秒杀题型09 圆锥曲线中的中点弦(解析版)

合集下载

高考圆锥曲线中点弦问题 讲义--高三数学一轮复习

高考圆锥曲线中点弦问题 讲义--高三数学一轮复习

圆锥曲线中点弦问题题型识别:弦中点,斜率积用点差若),(11y x A ,),(22y x B 是椭圆)(012222>>=+b a by a x 上不重合的两点,点)(00,y x M 为AB 的中点,OM AB k k .的值为定值么? 答题模版第一步:若),(11y x A ,),(22y x B 是椭圆)(012222>>=+b a by a x 上不重合的两点,则⎪⎪⎩⎪⎪⎨⎧=+=+11222222221221b y a x by a x , 第二步:两式相减得0))(((2212122121=-++-+by y y y a x x x x ))(, 第三步:2121x x y y --是直线AB 的斜率k ,)(2,22121y y x x ++是线段AB 的中点)(00,y x ,化简可得2221212121a b x x y y x x y y -=--⋅++2200ab k x y -=⋅⇒类型1 求中点弦直线斜率或方程典例1:已知椭圆E :22142x y +=,O 为坐标原点,作斜率为k 的直线交椭圆E 于A ,B两点,线段AB 的中点为M ,直线OM 与AB 的夹角为θ,且tan 22θ=则k =( ) A .22±B .2±C .22D 2 【答案】A【解析】由题意知0k ≠,设()11,A x y ,()22,B x y ,()00,M x y ,则0122x x x =+,0122y y y =+,将A ,B 两点坐标代入椭圆方程22112222142142x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得22012121222121212012y y y y y y y k x x x x x x x -+-=-=-⨯=--+-,则0012OM y k x k ==-,设直线OM 的倾斜角为α,则1tan α2k=-,设直线AB 的倾斜角为β,则tan k β=,则()()()1tan αtan π2tan tan απ221tan αtan π12k k k kβθββ--+-=+-===---22k =±.对点训练1.已知(2,1)-是直线l 被椭圆221369x y +=所截得线段的中点,则直线l 的方程是( )A .20x y -=B .240x y -+=C .230x y ++=D .2310x y --=2.已知双曲线2212x y -=与不过原点O 且不平行于坐标轴的直线l 相交于,M N 两点,线段MN 的中点为P ,设直线l 的斜率为1k ,直线OP 的斜率为2k ,则12k k =( )A .12 B .12- C .2 D .2-3.已知双曲线2213y x -=上存在两点M,N 关于直线y x m =+对称,且MN 的中点在抛物线29y x =上,则实数m 的值为( )A .4B .-4C .0或4D .0或-4类型2 求曲线的标准方程典例2:已知椭圆2221(02)4x y b b+=<<的左右焦点分别为12,F F ,过左焦点1F 作斜率为2的直线与椭圆交于,A B 两点,AB 的中点是P ,O 为坐标原点,若直线OP 的斜率为14-,则b 的值是( )A .2B 3C .32D 2 【答案】D【解析】设A (x 1,y 1),B (x 2,y 2),则2211214x y b +=,222224x y b+=1,两式相减可得14(x 1﹣x 2)(x 1+x 2)21b +(y 1﹣y 2)(y 1+y 2)=0,∵P 为线段AB 的中点,∴2x p =x 1+x 2,2y p =y 1+y 2,∴1212y y x x --•212124y y b x x +=-+,又1212y y x x -=-k AB =2,121214y y x x +=-+∴2124b -=-,即22b =,∴2b =对点训练1.椭圆221ax by +=与直线12y x =-交于A 、B 两点,过原点与线段AB 中点的直线的斜2,则ab的值为( ) A 2 B 3 C .22 D .32.若双曲线的中心为原点,(0,2)F -是双曲线的焦点,过F 的直线l 与双曲线相交于M ,N两点,且MN 的中点为(3,1)P 则双曲线的方程为( )A .2213x y -=B .2213x y -=C .2213y x -=D .2213y x -=3.已知抛物线C 的顶点为原点,焦点在x 轴上,直线y =x 与抛物线C 交于A ,B 两点,若P(2,2)为AB 的中点,则抛物线C 的方程为( )B .y 2=4x B .y 2=−4xC .x 2=4yD .y 2=8x类型三 点差法求离心率典例3:已知A ,B 是椭圆E :22221(0)x y a b a b+=>>的左、右顶点,M 是E 上不同于A ,B 的任意一点,若直线AM ,BM 的斜率之积为49-,则E 的离心率为( )A .23 B .33 C .23 D .53【答案】D【解析】由题意方程可知,(,0),(,0)A a B a -,设00(,)M x y ,0000,,AM BM y y k k x a x a∴==+-则000049y y x a x a ⋅=-+- ,,整理得:2022049y x a =--,①又2200221x y a b +=,得2222002()b y a x a =-,即2202220y b x a a =--,②联立①②,得2249b a -=-,即22249a c a -=,解得5e =.对点训练1.设椭圆()222210x y a b a b+=>>的两焦点为12,F F ,若椭圆上存在点P ,使012120F PF ∠=,则椭圆的离心率e 的取值范围为( ). A .3] B .3(0,]4 C .3D .3[,1)42.经过双曲线22221(00)x y a b a b-=>>,的右焦点,倾斜角为60的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( )A .[2,+∞)B .(1,2)C .(1,2]D .(2,+∞)3.已知双曲线2222:1x y C a b-=的两条渐近线分别为1l 与2l ,A 与B 为1l 上关于原点对称的两点,M 为2l 上一点且AM BM k k e ⋅=,则双曲线离心率e 的值为( ) A 5 B 51+ C .2 D 2 综合训练1.已知 m,n,s,t ∈R ∗,m +n =3,m s+nt=1,其中m ,n 是常数且m <n ,若s +t 的最小值是3+2√2,满足条件的点(m,n )是椭圆 x 24+y 216=1一弦的中点,则此弦所在的直线方程为( )A. x −2y +3=0B. 4x −2y −3=0C. x +y −3=0D. 2x +y −4=02.已知椭圆22221(0)x y a b a b +=>>的右焦点为F ,离心率22,过点F 的直线l 交椭圆于,A B 两点,若AB 中点为(1,1),则直线l 的斜率为( )A .2B .2-C .12- D .123.已知双曲线22184x y -=上有不共线的三点、、A B C ,且AB BC AC 、、的中点分别为D E F 、、,若OD OE OF 、、的斜率之和为-2,则111AB BC ACk k k ++= ( ) A .-4 B .23- C .4 D .64.若双曲线的中心为原点,()2,0F -是双曲线的焦点,过F 直线l 与双曲线交于M ,N 两点,且MN 的中点为()1,3P ,则双曲线的方程为( )A .2213x y -=B .2213x y -=C .2213y x -=D .2213y x -=5.椭圆mx 2+ny 2=1与直线y =1-x 交于M ,N 两点,过原点与线段MN 中点所在直线的斜2,则m n 的值是( )A .22B 23C 92D 236.中心为原点,一个焦点为F (2)的椭圆,截直线y =3x -2所得弦中点的横坐标为12,则该椭圆方程为( )A .222217525x y +=B .2217525x y +=C .2212575x y +=D .222212575x y +=7.已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为A ,B ,点M 为椭圆C 上异于A ,B 的一点,直线AM 和直线BM 的斜率之积为14-,则椭圆C 的离心率为( ) A .14 B .12 C .3 D .1548.已知椭圆()222210x y a b a b+=>>,的一条弦所在的直线方程是30x y -+=,弦的中点坐标是(2,1)M -,则椭圆的离心率是( ) A 5B 3C 2D .12圆锥曲线中点弦问题解析题型识别:弦中点,斜率积用点差若),(11y x A ,),(22y x B 是椭圆)(012222>>=+b a by a x 上不重合的两点,点)(00,y x M 为AB 的中点,OM AB k k .的值为定值么? 答题模版第一步:若),(11y x A ,),(22y x B 是椭圆)(012222>>=+b a by a x 上不重合的两点,则⎪⎪⎩⎪⎪⎨⎧=+=+11222222221221b y a x by a x , 第二步:两式相减得0))(((2212122121=-++-+by y y y a x x x x ))(, 第三步:2121x x y y --是直线AB 的斜率k ,)(2,22121y y x x ++是线段AB 的中点)(00,y x ,化简可得2221212121a b x x y y x x y y -=--⋅++2200ab k x y -=⋅⇒类型1 求中点弦直线斜率或方程典例1:已知椭圆E :22142x y +=,O 为坐标原点,作斜率为k 的直线交椭圆E 于A ,B两点,线段AB 的中点为M ,直线OM 与AB 的夹角为θ,且tan 22θ=则k =( ) A .22±B .2±C .22D 2 【答案】A【解析】由题意知0k ≠,设()11,A x y ,()22,B x y ,()00,M x y ,则0122x x x =+,0122y y y =+,将A ,B 两点坐标代入椭圆方程22112222142142x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得22012121222121212012y y y y y y y k x x x x x x x -+-=-=-⨯=--+-,则0012OM y k x k ==-,设直线OM 的倾斜角为α,则1tan α2k=-,设直线AB 的倾斜角为β,则tan k β=,则()()()1tan αtan π2tan tan απ221tan αtan π12k k k kβθββ--+-=+-===---22k =±.对点训练1.已知(2,1)-是直线l 被椭圆221369x y +=所截得线段的中点,则直线l 的方程是( )A .20x y -=B .240x y -+=C .230x y ++=D .2310x y --= 【答案】B【解析】设直线和圆锥曲线交点为1(A x ,1)y ,2(B x ,2)y ,其中点坐标为(2,1)-,当斜率不存在时,显然不成立,设y kx m =+,分别代入圆锥曲线的解析式22111369x y +=,22221369x y +=并作差,利用平方差公式对结果进行因式分解,得12121212936y y y y x x x x -+=--+,得19236k =--,12k =,所以1(2)12y x =++,即:240x y -+=.2.已知双曲线2212x y -=与不过原点O 且不平行于坐标轴的直线l 相交于,M N 两点,线段MN 的中点为P ,设直线l 的斜率为1k ,直线OP 的斜率为2k ,则12k k =( )A .12 B .12- C .2 D .2- 【答案】A 【解析】设直线l 的方程为1y k x b =+,代入双曲线方程2212x y -=,得到2221112102k x bk x b ⎛⎫----= ⎪⎝⎭,得到11221212k bx x k +=-,设()()111212,,,M x k x b N x k x b ++,则()11212,22k x x x x N b ⎛⎫+++ ⎪⎝⎭,则21121212b k k x x k =+=+,故1212k k ⋅=,故选A .3.已知双曲线2213y x -=上存在两点M,N 关于直线y x m =+对称,且MN 的中点在抛物线29y x =上,则实数m 的值为( )A .4B .-4C .0或4D .0或-4 【答案】D【解析】∵MN 关于y=x+m 对称∴MN 垂直直线y=x+m ,MN 的斜率﹣1,MN 中点P (x 0,x 0+m )在y=x+m 上,且在MN 上设直线MN :y=﹣x+b ,∵P 在MN 上,∴x 0+m=﹣x 0+b ,∴b=2x 0+m由2213y x b y x =+⎧⎪⎨-=⎪⎩﹣消元可得:2x 2+2bx ﹣b 2﹣3=0△=4b 2﹣4×2(﹣b 2﹣3)=12b 2+12>0恒成立,∴M x +N x =﹣b ,∴x 0=﹣2b ,∴b=2m∴MN 中点P (﹣4m ,34m )∵MN 的中点在抛物线y 2=9x 上, ∴299164mm =-∴m=0或m=﹣4类型2 求曲线的标准方程典例2:已知椭圆2221(02)4x y b b+=<<的左右焦点分别为12,F F ,过左焦点1F 作斜率为2的直线与椭圆交于,A B 两点,AB 的中点是P ,O 为坐标原点,若直线OP 的斜率为14-,则b 的值是( )A .2B 3C .32D 2 【答案】D【解析】设A (x 1,y 1),B (x 2,y 2),则2211214x y b +=,222224x y b+=1,两式相减可得14(x 1﹣x 2)(x 1+x 2)21b +(y 1﹣y 2)(y 1+y 2)=0,∵P 为线段AB 的中点,∴2x p =x 1+x 2,2y p =y 1+y 2,∴1212y y x x --•212124y y b x x +=-+,又1212y y x x -=-k AB =2,121214y y x x +=-+∴2124b -=-,即22b =,∴2b =对点训练1.