(ax +b )(x -3)=a (x +1)(x -3)>0,所以x <-1或x >3,因此原不等式的解集为{x |x <-1或x >3}.5. B 解析 因为不等式的解集为{x |-2<x <1},所以a <0,排除C 、D ;又与坐标轴交点的横坐标为-2,1,故选B.6. 6 解析 由(x -1)2<3x +7,解得-1<x <6,即A ={x |-1<x <6},则A ∩Z ={0,1,2,3,4,5},故A ∩Z 共有6个元素.7. {x |-3≤x <-2或0<x ≤1} 解析 ①⎩⎪⎨⎪⎧x 2+2x -3≤0,x 2+2x >0,①-3≤x <-2或0<x ≤1.8. 解 方程x 2+(1-a )x -a =0的解为x 1=-1,x 2=a .函数y =x 2+(1-a )x -a 的图象开口向上,所以(1)当a <-1时,原不等式解集为{x |a <x <-1}; (2)当a =-1时,原不等式解集为①; (3)当a >-1时,原不等式解集为{x |-1<x <a }. 9. 解 原不等式等价于|x |2-3|x |+2≤0,即1≤|x |≤2.当x ≥0时,1≤x ≤2;当x <0时,-2≤x ≤-1. ①原不等式的解集为{x |-2≤x ≤-1或1≤x ≤2}.10. D 解析 ①0<t <1,①1t >1,①1t >t .①(t -x )(x -1t )>0①(x -t )(x -1t )<0①t <x <1t .11. A 解析 f (1)=12-4×1+6=3,当x ≥0时,x 2-4x +6>3,解得x >3或0≤x <1;当x <0时,x +6>3,解得-3<x <0. 所以f (x )>f (1)的解集是(-3,1)①(3,+∞).12. B [解析] 易知方程x 2-px -q =0的两个根是2,3.由根与系数的关系得⎩⎪⎨⎪⎧ 2+3=p ,2×3=-q ,解得⎩⎪⎨⎪⎧p =5,q =-6,不等式qx 2-px -1>0为-6x 2-5x -1>0,解得-12<x <-13.13. k ≤2或k ≥4 解析 x =1是不等式k 2x 2-6kx +8≥0的解,把x =1代入不等式得k 2-6k +8≥0,解得k ≥4或k ≤2.14. {m |m ≥9} 解析 ①⎩⎪⎨⎪⎧Δ=(m -3)2-4m ≥0,x 1+x 2=3-m <0,x 1x 2=m >0,①m ≥9.15. -3 -3 解析 可知1,m 是方程ax 2-6x +a 2=0的两个根,且a <0, ①⎩⎪⎨⎪⎧1+m =6a 1×m =a解得⎩⎪⎨⎪⎧ a =-3m =-3或⎩⎪⎨⎪⎧a =2m =2(舍去). 16.解 由ax 2+bx +c ≥0的解集为⎩⎨⎧⎭⎬⎫x |-13≤x ≤2,知a <0,且关于x 的方程ax 2+bx +c =0的两个根分别为-13,2,①⎩⎨⎧-13+2=-b a-13×2=c a,①b =-53a ,c =-23a .所以不等式cx 2-bx +a <0可变形为⎝⎛⎭⎫-23a x 2-⎝⎛⎭⎫-53a x +a <0,即2ax 2-5ax -3a >0. 又因为a <0,所以2x 2-5x -3<0,所以所求不等式的解集为⎩⎨⎧⎭⎬⎫x |-12<x <3.17.解 (1)当a =0时,原不等式可化为-2x +4>0,解得x <2,所以原不等式的解集为{x |x <2}.(2)当a >0时,原不等式可化为(ax -2)(x -2)>0,对应方程的两个根为x 1=2a,x 2=2.①当0<a <1时,2a >2,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >2a ,或x <2;①当a =1时,2a=2,所以原不等式的解集为{x |x ≠2};①当a >1时,2a <2,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >2,或x <2a . (3)当a <0时,原不等式可化为(-ax +2)(x -2)<0,对应方程的两个根为x 1=2a ,x 2=2,则2a<2,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪2a<x <2. 综上,a <0时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪2a<x <2; a =0时,原不等式的解集为{x |x <2};0<a ≤1时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >2a,或x <2; 当a >1时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >2,或x <2a2.3 第2课时 一元二次不等式的应用基 础 练巩固新知 夯实基础1.不等式x +5(x -1)2≥2的解集是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪ -3≤x ≤12 B.⎩⎨⎧⎭⎬⎫x ⎪⎪-12≤x ≤3C.⎩⎨⎧⎭⎬⎫x ⎪⎪ 12≤x <1或1<x ≤3 D.⎩⎨⎧⎭⎬⎫x ⎪⎪-12≤x ≤3且x ≠1 2.不等式4x +23x -1>0的解集是( )A.⎩⎨⎧⎭⎬⎫x | x >13或x <-12 B.⎩⎨⎧⎭⎬⎫x | -12<x <13C.⎩⎨⎧⎭⎬⎫x | x >13 D.⎩⎨⎧⎭⎬⎫x | x <-123.不等式2-xx +1<1的解集是( )A .{x |x >1}B .{x |-1<x <2} C.⎩⎨⎧⎭⎬⎫x | x <-1或x >12 D.⎩⎨⎧⎭⎬⎫x | -1<x <124. 若集合A ={x |ax 2-ax +1<0}=①,则实数a 的值的集合是( )A .{a |0<a <4}B .{a |0≤a <4}C .{a |0<a ≤4}D .{a |0≤a ≤4}5. 若关于x 的不等式x 2-4x -m ≥0对任意x ①(0,1]恒成立,则m 的最大值为 ( )A .1B .-1C .-3D .36.在如图所示的锐角三角形空地中,欲建一个面积不小于300 m 2的内接矩形花园(阴影部分),则其边长x (单位:m)的取值范围是( )A .15≤x ≤30B .12≤x ≤25C .10≤x ≤30D .20≤x ≤307. 若关于x 的不等式x -a x +1>0的解集为(-∞,-1)①(4,+∞),则实数a =________.8.若不等式x 2+mx +1>0的解集为R ,则m 的取值范围是__________.9.解下列分式不等式:(1)x +12x -3≤1; (2)2x +11-x <0.10. 当a 为何值时,不等式(a 2-1)x 2-(a -1)x -1<0的解集为R?能 力 练综合应用 核心素养11. 不等式x 2-2x -2x 2+x +1<2的解集为( )A .{x |x ≠-2}B .RC .①D .{x |x <-2或x >2}12.若不等式mx2+2mx-4<2x2+4x的解集为R,则实数m的取值范围是()A.(-2,2) B.(-2,2]C.(-∞,-2)①[2,+∞) D.(-∞,2)13.对任意a①[-1,1],函数f(x)=x2+(a-4)x+4-2a的值恒大于零,则x的取值范围是() A.1<x<3 B.x<1或x>3C.1<x<2 D.x<1或x>214.在R上定义运算①:x①y=x(1-y).若不等式(x-a)①(x+a)<1对任意的实数x都成立,则a的取值范围是________.15.已知2≤x≤3时,不等式2x2-9x+a<0恒成立,则a的取值范围为________.16.方程x2+(m-3)x+m=0有两个正实根,则m的取值范围是________.17.已知关于x的一元二次方程x2+2mx+2m+1=0.若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m的取值范围.18.某地区上年度电价为0.8元/kW·h,年用电量为a kW·h,本年度计划将电价降低到0.55元/kW·h至0.75元/kW·h之间,而用户期望电价为0.4元/kW·h.经测算,下调电价后新增的用电量与实际电价和用户期望电价的差成反比(比例系数为k).该地区电力的成本价为0.3元/kW·h.(1)写出本年度电价下调后,电力部门的收益y与实际电价x的函数关系式;(2)设k=0.2a,当电价最低定为多少时仍可保证电力部门的收益比上年度至少增长20%?注:收益=实际用电量×(实际电价-成本价).【参考答案】1. D 解析①原不等式等价于⎩⎪⎨⎪⎧ x +5≥2(x -1)2,x ≠1,①⎩⎪⎨⎪⎧2x 2-5x -3≤0,x ≠1,①⎩⎪⎨⎪⎧-12≤x ≤3,x ≠1,即⎩⎨⎧⎭⎬⎫x ⎪⎪-12≤x ≤3且x ≠1. 2. A 解析4x +23x -1>0①(4x +2)(3x -1)>0①x >13或x <-12,此不等式的解集为⎩⎨⎧⎭⎬⎫x | x >13或x <-12.3. C 解析原不等式等价于2-x x +1-1<0①1-2x x +1<0①(x +1)·(1-2x )<0①(2x -1)(x +1)>0,解得x <-1或x >12.4. D 解析 a =0时符合题意,a >0时,相应二次方程中的Δ=a 2-4a ≤0,得{a |0<a ≤4},综上得{a |0≤a ≤4}.5. C 解析 由已知可得m ≤x 2-4x 对一切x ①(0,1]恒成立,又f (x )=x 2-4x 在(0,1]上为减函数,①f (x )min =f (1)=-3,①m ≤-3.6. C 解析 设矩形的另一边长为y m ,则由三角形相似知,x 40=40-y40,①y =40-x ,①xy ≥300,①x (40-x )≥300,①x 2-40x +300≤0,①10≤x ≤30. 7. 4 解析x -ax +1>0①(x +1)(x -a )>0 ①(x +1)(x -4)>0,①a =4. 8. -2<m <2 解析 由题意知,不等式x 2+mx +1>0对应的函数的图象在x 轴的上方,所以Δ=(m )2-4×1×1<0,所以-2<m <2.9. 解 (1)①x +12x -3≤1,①x +12x -3-1≤0,①-x +42x -3≤0,即x -4x -32≥0.此不等式等价于(x -4)⎝⎛⎭⎫x -32≥0且x -32≠0,解得x <32或x ≥4.①原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <32或x ≥4. (2)由2x +11-x <0得x +12x -1>0,此不等式等价于⎝⎛⎭⎫x +12(x -1)>0,解得x <-12或x >1, ①原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-12或x >1.10.解 ①当a 2-1=0时,a =1或-1.若a =1,则原不等式为-1<0,恒成立.若a =-1,则原不等式为2x -1<0即x <12,不合题意,舍去.①当a 2-1≠0时,即a ≠±1时,原不等式的解集为R 的条件是⎩⎪⎨⎪⎧a 2-1<0,Δ=[-a -1]2+4a 2-1<0.解得-35<a <1.综上a 的取值范围是⎝⎛⎦⎤-35,1. 11. A 解析①x 2+x +1>0恒成立,①原不等式①x 2-2x -2<2x 2+2x +2①x 2+4x +4>0①(x +2)2>0,①x ≠-2. ①不等式的解集为{x |x ≠-2}.12. B 解析 ①mx 2+2mx -4<2x 2+4x , ①(2-m )x 2+(4-2m )x +4>0.当m =2时,4>0,x ①R ;当m <2时,Δ=(4-2m )2-16(2-m )<0,解得-2<m <2.此时,x ①R . 综上所述,-2<m ≤2.13. B 解析 设g (a )=(x -2)a +(x 2-4x +4),g (a )>0恒成立且a ①[-1,1]①⎩⎪⎨⎪⎧ g1=x 2-3x +2>0g-1=x 2-5x +6>0①⎩⎪⎨⎪⎧x <1或x >2x <2或x >3①x <1或x >3. 14. -12 <a <32 解析 根据定义得(x -a )①(x +a )=(x -a )[1-(x +a )]=-x 2+x +a 2-a ,又(x -a )①(x +a )<1对任意的实数x 都成立,所以x 2-x +a +1-a 2>0对任意的实数x 都成立,所以Δ<0,即1-4(a +1-a 2)<0,解得-12<a <32.15. a <9 解析 ①当2≤x ≤3时,2x 2-9x +a <0恒成立,①当2≤x ≤3时,a <-2x 2+9x 恒成立.令y =-2x 2+9x .①2≤x ≤3,且对称轴方程为x =94,①y min =9,①a <9.①a 的取值范围为a <9.16. (0,1] 解析 由题意得⎩⎪⎨⎪⎧Δ=m -32-4m ≥0x 1+x 2=3-m >0x 1x 2=m >0, 解得0<m ≤1.17. 解 设f (x )=x 2+2mx +2m +1,根据题意,画出示意图由图分析可得,m 满足不等式组⎩⎪⎨⎪⎧ f 0=2m +1<0f -1=2>0f 1=4m +2<0f 2=6m +5>0解得-56<m <-12. 18. 解(1)设下调后的电价为x 元/kW·h ,依题意知,用电量增至k x -0.4+a ,电力部门的收益为y =⎝⎛⎭⎫k x -0.4+a (x -0.3)(0.55≤x ≤0.75).(2)依题意,有⎩⎪⎨⎪⎧⎝⎛⎭⎫0.2ax -0.4+a (x -0.3)≥[a ×(0.8-0.3)](1+20%),0.55≤x ≤0.75.整理,得⎩⎪⎨⎪⎧ x 2-1.1x +0.3≥0,0.55≤x ≤0.75.解此不等式,得0.60≤x ≤0.75.①当电价最低定为0.60元/kW·h 时,仍可保证电力部门的收益比上年度至少增长20%.。
高中数学必修一第二章一元二次函数方程和不等式专项训练(带答案)