椭圆221ax by +=与直线12y x =-交于A 、B 两点,过原点与线段AB 中点的直线的斜2,则ab的值为( ) A .24 B .36C .22D .3【答案】C【解析】设点()11,A x y ,()22,B x y ,联立22112ax by y x⎧+=⎨=-⎩,得:()24410a b x bx b +-+-=,()()()244414164b a b b a b ab ∆=--+-=+- .12124414b x x a b b x x a b ⎧+=⎪⎪+⎨-⎪=⎪+⎩⇒12224x x b a b +=+,∴()121212*********x x y y x x -++-+-===()1241144b a x x a b a b -+=-=++.设M 是线段AB 的中点,∴M (2,44b a a b a b++).∴直线OM 的斜率为42224aa ab b b a b+==+则22ab=代入①满足△>0(a >0,b >0).2.若双曲线的中心为原点,(0,2)F -是双曲线的焦点,过F 的直线l 与双曲线相交于M ,N两点,且MN 的中点为(3,1)P 则双曲线的方程为( )A .2213x y -=B .2213x y -=C .2213y x -=D .2213y x -=【答案】B【解析】由题意设该双曲线的标准方程为22221(0,0)y x a b a b-=>>,1122(,),(,)M x y N x y ,则2211221y x a b -=且2222221y x a b-=,则1212121222()()()()y y y y x x x x a b +-+-=,即1212222()6()y y x x a b --=,则21221261(2)1230y y a x x b ---===--,即223b a =,则2244c a ==,所以221,3a b ==,即该双曲线的方程为2213x y -=.3.已知抛物线C 的顶点为原点,焦点在x 轴上,直线y =x 与抛物线C 交于A ,B 两点,若P(2,2)为AB 的中点,则抛物线C 的方程为( )B .y 2=4x B .y 2=−4xC .x 2=4yD .y 2=8x 【答案】A【解析】设抛物线方程为y 2=2px ,直线与抛物线方程联立求得x 2−2px =0,∴x A +x B =2p ,∵x A +x B =2×2=4,∴p=2,∴抛物线C 的方程为y 2=4x .类型三 点差法求离心率典例3:已知A ,B 是椭圆E :22221(0)x y a b a b +=>>的左、右顶点,M 是E 上不同于A ,B 的任意一点,若直线AM ,BM 的斜率之积为49-,则E 的离心率为( )A 2B 3C .23D 5【答案】D【解析】由题意方程可知,(,0),(,0)A a B a -,设00(,)M x y ,0000,,AM BM y y k k x a x a∴==+-则000049y y x a x a ⋅=-+- ,,整理得:2022049y x a =--,①又2200221x y a b +=,得2222002()b y a x a =-,即2202220y b x a a =--,②联立①②,得2249b a -=-,即22249a c a -=,解得5e =.对点训练1.设椭圆()222210x y a b a b+=>>的两焦点为12,F F ,若椭圆上存在点P ,使012120F PF ∠=,则椭圆的离心率e 的取值范围为( ). A .3(0,]2 B .3(0,]4 C .32D .3[,1)4【答案】C【解析】当P 是椭圆的上下顶点时,12F PF ∠最大,121120180,6090,F PF F PO ∴︒≤∠<︒∴︒≤∠<︒12sin 60sin sin 90,F PF ∴︒≤∠<︒113,,1c F P a F O c a ==≤<则椭圆的离心率e 的取值范围为32⎫⎪⎪⎣⎭.2.经过双曲线22221(00)x y a b a b-=>>,的右焦点,倾斜角为60的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( )A .[2,+∞)B .(1,2)C .(1,2]D .(2,+∞) 【答案】A【解析】已知双曲线()2222100x y a b a b-=>,>的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率b a ,∴3b a ≥e 2222224c a b a a+==≥,∴e ≥2,故选:A3.已知双曲线2222:1x y C a b-=的两条渐近线分别为1l 与2l ,A 与B 为1l 上关于原点对称的两点,M 为2l 上一点且AM BM k k e ⋅=,则双曲线离心率e 的值为( ) A 5 B 51+ C .2 D 2 【答案】B【解析】设直线1l 的方程为b y x a =,则直线2l 的方程为b y x a =-,设点11,b A x x a ⎛⎫ ⎪⎝⎭、22,b M x x a ⎛⎫- ⎪⎝⎭,则点11,b B x x a ⎛⎫-- ⎪⎝⎭,()1212AM bx x ak x x +=-,()12121212MBb b b x x x x a a a k x x x x -+-==--+,22AM BM b k k e a ∴⋅==,即21e e -=,即210e e --=,1e >,解得512e =,故选:B.综合训练1.已知 m,n,s,t ∈R ∗,m +n =3,ms +nt =1,其中m ,n 是常数且m <n ,若s +t 的最小值是3+2√2,满足条件的点(m,n )是椭圆 x 24+y 216=1一弦的中点,则此弦所在的直线方程为( )A. x −2y +3=0B. 4x −2y −3=0C. x +y −3=0D. 2x +y −4=0 【答案】D【解析】因为 m ,n ,s ,t 为正数,m +n =3,ms +nt =1,s +t 的最小值是 3+2√2,所以 (s +t )(ms +nt ) 的最小值是 3+2√2,所以 (s +t )(ms +nt )=m +n +mt s+ns t≥m +n +2√mn ,满足mt s =ns t时取最小值,此时最小值为 m +n +2√mn =3+2√2,得:mn =2,又:m +n =3,所以,m =1,n =2.设以 (1,2) 为中点的弦交椭圆 x 24+y 216=1 于A (x 1,y 1),B (x 2,y 2),由中点坐标公式知 x 1+x 2=2,y 1+y 2=4,把 A (x 1,y 1),B (x 2,y 2)分别代入 4x 2+y 2=16,得 {4x 12+y 12=16,4x 22+y 22=16,两式相减得 2(x 1−x 2)+(y 1−y 2)=0,所以 k =y 2−y 1x 2−x 2=−2.所以此弦所在的直线方程为 y −2=−2(x −1),即 2x +y −4=0.2.已知椭圆22221(0)x y a b a b +=>>的右焦点为F ,离心率22,过点F 的直线l 交椭圆于,A B 两点,若AB 中点为(1,1),则直线l 的斜率为( )A .2B .2-C .12- D .12【答案】C 【解析】由题得2222222242,4()2,2c c a a b a a b a =∴=∴-=∴=.设1122(,),(,)A x y B x y ,由题得1212+=2+=2x x y y ,,所以2222221122222222b x a y a b b x a y a b ⎧+=⎨+=⎩,两式相减得2212121212()()a ()()0b x x x x y y y y +-++-=,所以2212122()2a ()0b x x y y -+-=,所以221212()240()y y b bx x -+=-,所以1120,2k k +=∴=-.3.已知双曲线22184x y -=上有不共线的三点、、A B C ,且AB BC AC 、、的中点分别为D E F 、、,若OD OE OF 、、的斜率之和为-2,则111AB BC ACk k k ++= ( ) A .-4 B .23- C .4 D .6 【答案】A【解析】设112200(,),(,),(,)A x y B x y D x y ,则1201202,2x x x y y y +=+=,2211184x y -=,2222184x y -=,两式相减,得12121212()()()()84x x x x y y y y +-+-=,即0121202y y y x x x -=-,即12OD AB k k =,同理,得112,2OE OF BC AC k k k k ==,所以1112()4OD OE OF AMBC ACk k k k k k ++=++=-. 4.若双曲线的中心为原点,()2,0F -是双曲线的焦点,过F 直线l 与双曲线交于M ,N 两点,且MN 的中点为()1,3P ,则双曲线的方程为( )A .2213x y -=B .2213x y -=C .2213y x -=D .2213y x -=【答案】D【解析】根据题意,()2,0F -是双曲线的焦点,则双曲线的焦点在x 轴上,设双曲线的方程为22221x y a b-=,且()11,M x y ,()22,N x y ,直线MN 过焦点F ,则()30112MNK -==--,则有12121y y x x -=-,变形可得1212y y x x -=-,2211222222221,1,x y a b x y a b ⎧-=⎪⎪⎨⎪-=⎪⎩①②,-①②,2222121222x x y y a b--=,又由1212y y x x -=-,且122x x +=,126y y +=,变形可得:223b a =,又由2c =,则224a b +=,解可得:21a =,23b =,则要求双曲线的方程为:2213y x -=.5.椭圆mx 2+ny 2=1与直线y =1-x 交于M ,N 两点,过原点与线段MN 中点所在直线的斜率为22,则m n 的值是( )A .22B 23C .922D 23【答案】A【解析】设()()1122,,,M x y N x y ,设MN 中点为1212,22x x y y A ++⎛⎫⎪⎝⎭,直线MN 的斜率为1-,直线OA 的斜率为12121212222y y x x x x y y ++==++.由于,M N 在椭圆上,故2211222211mx ny mx ny ⎧+=⎨+=⎩,两式相减得()()222212120m x x n y y -+-=,化简为12121212x x y y m n y y x x +--⋅=+-,即221,2m m n n -=-=. 6.中心为原点,一个焦点为F (2)的椭圆,截直线y =3x -2所得弦中点的横坐标为12,则该椭圆方程为( )A .222217525x y +=B .2217525x y +=C .2212575x y +=D .222212575x y +=【答案】C【解析】由已知得c =2,设椭圆的方程为2222150x ya a +=-,联立得222215032x y a a y x ⎧+=⎪-⎨⎪=-⎩,消去y 得(10a 2-450)x 2-12(a 2-50)x +4(a 2-50)-a 2(a 2-50)=0,设直线y =3x -2与椭圆的交点坐标分别为(x 1,y 1),(x 2,y 2),由根与系数关系得x 1+x 2=()22125010450a a --,由题意知x 1+x 2=1,即()22125010450a a --=1,解得a 2=75,所以该椭圆方程为2212575x y +=.7.已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为A ,B ,点M 为椭圆C 上异于A ,B 的一点,直线AM 和直线BM 的斜率之积为14-,则椭圆C 的离心率为( ) A .14 B .12 C .3 D 15 【答案】C【解析】由已知得(,0),(,0)A a B a -,设()00,x y ,由题设可得,2200221x y a b+=,所以()222202b y a x a=-.因为()222220200022222000014A MM B b a x y y y b a k k x a x a x a x a a -⋅=⋅===-=-+---,所以2214b a =,则22222222314c a b b e a a a -===-=,所以3e =8.已知椭圆()222210x y a b a b+=>>,的一条弦所在的直线方程是30x y -+=,弦的中点坐标是(2,1)M -,则椭圆的离心率是( ) A 5B 3C .22D .12 【答案】C【解析】显然(2,1)M - 在椭圆内,设直线30x y -+=与椭圆的交点为112212(,),(,)()A x y B x y x x ≠,由M 是,A B 的中点有:12124,2x x y y +=-+=,将,A B 两点的坐标代入椭圆方程得:2211221x y a b +=, 2222221x y a b+=。

解答圆锥曲线中点弦问题的三种途径

解答圆锥曲线中点弦问题的三种途径

丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹丹与圆锥曲线的弦及其中点有关的问题称之为圆锥曲线中点弦问题.中点弦问题在解析几何试题中比较常见,侧重于考查圆锥曲线与直线的位置关系、弦长公式、中点坐标公式、直线的斜率以及韦达定理.下面谈一谈解答圆锥曲线中点弦问题的三种途径.一、利用韦达定理若一元二次方程ax 2+bx +c =0的两个根分别为x 1、x 2,则x 1+x 2=-b 2a,x 1x 2=c a ,这个定理即是韦达定理.运用韦达定理求解圆锥曲线中点弦问题,需先将圆锥曲线方程与弦所在的直线的方程联立,通过消元,构造一元二次方程;再利用韦达定理,建立关于弦端点的坐标的关系式,最后结合中点坐标公式进行求解.例1.过点A (2,1)的直线与椭圆x 216+y29=1相交于P ,Q 两点,若点A 恰是线段PQ 的中点,求直线PQ 的方程.解:设直线PQ 的斜率为k ,则直线PQ 的方程为y -1=k (x -2),将其与椭圆的方程x 216+y 29=1联立,并消去y 得,(16k 2+9)x 2+(-64k 2+32k )x +(64k 2-64k -128)=0,由韦达定理得x 1+x 2=-(-64k 2+32k )16k 2+9.又A (2,1),所以x 1+x 2=-(-64k 2+32k )16k 2+9=4,可得k =-98,所以直线的方程为y -1=-98(x -2),即9x +8y -26=0.当遇到中点弦问题时,应很快联想到韦达定理,将圆锥曲线的方程和直线的方程联立起来,构造一元二次方程,建立方程两根之间的关系式,这是解题的关键.二、采用点差法点差法是解答中点弦问题的常用方法.运用点差法解题,要先设出或明确圆锥曲线的方程、弦的两个端点的坐标、弦的中点坐标;然后将弦的两个端点的坐标代入圆锥曲线的方程中,并将两式作差;再根据中点坐标公式和直线的斜率公式进行求解.例2.已知椭圆C :x 24+y 23=1,过点P (1,1)的直线l交椭圆C 交于A ,B 两点,求AB 中点M 的轨迹方程.解:设点A (x 1,y 1),B (x 2,y 2),将其分别代入椭圆C :x 24+y 23=1中,可得ìíîïïïïx 124+y 123=1,x 224+y 223=1,将两式相减可得3()x 1-x 2(x 1+x 2)+4()y 1-y 2(y 1+y 2)=0,即3x +4y ∙y 1-y 2x 1-x 2=0.因为AB 所在直线的斜率与MP 的斜率相等,所以3x +4y ∙y -1x -1=0,化简得3x ()x -1+4y ()y -1=0,即为点M 的轨迹方程.运用点差法解题,可以达到设而不求的效果,大大减少计算量.但点差法的适用范围比较窄,只有在已知直线的方程、圆锥曲线的方程、弦中点的坐标三者中的两者时,才可运用此方法求解.三、运用导数法借助导数法来求解圆锥曲线中点弦问题,需要先对圆锥曲线的方程进行求导,得到曲线在某点处的切线的斜率,就能将其看作中点弦的斜率,再根据中点坐标公式求解.例3.过椭圆C :x 216+y 24=1内一点M (2,1)作直线l ,交椭圆于A ,B 两点,使M 点恰好是弦AB 的中点,求该直线的方程.解:对x 216+y 24求导,得2x 16+2y 4y ′,把M (2,1)代入2x 16+2y 4y ′=0,得y ′=-12,所以直线AB 的方程为y =-12x +2.本题运用导数法求解十分简单、便捷,但需明确曲线的切线的斜率与曲线在某点处的导数之间的关系,据此建立关系式,即可快速解题.总之,在求解圆锥曲线中点弦问题时,同学们要注意将中点与韦达定理、中点坐标公式、直线的斜率公式相关联起来,从中寻找到解题的突破口,灵活运用上述三种方法解题,这样才能有效提升解题的效率.(作者单位:江苏省阜宁县实验高级中学)45。

圆锥曲线中点弦典型例题及解析

圆锥曲线中点弦典型例题及解析

01
总结词
这类问题主要考察了圆锥曲线与切线相关的性质和定理,需要利用切线
性质和圆锥曲线的定义来解决。
02
详细描述
在解决与切线相关的问题时,我们需要利用圆锥曲线的切线性质和定义,
结合题目给出的条件,推导出与中点弦相关的方程或不等式,进而求解。
03
示例
已知抛物线C的方程为y^2 = 2px (p > 0),过其焦点F作直线与C交于A、
数形结合
将代数问题与几何图形相结合 ,利用几何意义求解。
THANKS
感谢观看
特殊情况
当点$P$为圆锥曲线的焦点时, 中点弦称为焦点弦。
中点弦的性质
垂直性质
角度性质
中点弦所在的直线与过点$P$的切线 垂直。
中点弦与切线之间的夹角等于该弦所 对的圆周角。
长度性质
中点弦的长度与过点$P$的切线长度 成反比。
中点弦的几何意义
中点弦是连接圆锥曲 线上的两个对称点的 线段。
中点弦的长度等于圆 锥曲线上的两个对称 点到点$P$的距离之 和的一半。
详细描述
在解决椭圆的中点弦问题时,需要注意中点 弦的特殊性质。例如,当直线过椭圆中心时, 中点弦即为椭圆本身;当直线的斜率为0或 无穷大时,中点弦的长度为椭圆的长轴或短 轴的长度。这些特殊性质可以帮助我们快速 判断中点弦的性质和范围。
双曲线的中点弦问题
总结词
双曲线的性质和方程
详细描述
双曲线的中点弦问题主要考察了双曲线的性质和方程。解决这类问题需要利用双曲线的 性质,如对称性、开口方向等,以及双曲线的方程,如标准方程、参数方程等。通过联 立直线和双曲线的方程,消元化简,可以得到关于中点弦的方程,进一步求解得到中点