高中数学必修一第二章一元二次函数方程和不等式专项训练单选题1、若a>0,b>0,则下面结论正确的有()A.2(a2+b2)≤(a+b)2B.若1a +4b=2,则a+b≥92C.若ab+b2=2,则a+b≥4D.若a+b=1,则ab有最大值12答案:B分析:对于选项ABD利用基本不等式化简整理求解即可判断,对于选项C取特值即可判断即可. 对于选项A:若a>0,b>0,由基本不等式得a2+b2≥2ab,即2(a2+b2)≥(a+b)2,当且仅当a=b时取等号;所以选项A不正确;对于选项B:若a>0,b>0,1 2×(1a+4b)=1,a+b=12×(1a+4b)(a+b)=12(5+ba+4ab)≥12(5+2√ba⋅4ab)=92,当且仅当1a +4b=2且ba=4ab,即a=32,b=3时取等号,所以选项B正确;对于选项C:由a>0,b>0,ab+b2=b(a+b)=2,即a+b=2b,如b=2时,a+b=22=1<4,所以选项C不正确;对于选项D:ab≤(a+b2)2=14,当且仅当a=b=12时取等则ab有最大值14,所以选项D不正确;故选:B2、若不等式2x2+2mx+m4x2+6x+3<1对一切实数x均成立,则实数m的取值范围是()A .(1,3)B .(−∞,1)C .(−∞,1)∪(3,+∞)D .(3,+∞) 答案:A分析:因为4x 2+6x +3=4(x +34)2+34>0恒成立,则2x 2+2mx+m 4x 2+6x+3<1恒成立可转化为2x 2+(6−2m )x +(3−m )>0恒成立,则Δ<0,即可解得m 的取值范围 因为4x 2+6x +3=4(x +34)2+34>0恒成立 所以2x 2+2mx+m 4x 2+6x+3<1恒成立⇔2x 2+2mx +m <4x 2+6x +3恒成立 ⇔2x 2+(6−2m )x +(3−m )>0恒成立 故Δ=(6−2m )2−4×2×(3−m )<0 解之得:1<m <3 故选:A3、若不等式ax 2+bx +2>0的解集是{x |−12<x <13},则ax +b >0的解集为( )A .(−∞,−16)B .(−∞,16)C .(−16,+∞)D .(16,+∞)答案:A分析:利用根于系数的关系先求出a,b ,再解不等式即可. 不等式ax 2+bx +2>0的解集是{x |−12<x <13} 则根据对应方程的韦达定理得到:{(−12)+13=−ba(−12)⋅13=2a , 解得{a =−12b =−2,则−12x −2>0的解集为(−∞,−16) 故选:A4、不等式|5x −x 2|<6的解集为( )A .{x|x <2,或x >3}B .{x|−1<x <2,或3<x <6}C .{x|−1<x <6}D .{x|2<x <3}答案:B分析:按照绝对值不等式和一元二次不等式求解即可. 解:∵|5x−x2|<6,∴−6<5x−x2<6∴{x 2−5x−6<0x2−5x+6>0⇒{−1<x<6x<2或x>3⇒−1<x<2或3<x<6则不等式的解集为:{x|−1<x<2或3<x<6}故选:B.5、已知x>0,y>0,且x+y=2,则下列结论中正确的是()A.2x +2y有最小值4B.xy有最小值1C.2x+2y有最大值4D.√x+√y有最小值4答案:A分析:利用基本不等式和不等式的性质逐个分析判断即可解:x>0,y>0,且x+y=2,对于A,2x +2y=12(x+y)(2x+2y)=2+xy+yx≥2+2√xy⋅yx=4,当且仅当x=y=1时取等号,所以A正确,对于B,因为2=x+y≥2√xy,所以xy≤1,当且仅当x=y=1时取等号,即xy有最大值1,所以B错误,对于C,因为2x+2y≥2√2x⋅2y=2√2x+y=4,当且仅当x=y=1时取等号,即2x+2y有最小值4,所以C错误,对于D,因为(√x+√y)2=x+y+2√xy≤2(x+y)=4,当且仅当x=y=1时取等号,即√x+√y有最大值4,所以D错误,故选:A6、已知集合M={x|−4<x<2},N={x|x2−x−6<0},则M∩N=A.{x|−4<x<3}B.{x|−4<x<−2}C.{x|−2<x<2}D.{x|2<x<3}答案:C分析:本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.由题意得,M={x|−4<x<2},N={x|−2<x<3},则M∩N={x|−2<x<2}.故选C.小提示:不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.7、关于x的方程x2+(m−2)x+2m−1=0恰有一根在区间(0,1)内,则实数m的取值范围是()A.[12,32]B.(12,23]C.[12,2)D.(12,23]∪{6−2√7}答案:D分析:把方程的根转化为二次函数的零点问题,恰有一个零点属于(0,1),分为三种情况,即可得解. 方程x2+(m-2)x+2m-1=0对应的二次函数设为:f(x)=x2+(m-2)x+2m-1因为方程x2+(m-2)x+2m-1=0恰有一根属于(0,1),则需要满足:①f(0)⋅f(1)<0,(2m-1)(3m-2)<0,解得:12<m<23;②函数f(x)刚好经过点(0,0)或者(1,0),另一个零点属于(0,1),把点(0,0)代入f(x)=x2+(m-2)x+2m-1,解得:m=12,此时方程为x2-32x=0,两根为0,32,而32⋅(0,1),不合题意,舍去把点(1,0)代入f(x)=x2+(m-2)x+2m-1,解得:m=23,此时方程为3x2-4x+1=0,两根为1,13,而13⋅(0,1),故符合题意;③函数与x轴只有一个交点,Δ=(m-2)2-8m+4=0,解得m=6±2√7,经检验,当m=6-2√7时满足方程恰有一根在区间 (0,1) 内;综上:实数m的取值范围为(12,23]⋅{6-2√7}故选:D8、已知1a <1b<0,则下列结论正确的是()A.a<b B.a+b<ab C.|a|>|b|D.ab>b2答案:B分析:结合不等式的性质、差比较法对选项进行分析,从而确定正确选项.因为1a <1b<0,所以b<a<0,故A错误;因为b<a<0,所以a+b<0,ab>0,所以a+b<ab,故B正确;因为b<a<0,所以|a|>|b|不成立,故C错误;ab−b2=b(a−b),因为b<a<0,所以a−b>0,即ab−b2=b(a−b)<0,所以ab<b2成立,故D错误.故选:B多选题9、若a,b,c∈R,则下列命题正确的是()A.若ab≠0且a<b,则1a >1bB.若0<a<1,则a2<aC.若a>b>0且c>0,则b+ca+c >baD.a2+b2+1≥2(a−2b−2)答案:BCD分析:由不等式的性质逐一判断即可.解:对于A,当a<0<b时,结论不成立,故A错误;对于B,a2<a等价于a(a−1)<0,又0<a<1,故成立,故B正确;对于C,因为a>b>0且c>0,所以b+ca+c >ba等价于ab+ac>ab+bc,即(a−b)c>0,成立,故C正确;对于D,a2+b2+1≥2(a−2b−2)等价于(a−1)2+(b+2)2≥0,成立,故D正确. 故选:BCD.10、已知正实数a,b满足a+b=ab,则()A.a+b≥4B.ab≥6C.a+2b≥3+2√2D.ab2+ba2≥1答案:ACD分析:根据特殊值判断B,利用ab⩽(a+b)24判断A,利用换“1”法判断C,变形后利用基本不等式判断D. 对于B,当a=b=2时,满足a+b=ab,此时ab<6,B错误;对于A,ab⩽(a+b)24,则(a+b)24⩾a+b,变形可得a+b⩾4,当且仅当a=b=2时等号成立,A正确;对于C ,a +b =ab ,变形可得1a +1b =1,则有a +2b =(a +2b)(1a +1b )=3+2b a+ab ⩾3+2√2,当且仅当a =2b 时等号成立,C 正确; 对于D ,ab 2+ba 2=a 3+b 3a 2b 2=(a+b)(a 2+b 2−ab)a 2b 2=b a +ab −1⩾2−1=1,当且仅当a =b =2时等号成立,D 正确;故选:ACD11、对任意两个实数a,b ,定义min{a ,b}={a,a ≤b,b,a >b,若f (x )=2−x 2,g (x )=x 2,下列关于函数F (x )=min {f (x ),g (x )}的说法正确的是( ) A .函数F (x )是偶函数 B .方程F (x )=0有三个解C .函数F (x )在区间[−1,1]上单调递增D .函数F (x )有4个单调区间 答案:ABD分析:结合题意作出函数F (x )=min {f (x ),g (x )}的图象,进而数形结合求解即可.解:根据函数f (x )=2−x 2与g (x )=x 2,,画出函数F (x )=min {f (x ),g (x )}的图象,如图. 由图象可知,函数F (x )=min {f (x ),g (x )}关于y 轴对称,所以A 项正确; 函数F (x )的图象与x 轴有三个交点,所以方程F (x )=0有三个解,所以B 项正确;函数F (x )在(−∞,−1]上单调递增,在[−1,0]上单调递减,在[0,1]上单调递增,在[1,+∞)上单调递减,所以C 项错误,D 项正确. 故选:ABD填空题12、若不等式kx2+2kx+2<0的解集为空集,则实数k的取值范围是_____.答案:{k|0≤k≤2}分析:分k=0和k>0两种情况讨论,当k>0时需满足Δ≤0,即可得到不等式,解得即可;解:当k=0时,2<0不等式无解,满足题意;当k>0时,Δ=4k2−8k≤0,解得0<k≤2;综上,实数k的取值范围是{k|0≤k≤2}.所以答案是:{k|0≤k≤2}13、已知a,b,a+m均为大于0的实数,给出下列五个论断:①a>b,②a<b,③m>0,④m<0,⑤b+ma+m >ba.以其中的两个论断为条件,余下的论断中选择一个为结论,请你写出一个正确的命题___________. 答案:①③推出⑤(答案不唯一还可以①⑤推出③等)解析:选择两个条件根据不等式性质推出第三个条件即可,答案不唯一.已知a,b,a+m均为大于0的实数,选择①③推出⑤.①a>b,③m>0,则b+ma+m −ba=ab+am−ab−bma(a+m)=am−bma(a+m)=(a−b)ma(a+m)>0,所以b+ma+m >ba.所以答案是:①③推出⑤小提示:此题考查根据不等式的性质比较大小,在已知条件中选择两个条件推出第三个条件,属于开放性试题,对思维能力要求比较高.14、已知不等式ax2+bx+c>0的解集为(2,4),则不等式cx2+bx+a<0的解集为___________.答案:{x|x>12或x<14}分析:先由不等式ax2+bx+c>0的解集为(2,4),判断出b=-6a,c=8a,把cx2+bx+a<0化为8x2−6x+ 1>0,即可解得.因为不等式ax2+bx+c>0的解集为(2,4),所以a<0且2和4是ax2+bx+c=0的两根.所以{2+4=−ba2×4=ca可得:{b=−6ac=8a,所以cx2+bx+a<0可化为:8ax2−6ax+a<0,因为a<0,所以8ax2−6ax+a<0可化为8x2−6x+1>0,即(2x−1)(4x−1)>0,解得:x>12或x<14,所以不等式cx2+bx+a<0的解集为{x|x>12或x<14}.所以答案是:{x|x>12或x<14}.解答题15、回答下列问题:(1)若a>b,且c>d,能否判断a−c与b−d的大小?举例说明.(2)若a>b,且c<d,能否判断a+c与b+d的大小?举例说明.(3)若a>b,且c>d,能否判断ac与bd的大小?举例说明.(4)若a>b,c<d,且c≠0,d≠0,能否判断ac 与bd的大小?举例说明.答案:(1)不能判断,举例见解析(2)不能判断,举例见解析(3)不能判断,举例见解析(4)不能判断,举例见解析分析:因为a,b,c,d的正负不确定,因此可举例说明每个小题中的两式的大小关系不定. (1)不能判断a−c与b−d的大小,举例:取a=5,b=3,c=1,d=0,满足条件a>b,且c>d,此时a−c>b−d;取a=5,b=4,c=3,d=0,满足条件a>b,且c>d,此时a−c<b−d;取a=5,b=4,c=3,d=2,满足条件a>b,且c>d,此时a−c=b−d;(2)不能判断a+c与b+d的大小,举例:取a=5,b=3,c=0,d=1,满足条件a>b,且c<d,此时a+c>b+d;取a=5,b=3,c=2,d=6,满足条件a>b,且c<d,此时a+c<b+d.取a=5,b=3,c=4,d=6,满足条件a>b,且c<d,此时a+c=b+d;(3)不能判断ac与bd的大小,举例:取a=5,b=3,c=1,d=0,满足条件a>b,且c>d,此时ac>bd;取a=5,b=3,c=−3,d=−5,满足条件a>b,且c>d,此时ac=bd;取a=5,b=−3,c=1,d=−2,满足条件a>b,且c>d,此时ac<bd;(4)不能判断ac 与bd的大小举例:取a=6,b=3,c=1,d=2,满足条件a>b,且c<d,此时ac >bd;取a=2,b=1,c=−1,d=2,满足条件a>b,且c<d,此时ac <bd;取a=6,b=3,c=−2,d=−1,满足条件a>b,且c<d,此时ac =bd;。
高中数学必修一第二章一元二次函数方程和不等式知识总结例题(带答案)