专题9圆锥曲线中的中点弦-学生版

专题9圆锥曲线中的中点弦-学生版
6.已知 是抛物线 的焦点, 是 上的两个点,线段AB的中点为 ,则 的面积等于.
7.(2013•浙江)设F为抛物线C:y2=4x的焦点,过点P(﹣1,0)的直线l交抛物线C于两点A,B,点Q为线段AB的中点,若|FQ|=2,则直线l的斜率等于_________.
三、解答题
8.已知椭圆 ,求以点P(2,-1)为中点的弦所在的直线方程.
A. B.
C. D.
二、填空题
4.已知椭圆C的焦点 (-2 ,0)、 (2 ,0),且长轴长为6,设直线 交椭圆C于A、B两点,求线段AB的中点坐标
5.设已知抛物线 的顶点在坐标原点,焦点为F(1,0),直线 与抛物线 相交于A,B两点.若AB的中点为(2,2),则直线 的方程为_____________.
Step2:代入点坐标:即 ;
Step3:作差得出结论:(1)-(2)得: 。(作为公式记住,在小题中直接用。)
同理可推出以下三个重要结论:
ⅱ. ;
ⅲ. ;
ⅳ. .
方法二步骤规范模板:
①设直线 的方程;
②直线与曲线联立,整理成关于 (或 )的一元二次方程;
③写出根与系数的关系;
④利用 ,把根与系数的关系代入。
14.设椭圆方程为 ,过点 的直线l交椭圆于点A,B,O是坐标原点,点P满足 ,点N的坐标为 ,当l绕点M旋转时,求:
(1)动点P的轨迹方程;
(2) 的最小值与最大值.
15.若直线 过抛物线 的焦点,与抛物线交于 两点,且线段 的中点的横坐标为2,求线段 的长.
16.已知点 在抛物线 上, 的重心与此抛物线的焦点 重合(如图).
Step2:代入点坐标:即 ; ,
Step3:作差得出结论:(1)-(2)得: 。(作为公式记住,在小题中直接用。)

用“点差法”解圆锥曲线的中点弦问题

用“点差法”解圆锥曲线的中点弦问题

用“点差法”解圆锥曲线的中点弦问题一、求以定点为中点的弦所在直线的方程例1、过椭圆内一点引一条弦,使弦被点平分,求这条弦所在直线的方程。

解:设直线与椭圆的交点为、为的中点又、两点在椭圆上,则,两式相减得于是即,故所求直线的方程为,即。

例2、已知双曲线,经过点能否作一条直线,使与双曲线交于、,且点是线段的中点。

若存在这样的直线,求出它的方程,若不存在,说明理由。

解:设存在被点平分的弦,且、则,,两式相减,得故直线由消去,得这说明直线与双曲线不相交,故被点平分的弦不存在,即不存在这样的直线。

策略:本题如果忽视对判别式的考察,将得出错误的结果,请务必小心。

由此题可看到中点弦问题中判断点的位置非常重要。

(1)若中点在圆锥曲线内,则被点平分的弦一般存在;(2)若中点在圆锥曲线外,则被点平分的弦可能不存在。

二、求弦的中点坐标和中点轨迹方程例3、已知椭圆的一条弦的斜率为3,它与直线的交点恰为这条弦的中点,求点的坐标。

解:设弦端点、,弦的中点,则,又,两式相减得即,即点的坐标为。

例4、已知椭圆,求它的斜率为3的弦中点的轨迹方程。

解:设弦端点、,弦的中点,则,又,两式相减得即,即,即由,得点在椭圆内它的斜率为3的弦中点的轨迹方程为三、求与中点弦有关的圆锥曲线的方程例5、已知中心在原点,一焦点为的椭圆被直线截得的弦的中点的横坐标为,求椭圆的方程。

解:设椭圆的方程为,则┅┅①设弦端点、,弦的中点,则,,又,两式相减得即┅┅②联立①②解得,所求椭圆的方程是四、求圆锥曲线上两点关于某直线对称的问题例6、已知椭圆,试确定的取值范围,使得对于直线,椭圆上总有不同的两点关于该直线对称。

解:设,为椭圆上关于直线的对称两点,为弦的中点,则,两式相减得,即,,这就是弦中点轨迹方程。

它与直线的交点必须在椭圆内联立,得则必须满足,即,解得例7、已知抛物线C: 和直线为使抛物线上存在关于对称的两点,求的取值范围。

解:设抛物线C上存在不同的两点关于直线对称,线段的中点为,则,①,②① -②可得:=,即由于,所以,故,即,即。

2024年高考数学专项复习圆锥曲线九大题型归纳(解析版)

2024年高考数学专项复习圆锥曲线九大题型归纳(解析版)

题型一:弦的垂直平分线问题题型二:动弦过定点的问题题型三:过已知曲线上定点的弦的问题题型四:向量问题题型五:面积问题题型六:弦或弦长为定值、最值问题题型七:直线问题圆锥曲线九大题型归纳题型八:对称问题题型九:存在性问题:(存在点,存在直线y =kx +m ,存在实数,存在图形:三角形(等比、等腰、直角),四边形(矩形、菱形、正方形),圆)题型一:弦的垂直平分线问题1过点T (-1,0)作直线l 与曲线N :y 2=x 交于A 、B 两点,在x 轴上是否存在一点E (x 0,0),使得ΔABE 是等边三角形,若存在,求出x 0;若不存在,请说明理由。

2024年高考数学专项复习圆锥曲线九大题型归纳(解析版)【涉及到弦的垂直平分线问题】这种问题主要是需要用到弦AB 的垂直平分线L 的方程,往往是利用点差或者韦达定理产生弦AB 的中点坐标M ,结合弦AB 与它的垂直平分线L 的斜率互为负倒数,写出弦的垂直平分线L 的方程,然后解决相关问题,比如:求L 在x 轴y 轴上的截距的取值范围,求L 过某定点等等。

有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB 的中点问题,比如:弦与某定点D 构成以D 为顶点的等腰三角形(即D 在AB 的垂直平分线上)、曲线上存在两点AB 关于直线m 对称等等。

2例题分析1:已知抛物线y =-x 2+3上存在关于直线x +y =0对称的相异两点A 、B ,则|AB |等于题型二:动弦过定点的问题1已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为32,且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。

(I )求椭圆的方程;(II )若直线l :x =t (t >2)与x 轴交于点T ,点P 为直线l 上异于点T 的任一点,直线PA 1,PA 2分别与椭圆交于M 、N 点,试问直线MN 是否通过椭圆的焦点?并证明你的结论题型三:过已知曲线上定点的弦的问题1已知点A 、B 、C 是椭圆E :x 2a 2+y 2b 2=1(a >b >0)上的三点,其中点A (23,0)是椭圆的右顶点,直线BC 过椭圆的中心O ,且AC ∙BC =0,BC =2AC ,如图。

高考数学点差法在圆锥曲线中的应用(解析版)

高考数学点差法在圆锥曲线中的应用(解析版)

点差法在圆锥曲线中的应用一、考情分析圆锥曲线中的中点弦问题是高考常见题型,在处理直线与圆锥曲线相交形成的弦中点的有关问题时,我们经常用到如下解法:设弦的两个端点坐标分别为x1,y1、x2,y2,代入圆锥曲线得两方程后相减,得到弦中点坐标与弦所在直线斜率的关系,然后加以求解,这即为“点差法”.二、解题秘籍(一)求以定点为中点的弦所在直线的方程求解此类问题的方法是设出弦端点坐标,代入曲线方程相减求出斜率,再用点斜式写出直线方程.特别提醒:求以定点为中点的双曲线的弦所在直线的方程,求出直线方程后要检验所求直线与双曲线是否有2个交点.【例1】过椭圆x216+y24=1内一点M(2,1)引一条弦,使弦被M点平分,求这条弦所在直线的方程.【解析】设直线与椭圆的交点为A(x1,y1)、B(x2,y2)∵M(2,1)为AB的中点∴x1+x2=4 y1+y2=2∵又A、B两点在椭圆上,则x12+4y12=16,x22+4y22=16两式相减得(x12−x22)+4(y12−y22)=0于是(x1+x2)(x1−x2)+4(y1+y2)(y1−y2)=0∴y1−y2x1−x2=−x1+x24(y1+y2)=−44×2=−12即k AB=−12,故所求直线的方程为y−1=−12(x−2),即x+2y−4=0.【例2】已知双曲线C:x2a2-y2b2=1(a>0,b>0),离心率e=3,虚轴长为22.(1)求双曲线C的标准方程;(2)过点P1,1能否作直线l,使直线l与双曲线C交于A,B两点,且点P为弦AB的中点?若存在,求出直线l的方程;若不存在,请说明理由.【解析】(1)∵e=ca=3,2b=22,∴c=3a,b=2.∵c2=a2+b2,∴3a2=a2+2.∴a2=1.∴双曲线C的标准方程为x2-y22=1.(2)假设以定点P(1,1)为中点的弦存在,设以定点P(1,1)为中点的弦的端点坐标为A(x1,y1),B(x2,y2)(x1≠x2),可得x1+x2=2,y1+y2=2.由A,B在双曲线上,可得:x21-y212=1 x22-y222=1,两式相减可得以定点P(1,1)为中点的弦所在的直线斜率为:k=y2-y1x2-x1=2(x1+x2)y1+y2=2,则以定点P(1,1)为中点的弦所在的直线方程为y-1=2(x-1).即为y=2x-1,代入双曲线的方程可得2x2-4x+3=0,由Δ=(-4)2-4×2×3=-8<0,所以不存在这样的直线l .(二)求弦中点轨迹方程求弦中点轨迹方程基本类型有2类,一是求平行弦的中点轨迹方程,二是求过定点的直线被圆锥曲线截得的弦的中点轨迹方程.【例3】(2023届湖北省腾云联盟高三上学期10月联考)已知椭圆C :x 2a 2+y 2b2=1a >b >0 经过点P 0,1 ,且离心率为32.(1)求椭圆C 的标准方程;(2)设过点0,-35的直线l 与椭圆C 交于A ,B 两点,设坐标原点为O ,线段AB 的中点为M ,求MO 的最大值.【解析】(1)∵椭圆C :x 2a 2+y 2b2=1(a >b >0)经过点P (0,1),其离心率为32.∴b =1,c a =32⇒1-b 2a2=34,∴b a =12,∴a =2,故椭圆C 的方程为:x 24+y 2=1;(2)当直线l 斜率不存在时,M 与O 重合,不合题意,当直线l 斜率存在时,设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),则有x 0=x 1+x 22,y 0=y 1+y 22,直线l 的斜率为y 1-y 2x 1-x 2=y 0+35x 0,A ,B 两点在椭圆上,有x 124+y 12=1,x 224+y 22=1,两式相减,x 12-x 224=-y 12-y 22 ,即x 1+x 24y 1+y 2 =-y 1-y 2x 1-x 2,得x 04y 0=-y 0+35x 0,化简得x 02=-4y 02-125y 0,MO =x 02+y 02=-3y 02-125y 0=-3y 0+25 2+1225,∴当y 0=-25时,MO 的最大值为235【例4】直线与圆锥曲线相交所得弦的中点问题,是解析几何重要内容之一,也是高考的一个热点问题.引理:设A x 1,y 1 、B x 2,y 2 是二次曲线C :Ax 2+By 2+Cx +Dy +F =0上两点,P x 0,y 0 是弦AB 的中点,且弦AB 的斜率存在,则Ax 21+By 21+Cx 1+Dy 1+F =0⋯⋯(1)Ax 22+By 22+Cx 2+Dy 2+F =0⋯⋯(2)由(1)-(2)得A x 1-x 2 x 1+x 2 +B y 1-y 2 y 1+y 2 +C x 1-x 2 +D y 1-y 2 =0,∵x 0=x 1+x 22,y 0=y 1+y 22,∴x 1+x 2=2x 0,y 1+y 2=2y 0∴2Ax 0x 1-x 2 +2By 0y 1-y 2 +C x 1-x 2 +D y 1-y 2 =0,∴2Ax 0+C x 1-x 2 =-2By 0+D y 1-y 2 ,∴直线AB 的斜率k AB =y 1-y 2x 1-x 2=-2Ax 0+C2By 0+D2B +D ≠0,x 1≠x 2 .二次曲线也包括了圆、椭圆、双曲线、抛物线等.请根据上述求直线斜率的方法(用其他方法也可)作答下题:已知椭圆x 22+y 2=1.(1)求过点P 12,12且被P 点平分的弦所在直线的方程;(2)过点A 2,1 引椭圆的割线,求截得的弦的中点的轨迹方程.【解析】(1)设A x 1,y 1 、B x 2,y 2 是椭圆x 22+y 2=1上两点,P x 0,y 0 是弦AB 的中点,则x 122+y 12=1x 222+y 22=1,两式相减得:x 1-x 2 x 1+x 2 +2y 1-y 2 y 1+y 2 =0,∵12=x 1+x 22,12=y 1+y 22,∴x 1+x 2=1,y 1+y 2=1∴x 1-x 2+2y 1-y 2 =0,∴直线AB 的斜率k AB =-12.直线AB 的方程为y -12=-12x -12,即2x +4y -3=0.因为P 12,12在椭圆内部,成立.(2)由题意知:割线的斜率存在,设A x 1,y 1 、B x 2,y 2 是椭圆x 22+y 2=1上两点,P x ,y 是弦AB 的中点,则x 122+y 12=1x 222+y 22=1 ,两式相减得:x 1-x 2 x 1+x 2 +2y 1-y 2 y 1+y 2 =0,∵x =x 1+x 22,y =y 1+y 22,∴x 1+x 2=2x ,y 1+y 2=2y∴2x x 1-x 2 +4y y 1-y 2 =0,∴直线AB 的斜率k AB =y 1-y 2x 1-x 2=-x2yx 1≠x 2又k AB =y -1x -2,所以 y -1x -2=-x 2y ,化简得:x 2+2y 2-2x -2y =0-2≤x ≤2 ,所以截得的弦的中点的轨迹方程为x 2+2y 2-2x -2y =0-2≤x ≤2 (三)求直线的斜率一般来说,给出弦中点坐标,可求弦所在直线斜率【例5】已知椭圆C :x 25+y 2=1的左、右焦点分别为F 1,F 2,点M ,N 在椭圆C 上.(1)若线段MN 的中点坐标为2,13,求直线MN 的斜率;(2)若M ,N ,O 三点共线,直线NF 1与椭圆C 交于N ,P 两点,求△PMN 面积的最大值.【解析】(1)设M x 1,y 1 ,N x 2,y 2 ,则x 215+y 21=1,x 225+y 22=1,两式相减,可得x 1+x 2 x 1-x 25+y 1+y 2 y 1-y 2 =0,则4x 1-x 2 5+2y 1-y 2 3=0,解得k MN =y 1-y 2x 1-x 2=-65,即直线MN 的斜率为-65;(2)显然直线NF 1的斜率不为0,设直线NF 1:x =my -2,N x 3,y 3 ,P x 4,y 4 ,联立x =my -2x 25+y 2=1,消去x 整理得m 2+5 y 2-4my -1=0,显然Δ=20m 2+1 >0,故y 3+y 4=4m m 2+5,y 3⋅y 4=-1m 2+5,故△PMN 的面积S △PMN =2S △OPN =2⋅12OF 1 ⋅y 3-y 4=2⋅4m m 2+5 2-4⋅-1m 2+5=45m 2+1m 2+5,令t =m 2+1,t ≥1,则S △PMN =45t t 2+4=45t +4t≤454=5,当且仅当t =2,即m =±3时等号成立,故△PMN 面积的最大值为5.【例6】已知椭圆x 225+y 29=1上不同的三点A x 1,y 1 ,B 4,95,C x 2,y 2 与焦点F 4,0 的距离成等差数列.(1)求证:x 1+x 2=8;(2)若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k .【解析】(1)证略.(2)解∵x 1+x 2=8,∴设线段AC 的中点为D 4,y 0 .又A 、C 在椭圆上,∴x 1225+y 129=1,(1)x 2225+y 229=1,(2)1 -2 得:x 12-x 2225=-y 12-y 229,∴y 1-y 2x 1-x 2=-9x 1+x 2 25y 1+y 2=-925⋅82y 0=-3625y 0.∴直线DT 的斜率k DT =25y 036,∴直线DT 的方程为y -y 0=25y 036x -4 .令y =0,得x =6425,即T 6425,0 ,∴直线BT 的斜率k =95-04-6425=54.(四)点差法在轴对称中的应用【例7】(2023届江苏省南京市建邺区高三上学期联合统测)已知O 为坐标原点,点1,62 在椭圆C :x 2a 2+y 2b 2=1a >b >0 上,直线l :y =x +m 与C 交于A ,B 两点,且线段AB 的中点为M ,直线OM 的斜率为-12.(1)求C 的方程;(2)若m =1,试问C 上是否存在P ,Q 两点关于l 对称,若存在,求出P ,Q 的坐标,若不存在,请说明理由.