高中数学必修一第二章一元二次函数方程和不等式知识总结例题单选题1、在开山工程爆破时,已知导火索燃烧的速度是每秒0.5 cm ,人跑开的速度为每秒4 m ,为了使点燃导火索的人能够在爆破时跑到100 m 以外的安全区,导火索的长度x (cm )应满足的不等式为( ) A .4×x 0.5≥100B .4×x 0.5≤100C .4×x0.5>100D .4×x0.5<100 答案:C分析:为了安全,则人跑开的路程应大于100米,路程=速度×时间,其中时间即导火索燃烧的时间. 导火索燃烧的时间x0.5秒,人在此时间内跑的路程为4×x 0.5m .由题意可得4×x 0.5>100.故选:C.2、若不等式ax 2+bx +2>0的解集是{x |−12<x <13},则ax +b >0的解集为( ) A .(−∞,−16)B .(−∞,16)C .(−16,+∞)D .(16,+∞) 答案:A分析:利用根于系数的关系先求出a,b ,再解不等式即可. 不等式ax 2+bx +2>0的解集是{x |−12<x <13} 则根据对应方程的韦达定理得到:{(−12)+13=−ba(−12)⋅13=2a , 解得{a =−12b =−2,则−12x −2>0的解集为(−∞,−16)故选:A3、若关于x 的不等式x 2−6x +11−a <0在区间(2,5)内有解,则实数a 的取值范围是( ) A .(−2,+∞)B .(3,+∞)C .(6,+∞)D .(2,+∞) 答案:D分析:设f(x)=x2−6x+11,由题意可得a>f(x)min,从而可求出实数a的取值范围设f(x)=x2−6x+11,开口向上,对称轴为直线x=3,所以要使不等式x2−6x+11−a<0在区间(2,5)内有解,只要a>f(x)min即可,即a>f(3)=2,得a>2,所以实数a的取值范围为(2,+∞),故选:D4、已知a>1,则a+4a−1的最小值是()A.5B.6C.3√2D.2√2答案:A分析:由于a>1,所以a−1>0,则a+4a−1=(a−1)+4a−1+1,然后利用基本不等式可求出其最小值由于a>1,所以a−1>0所以a+4a−1=a−1+4a−1+1≥2√(a−1)⋅4(a−1)+1=5,当且仅当a−1=4a−1,即a=3时取等号.故选:A.5、不等式−x2+3x+18<0的解集为()A.{x|x>6或x<−3}B.{x|−3<x<6}C.{x|x>3或x<−6}D.{x|−6<x<3}答案:A分析:根据二次不等式的解法求解即可.−x2+3x+18<0可化为x2−3x−18>0,即(x−6)(x+3)>0,即x>6或x<−3.所以不等式的解集为{x|x>6或x<−3}.故选:A6、已知使不等式x2+(a+1)x+a≤0成立的任意一个x,都满足不等式3x−1≤0,则实数a的取值范围为()A .(−∞,−13)B .(−∞,−13] C .[−13,+∞)D .(−13,+∞) 答案:C分析:使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0,则不等式x 2+(a +1)x +a ≤0的解集是(−∞,13]的子集,求出两个不等式的解集,利用集合的包含关系列不等式求解. 解:由3x −1≤0得x ≤13,因为使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0 则不等式x 2+(a +1)x +a ≤0的解集是(−∞,13]的子集,又由x 2+(a +1)x +a ≤0得(x +a )(x +1)≤0, 当a =1,x ∈{−1}⊆(−∞,13],符合;当a <1,x ∈[−1,−a ]⊆(−∞,13],则−a ≤13,∴1>a ≥−13,当a >1,x ∈[−a,−1]⊆(−∞,13],符合, 故实数a 的取值范围为[−13,+∞). 故选:C.7、已知x ∈R ,则“(x −2)(x −3)≤0成立”是“|x −2|+|x −3|=1成立”的( )条件. A .充分不必要B .必要不充分 C .充分必要D .既不充分也不必要 答案:C分析:先证充分性,由(x −2)(x −3)≤0 求出x 的取值范围,再根据x 的取值范围化简|x −2|+|x −3|即可,再证必要性,若|x −2|+|x −3|=1,即|x −2|+|x −3|=|(x −2)−(x −3)|,再根据绝对值的性质可知(x −2)(x −3)≤0.充分性:若(x −2)(x −3)≤0,则2≤x ≤3, ∴|x −2|+|x −3|=x −2+3−x =1,必要性:若|x −2|+|x −3|=1,又∵|(x −2)−(x −3)|=1,∴|x −2|+|x −3|=|(x −2)−(x −3)|, 由绝对值的性质:若ab ≤0,则|a |+|b |=|a −b|, ∴(x −2)(x −3)≤0,所以“(x −2)(x −3)≤0成立”是“|x −2|+|x −3|=1成立”的充要条件, 故选:C .8、已知二次函数y =ax 2+bx +c 的图象如图所示,则不等式ax 2+bx +c >0的解集是( )A .{x|−2<x <1}B .{x|x <−2或x >1}C .{x|−2≤x ≤1}D .{x|x ≤−2或x ≥1} 答案:A分析:由二次函数与一元二次不等式关系,结合函数图象确定不等式解集. 由二次函数图象知:ax 2+bx +c >0有−2<x <1. 故选:A 多选题9、若正实数a ,b 满足a +b =1,则下列说法正确的是( ) A .ab 有最大值14B .√a +√b 有最大值√2C .1a+1b有最小值4D .a 2+b 2有最小值√22答案:ABC分析:由已知结合基本不等式及相关结论分别分析各选项即可判断.解:因为正实数a ,b 满足a +b =1,所以1=a +b ≥2√ab ,当且仅当a =b =12时取等号,所以ab ≤14,故ab 有最大值14,故A 正确;(√a +√b)2=a +b +2√ab =1+2√ab ≤1+2√14=2,当且仅当a =b =12时取等号,故√a +√b ≤√2,即√a +√b 有最大值√2,故B 正确;1a+1b=a+b ab=1ab≥4,当且仅当a =b =12时取等号,故1a+1b有最小值4,故C 正确;a 2+b 2=(a +b )2−2ab =1−2ab ≥12,当且仅当a =b =12时取等号,所以a 2+b 2有最小值12,故D 错误. 故选:ABC .10、若−1<a <b <0,则( )A .a 2+b 2>2abB .1a <1b C .a +b >2√ab D .a +1a >b +1b 答案:AD分析:应用作差法判断B 、D ,根据重要不等式判断A ,由不等式性质判断C. A :由重要不等式知:a 2+b 2≥2ab ,而−1<a <b <0,故a 2+b 2>2ab ,正确; B :由−1<a <b <0,则1a −1b =b−a ab>0,故1a >1b ,错误;C :由−1<a <b <0,则a +b <0<2√ab ,错误;D :(a +1a)−(b +1b)=a −b +1a−1b=a −b +b−a ab=(a −b)(ab−1ab)>0,故a +1a>b +1b,正确.故选:AD11、设a >0,b >0,给出下列不等式恒成立的是( ) A .a 2+1>a B .a 2+9>6aC .(a +b )(1a +1b )≥4D .(a +1a )(b +1b )≥4答案:ACD分析:选项A ,B 可用作差法比较大小;选项C ,D 可用基本不等式求范围. 由(a 2+1)−a =(a −12)2+34>0可得a 2+1>a ,故A 正确; 由(a 2+9)−6a =(a −3)2≥0可得a 2+9≥6a ,故B 错误;由(a +b )(1a +1b )=2+ab +ba ≥2+2√ab ⋅ba =4,当且仅当a =b 时取等号,故C 正确; 由(a +1a )(b +1b )=(ab +1ab )+(ab +ba )≥2√ab ⋅1ab +2√ab ⋅ba =4,当且仅当{ab =1aba b=b a,即a =b =1时取等号,故D 正确. 故选:ACD. 填空题12、不等式x+3x−1>0的解集为______________. 答案:{x |x <−3或x >1}分析:由题可得(x −1)(x +3)>0,进而即得. 由x+3x−1>0,得(x −1)(x +3)>0, 所以x <−3或x >1,故不等式得解集为{x |x <−3或x >1}. 所以答案是:{x |x <−3或x >1}. 13、不等式x 2+2x−3x+1≥0的解集为__________.答案:[−3,−1)∪[1,+∞) 分析:将x 2+2x−3x+1≥0等价转化为{x 2+2x −3≥0x +1>0 或{x 2+2x −3≤0x +1<0,解不等式组可得答案.原不等式等价于{x 2+2x −3≥0x +1>0 或{x 2+2x −3≤0x +1<0, 解得x ≥1 或−3≤x <−1 , 所以答案是:[−3,−1)∪[1,+∞)14、若0<x <2,则y =√2x(2−x)的最大值为_______ 答案:√2分析:由基本不等式求最大值.∵0<x <2,∴2−x >0,∴y =√2⋅√x(2−x)≤√2⋅x+2−x 2=√2,当且仅当x =2−x 即x =1时取等号,∴当x =1时,有最大值√2. 所以答案是:√2. 解答题15、某汽车公司购买了4辆大客车用于长途客运,每辆200万元,预计每辆客车每年收入约100万元,每辆客车第一年各种费用约为16万元,从第二年开始每年比上一年所需费用要增加16万元.(1)写出4辆客车运营的总利润y(万元)与运营年数x(x∈N∗)的函数关系式:(2)这4辆客车运营多少年,可使年平均运营利润最大?最大利润是多少?答案:(1)y=16(−2x2+23x−50);(2)这4辆客车运营5年,可使年平均运营利润最大,最大利润为48万元.分析:(1)由题知,每辆车x年总收入为100x万元,总支出为200+16×(1+2+3+⋅⋅⋅+x),进而得利润的表达式y=16(−2x2+23x−50);(2)结合(1)得年平均运营利润为yx =16[23−2(x+25x)],再根据基本不等式求解即可得答案.解:(1)依题意得,每辆车x年总收入为100x万元,总支出为200+16×(1+2+3+⋅⋅⋅+x)=200+16×x(1+x)2=200+8x(x+1),所以4辆客车运营的总利润y=4[100x−200−8x(x+1)]=16(−2x2+23x−50).(2)年平均运营利润为yx =16(−2x+23−50x)=16[23−2(x+25x)],因为x∈N∗,所以x+25x ≥2√x⋅25x=10,当且仅当x=5时,等号成立,此时yx≤16×(23−2×10)=48,所以这4辆客车运营5年,可使年平均运营利润最大,最大利润为48万元.。
高中数学必修一第二章一元二次函数方程和不等式知识点总结归纳(带答案)
高中数学必修一第二章一元二次函数方程和不等式知识点总结归纳单选题1、设a>b>1,y1=b+1a+1,y2=ba,y3=b−1a−1,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y2<y3<y1答案:C分析:利用作差法先比较y1,y2,再比较y2,y3即可得出y1,y2,y3的大小关系.解:由a>b>1,有y1﹣y2=b+1a+1−ba=ab+a−ab−b(a+1)a=a−b(a+1)a>0,即y1>y2,由a>b>1,有y2﹣y3=ba −b−1a−1=ab−b−ab+aa(a−1)=a−ba(a−1)>0,即y2>y3,所以y1>y2>y3,故选:C.2、已知a>0,b>0,a+b=1,则y=1a +3b的最小值是()A.7B.2+√3C.4D.4+2√3答案:D分析:由“1”的妙用和基本不等式可求得结果. 因为a>0,b>0,a+b=1,所以y=1a +3b=(a+b)(1a+3b)=4+ba+3ab≥4+2√ba⋅3ab=4+2√3,当且仅当ba =3ab即b=√3a时,等号成立.结合a+b=1可知,当a=√3−12,b=3−√32时,y有最小值4+2√3.故选:D.3、下列命题正确的是()A.若ac>bc,则a>b B.若ac=bc,则a=bC.若a>b,则1a <1bD.若ac2>bc2,则a>b答案:D分析:由不等式性质依次判断各个选项即可. 对于A ,若c <0,由ac >bc 可得:a <b ,A 错误;对于B ,若c =0,则ac =bc =0,此时a =b 未必成立,B 错误; 对于C ,当a >0>b 时,1a>0>1b,C 错误;对于D ,当ac 2>bc 2时,由不等式性质知:a >b ,D 正确. 故选:D.4、将进货价为每个80元的商品按90元一个出售时,能卖出400个,每涨价1元,销售量就减少20个,为了使商家利润有所增加,则售价a (元/个)的取值范围应是( ) A .90<a <100B .90<a <110C .100<a <110D .80<a <100 答案:A分析:首先设每个涨价x 元,涨价后的利润与原利润之差为y 元,结合条件列式,根据y >0,求x 的取值范围,即可得到a 的取值范围.设每个涨价x 元,涨价后的利润与原利润之差为y 元,则a =x +90,y =(10+x)⋅(400−20x)−10×400=−20x 2+200x .要使商家利润有所增加,则必须使y >0,即x 2−10x <0,得0<x <10,∴90<x +90<100,所以a 的取值为90<a <100. 故选:A5、已知a,b ∈R 且满足{1≤a +b ≤3−1≤a −b ≤1,则4a +2b 的取值范围是( )A .[0,12]B .[4,10]C .[2,10]D .[2,8] 答案:C分析:设4a +2b =A (a +b )+B (a −b ),求出A ,B 结合条件可得结果. 设4a +2b =A (a +b )+B (a −b ),可得{A +B =4A −B =2,解得{A =3B =1,4a +2b =3(a +b )+a −b ,因为{1≤a +b ≤3−1≤a −b ≤1 可得{3≤3(a +b )≤9−1≤a −b ≤1 ,所以2≤4a +2b ≤10. 故选:C.6、已知a >0,b >0,若a +4b =4ab ,则a +b 的最小值是( ) A .2B .√2+1C .94D .52答案:C分析:将a +4b =4ab ,转化为1b +4a =4,由a +b =14(a +b )(1b +4a )=14(5+ab +4b a),利用基本不等式求解.因为a +4b =4ab , 所以1b +4a =4,所以a +b =14(a +b )(1b +4a )=14(5+ab +4b a),≥14(5+2√ab ⋅4b a)=94, 当且仅当{1b +4a=4ab=4b a,即{a =32b =34时,等号成立, 故选:C7、若(x −a)2<4成立的一个充分不必要条件是1+12−x ≤0,则实数a 的取值范围为( ) A .(−∞,4]B .[1,4]C .(1,4)D .(1,4] 答案:D分析:解一元二次不等式、分式不等式求得题设条件为真时对应x 的范围,再根据条件的充分不必要关系求参数a 的取值范围.由(x −a)2<4,可得:a −2<x <a +2;由1+12−x =3−x 2−x ≤0,则{(x −2)(x −3)≤02−x ≠0,可得2<x ≤3;∵(x −a)2<4成立的一个充分不必要条件是1+12−x ≤0, ∴{a −2≤2a +2>3,可得1<a ≤4.故选:D.8、已知正实数a ,b 满足a +1b =2,则2ab +1a 的最小值是( ) A .52B .3C .92D .2√2+1 答案:A分析:由已知得, a =2−1b 代入得2ab +1a =2(2b −1)+b2b−1,令2b −1=t ,根据基本不等式可求得答案. 解:因为a +1b=2,所以a =2−1b>0,所以0<b <2 ,所以2ab +1a =2(2−1b )b +b 2b−1=2(2b −1)+b2b−1, 令2b −1=t ,则b =t +12,且−1<t <3 ,所以2ab +1a =2t +t +12t=2t +12t+12≥2√2t ⋅12t+12=52,当且仅当2t =12t,即t =12,b =34,a =23时,取等号,所以2ab +1a 的最小值是52. 故选:A. 多选题9、《几何原本》中的几何代数法(以几何方法研究代数问题)成为了后世数学家处理问题的重要依据.通过这一原理,很多代数的公理或定理都能够通过图形实现证明.如图,在AB 上取一点C ,使得AC =a,BC =b ,过点C 作CD ⊥AB 交以AB 为直径,O 为圆心的半圆周于点D ,连接OD .下面不能由OD ≥CD 直接证明的不等式为( )A .√ab ≤a+b 2(a >0,b >0)B .√ab ≥2ab a+b(a >0,b >0)C .a 2+b 2≥2ab(a >0,b >0)D .a+b 2≤a 2+b 22(a >0,b >0)答案:BCD解析:由AC =a,BC =b ,得到OD =12(a +b ),然后利用射影定理得到CD 2=ab 判断. 因为AC =a,BC =b ,所以OD =12(a +b ),因为∠ADB =90∘,所以由射影定理得CD 2=ab , 因为OD ≥CD , 所以√ab ≤a+b 2,当且仅当a =b 时取等号,故选:BCD10、已知P =a 2+b 2,Q =2ab ,R =(a+b )22,则( )A .P ≥RB .Q ≥RC .P ≤RD .P ≥Q 答案:AD分析:对于A,B,C 利用作差法即可比较出大小,对于D 利用不等式传递性即可. 对于A ,P −R =(a 2+b 2)−(a+b )22=(a−b )22≥0,则P ≥R ,故A 正确;对于B ,R −Q =(a+b )22−2ab =a 2−2ab+b 22=(a−b )22≥0,所以R ≥Q ,故B 错误;对于C ,由已证得P ≥R ,故C 错误; 因为P ≥R ,R ≥Q ,所以P ≥Q ,故D 正确 故选:AD11、已知x >0,y >0且3x +2y =10,则下列结论正确的是( ) A .xy 的最大值为625B .√3x +√2y 的最大值为2√5 C .3x+2y的最小值为52D .x 2+y 2的最大值为10013答案:BC分析:利用基本不等式直接判断A ;利用基本不等式求得(√3x +√2y)2的最大值可判断B ;利用基本不等式“1”的代换可判断C ;利用二次函数的性质可判断D ; ∵x >0,y >0且3x +2y =10,∴0<x <103,0<y <5对于A ,利用基本不等式得10=3x +2y ≥2√3x ×2y ,化简得xy ≤256,当且仅当3x =2y ,即x =53,y =52时,等号成立,所以xy 的最大值为256,故A 错误;对于B ,(√3x +√2y)2=3x +2y +2√6xy =10+2√6xy ≤10+10=20,当且仅当3x =2y ,即x =53,y =52时,等号成立,所以√3x +√2y 的最大值为2√5,故B 正确;对于C ,3x +2y =110×(3x +2y )(3x +2y )=110×(9+6x y +6y x+4)≥110×(13+2√6x y ⋅6yx)=52, 当且仅当6xy =6yx,即x =y =2时,等号成立,所以3x +2y 的最小值为52,故C 正确; 对于D ,x 2+y 2=(10−2y 3)2+y 2=13y 2−40y+1009(0<y <5)利用二次函数的性质知,当0<y <2013时,函数单调递减;当2013<y <5时,函数单调递增,∴(x 2+y2)min=13×(2013)2−40×2013+1009=10013,(x 2+y 2)max <13×(5)2−40×5+1009=2259,故D 错误;故选:BC 填空题12、设x 1、x 2、x 3、y 1、y 2、y 3是六个互不相等的实数,则在以下六个式子中:x 1y 1+x 2y 2+x 3y 3,x 1y 1+x 2y 3+x 3y 2,x 1y 2+x 2y 3+x 3y 1,x 1y 2+x 2y 1+x 3y 3,x 1y 3+x 2y 2+x 3y 1,x 1y 3+x 2y 1+x 3y 2,能同时取到150的代数式最多有________个. 答案:2分析:由作差法比较大小后判断 不妨设x 1<x 2<x 3,y 1<y 2<y 3,记x 1y 1+x 2y 2+x 3y 3为①式,x 1y 1+x 2y 3+x 3y 2为②式,以此类推, 由①−②=x 2y 2+x 3y 3−x 2y 3−x 3y 2=(x 2−x 3)(y 2−y 3)>0,故①>②, ②−③=x 1y 1+x 3y 2−x 1y 2−x 3y 1=(x 1−x 3)(y 1−y 2)>0,故②>③, ①−④=x 1y 1+x 2y 2−x 1y 2−x 2y 1=(x 1−x 2)(y 1−y 2)>0,故①>④, 同理得,①>⑤,②>⑥,③>⑤,④>③,④>⑥,⑥>⑤, 综上可知①>②>③>⑤,①>④>③>⑤,且②>⑥>⑤,④>⑥>⑤, 最多有②④或③⑥两项可同时取150,令x 1y 1+x 2y 3+x 3y 2=x 1y 2+x 2y 1+x 3y 3=150,得其一组解为{x 1=−1x 2=0x 3=1 ,{y 1=2y 2=152y 3=302所以答案是:213、已知实数x ,y ,满足{−1≤x +y ≤4,2≤x −y ≤3,则z =2x −3y 的取值范围是________.(用区间表示)答案:[3,8]分析:直接用x +y,x −y 表示出2x −3y ,然后由不等式性质得出结论. 2x −3y =m(x +y)+n(x −y)=(m +n )x +(m −n )y ,则{m +n =2m −n =−3 解得{m =−12n =52 ,则2x −3y =−12(x +y)+52(x −y), 又−1≤x +y ≤4,2≤x −y ≤3, −2≤−12(x +y )≤12, 5≤52(x −y )≤152∴5−2≤2x −3y ≤12+152,即3≤2x −3y ≤8, 所以答案是:[3,8].14、函数y =3x +1x−1(x >1)的最小值是_____ 答案:3+2√3分析:利用基本不等式可求得原函数的最小值. 因为x >1,则x −1>0,所以y =3(x −1)+1x−1+3≥2√3(x −1)×1x−1+3=2√3+3, 当且仅当3(x −1)=1x−1,因为x >1,即当x =3+√33时,等号成立.所以函数y =3x +1x−1(x >1)的最小值是2√3+3.所以答案是:3+2√3. 解答题15、已知a >0,b >0.(1)求证:a2+3b2≥2b(a+b);(2)若a+b=2ab,求ab的最小值.答案:(1)证明见解析;(2)1.分析:(1)对不等式两边式子作差,分解因式,判断作差的结果的符号,可得证.(2)根据a+b=2ab,可得2ab=a+b≥2√ab,从而得到√ab≥1,进而求得ab≥1,注意等号成立的条件,得到结果.证明:(1)∵a2+3b2−2b(a+b)=a2−2ab+b2=(a−b)2≥0,∴a2+3b2≥2b(a+b).(2)∵a>0,b>0,∴2ab=a+b≥2√ab,即2ab≥2√ab,∴√ab≥1,∴ab≥1.当且仅当a=b=1时取等号,此时ab取最小值1.小提示:该题主要是考查不等式的证明和运用基本不等式求最值,在证明不等式时,可以运用综合法也可以运用分析法,一般的比较大小的最重要的方法就是作差法,然后结合综合法和分析法来一起证明,属于中档题.。
全国通用2023高中数学必修一第二章一元二次函数方程和不等式必考考点训练
全国通用2023高中数学必修一第二章一元二次函数方程和不等式必考考点训练单选题1、已知a >0,b >0,若a +4b =4ab ,则a +b 的最小值是( ) A .2B .√2+1C .94D .52 答案:C分析:将a +4b =4ab ,转化为1b +4a =4,由a +b =14(a +b )(1b +4a )=14(5+ab +4b a),利用基本不等式求解.因为a +4b =4ab , 所以1b +4a =4,所以a +b =14(a +b )(1b +4a )=14(5+ab +4b a),≥14(5+2√ab ⋅4b a )=94,当且仅当{1b +4a =4a b=4b a,即{a =32b =34 时,等号成立, 故选:C2、若(x −a)2<4成立的一个充分不必要条件是1+12−x ≤0,则实数a 的取值范围为( ) A .(−∞,4]B .[1,4]C .(1,4)D .(1,4] 答案:D分析:解一元二次不等式、分式不等式求得题设条件为真时对应x 的范围,再根据条件的充分不必要关系求参数a 的取值范围.由(x −a)2<4,可得:a −2<x <a +2; 由1+12−x=3−x2−x ≤0,则{(x −2)(x −3)≤02−x ≠0,可得2<x ≤3; ∵(x −a)2<4成立的一个充分不必要条件是1+12−x ≤0, ∴{a −2≤2a +2>3,可得1<a ≤4. 故选:D.3、已知正实数a ,b 满足a +1b=2,则2ab +1a的最小值是( )A .52B .3C .92D .2√2+1 答案:A分析:由已知得, a =2−1b代入得2ab +1a=2(2b −1)+b2b−1,令2b −1=t ,根据基本不等式可求得答案.解:因为a +1b=2,所以a =2−1b>0,所以0<b <2 ,所以2ab +1a =2(2−1b )b +b 2b−1=2(2b −1)+b2b−1,令2b −1=t ,则b =t +12,且−1<t <3 ,所以2ab +1a =2t +t +12t=2t +12t+12≥2√2t ⋅12t+12=52,当且仅当2t =12t,即t =12,b =34,a =23时,取等号,所以2ab +1a 的最小值是52. 故选:A.4、前后两个不等式解集相同的有( ) ①x+52x−1≥0与(2x −1)(x +5)≥0 ②x+52x−1>0与(2x −1)(x +5)>0③x 2(2x −1)(x +5)≥0与(2x −1)(x +5)≥0 ④x 2(2x −1)(x +5)>0与(2x −1)(x +5)>0 A .①②B .②④C .①③D .③④ 答案:B分析:由不含参的一元二次不等式,分式不等式、高次不等式的解法解出各个不等式,对选项一一判断即可得出答案.对于①,由x+52x−1≥0可得{2x −1≠0(x +5)(2x −1)≥0,解得:x >12或x ≤−5. (2x −1)(x +5)≥0的解集为:{x |x ≥12或x ≤−5},故①不正确;对于②,由x+52x−1>0可得{2x −1≠0(x +5)(2x −1)>0,解得:x >12或x <−5. (2x −1)(x +5)>0的解集为:{x |x >12 或x <−5},故②正确;对于③,x 2(2x −1)(x +5)≥0的解集为:{x |x =0 或x ≤−5或x ≥12},(2x −1)(x +5)≥0的解集为:{x |x ≥12 或x ≤−5},故③不正确; 对于④,x 2(2x −1)(x +5)>0的解集为:{x |x <−5 或x >12},(2x −1)(x +5)>0的解集为:{x |x >12或x <−5},故④正确;故选:B.5、若不等式x 2+ax +1≥0对于一切x ∈(0,12]恒成立,则a 的最小值是( ) A .0B .−2C .−52D .−3 答案:C解析:采用分离参数将问题转化为“a ≥−(x +1x )对一切x ∈(0,12]恒成立”,再利用基本不等式求解出x +1x 的最小值,由此求解出a 的取值范围.因为不等式x 2+ax +1≥0对于一切x ∈(0,12]恒成立,所以a ≥−(x +1x )对一切x ∈(0,12]恒成立, 所以a ≥[−(x +1x)]max(x ∈(0,12]),又因为f (x )=x +1x 在(0,12]上单调递减,所以f (x )min =f (12)=52, 所以a ≥−52,所以a 的最小值为−52, 故选:C.小提示:本题考查利用基本不等式求解最值,涉及不等式在给定区间上的恒成立问题,难度一般.不等式在给定区间上恒成立求解参数范围的两种方法:参变分离法、分类讨论法. 6、若a >0,b >0,则下面结论正确的有( ) A .2(a 2+b 2)≤(a +b)2B .若1a+4b=2,则 a +b ≥92C .若ab +b 2=2,则a +b ≥4D .若a +b =1,则ab 有最大值12 答案:B分析:对于选项ABD 利用基本不等式化简整理求解即可判断,对于选项C 取特值即可判断即可. 对于选项A :若a >0,b >0,由基本不等式得a2+b2≥2ab,即2(a2+b2)≥(a+b)2,当且仅当a=b时取等号;所以选项A不正确;对于选项B:若a>0,b>0,1 2×(1a+4b)=1,a+b=12×(1a+4b)(a+b)=12(5+ba+4ab)≥12(5+2√ba⋅4ab)=92,当且仅当1a +4b=2且ba=4ab,即a=32,b=3时取等号,所以选项B正确;对于选项C:由a>0,b>0,ab+b2=b(a+b)=2,即a+b=2b,如b=2时,a+b=22=1<4,所以选项C不正确;对于选项D:ab≤(a+b2)2=14,当且仅当a=b=12时取等则ab有最大值14,所以选项D不正确;故选:B7、已知函数y=x−4+9x+1(x>−1),当x=a时,y取得最小值b,则a+b=()A.−3B.2C.3D.8答案:C分析:通过题意可得x+1>0,然后由基本不等式即可求得答案解:因为x>−1,所以9x+1>0,x+1>0,所以y=x−4+9x+1=x+1+9x+1−5≥2√(x+1)⋅9x+1−5=1,当且仅当x+1=9x+1即x=2时,取等号,所以y的最小值为1,所以a=2,b=1,所以a+b=3,故选:C8、小李从甲地到乙地的平均速度为a ,从乙地到甲地的平均速度为b(a >b >0),他往返甲乙两地的平均速度为v ,则( ) A .v =a+b 2B .v =√abC .