【解析】(1)设A x 1,y 1 ,B x 2,y 2 ,则M x 1+x 22,y 1+y 22 ,k AB =y 1-y 2x 1-x 2=1,k OM=y 1+y 22x 1+x 22=y 1+y 2x 1+x 2=-12∵A x 1,y 1 ,B x 2,y 2 在椭圆上,则x 12a 2+y 12b 2=1x 22a 2+y 22b 2=1两式相减得x 12-x 22a 2+y 12-y 22b 2=0,整理得y 12-y 22x 12-x 22=y 1+y 2x 1+x 2×y 1-y 2x 1-x 2=-b 2a 2∴k AB ⋅k OM =-b 2a 2,即-12=-b2a2,则a 2=2b 2又∵点1,62 在椭圆C :x 2a 2+y 2b 2=1上,则1a 2+32b 2=1联立解得a 2=4,b 2=2∴椭圆C 的方程为x 24+y 22=1(2)不存在,理由如下:假定存在P ,Q 两点关于l :y =x +1对称,设直线PQ 与直线l 的交点为N ,则N 为线段PQ 的中点,连接ON∵PQ ⊥l ,则k AB ⋅k PQ =-1,即k PQ =-1由(1)可得k ON ⋅k PQ =-12,则k ON =12,即直线ON :y =12x联立方程y =12x y =x +1,解得x =-2y =-1 即N -2,-1∵-2 24+-1 22=32>1,则N -2,-1 在椭圆C 外∴假定不成立,不存在P ,Q 两点关于l 对称【例8】已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点1,62 ,直线l :y =x +m 与椭圆C 交于A ,B 两点,且线段AB 的中点为M ,O 为坐标原点,直线OM 的斜率为-12.(1)求椭圆C 的标准方程;(2)若椭圆C 上存在P ,Q 两点,使得P ,Q 关于直线l 对称,求实数m 的范围.【解析】(1)设A x 1,y 1 ,B x 2,y 2 ,则M x 1+x 22,y 1+y 22,即k OM =y 1+y 2x 1+x 2=-12.因为A ,B 在椭圆C 上,所以x 21a 2+y 21b 2=1,x 22a 2+y 22b2=1,两式相减得x 1+x 2 x 1-x 2 a 2+y 1+y 2 y 1-y 2 b 2=0,即1a 2+y 1+y 2 y 1-y 2b 2x 1+x 2 x 1-x 2=0,又k AB =y 1-y 2x 1-x 2=1,所以1a 2-12b2=0,即a 2=2b 2.又因为椭圆C 过点1,62 ,所以1a 2+32b2=1,解得a 2=4,b 2=2,所以椭圆C 的标准方程为x 24+y 22=1;(2)设P x 3,y 3 ,Q x 4,y 4 ,PQ 的中点为N x 0,y 0 ,所以x 3+x 4=2x 0,y 3+y 4=2y 0,因为P ,Q 关于直线l 对称,所以k PQ =-1且点N 在直线l 上,即y 0=x 0+m .又因为P ,Q 在椭圆C 上,所以x 234+y 232=1,x 244+y 242=1.两式相减得x 3+x 4 x 3-x 4 4+y 3+y 4 y 3-y 42=0.即x 3+x 44+y 3+y 4 y 3-y 42x 3-x 4=0,所以x 3+x 44=y 3+y 42,即x 0=2y 0.联立x 0=2y 0y 0=x 0+m,解得x 0=-2my 0=-m ,即N (-2m ,-m ).又因为点N 在椭圆C 内,所以(-2m )24+(-m )22<1,所以-63<m <63所以实数m 的范围为-63<m <63.(五)利用点差法可推导的结论在椭圆x 2a 2+y 2b2=1a >b >0 中,若直线l 与该椭圆交于点A ,B ,点P x 0,y 0 为弦AB 中点,O 为坐标原点,则k AB ⋅k OP =b 2a2,对于双曲线、抛物线也有类似结论,求自行总结.【证明】设A x 1,y 1 ,B x 2,y 2 且x 1≠x 2,则x 12a 2+y 12b 2=1,(1)x 22a 2+y 22b2=1,(2)1 -2 得:x 12-x 22a 2=-y 12-y 22b 2,∴y 1-y 2x 1-x 2=-b 2x 1+x 2 a 2y 1+y 2 ,∴k AB =y 1-y 2x 1-x 2=-b 2x 1+x 2 a 2y 1+y 2.又k OP =y 1+y 2x 1+x 2,∴k AB =-b 2a 2⋅1k OP ,∴k AB ⋅k OP =-b 2a 2(定值).【例9】(2022届江苏省南通市高三上学期期末)在平面直角坐标系xOy 中,已知双曲线C :x 2a 2-y 2b2=1(a 、b为正常数)的右顶点为A ,直线l 与双曲线C 交于P 、Q 两点,且P 、Q 均不是双曲线的顶点,M 为PQ 的中点.(1)设直线PQ 与直线OM 的斜率分别为k 1、k 2,求k 1·k 2的值;(2)若AM PQ=12,试探究直线l 是否过定点?若过定点,求出该定点坐标;否则,说明理由.【解析】(1)设P (x 1,y 1),Q (x 2,y 2),M (x 0,y 0),因为P 、Q 在双曲线上,所以x 12a 2-y 12b 2=1,x 22a 2-y 22b2=1,两式作差得(x 1+x 2)(x 1-x 2)a 2-(y 1+y 2)(y 1-y 2)b 2=0,即2x 0(x 1-x 2)a 2=2y 0(y 1-y 2)b 2,即y 0(y 1-y 2)x 0(x 1-x 2)=b 2a2,即k 1·k 2=b 2a 2;(2)因为AM PQ=12,所以△APQ 是以A 为直角顶点的直角三角形,即AP ⊥AQ ;①当直线l 的斜率不存在时,设l :x =t ,代入x 2a 2-y 2b2=1得,y =±bt 2a 2-1,由|t -a |=b t 2a2-1得,(a 2-b 2)t 2-2a 3t +a 2(a 2+b 2)=0,即[(a 2-b 2)t -a (a 2+b 2)](t -a )=0,得t =a (a 2+b 2)a 2-b 2或a (舍),故直线l 的方程为x =a (a 2+b 2)a 2-b 2;②当直线l 的斜率存在时,设l :y =kx +m ,代入x 2a 2-y 2b2=1,得(b 2-k 2a 2)x 2-2km a 2x -a 2(m 2+b 2)=0,Δ=a 2b 2(m 2+b 2-k 2a 2)>0,设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=2km a 2b 2-k 2a 2,x 1x 2=-a 2(m 2+b 2)b 2-k 2a 2;因为AP ⊥AQ ,所以AP ·AQ =0,即(x 1-a ,y 1)·(x 2-a ,y 2)=0,即x 1x 2-a (x 1+x 2)+a 2+y 1y 2=0,即x 1x 2-a (x 1+x 2)+a 2+(kx 1+m )(kx 2+m )=0,即(km -a )(x 1+x 2)+(k 2+1)x 1x 2+m 2+a 2=0,即-2km a 3-k 2a 2b 2-m 2a 2+m 2b 2-k 2a 4b 2-k 2a 2=0,即a 2(a 2+b 2)k 2+2ma 3k +m 2(a 2-b 2)=0,即[a (a 2+b 2)k +m (a 2-b 2)](ak +m )=0,所以k =-m (a 2-b 2)a (a 2+b 2)或k =-ma ;当k =-m a 时,直线l 的方程为y =-max +m ,此时经过A ,舍去;当k =-m (a 2-b 2)a (a 2+b 2)时,直线l 的方程为y =-m (a 2-b 2)a (a 2+b 2)x +m ,恒过定点a (a 2+b 2)a 2-b 2,0,经检验满足题意;综上①②,直线l 过定点a (a 2+b 2)a 2-b 2,0.三、跟踪检测1.已知椭圆C :x 22+y 2=1,F 1为右焦点,直线l :y =t (x -1)与椭圆C 相交于A ,B 两点,取A 点关于x 轴的对称点S ,设线段AS 与线段BS 的中垂线交于点Q .(1)当t =2时,求QF 1 ;(2)当t ≠0时,求QF 1|AB |是否为定值?若为定值,则求出定值;若不为定值,则说明理由.【解析】(1)设A x 1,y 1 ,B x 2,y 2 ,线段AB 的中点M 坐标为x M ,y M ,联立得x 2+2y 2-2=0,y =2(x -1), 消去y 可得:9x 2-16x +6=0,所以x 1+x 2=169,x 1x 2=69,所以x M =89,代入直线AB 方程,求得y M =-29,因为Q 为△ABS 三条中垂线的交点,所以MQ ⊥AB ,有k MQ k AB =-1,直线MQ 方程为y +29=-12×x -89.令y =0,x Q =49,所以Q 49,0 .由椭圆C :x 22+y 2=1可得右焦点F 11,0 ,故QF 1 =59.(2)设A x 1,y 1 ,B x 2,y 2 ,中点M 坐标为x M ,y M .x 212+y 21=1,x 222+y 22=1,相减得y 2-y 1x 2-x 1=-12×x 1+x 2y 1+y 2=-x M 2y M ,k AB k OM =-12.又Q 为△ABS 的外心,故MQ ⊥AB ,k MQ k AB =-1,所以k MQ =2k OM =2y M x M ,直线MQ 方程为y -y M =2y Mx Mx -x M ,令y =0,x Q =x M 2=x 1+x 24,所以Q x 1+x 24,0 而F 11,0 ,所以QF 1 =1-14x 1+x 2 ,AF 1 =x 1-1 2+y 21=x 1-1 2+1-x 212=x 212-2x 1+2=2-12x 1,同理BF 1 =2-12x 2,|AB |=AF 1 +BF 1 =22-12x 1+x 2 ,QF 1 |AB |=1-14x 1+x 2 22-12x 1+x 2 =24,所以当t 变化时,QF 1 |AB |为定值24.2.(2023届重庆市南开中学校高三上学期9月月考)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为22,上顶点为D ,斜率为k 的直线l 与椭圆C 交于不同的两点A ,B ,M 为线段AB 的中点,当点M 的坐标为(2,1)时,直线l 恰好经过D 点.(1)求椭圆C 的方程:(2)当l 不过点D 时,若直线DM 与直线l 的斜率互为相反数,求k 的取值范围.【解析】(1)由题意知,离心率e =22,所以a =2b =2c ,设A x 1,y 1 ,B x 2,y 2 ,x 21a 2+y 21b 2=1x 22a 2+y 22b 2=1两式相减得k ⋅k OM =-b 2a 2=-12,所以k =-1;所以直线为y -1=-(x -2),即y =-x +3,所以b =c =3,椭圆方程为x 218+y 29=1;(2)设直线为y =kx +m ,由y =kx +mx 2+2y 2=18得1+2k 2 x 2+4km x +2m 2-18=0,则x M =x 1+x 22=-2km 1+2k 2,y M =m1+2k2,�=16k 2m 2-41+2k 2 2m 2-18 =818k 2-m 2+9 >0,所以k DM =y M -3x M -0=6k 2+3-m 2km =-k ,解得m =6k 2+31-2k2,1-2k 2≠0,k ≠±22因为l 不过D 点,则6k 2+31-2k 2≠3,即k ≠0则18k 2+9-6k 2+3 21-2k 22>0,化简得4k 4-4k 2-3>0,解得2k 2-3 2k 2+1 >0,k 2>32,所以k >62或k <-62.3.