√ab <v <a+b 2D .b <v <√ab答案:D分析:平均速度等于总路程除以总时间设从甲地到乙地的的路程为s ,从甲地到乙地的时间为t 1,从乙地到甲地的时间为t 2,则 t 1=sa,t 2=sb,v =2s t 1+t 2=2ss a +s b=21a +1b,∴v =21a +1b>21b +1b=b ,v =21a +1b=2ab a+b<2√ab=√ab ,故选:D.9、已知x >0,y >0,且x +y =2,则下列结论中正确的是( ) A .2x +2y 有最小值4B .xy 有最小值1 C .2x +2y 有最大值4D .√x +√y 有最小值4 答案:A分析:利用基本不等式和不等式的性质逐个分析判断即可 解: x >0,y >0,且x +y =2,对于A ,2x +2y =12(x +y )(2x +2y )=2+xy +yx ≥2+2√xy ⋅yx =4,当且仅当x =y =1时取等号,所以A 正确,对于B ,因为2=x +y ≥2√xy ,所以xy ≤1,当且仅当x =y =1时取等号,即xy 有最大值1,所以B 错误, 对于C ,因为2x +2y ≥2√2x ⋅2y =2√2x+y =4,当且仅当x =y =1时取等号,即2x +2y 有最小值4,所以C 错误,对于D ,因为(√x +√y)2=x +y +2√xy ≤2(x +y)=4,当且仅当x =y =1时取等号,即√x +√y 有最大值4,所以D 错误, 故选:A10、若正数x ,y 满足3x +1y =5,则3x +4y 的最小值是( )A .245B .285C .5D .25答案:C分析:由3x +4y =15(3x +4y )(3x +1y )配凑出符合基本不等式的形式,利用基本不等式求得结果. ∵3x +4y =15(3x +4y )(3x +1y )=15(13+3x y+12y x)≥15(13+2√3x y ⋅12y x)=5(当且仅当3x y =12y x,即x =2y =1时取等号),∴3x +4y 的最小值为5. 故选:C. 填空题11、若正数a ,b 满足1a+1b =1,则4a−1+16b−1的最小值为__.答案:16 分析:由条件可得1b−1=a b ,1a−1=ba,代入所求式子,再由基本不等式即可求得最小值,注意等号成立的条件.解:因为正数a ,b 满足1a+1b=1,则有1a =1−1b =b−1b,则有1b−1=ab ,1b=1−1a =a−1a ,即有1a−1=ba ,则有4a−1+16b−1=4b a+16a b≥2√4b a ⋅16a bb =16,当且仅当4b a=16a b即有b =2a ,又1a+1b=1,即有a =32,b =3,取得最小值,且为16. 所以答案是:16. 12、若x >−1,则x +3x+1的最小值是___________.答案:2√3−1分析:由x +3x+1=x +1+3x+1−1,结合基本不等式即可. 因为x >−1,所以x +1>0,所以x +3x+1=x +1+3x+1−1≥2√3−1,当且仅当x +1=3x+1即x =√3−1时,取等号成立.故x +3x+1的最小值为2√3−1, 所以答案是:2√3−113、已知x >54,则函数y =4x +14x−5的最小值为_______.答案:7分析:由x >54,得4x −5>0,构造导数关系,利用基本不等式即可得到.法一:∵x >54,∴4x −5>0,y =4x +14x−5=(4x −5)+14x−5+5≥2+5=7, 当且仅当4x −5=14x−5,即x =32时等号成立, 所以答案是:7.法二:∵x >54,令y ′=4−4(4x−5)2=0得x =1或x =32,当54<x <32时y′<0函数单调递减, 当x >32时y′>0函数单调递增,所以当x =32时函数取得最小值为:4×32+14×32−5=7,所以答案是:7.【点晴】此题考基本不等式,属于简单题. 解答题14、已知不等式ax 2+(1−a)x +a −1<0.(1)若不等式对任意实数x 恒成立,求实数a 的取值范围; (2)若不等式对a ∈[0,12]恒成立,求实数x 的取值范围. 答案:(1)(−∞,−13); (2)(−1−√52,−1+√52).分析:(1)根据一元二次不等式的解集为全体实数的条件可得Δ<0,a<0,从而解出a的范围即可.(2)化简整理为关于a的一次函数再分析.构造函数g(a)利用{g(0)<0g(12)<0,解不等式组.(1)当a=0时,不等式为x−1<0,解得x<1,显然不符合题意;当a≠0时,由已知,得{a<0(1−a)2−4a(a−1)<0即{a<03a2−2a−1>0,解得a<−13,综上,实数a的取值范围为(−∞,−13).(2)原不等式可化为(x2−x+1)a+x−1<0,设g(a)=(x2−x+1)a+x−1,由题意,当a∈[0,12],g(a)<0恒成立,所以{g(0)<0g(12)<0,即{x−1<012(x2−x+1)+x−1<0 ,解得−1−√52<x<−1+√52,所以实数x的取值范围为(−1−√52,−1+√52).15、解以下一元二次不等式(1)2x2−3x+1≤0(2)−x2−5x+6<0(3)4x2−4x+1>0(4)x2−6x+9≤0答案:(1){x|12≤x≤1}(2){x|x<−6或x>1};(3){x|x≠12}(4)x=3分析:(1)(3)(4)对不等式的左边分解因式求解,(2)由−x2−5x+6<0,得x2+5x−6>0,然后对不等式的左边分解因式求解,(1)由2x2−3x+1≤0,得(x−1)(2x−1)≤0,≤x≤1,解得12≤x≤1}所以不等式的解集为{x|12(2)由−x2−5x+6<0,得x2+5x−6>0,则(x−1)(x+6)>0,解得x<−6或x>1,所以不等式的解集为{x|x<−6或x>1}(3)由4x2−4x+1>0,得(2x−1)2>0,,解得x≠12}所以不等式的解集为{x|x≠12(4)由x2−6x+9≤0,得(x−3)2≤0,得x=3,所以不等式的解集为{x|x=3}。
高中数学必修1必刷题第二章【精华】
第二章 基本初等函数(1)1.函数xa a a y )33(2+-=是指数函数,则有( )A .1a =或2a =B .1a =C .2a =D .0a >且1a ≠2.下列函数中,满足“()()()f x y f x f y +=”的单调递增函数是( )A.x x f lg )(=B.()3f x x =C.()12xf x ⎛⎫= ⎪⎝⎭ D.()3xf x =3.函数xy a -=和函数log ()a y x =-(a>0,且a ≠0)的图象画在同一个坐标系中,得到的图象只可能是下面四个图象中的( )4.已知0a >且1a ≠,下列四组函数中表示相等函数的是( ) A .log a y x= 与1(log )x y a -= B .2y x =与2log xa y a =C .log a xy a =与y x = D .2log a y x =与2log a y x =5.若函数()log 0,1a y x a a =>≠且的图象如图所示,则下列函数图象正确的是( )6.函数(2)log 1x a y +=+的图象过定点( )A .(1,2)B .(2,1)C .(-2,1)D .(-1,1)7.已知31.2lg =a ,31.1lg =b ,则a b=( )A .1001B .101C .10D .1008.已知0,0a b >>,且1ab =,则函数()xf x a =与函数()log b g x x =-的图像可能是( )9.设函数f (x )=122,11log ,1x x x x -⎧≤⎨->⎩,则满足()2≤x f 的x 的取值范围是( )A .[-1,2]B .[0,2]C .[1,+∞)D .[0,+∞) 10.已知()f x 是定义在R 上的偶函数,且在(],0-∞上是增函数,设()4log 7a f =,)3(log 2f b =,()0.60.2c f =,则,,a b c 的大小关系是( )A .c b a <<B .b c a <<C .b a c <<D .a b c <<11.已知函数()ln 2x f x x =+,若2(4)2f x -<,则实数x 的取值范围是( ) A.(2,2)- B.(2,5) C.(5,2)-- D.(5,2)(2,5)--12.已知0< a <1,b <-1,则函数b a y x+=的图象必定不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限13.函数121()log 1f x x =-的定义域为( )A .10,2⎛⎤ ⎥⎝⎦B .⎪⎭⎫ ⎝⎛+∞,21C .10,2⎛⎫⎪⎝⎭ D . ⎪⎭⎫ ⎝⎛∞-21, 14.已知函数()⎩⎨⎧≤>=.0,2,0,log 3x x x x f x则⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛271f f 的值为( )A .81B .4C .2D .4115.函数1212)(-+=xx x f 在其定义域内是( ) A. 偶函数 B. 奇函数 C.既奇又偶函数 D.非奇非偶函数16.设函数log a y x = (0,1)a a >≠在1,42⎡⎤⎢⎥⎣⎦上的最大值是M ,最小值是m ,且M-m=3,则实数a =( )A .12 B .2 C .13且2 D .12或217.定义区间)](,[2121x x x x <的长度为12x x -,已知函数()3xf x =的定义域为],[b a ,值域为[]1,9,则区间],[b a 的长度的最大值与最小值的差为( )A .2B .3C .4D .518.若函数y=loga (x2﹣ax+1)有最小值,则a 的取值范围是( ) A .0<a <1 B .0<a <2,a ≠1 C .1<a <2 D .a ≥219.设Rx x f x∈⎪⎭⎫⎝⎛=,21)(,那么)(x f 是( )A .奇函数且在(0,+∞)上是增函数B .偶函数且在(0,+∞)上是增函数C .奇函数且在(0,+∞)上是减函数D .偶函数且在(0,+∞)上是减函数20.若不等式()()042222<--+-x a x a 对一切R x ∈恒成立,则a 的取值范围是( ) A 、(]2,∞- B 、[]22,- C 、(]22,- D 、()2-∞-, 21.设函数()⎪⎩⎪⎨⎧≥<=-1,1,311x x x e x f x 则使得()2≤x f 成立的x 的取值范围是( )A .(]1,∞- B.(]2ln 1,+∞- C.(]8,∞- D.[)8,122. )31()3)((656131212132b a b a b a ÷-的结果是( )A . 6aB . 9abC . abD .- 9a23. y x y x lg lg )2lg(2+=-,则y x的值为(A ) 4 (B)1 (C) 1或4(D)41或424.已知()f x 是定义在R 上的偶函数,且在(],0-∞上是增函数,设()4log 7a f =,)3(log 2f b =,()0.60.2c f =,则,,a b c 的大小关系是( )A .c b a <<B .b c a <<C .b a c <<D .a b c <<25.设10<<a ,函数()()222--=x x a a a log x f ,则使()0<x f 得x 的取值范围是( )()0,∞- B 、()+∞,0 C 、()3a log ,∞- D 、()+∞,log a 326.x xx x e e e e y ---+=的图象大致为________.27.下列各式中成立的是( )[来源:学+科+网]A .7177m n m n =⎪⎭⎫ ⎝⎛B .()312433-=- C .()43433y x y x +=+ D .3339=28.若幂函数αx y =在 ),0(+∞上是增函数,则α一定( )A .0>αB .0<αC .1>αD .不确定 29.下列函数中,既是偶函数,又是在区间(0,)+∞上单调递减的函数是( )A.1ln||y x = B.3y x = C.||2x y = D.12y x =30.函数212log (6)=+-y x x 的单调增区间是( ).A .1(,]2-∞B .1(2,]2-C .1[,)2+∞D .1[,3)231.()log a f x x = (01)a <<在区间]2,[a a 上的最大值是最小值的3倍,则a 的值为( ). [来A . 42B . 22C . 41D . 2132.函数||x x e y x -=的图像的大致形状是( ) A. B. C. D.33.若函数()21()log 3x f x x =-,实数0x 是函数()f x 的零点,且100x x <<,则()1f x 的值( ). A .恒为正值 B .等于0 C .恒为负值 D .不大于034.定义运算a b *为:,(),(),a a b a b b a b ≤⎧*=⎨>⎩ 如121*=,则函数()22x xf x -=*的值域为A . RB .(0,1]C .(0,+∞)D . [1,+∞)35.若0ab >,则下列四个等式:①()lg lg lg ab a b=+②lg lg lg a a b b ⎛⎫=- ⎪⎝⎭ ③21lg lg 2a a b b ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭ ④()1lg log 10ab ab =中正确等式的符号是( )A .①②③④B .①②C .③④D .③36.函数()2lg 45y x x =--的值域为( )A .(),-∞+∞B .()1,5-C .()5,+∞D .(),1-∞-37.若当x R ∈时,1xy a =-均有意义,则函数1log ay x =的图像大致是( )38.已知12)(-=x x f ,该函数在区间[],a b 上的值域为[]1,2,记满足该条件的实数,a b a 、b 所形成的实数对为点P (a,b ),则由点P 构成的点集组成的图形为( ) A.线段AD 与线段CD B.线段AB C. 线段AD D.线段AB 与BC 39.下列函数中既是偶函数又在)0,(-∞上是增函数的是( ) A .34x y = B .23x y =C .2-=xy D .41-=xy40.函数2212x xy -+⎛⎫= ⎪⎝⎭的值域是 ( )A .RB .1,2⎡⎫+∞⎪⎢⎣⎭ C .(2,+∞) D .(0,+∞) 41.已知集合12{|4210},{|1}1x x xA x aB x x +=⋅--==≤+,若A B ≠∅,则实数a 的取值范围为( )A.5(,8]4B.5[,8)4C.5[,8]4D.5(,8)442.已知函数()()21,1,log , 1.a a x x f x x x --⎧⎪=⎨>⎪⎩≤若()f x 在(),-∞+∞上单调递增,则实数a 的取值范围为( ). A .()1,2B .()2,3 C . (]2,3D .()2,+∞43.函数)(x f 是定义在R 上的奇函数,并且当)(∞+∈,0x 时,x x f ln )(=,那么,=-)(2e f A.-2 B.2 C.1 D.无法确定44.函数2lg 11y x ⎛⎫=- ⎪+⎝⎭的图像关于( ) A .原点对称 B .y 轴对称 C .x 轴对称 D .直线y x =对称45.知)(x f 是定义在R 上的偶函数,当[0,)x ∈+∞时,()22xf x =-,则不等式0)(log 2>x f 的解集为( )(A ))21,0( (B )),2()1,21(+∞⋃ (C )),2(+∞ (D )),2()21,0(+∞⋃46.已知函数|)2(log |)(2+=x x f 在),[+∞m 上是增函数,则实数m 的取值范围是( )A. ()1,-∞-B. (]1,2--C. ()+∞-,1D. [)+∞-,147.设⎪⎭⎫ ⎝⎛+-=a x x f 12lg )(为奇函数,则使0)(<x f 的实数x 的取值范围是 ( )A. ()()+∞∞-,10,B. ()0,∞-C. ()1,0D. ()0,1-48.三个数3.3320.99,log ,log 0.8π的大小关系为( )[来源:学.科.网Z.X.X.K]1oxy 1oxy 1oxy1ox y A B C DA . 3.332log 0.99log 0.8π<<B . 3.323log 0.8log 0.99π<<C .3.3230.99log 0.8l og π<< D .3.323log 0.80.99log π<<49.已知))()(()(b a b x a x x f >--=其中,若)(x f 的图像如右图所示:则b a x g x+=)(的 图像是( )50.已知22x x a a-+=5()0,,a x R >∈则x x a a -+= ____ .51.函数)3(log )(22++-=ax x x f 在(2,4)是单调递减的,则a 的范围是( ) (A )13(,4]4 (B )13[,4]4 (C )[8,)+∞ (D )]4,(-∞52.设函数)(x f y =与函数)(x g y =的图象如下图所示,则函数)()(x g x f y ⋅=的图象可能是下面的( )(A ) (B ) (C ) (D )53.已知函数()⎩⎨⎧<+-≥=2,232,)(x x a x a x f x ,为R 上的增函数,则实数a 取值的范围是 . 54.函数()()0,xf x aa x R =>∈的值域是区间(]0,1,则()2f -与()1f 的大小关系是 .55.已知0.30.22log 0.3,2,0.3a b c ===,那么a 、b 、c 的大小关系为 (用 ""<号表示)。
人教A版数学必修一第二章基本初等函数(ⅰ)(一)a卷
高中数学学习材料金戈铁骑整理制作高中同步创优单元测评A 卷 数 学班级:________ 姓名:________ 得分:________第二章 基本初等函数(Ⅰ)(一)(指数与指数函数) [名师原创·基础卷](时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算[(-2)2]- 12的结果是( )A.2 B .-2 C.22D .-222.⎝ ⎛⎭⎪⎫1120-(1-0.5-2)÷⎝ ⎛⎭⎪⎫278 23的值为( )A .-13 B.13 C.43 D.733.若a >1,则函数y =a x 与y =(1-a )x 2的图象可能是下列四个选项中的()4.下列结论中正确的个数是( )①当a <0时,(a 2 23=a 3;②na n =|a |(n ≥2,n ∈N ); ③函数y =(x -2) 12 -(3x -7)0的定义域是[2,+∞); ④6(-2)2=32.A .1B .2C .3D .45.指数函数y =f (x )的图象经过点⎝ ⎛⎭⎪⎫-2,14,那么f (4)·f (2)等于( )A .8B .16C .32D .64 6.函数y =21x的值域是( ) A .(0,+∞) B .(0,1) C .(0,1)∪(1,+∞)D .(1,+∞)7.函数y =|2x -2|的图象是( )8.a ,b 满足0<a <b <1,下列不等式中正确的是( ) A .a a <a b B .b a <b b C .a a <b a D .b b <a b9.函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x 关于y 轴对称,则f (x )=( )A .e x +1B .e x -1C .e -x +1D .e -x -110.若函数y =a x +m -1(a >0,a ≠1)的图象在第一、三、四象限内,则( )A .a >1B .a >1,且m <0C .0<a <1,且m >0D .0<a <111.函数f (x )=2x +2-4x ,若x 2-x -6≤0,则f (x )的最大值和最小值分别是( )A .4,-32B .32,-4 C.23,0D.43,112.若函数f (x )=3x +3-x 与g (x )=3x -3-x 的定义域均为R ,则( )A .f (x )与g (x )均为偶函数B .f (x )为偶函数,g (x )为奇函数C .f (x )与g (x )均为奇函数D .f (x )为奇函数,g (x )为偶函数第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.已知a =0.80.7,b =0.80.9,c =1.20.8,则a ,b ,c 的大小关系为________.14.若方程⎝ ⎛⎭⎪⎫14x +⎝ ⎛⎭⎪⎫12x -1+a =0有正数解,则实数a 的取值范围是________.15.已知函数f (x )=⎝ ⎛⎭⎪⎫12|x -1|,则f (x )的单调递增区间是________.16.定义区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1,已知函数y =2|x |的定义域为[a ,b ],值域为[1,2],则区间[a ,b ]的长度的最大值与最小值的差为________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)解不等式a 2x +7<a 3x -2(a >0,a ≠1).18.(本小题满分12分)已知函数f (x )=3x ,且f (a )=2,g (x )=3ax -4x . (1)求g (x )的解析式;(2)当x ∈[-2,1]时,求g (x )的值域.19.(本小题满分12分)已知函数f (x )=⎝ ⎛⎭⎪⎫12ax,a 为常数,且函数的图象过点(-1,2).(1)求a 的值;(2)若g (x )=4-x -2,且g (x )=f (x ),求满足条件的x 的值.20.(本小题满分12分)已知函数f (x )=a ·2x +b ·3x ,其中常数a ,b 为实数. (1)当a >0,b >0时,判断并证明函数f (x )的单调性; (2)当ab <0时,求f (x +1)>f (x )时x 的取值范围.21.(本小题满分12分)设a ∈R ,f (x )=a -22x +1(x ∈R ).(1)证明:对任意实数a ,f (x )为增函数; (2)试确定a 的值,使f (x )≤0恒成立.22.(本小题满分12分)已知定义域为R 的函数f (x )=-2x +b2x +1+2是奇函数.(1)求b 的值;(2)判断函数f (x )的单调性;(3)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.详解答案第二章 基本初等函数(Ⅰ)(一)(指数与指数函数) [名师原创·基础卷]1.C 解析:[(-2)2]- 12=2-12=12=22.2.D 解析:原式=1-(1-22)÷⎝ ⎛⎭⎪⎫322=1-(-3)×49=73.故选D. 3.C 解析:a >1,∴y =a x 在R 上单调递增且过(0,1)点,排除B ,D ,又∵1-a <0,∴y =(1-a )x 2的开口向下.4.A 解析:在①中,a <0时,(a 2) 32>0,而a 3<0,∴①不成立.在②中,令a =-2,n =3,则3(-2)3=-2≠|-2|,∴②不成立. 在③中,定义域应为⎣⎢⎡⎭⎪⎫2,73∪⎝ ⎛⎭⎪⎫73,+∞,∴③不成立. ④式是正确的,∵6(-2)2=622=32,∴④正确. 5.D 解析:设f (x )=a x (a >0且a ≠1), 由已知得14=a -2,a 2=4,所以a =2, 于是f (x )=2x ,所以f (4)·f (2)=24·22=64.解题技巧:已知函数类型,求函数解析式,常用待定系数法,即先把函数设出来,再利用方程或方程组解出系数.6.C 解析:∵1x ≠0,∴21x≠1, ∴函数y =21x 的值域为(0,1)∪(1,+∞).7.B 解析:找两个特殊点,当x =0时,y =1,排除A ,C.当x =1时,y =0,排除D.故选B.8.C 解析:∵0<a <b <1,∴a a >a b ,故A 不成立,同理B 不成立,若a a <b a ,则⎝ ⎛⎭⎪⎫a b a <1,∵0<ab <1,0<a <1,∴⎝ ⎛⎭⎪⎫a b a<1成立,故选C. 9.D 解析:与曲线y =e x 关于y 轴对称的曲线为y =e -x ,函数y =e -x 的图象向左平移一个单位长度即可得到函数f (x )的图象,即f (x )=e -(x +1)=e -x -1.解题技巧:函数图象的平移变换,要注意平移的方向和平移量.平移规律为:10.B 解析:由函数y =a x +m -1(a >0,a ≠1)的图象在第一、三象限知,a >1.知函数在第四象限,∴a 0+m -1<0,则有m <0.11.A 解析:f (x )=2x +2-4x =-(2x )2+4·2x =-(2x -2)2+4,又∵x 2-x -6≤0,∴-2≤x ≤3,∴14≤2x ≤8.当2x =2时,f (x )max =4,当2x =8时,f (x )min =-32. 12.B 解析:因为f (-x )=3-x +3-(-x )=3-x +3x =f (x ), g (-x )=3-x -3-(-x )=3-x -3x =-g (x ),所以f (x )为偶函数,g (x )为奇函数.13.c >a >b 解析:由指数函数y =a x 当0<a <1时为减函数知, 0.80.7>0.80.9,又1.20.8>1,0.80.7<1, ∴1.20.8>0.80.7>0.80.9,即c >a >b .14.(-3,0) 解析:令⎝ ⎛⎭⎪⎫12x=t ,∵方程有正根,∴t ∈(0,1).方程转化为t 2+2t +a =0, ∴a =1-(t +1)2.∵t ∈(0,1),∴a ∈(-3,0).15.(-∞,1] 解析:解法一:由指数函数的性质可知,f (x )=⎝ ⎛⎭⎪⎫12x在定义域上为减函数,故要求f (x )的单调递增区间,只需求y =|x -1|的单调递减区间.又y =|x -1|的单调递减区间为(-∞,1],所以f (x )的单调递增区间为(-∞,1].解法二:f (x )=⎝ ⎛⎭⎪⎫12|x -1|=⎩⎨⎧⎝ ⎛⎭⎪⎫12x -1,x ≥1,2x -1,x <1.可画出f (x )的图象,并求其单调递增区间.解题技巧:既可以利用复合函数的“同增异减”法则求解,也可以去绝对值符号,转化为分段函数求解.16.1 解析:作出函数y =2|x |的图象(如图所示).当x =0时,y =20=1, 当x =-1时,y =2|-1|=2, 当x =1时,y =21=2,所以当值域为[1,2]时,区间[a ,b ]的长度的最大值为2,最小值为1,它们的差为1.17.解:当a >1时,a 2x +7<a 3x -2等价于2x +7<3x -2, ∴x >9;当0<a <1时,a 2x +7<a 3x -2等价于2x +7>3x -2. ∴x <9.综上,当a >1时,不等式的解集为{x |x >9}; 当0<a <1时,不等式的解集为{x |x <9}. 解题技巧:注意按照底数进行分类讨论. 18.解:(1)由f (a )=2,得3a =2,a =log 32, ∴g (x )=(3a )x -4x =(3log 32)x -4x =2x -4x =-(2x )2+2x . ∴g (x )=-(2x )2+2x . (2)设2x =t ,∵x ∈[-2,1], ∴14≤t ≤2.g (t )=-t 2+t =-⎝ ⎛⎭⎪⎫t -122+14,由g (t )在t ∈⎣⎢⎡⎦⎥⎤14,2上的图象可得,当t =12,即x =-1时,g (x )有最大值14; 当t =2,即x =1时,g (x )有最小值-2. 故g (x )的值域是⎣⎢⎡⎦⎥⎤-2,14.19.解:(1)由已知得⎝ ⎛⎭⎪⎫12-a =2,解得a =1. (2)由(1)知,f (x )=⎝ ⎛⎭⎪⎫12x ,又g (x )=f (x ),则4-x -2=⎝ ⎛⎭⎪⎫12x , 即⎝ ⎛⎭⎪⎫14x -⎝ ⎛⎭⎪⎫12x -2=0,即⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12x 2-⎝ ⎛⎭⎪⎫12x -2=0. 令⎝ ⎛⎭⎪⎫12x =t ,则t 2-t -2=0,即(t -2)(t +1)=0. 又t >0,故t =2,即⎝ ⎛⎭⎪⎫12x =2,解得x =-1. 20.解:(1)函数f (x )在R 上是增函数.证明如下: a >0,b >0,任取x 1,x 2∈R ,且x 1<x 2,(2)∵f (x +1)>f (x ),∴f (x +1)-f (x )=(a ·2x +1+b ·3x +1)-(a ·2x +b ·3x ) =a ·2x +2b ·3x >0,当a <0,b >0时,⎝ ⎛⎭⎪⎫32x >-a 2b ,则x >log 1.5⎝ ⎛⎭⎪⎫-a 2b , 当a >0,b <0时,⎝ ⎛⎭⎪⎫32x <-a 2b ,则x <log 1.5⎝ ⎛⎭⎪⎫-a 2b .综上,当a <0,b >0时,x 的取值范围是⎝ ⎛⎭⎪⎫log 1.5⎝ ⎛⎭⎪⎫-a 2b ,+∞; 当a >0,b <0时,x 的取值范围是⎝ ⎛⎭⎪⎫-∞,log 1.5⎝ ⎛⎭⎪⎫-a 2b . 21.(1)证明:任取x 1,x 2∈R ,且x 1<x 2,故对于任意实数a ,f (x )为增函数.(2)解:f (x )=a -22x +1≤0恒成立,只要a ≤22x +1恒成立,问题转化为只要a 不大于22x +1的最小值. ∵x ∈R,2x >0恒成立,∴2x +1>1.∴0<12x +1<1,0<22x +1<2,∴a ≤0. 故当a ∈(-∞,0]时,f (x )≤0恒成立.22.解:(1)因为f (x )是奇函数,所以f (0)=0, 即b -12+2=0,解得b =1.(3)因为f (x )是奇函数,f (t 2-2t )+f (2t 2-k )<0,则f (t 2-2t )<-f (2t 2-k )=f (k -2t 2),因f (x )为减函数,由上式推得,t 2-2t >k -2t 2. 即对一切t ∈R 有3t 2-2t -k >0,从而判别式Δ=4+12k <0,解得k <-13.故k 的取值范围是⎝ ⎛⎭⎪⎫-∞,-13.。