已知椭圆x 22+y 2=1.(1)过椭圆的左焦点F 引椭圆的割线,求截得的弦的中点P 的轨迹方程;(2)求斜率为2的平行弦的中点Q 的轨迹方程;(3)求过点M 12,12且被M 平分的弦所在直线的方程.【解析】(1)设弦与椭圆两交点坐标分别为A x 1,y 1 、B x 2,y 2 ,设P x ,y ,当x 1=x 2时,P -1,0 .当x 1≠x 2时,x 22+y 2=1⇒x 2+2y 2=2,x 21+2y 21=2,x 22+2y 22=2, 两式相减得x 1+x 2 x 1-x 2 +2y 1+y 2 y 1-y 2 =0,即1+2⋅y 1+y 2 y 1-y 2 x 1+x 2 x 1-x 2=0(*),因为y 1-y 2x 1-x 2=k FP =yx +1,x 1+x 2=2x ,y 1+y 2=2y ,所以,代入上式并化简得x 2+x +2y 2=0,显然P -1,0 满足方程.所以点P 的轨迹方程为x 2+x +2y 2=0(在椭圆内部分).(2)设Q x ,y ,在(1)中式子1+2⋅y 1+y 2 y 1-y 2x 1+x 2 x 1-x 2=0里,将y 1-y 2x 1-x 2=2,x 1+x 2=2x ,y 1+y 2=2y 代入上式并化简得点Q 的轨迹方程为x +4y =0(在椭圆内部分).所以,点Q 的轨迹方程x +4y =0(在椭圆内部分).(3)在(1)中式子1+2⋅y 1+y 2 y 1-y 2x 1+x 2 x 1-x 2=0里,将y 1-y 2x 1-x 2=k ,x 1+x 2=1,y 1+y 2=1代入上式可求得k =-12.所以直线方程为2x +4y -3=0.4.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点1,62 ,直线l :y =x +m 与椭圆C 交于A ,B 两点,且线段AB 的中点为M ,O 为坐标原点,直线OM 的斜率为-0.5.(1)求椭圆C 的标准方程;(2)当m =1时,椭圆C 上是否存在P ,Q 两点,使得P ,Q 关于直线l 对称,若存在,求出P ,Q 的坐标,若不存在,请说明理由.【解析】(1)设A x 1,y 1 ,B x 2,y 2 ,则M x 1+x 22,y 1+y 22,即k OM =y 1+y 2x 1+x 2=-12.因为A,B在椭圆C上,所以x21a2+y21b2=1,x22a2+y22b2=1,两式相减得x1+x2x1-x2a2+y1+y2y1-y2b2=0,即1a2+y1+y2y1-y2b2x1+x2x1-x2=0,又k AB=y1-y2x1-x2=1,所以1a2-12b2=0,即a2=2b2.又因为椭圆C过点1,6 2,所以1a2+32b2=1,解得a2=4,b2=2,所以椭圆C的标准方程为x24+y22=1;(2)由题意可知,直线l的方程为y=x+1.假设椭圆C上存在P,Q两点,使得P,Q关于直线l对称,设P x3,y3,Q x4,y4,PQ的中点为N x0,y0,所以x3+x4=2x0,y3+y4=2y0,因为P,Q关于直线l对称,所以k PQ=-1且点N在直线l上,即y0=x0+1.又因为P,Q在椭圆C上,所以x234+y232=1,x244+y242=1,两式相减得x3+x4x3-x44+y3+y4y3-y42=0,即x3+x44+y3+y4y3-y42x3-x4=0,所以x3+x44=y3+y42,即x0=2y0.联立x0=2y0y0=x0+1,解得x0=-2y0=-1,即N-2,-1.又因为-224+-122>1,即点N在椭圆C外,这与N是弦PQ的中点矛盾,所以椭圆C上不存在点P,Q两点,使得P,Q关于直线l对称.5.(2022届广东省清远市高三上学期期末)设抛物线C:y2=2px(p>0)的焦点为F,准线为l,过焦点F且斜率为1的直线与抛物线C交于A,B两点,若AB的中点到准线l的距离为4.(1)求抛物线C的方程;(2)设P为l上任意一点,过点P作C的切线,切点为Q,试判断F是否在以PQ为直径的圆上.【解析】(1)设A x1,y1,B x2,y2,则y21=2px1, y22=2px2,所以y21-y22=2p x1-x2,整理得y1-y2x1-x2=2py1+y2=1,所以y1+y2=2p.因为直线AB的方程为y=x-p 2,所以x1+x2=y1+y2+p=3p.因为AB的中点到准线l的距离为4,所以x1+x22+p2=2p=4,得p=2,故抛物线C的方程为y2=4x.(2)设P(-1,t),可知切线PQ的斜率存在且不为0,设切线PQ的方程为x=m(y-t)-1,联立方程组x=m(y-t)-1,y2=4x,得y2-4my+4mt+4=0,由Δ=16m2-16(mt+1)=0,得t=m-1m,即P-1,m-1m,所以方程y 2-4my +4mt +4=y 2-4my +4m 2=0的根为y =2m ,所以x =m 2,即Q m 2,2m .因为FP =-2,m -1m ,FQ =m 2-1,2m ,所以FP ⋅FQ =-2m 2-1 +2m m -1m=0,所以FP ⊥FQ ,即F 在以PQ 为直径的圆上.6.(2022届河南省中原顶级名校高三上学期1月联考)已知椭圆C :x 2a 2+y 2b 2=1a >b >0 的左、右焦点分别为F 1-1,0 ,F 21,0 ,过点F 1的直线l 1交椭圆C 于A ,B 两点.当直线l 1的斜率为1时,点-47,37是线段AB 的中点.(1)求椭圆C 的标准方程;(2)如图,若过点F 2的直线l 2交椭圆C 于E ,G 两点,且l 1∥l 2,求四边形ABEG 的面积的最大值.【解析】 (1)设A x 1,y 1 ,B x 2,y 2 .由题意可得b 2x 21+a 2y 21-a 2b 2=0,b 2x 22+a 2y 22-a 2b 2=0.∴y 1-y 2x 1-x 2=-b 2a 2⋅x 1+x 2y 1+y 2=-b 2a 2⋅-43,即4b 23a2=1,∴b 2a2=34.∵a 2-b 2=1,∴a 2=4,b 2=3,∴椭圆C 的标准方程为x 24+y 23=1.(2)根据对称性知AB =EG ,AB ∥EG ,∴四边形ABEG 是平行四边形,又S 四边形ABEG =2S △F 2AB ,∴问题可转化为求S △F 2AB 的最大值.设直线l 1的方程为x =my -1,代入x 24+y 23=1,得3m 2+4 y 2-6my -9=0.则y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4,∴S △F 2AB =12⋅2⋅y 1-y 2 =y 1+y 2 2-4y 1y 2=6m 3m 2+4 2-4⋅-93m 2+4=121+m 23m 2+4.令1+m 2=t ,则t ≥1,且m 2=t 2-1,∴S △F 2AB =12t 3t 2+1=123t +1t .记h t =3t +1tt ≥1 ,易知h t 在1,+∞ 上单调递增.∴h t min =h 1 =4.∴S △F 2AB =123t +1t≤124=3.∴四边形ABEG 的面积的最大值是6.7.如图,AB 是过抛物线y 2=2px (p >0)焦点F 的弦,M 是AB 的中点,l 是抛物线的准线,MN ⊥l ,N 为垂足,点N 坐标为(-2,-3).(1)求抛物线的方程;(2)求△AOB 的面积(O 为坐标系原点).【解析】 (1)点N (-2,-3)在准线l 上,所以准线l 方程为:x =-2,则p 2=2,解得p =4,所以抛物线的方程为:y 2=8x ;(2)设A x 1,y 1 ,B x 2,y 2 ,由A 、B 在抛物线y 2=8x 上,所以y 21=8x 1y 22=8x 2 ,则y 1-y 2 y 1+y 2 =8x 1-x 2 ,又MN ⊥l ,所以点M 纵坐标为-3,M 是AB 的中点,所以y 1+y 2=-6,所以-6y 1-y 2 =8x 1-x 2 ,即k AB =-43,又知焦点F 坐标为(2,0),则直线AB 的方程为:4x +3y -8=0,联立抛物线的方程y 2=8x ,得y 2+6y -16=0,解得y =2或y =-8,所以y 1-y 2 =10,所以S △AOB =S △AOF +S △BOF =y 1-y 2 =10.8.在平面直角坐标系xOy 中,设点F (1,0),直线l :x =-1,点P 在直线l 上移动,R 是线段PF 与y 轴的交点,RQ ⊥FP ,PQ ⊥l .(1)求动点Q 的轨迹E 的方程;(2)过点F 作两条互相垂直的曲线E 的弦AB 、CD ,设AB 、CD 的中点分别为M 、N .求直线MN 过定点D 的坐标.【解析】 (1)依题意,点P 在直线l :x =-1上移动,令直线l 交x 轴于点K ,而点F(1,0),又R 是线段PF 与y 轴的交点,当点P 与点K 不重合时,OR ⎳l ,而O 为FK 中点,则点R 是线段FP 的中点,因RQ ⊥FP ,则RQ 是线段FP 的垂直平分线,QP =QF ,又PQ ⊥l 于点P ,即PQ 是点Q到直线l 的距离,当点P 与点K 重合时,点R 与点O 重合,也满足上述结论,于是有点Q 到点F 的距离等于点Q 到直线l 的距离,则动点Q 的轨迹E 是以F为焦点,l 为准线的抛物线,其方程为:y 2=4x ,所以动点Q 的轨迹E 的方程为y 2=4x .(2)显然直线AB 与直线CD 的斜率都存在,且不为0,设直线AB 的方程为y =k(x -1),k ≠0,令A x A ,y A ,B x B ,y B ,M x M ,y M ,N x N ,y N ,由y 2A =4x A y 2B =4x B 两式相减得:(y A +y B )(y A -y B )=4(x A -x B ),则y A +y B =4k,即y M =2k,代入方程y =k (x -1),解得x M =2k 2+1,即点M 的坐标为2k 2+1,2k ,而CD ⊥AB ,直线CD 方程为y =-1k (x -1),同理可得:N 的坐标为(2k 2+1,-2k ),当2k 2+1=2k 2+1,即k =±1时,直线MN :x =3,当k ≠1且k ≠-1时,直线MN 的斜率为k MN =y M -y N x M -x N =k 1-k 2,方程为y +2k =k 1-k 2(x -2k 2-1),整理得y 1k -k =x -3,因此,∀k ∈R ,k ≠0,直线MN :y 1k-k =x -3过点(3,0),所以直线MN 恒过定点D (3,0).9.