高中数学必修一第二章 一元二次函数、方程和不等式 单元测试(含答案)
高中数学必修一第二章一、单选题1.已知集合A ={x‖x ―2|<1}, B ={x |x 2―2x ―3<0}.则A ∩B =A .{x |1<x <3}B .{x |―1<x <3}C .{x |―1<x <2}D .{x |x >3}2.下列结论成立的是( )A .若ac >bc ,则a >bB .若a >b ,则a 2>b 2C .若a >b ,c <d ,则a+c >b+dD .若a >b ,c >d ,则a ﹣d >b ﹣c3.已知关于 x 的不等式 a x 2―2x +3a <0 在 (0,2] 上有解,则实数 a 的取值范围是( )A .(―∞,33)B .(―∞,47)C .(33,+∞)D .(47,+∞)4.当x >3时,不等式x+1x ―1≥a 恒成立,则实数a 的取值范围是( ) A .(﹣∞,3]B .[3,+∞)C .[ 72,+∞)D .(﹣∞, 72]5.下列不等式恒成立的是( )A .a 2+b 2≤2abB .a +b ≥―2|ab |C .a 2+b 2≥―2abD .a +b ≤2|ab |6.已知 x >2 ,函数 y =4x ―2+x 的最小值是( ) A .5B .4C .8D .67.设正实数x ,y ,z 满足x 2―3xy +4y 2―z =0,则当xy z取得最大值时,2x +1y ―2z 的最大值是( )A .0B .1C .94D .38.已知正数x ,y 满足x+y =1,且 x 2y +1+y 2x +1≥m ,则m 的最大值为( ) A .163B .13C .2D .4二、多选题9.设正实数a ,b 满足a +b =1,则( )A .a 2b +b 2a ≥14B .1a +2b +12a +b ≥43C .a 2+b 2≥12D .a 3+b 3≥1410.若a ,b ∈(0,+∞),a +b =1,则下列说法正确的有( )A .(a +1a)(b +1b )的最小值为4B .1+a +1+b 的最大值为6C.1a +2b的最小值为3+22D.2aa2+b+ba+b2的最大值是3+23311.已知a,b是正实数,若2a+b=2,则( )A.ab的最大值是12B.12a+1b的最小值是2C.a2+b2的最小值是54D.14a+b+2a+b的最小值是3212.已知a,b,c为实数,则下列命题中正确的是( )A.若a c2<bc2,则a<b B.若ac>bc,则a>bC.若a>b,c>d,则a+c>b+d D.若a<b<0,则1a >1 b三、填空题13.不等式﹣2x(x﹣3)(3x+1)>0的解集为 .14.已知正实数x,y满足xy―x―2y=0,则x+y的最小值是 . 15.已知a,b均为正数,且ab―a―2b=0,则a24+b2的最小值为 .16.以max A表示数集A中最大的数.已知a>0,b>0,c>0,则M=max{1c +ba,1ac+b,ab+c}的最小值为 四、解答题17.已知U=R且A={x∣x2―5x―6<0},B={x∣―4≤x≤4},求:(1)A∪B;(2)(C U A)∩(C U B).18.解下列关于x的不等式:(1)x2―2x―3≤0;(2)―x2+4x―5>0;(3)x2―ax+a―1≤019.已知关于x的不等式2x2+x>2ax+a(a∈R).(1)若a=1,求不等式的解集;(2)解关于x的不等式.20.某县一中计划把一块边长为20米的等边三角形ABC的边角地辟为植物新品种实验基地,图中DE 需把基地分成面积相等的两部分,D在AB上,E在AC上.(1)设AD=x(x≥10),ED=y,试用x表示y的函数关系式;(2)如果DE是灌溉输水管道的位置,为了节约,则希望它最短,DE的位置应该在哪里?如果DE 是参观线路,则希望它最长,DE的位置又应该在哪里?说明理由.答案解析部分1.【答案】A2.【答案】D3.【答案】A4.【答案】D5.【答案】C6.【答案】D7.【答案】B8.【答案】B9.【答案】B,C,D10.【答案】B,C,D11.【答案】A,B12.【答案】A,C,D13.【答案】(﹣∞,﹣1)∪(0,3)314.【答案】3+2215.【答案】816.【答案】217.【答案】(1)解:因为A={x∣x2―5x―6<0}=(―1,6),且B={x∣―4≤x≤4}=[―4,4],则A ∪B=[―4,6).(2)解:由(1)可知,A=(―1,6),B=[―4,4],则C U A=(―∞,―1]∪[6,+∞),C U B=(―∞,―4)∪(4,+∞),所以(C U A)∩(C U B)=(―∞,―4)∪[6,+∞).18.【答案】(1)解:x2―2x―3≤0,(x―3)(x+1)≤0⇒x≤―1或x≥3,故解集为: (―∞,―1]∪[3,+∞).(2)解:―x2+4x―5>0,∴x2―4x+5<0⇒(x―2)2+1<0⇒x无解,故解集为: ∅(3)解:x2―ax+a―1≤0,∴[x―(a―1)](x―1)≤0,当a―1<1,即a<2时,解集为[a―1,1],当a―1=1,即a=2时,解集为x=1,当 a ―1>1 ,即 a >2 时,解集为 [1,a ―1] .所以:当 a <2 时,解集为 [a ―1,1] ,当 a =2 时,解集为 x =1 ,当 a >2 时,解集为 [1,a ―1] .19.【答案】(1)解:2x 2+x >2ax +a ,∴x (2x +1)>a (2x +1),∴(x ―a )(2x +1)>0,当a =1时,可得解集为{x |x >1或x <―12}.(2)对应方程的两个根为a ,―12,当a =―12时,原不等式的解集为{x |x ≠―12},当a >―12时,原不等式的解集为{x |x >a 或x <―12},当a <―12时,原不等式的解集为{x |x <a 或x >―12}.20.【答案】(1)解:∵△ABC 的边长是20米,D 在AB 上,则10≤x≤20,S △ADE = 12S △ABC ,∴12 x•AEsin60°= 12 • 34 •(20)2,故AE= 200x,在三角形ADE 中,由余弦定理得:y= x 2+4⋅104x 2―200 ,(10≤x≤20);(2)解:若DE 作为输水管道,则需求y 的最小值, ∴y= x 2+4⋅104x 2―200 ≥ 400―200 =10 2 ,当且仅当x 2= 4⋅104x 2即x=10 2 时“=”成立.。
全国通用2023高中数学必修一第二章一元二次函数方程和不等式专项训练
全国通用2023高中数学必修一第二章一元二次函数方程和不等式专项训练单选题1、实数a,b满足a>b,则下列不等式成立的是()A.a+b<ab B.a2>b2C.a3>b3D.√a2+b2<a+b答案:C分析:利用不等式的性质逐一判断即可.A,若a=1,b=0,则a+b>ab,故A错误;B,若a=1,b=−2,则a2<b2,故B错误;C,若a>b,则a3−b3=(a−b)(a2+ab+b2)=(a−b)[(a+b2)2+3b24]>0,所以a3>b3,故C正确;D,若a=1,b=−2,则√a2+b2>a+b,故D错误.故选:C2、将进货价为每个80元的商品按90元一个出售时,能卖出400个,每涨价1元,销售量就减少20个,为了使商家利润有所增加,则售价a(元/个)的取值范围应是()A.90<a<100B.90<a<110C.100<a<110D.80<a<100答案:A分析:首先设每个涨价x元,涨价后的利润与原利润之差为y元,结合条件列式,根据y>0,求x的取值范围,即可得到a的取值范围.设每个涨价x元,涨价后的利润与原利润之差为y元,则a=x+90,y=(10+x)⋅(400−20x)−10×400=−20x2+200x.要使商家利润有所增加,则必须使y>0,即x2−10x<0,得0<x<10,∴90<x+90<100,所以a的取值为90<a<100.故选:A3、已知a>0,b>0且ab=1,不等式12a +12b+ma+b≥4恒成立,则正实数m的取值范围是()A.m≥2B.m≥4C.m≥6D.m≥8答案:D分析:由条件结合基本不等式可求a +b 的范围,化简不等式可得m ≥4(a +b )−(a+b )22,利用二次函数性质求4(a +b )−(a+b )22的最大值,由此可求m 的取值范围.不等式12a+12b+ma+b≥4可化为a+b 2ab+m a+b≥4,又a >0,b >0,ab =1,所以m ≥4(a +b )−(a+b )22,令a +b =t ,则m ≥4t −t 22,因为a >0,b >0,ab =1,所以t =a +b ≥2√ab =2,当且仅当a =b =1时等号成立, 又已知m ≥4t −t 22在[2,+∞)上恒成立,所以m ≥(4t −t 22)max因为4t −t 22=12(8t −t 2)=−12(t −4)2+8≤8,当且仅当t =4时等号成立,所以m ≥8,当且仅当a =2−√3,b =2+√3或a =2−√3,b =2+√3时等号成立, 所以m 的取值范围是[8,+∞), 故选:D.4、已知a >0,b >0,若a +4b =4ab ,则a +b 的最小值是( ) A .2B .√2+1C .94D .52 答案:C分析:将a +4b =4ab ,转化为1b +4a =4,由a +b =14(a +b )(1b +4a )=14(5+ab +4b a),利用基本不等式求解.因为a +4b =4ab , 所以1b +4a =4,所以a +b =14(a +b )(1b +4a )=14(5+ab +4b a),≥14(5+2√ab ⋅4b a)=94, 当且仅当{1b +4a =4ab =4b a,即{a =32b =34 时,等号成立,故选:C5、在开山工程爆破时,已知导火索燃烧的速度是每秒0.5 cm ,人跑开的速度为每秒4 m ,为了使点燃导火索的人能够在爆破时跑到100 m 以外的安全区,导火索的长度x (cm )应满足的不等式为( ) A .4×x 0.5≥100B .4×x 0.5≤100C .4×x0.5>100D .4×x0.5<100 答案:C分析:为了安全,则人跑开的路程应大于100米,路程=速度×时间,其中时间即导火索燃烧的时间. 导火索燃烧的时间x0.5秒,人在此时间内跑的路程为4×x 0.5m .由题意可得4×x0.5>100. 故选:C.6、已知x,y,z 都是正实数,若xyz =1,则 (x +y )(y +z )(z +x ) 的最小值为( ) A .2B .4C .6D .8 答案:D分析:均值定理连续使用中要注意等号是否同时成立. 由x >0,y >0,z >0可知x +y ≥2√xy >0(当且仅当x =y 时等号成立) y +z ≥2√yz >0(当且仅当y =z 时等号成立) x +z ≥2√xz >0(当且仅当x =z 时等号成立) 以上三个不等式两边同时相乘,可得(x +y )(y +z )(z +x )≥8√x 2y 2z 2=8(当且仅当x =y =z =1时等号成立) 故选:D7、已知−1≤x +y ≤1,1≤x −y ≤5,则3x −2y 的取值范围是( ) A .[2,13]B .[3,13]C .[2,10]D .[5,10] 答案:A分析:设3x −2y =m (x +y )−n (x −y )=(m −n )x +(m +n )y ,求出m,n 的值,根据x +y,x −y 的范围,即可求出答案.设3x −2y =m (x +y )−n (x −y )=(m −n )x +(m +n )y ,所以{m −n =3m +n =−2,解得:{m =12n =−52,3x −2y =12(x +y )+52(x −y ), , 因为−1≤x +y ≤1,1≤x −y ≤5,所以3x −2y =12(x +y )+52(x −y )∈[2,13], 故选:A.8、已知a >1,则a +4a−1的最小值是( ) A .5B .6C .3√2D .2√2 答案:A分析:由于a >1,所以a −1>0,则a +4a−1=(a −1)+4a−1+1,然后利用基本不等式可求出其最小值由于a >1,所以a −1>0 所以a +4a−1=a −1+4a−1+1≥2√(a −1)⋅4(a−1)+1=5,当且仅当a −1=4a−1,即a =3时取等号. 故选:A.9、y =x +4x (x ≥1)的最小值为( )A .2B .3C .4D .5 答案:C分析:利用均值不等式求解即可.因为y =x +4x(x ≥1),所以x +4x≥2√x ×4x=4,当且仅当x =4x即x =2时等号成立.所以当x =2时,函数y =x +4x 有最小值4. 故选:C.10、已知使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0,则实数a 的取值范围为( )A .(−∞,−13)B .(−∞,−13] C .[−13,+∞)D .(−13,+∞) 答案:C分析:使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0,则不等式x 2+(a +1)x +a ≤0的解集是(−∞,13]的子集,求出两个不等式的解集,利用集合的包含关系列不等式求解.解:由3x −1≤0得x ≤13,因为使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0 则不等式x 2+(a +1)x +a ≤0的解集是(−∞,13]的子集, 又由x 2+(a +1)x +a ≤0得(x +a )(x +1)≤0, 当a =1,x ∈{−1}⊆(−∞,13],符合;当a <1,x ∈[−1,−a ]⊆(−∞,13],则−a ≤13,∴1>a ≥−13, 当a >1,x ∈[−a,−1]⊆(−∞,13],符合,故实数a 的取值范围为[−13,+∞). 故选:C. 填空题11、 设x >0,y >0,x +2y =4,则(x+1)(2y+1)xy的最小值为__________.答案:92.分析:把分子展开化为(x+1)(2y+1)xy=2xy+x+2y+1xy=2xy+5xy=2+5xy,再利用基本不等式求最值.由x +2y =4,得x +2y =4≥2√2xy ,得xy ≤2(x+1)(2y+1)xy=2xy+x+2y+1xy=2xy+5xy=2+5xy≥2+52=92,等号当且仅当x =2y ,即x =2,y =1时成立. 故所求的最小值为92.小提示:使用基本不等式求最值时一定要验证等号是否能够成立. 12、不等式2x−7x−1≤1的解集是________. 答案:(1,6]分析:把原不等式的右边移项到左边,通分计算后,根据分式不等式解法,然后转化为两个一元一次不等式组,注意分母不为0的要求,求出不等式组的解集即为原不等式的解集.不等式2x−7x−1≤1得x−6x−1≤0 ,故{(x −1)(x −6)≤0x −1≠0⇒1<x ≤6 ,所以答案是:(1,6].13、已知5x 2y 2+y 4=1(x,y ∈R),则x 2+y 2的最小值是_______. 答案:45分析:根据题设条件可得x 2=1−y 45y 2,可得x 2+y 2=1−y 45y 2+y 2=15y 2+4y 25,利用基本不等式即可求解.∵5x 2y 2+y 4=1 ∴y ≠0且x 2=1−y 45y 2∴x 2+y 2=1−y 45y 2+y 2=15y 2+4y 25≥2√15y 2⋅4y 25=45,当且仅当15y 2=4y 25,即x 2=310,y 2=12时取等号.∴x 2+y 2的最小值为45. 所以答案是:45.小提示:本题考查了基本不等式在求最值中的应用.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立). 解答题14、(1)设b >a >0,m >0,证明:ab <a+mb+m ; (2)设x >0,y >0,z >0,证明:1<x x+y +y y+z+z z+x<2.答案:(1)证明见解析;(2)证明见解析. 分析:(1)根据作差法证明即可;(2)由于xx+y >xx+y+z ,故1<xx+y +yy+z +zz+x ,再结合(1)的结论易证xx+y +yy+z +zz+x <2. 证明:(1)因为b >a >0,m >0,所以a −b <0,b +m >0。
高中数学必修一第二章复习题.docx
精品文档必修一第二章复习题 (第一课时:指数函数 )姓名:班级:一、填空题:n (n N , 且n 1).、 ( n n) n(n N ,且n 1).、1 02n n为大于 的奇数 n n(a 0)为大于 的偶数、(n 、 a(a 0)(n 3 a1 ). 4 1)m、 a n、,且n 1) 5(a 0, m n N—m、 n 、 N ,且n 1) 6 a( a 0,m n、有理数指数幂的运算性质7(1)r s (a0,r 、s Q)(2) rs(a 0, r 、s Q)a a(a )(3)(ab)r(a 0,b 0, r Q)1 x、在下列直角坐标系中画出指数函数y=2x 和 y=的大致图象8y2ox9、设1ba1 1 ,则 的大小关系为 。
33 31 a,b二、选择题:66()、( 2)的值是1 -A 、2B 、2C、 2D 、 1-2、下列函数一定是指数函数的是( )A 、 y 2x 1B 、 y x 1C 、 y ( 3) xD 、 y 2 x3、函数 ya 2 x 1(2 a0,且 a 1)的图象必经过点()、( 0,3 ) B 、( 1,3 ) C 、( 1,2) D 、( ,3 )A 2 214、设 y 1 =40.9,y 2 =80.48,y 3 =( 1)1.5 ,则()2精品文档C .y1>y2>y3D . y1>y3>y25、 函数 y=a x 和 y log b x 的图象如图所示,则( )y1ox1A 、 a 1,b 1B 、 0 a 1, b 1C 、 0 a 1,0b 1D 、 a 1, 0 b 16、函数y()在,则( 0, )上是增函数,则实数的取值范围为()log a +1 x+a、 、 C 、且 D 、 且A a 0B a 1a 0 a 1a 1 a 0三、 计算题(式中各字母均为正数):115211( 1) a 3 a 4a 12(2) a 3 a 4 a 62 4 111 1 2(3)(x 5y3)15(4)2 x 4 (6 x 4 y3 )( 3x 4 y 3 )四、解答题1、比较下列各组数的大小关系(1)2.1 0.4,2.1 -0.4(2)0.21 5 , 0.21 4.9 ( 3) a 2.72.5 1) 0.7 0.5, a ( a (4) a , a2、已知下列不等式,比m 和 n 的大小关系mnmnmn1) (4) a mn(1)2.1>2.1 (2)0.21 <0.21 ( 3) a >a ( a a3、 设 y 1 =a 4x+2 , y 2 =a -2x ,其中 a 0, 且 ,确定 为何值时,有a 1x (1)y 1 =y 2 (2)y 1 y 2精品文档必修一第二章复习题 (第二课时:对数函数和幂函数)姓名:班级:一、填空题:、当 , 时, x Nx. 1a0 a 1 a、, a. (a 且)2 log a 1log a0 a1、log a N且 例lg7,ln3.3 a ( a 0 a 1). 10 = e =、对数的运算性质4如果a 且 a ,M, ,则0 1 0 N( 1) log a (M N )( 2)M)log a (N( 3) log a M n ,特别的 log a a n、(换底公式 ,M b N5 log a b) log a例log 9 27 log 32336、在下列直角坐 标系中画出指数函数 y=log 2 x 和y=log 1 x 的大致图象2yox7、函数 f ( x) 1 x ln x 的定义域为.8、若函数 f ( x)log a x(0 a 1) 在 a,2 a 上的最大值是其最小值的 2 倍,则 a =.二、选择题:、5(lnx)=0,那么 x 的值是 ()1 logA 、 e 1B、 1 C、 e D、 e、函数 y= log ()的定义域为()21 x-12精品文档、三个数7,0.7, 的大小关系为()30.7 7log 0.7 7A、 7<log < 0.7B、7< 0.7< log 0.7 70.70.77 70.77C、< 0.7 <7D、< 7 <0.7log 0.7 770.7log 0.7 70.774.已知 lg 2a , lg3b ,则 lg36()A . 2a2bB . 4abC . 2a 3bD . a 2 b 2时,函数 y= 1x、在同一直角坐标系中,当 a 和 y 的大致图象是 ( )5 1 alog a xy yy yoxoxoxoxAB C D6、已知幂函数 f (x)的图象过点( 2, 2),若 f(a)=8, 则 a 为 ()A 、2 2B 、4 2C 、2 2D 、 42三、计算题 :22lg1ln1(2)71 log7(1) 831 52100 e四、解答题1、比较下列各组数的大小关系(1)log 2.1 0.4 ,log 2.1 4 (2)log 0.5 0.4,log 0.5 4 (3)log a 0.4, log a (4a1)(4)log a 0.4,log a 42、已知下列不等式,比 m 和 n 的大小关系(1)log 2.1m <log 2.1n (2)log 0.5 m <log 0.5 n (3)log a m>log a (na 1)(4)log <logaman精品文档3、已知函数 f (x)=(m2+2m)x m2m 1,当m为何值时,f(x)为(1)幂函数(2)正比例函数(3)反比例函数(4)二次函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修一第二章复习题(第一课时:指数函数)
姓名: 班级:
一、填空题:
{
00r 1(n N ,n 1).2(n N ,n 1).3(n 1).
4(n 1)
5(0,n N n 1)
6(0,n N n 1)7(0,)()(0,)
(3)()(0,b 0,n a a m
n
m n
s r s r a a m a
a m a a a r s Q a a r s Q a
b a r **≥<**=∈>=
∈>=
=
=
=>∈>=
=
>∈>=>∈=>∈=
>>()
()
—且、且为大于的奇数为大于的偶数、、,且、、,且、有理数指数幂的运算性质(1)、(2)、)
18
2x
x Q ∈⎛⎫
⎪⎝⎭、在下列直角坐标系中画出指数函数y=2和y=的大致图象
9、1111,333b
a
a b ⎛⎫⎛⎫
<<< ⎪ ⎪⎝⎭⎝⎭
设,则的大小关系为。
二、选择题:
1-±(
)A 、2 B 、2 C 、2 D 、1
2、下列函数一定是指数函数的是 ( )
112(3)2x x x A y B y x C y D y +--===-=、、、、 21320,111
122
x y a a a A -=+>≠、函数(且)的图象必经过点()
、(0,3)B 、(,3)C 、(,2)D 、(,3)
4、设0.90.48
1.51231y =4,y =8,y =()2
,则 ( )
A .y3>y1>y2
B .y2>y1>y3
o
y
x
C .y1>y2>y3
D .y1>y3>y2
5、=log x b y a y x =函数和的图象如图所示,则 ( )
1,111
1,111
A a b
B a b
C a b
D a b >><<><<<<><<、、0,、00、,0
+1log +010110
a y x a A a B a C a a D a a =∞>>>≠<≠()6、函数在,则(0,
)上是增函数,则实数的取值范围为 ( )、、、且、且
三、计算题(式中各字母均为正数):
1
21151336
412
4241211115
5
33
3
4
4
4
(2)(3)(x y )
(4)2x (6y )(3x y )
a a a
a a a
x -
-
⋅⋅⋅÷÷-(1)
四、解答题
1、比较下列各组数的大小关系
0.4-0.45 4.9 2.7 2.50.70.52.11a a a a a ->(1)2.1,(2)0.21,0.21(3),()(4),
2、已知下列不等式,比m 和n 的大小关系
2.11m n
m n m n
m n a a a a a ><(1)2.1>(2)0.21<0.21(3)>()(4)
4x+2-2x 1212
12
==0,1=y a y a a a x y y y y >≠>设,,其中且,确定为何值时,有
(1)(2)3、
必修一第二章复习题(第二课时:对数函数和幂函数)
姓名: 班级:
一、填空题:
2log lg7ln3n n 393101.
2log 1log 013(01).10=
=
.
40100log ()log ()log ,log 5log ()log log 27log 3a M x a a N a a a a N a a a a a N x a a a a a a e a a M N M N M N
M a b b >≠=⇔===
>≠=
>≠>≠>>⋅====
=
=
==
、当,时,、,.(且)
、且例,、对数的运算性质
如果且,,,则(1)(2)(3)特别的、换底公式,例
6、在下列直角坐212
log x log 标系中画出指数函数y=和y=x 的大致图象
7
、函数()ln f x x =的定义域为 .
8、若函数()log (01)a f x x a =<<在[],2a a 上的最大值是其最小值的2倍,则a = .
二、选择题:
511log e e --、(lnx)=0,那么x 的值是
()
A 、
B 、1
C 、
D 、e 12
2=log x-1--y ∞∞∞∞、函数()的定义域为
(
)
A 、(,0)
B 、(,1]
C 、[1,+)
D 、(1,+)
o
y
x
70.70.770.770.70.70.70.77
70.7
0.70.730.77log 70.7log 770.77log 7log 770.7log 70.77、三个数,,的大小关系为()
A、<<B、<<C、<<D、<<
4.已知lg 2a =,lg3b =,则lg36= ( ) A.22a b + B.4ab C.23a b + D.22a b +
151log x
a a y x a ⎛⎫
>= ⎪⎝⎭
、在同一直角坐标系中,当时,函数y=和的大致图象是(
)
6(x)f B C D ±±、已知幂函数2),若f(a)=8,则a 为 (
)
A 、、、、
三、计算题:
(1)2
2
3
1118lg ln 2100e -⎛⎫
+-+ ⎪⎝⎭
71log 5(2)7-
四、解答题
1、比较下列各组数的大小关系
2.1 2.10.50.50.440.440.4410.44
a a a a a >(1)log ,log (2)log ,log (3)log ,log ()
(4)log ,log
2、已知下列不等式,比m 和n 的大小关系
2.1 2.10.50.51a a a a m n m n m n a m n
>(1)log <log (2)log <log (3)log >log ()
(4)log <log
A
B
C
2
21,m x m m +-+2m 当为何值时,f (1)幂函数
(2)正比例函数(3)反比例函数(4)(二次函数
x )为
3、已知函数f ()=(m )x。