中心在原点的双曲线E 焦点在x 轴上且焦距为4,请从下面3个条件中选择1个补全条件,并完成后面问题:①该曲线经过点A 2,3 ;②该曲线的渐近线与圆x 2-8x +y 2+4=0相切;③点P 在该双曲线上,F 1、F 2为该双曲线的焦点,当点P 的纵坐标为32时,恰好PF 1⊥PF 2.(1)求双曲线E 的标准方程;(2)过定点Q 1,1 能否作直线l ,使l 与此双曲线相交于Q 1、Q 2两点,且Q 是弦Q 1Q 2的中点?若存在,求出l 的方程;若不存在,说明理由.【解析】 (1)设双曲线E 的标准方程为x 2a 2-y 2b2=1a >b >0 .选①:由题意可知,双曲线E 的两个焦点分别为F 1-2,0 、F 22,0 ,由双曲线的定义可得2a =AF 1 -AF 2 =42+32-3 =2,则a =1,故b =c 2-a 2=3,所以,双曲线E 的标准方程为x 2-y 23=1.选②:圆x 2-8x +y 2+4=0的标准方程为x -4 2+y 2=12,圆心为4,0 ,半径为23,双曲线E 的渐近线方程为y =±b a x ,由题意可得4b a 1+b a2=23,解得b a =3,即b =3a ,因为c =a 2+b 2=2a =2,则a =1,b =3,因此,双曲线E 的标准方程为x 2-y 23=1.选③:由勾股定理可得PF 1 2+PF 2 2=4c 2=16=PF 1 -PF 2 2+2PF 1 ⋅PF 2 =4a 2+2PF 1 ⋅PF 2 ,所以,PF 1 ⋅PF 2 =2c 2-a 2 =2b 2,则S △F 1PF 2=12PF 1 ⋅PF 2 =b 2=12×32×4,则b =3,故a =c 2-b 2=1,所以,双曲线E 的标准方程为x 2-y 23=1.(2)假设满足条件的直线l 存在,设点Q 1x 1,y 1 、Q 2x 2,y 2 ,则x 1+x 2=2y 1+y 2=2 ,由题意可得x 21-y 213=1x 22-y 223=1 ,两式作差得x 1-x 2 x 1+x 2 =y 1-y 2 y 1+y 2 3,所以,直线l 的斜率为k =y 1-y 2x 1-x 2=3,所以,直线l 的方程为y -1=3x -1 ,即y =3x -2.联立y =3x -2x 2-y 23=1,整理可得6x 2-12x +7=0,Δ=122-4×6×7<0,因此,直线l 不存在.10.己知椭圆C :x 2a 2+y 2b2=1(a >b >0)的焦距为42,短轴长为2,直线l 过点P -2,1 且与椭圆C 交于A 、B 两点.(1)求椭圆C 的方程;(2)若直线l 的斜率为1,求弦AB 的长;(3)若过点Q 1,12的直线l 1与椭圆C 交于E 、G 两点,且Q 是弦EG 的中点,求直线l 1的方程.【解析】 (1)依题意,椭圆C 的半焦距c =22,而b =1,则a 2=b 2+c 2=9,所以椭圆C 的方程为:x 29+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),依题意,直线l 的方程为:y =x +3,由y =x +3x 2+9y 2=9消去y 并整理得:5x 2+27x +36=0,解得x 1=-125,x 2=-3,因此,|AB |=1+12⋅|x 1-x 2|=325,所以弦AB 的长是325.(3)显然,点Q 1,12在椭圆C 内,设E (x 3,y 3),G (x 4,y 4),因E 、G 在椭圆C 上,则x 23+9y 23=9x 24+9y 24=9 ,两式相减得:(x 3-x 4)(x 3+x 4)+9(y 3-y 4)(y 3+y 4)=0,而Q 是弦EG 的中点,即x 3+x 4=2且y 3+y 4=1,则有2(x 3-x 4)+9(y 3-y 4)=0,于是得直线l 1的斜率为y 3-y 4x 3-x 4=-29,直线l 1的方程:y -12=-29(x -1),即4x +18y -13=0,所以直线l 1的方程是4x +18y -13=0.11.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,AB 为椭圆的一条弦,直线y =kx (k >0)经过弦AB 的中点M ,与椭圆C 交于P ,Q 两点,设直线AB 的斜率为k 1,点P 的坐标为1,32(1)求椭圆C 的方程;(2)求证:k 1k 为定值.【解析】(1)由题意知1a 2+94b 2=1,c a =12,a 2=b 2+c 2, 解得a =2,b =3,c =1,故椭圆C 的方程为x 24+y 23=1.(2)证明:设M x 0,y 0 ,A x 1,y 1 ,B x 2,y 2 ,由于A ,B 为椭圆C 上的点,所以x 214+y 213=1,x 224+y 223=1,两式相减得x 1+x 2 x 1-x 2 4=-y 1+y 2 y 1-y 2 3,所以k 1=y 1-y 2x 1-x 2=-3x 1+x 2 4y 1+y 2=-3x 04y 0.又k =y 0x 0,故k 1k =-34,为定值.12.已知双曲线C :2x 2-y 2=2与点P 1,2 .(1)是否存在过点P 的弦AB ,使得AB 的中点为P ;(2)如果线段AB 的垂直平分线与双曲线交于C 、D 两点,证明:A 、B 、C 、D 四点共圆.【解析】(1)双曲线的标准方程为x 2-y 22=1,∴a 2=1,b 2=2.设存在过点P 的弦AB ,使得AB 的中点为P ,设A x 1,y 1 ,B x 2,y 2 ,x 21-y 212=1,x 22-y 222=1两式相减得y 1-y 2x 1-x 2⋅y 1+y 2x 1+x 2=b 2a 2,即k AB ⋅21=b 2a2得:k ⋅2=2,∴k =1.∴存在这样的弦.这时直线l 的方程为y =x +1.(2)设CD 直线方程为x +y +m =0,则点P 1,2 在直线CD 上.则m =-3,直线CD 的方程为x +y -3=0,设C x 3,y 3 ,D x 4,y 4 ,CD 的中点为Q x 0,y 0 ,x 23-y 232=1,x 24-y 242=1两式相减得k CD ⋅y 0x 0=b 2a2,则-1⋅y 0x 0=2,则y 0=-2x 0又因为Q x 0,y 0 在直线CD 上有x 0+y 0-3=0,解得Q -3,6 ,x -y +1=02x 2-y 2=2 ,解得A -1,0 ,B 3,4 ,x +y -3=02x 2-y 2=2 ,整理得x 2+6x -11=0,则x 3+x 4=-6x 3⋅x 4=-11则CD =1+k 2x 3-x 4 =410由距离公式得QA =QB =QC =QD =210所以A 、B 、C 、D 四点共圆.13.李华找了一条长度为8的细绳,把它的两端固定于平面上两点F 1,F 2处,|F 1F 2|<8,套上铅笔,拉紧细绳,移动笔尖一周,这时笔尖在平面上留下了轨迹C ,当笔尖运动到点M 处时,经测量此时∠F 1MF 2=π2,且△F 1MF 2的面积为4.(1)以F 1,F 2所在直线为x 轴,以F 1F 2的垂直平分线为y 轴,建立平面直角坐标系,求李华笔尖留下的轨迹C 的方程(铅笔大小忽略不计);(2)若直线l 与轨迹C 交于A ,B 两点,且弦AB 的中点为N (2,1),求△OAB 的面积.【解析】(1)设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),由椭圆的定义知2a =8,故a 2=16.∵在Rt △F 1MF 2中,|F 1F 2|=2c ,假设|MF 1|=x ,|MF 2|=y (x ,y >0),又∵△F 1MF 2的面积为4cm 2,x +y =8xy =8 ,故4c 2=x 2+y 2=(x +y )2-2xy =48,∴c 2=12,b 2=a 2-c 2=4,∴椭圆的标准方程为x 216+y 24=1.(2)设A (x 1,y 1),B (x 2,y 2),∵弦AB 的中点为N (2,1),∴x 1+x 2=4,y 1+y 2=2 且 x 1≠x 2.又∵A ,B 均在椭圆上,∴x 21+4y 21=16x 22+4y 22=16,得x 21-x 22=-4(y 21-y 22),即(x 1+x 2)⋅(x 1-x 2)=-4(y 1+y 2)⋅(y 1-y 2).∴(x 1-x 2)=-2(y 1-y 2).∵x 1≠x 2,∴k AB =y 1-y 2x 1-x 2=-12故直线AB 的方程为:x +2y -4=0.联立 x +2y -4=0x 2+4y 2-16=0,整理得x 2-4x =0.得 x 1=0,x 2=4,∴A (0,2),B (4,0),∴S △OAB =12×2×4=4.∴△OAB 的面积为4cm 2.14.若抛物线C :y 2=x 上存在不同的两点关于直线l :y =m x -3 对称,求实数m 的取值范围.【解析】当m =0时,显然满足.当m ≠0时,设抛物线C 上关于直线l :y =m x -3 对称的两点分别为P x 1,y 1 、Q x 2,y 2 ,且PQ 的中点为M x 0,y 0 ,则y 12=x 1,(1)y 22=x 2,(2)1 -2 得:y 12-y 22=x 1-x 2,∴k PQ =y 1-y 2x 1-x 2=1y 1+y 2=12y 0,又k PQ =-1m ,∴y 0=-m 2.∵中点M x 0,y 0 在直线l :y =m x -3 上,∴y 0=m x 0-3 ,于是x 0=52.∵中点M 在抛物线y 2=x 区域内∴y 02<x 0,即-m 2 2<52,解得-10<m <10.综上可知,所求实数m 的取值范围是-10,10 .。

圆锥曲线中的弦长问题(含解析)

圆锥曲线中的弦长问题(含解析)

圆锥曲线中的弦长问题一、单选题1.椭圆2214x y +=的两个焦点为1F 、2F ,过1F 作垂直于x 轴的直线与椭圆相交,一个交点为P ,则2PF =( )A .2B C .72D .42.直线l 过抛物线22y x =的焦点F ,且l 与该抛物线交于不同的两点()11,A x y ,()22,B x y .若12 3x x +=,则弦AB 的长是( )A .4B .5C .6D .83.焦点为F 的抛物线2:4C y x =的对称轴与准线交于点E ,点P 在抛物线C 上,在EFP △中,sin EFP FEP ∠=∠,则||EP 的值是( )A .B .4C .2D .14.椭圆()2222:10x y C a b a b+=>>的左、右焦点分别是1F 、2F ,斜率为12的直线l过左焦点1F 且交C 于A ,B 两点,且2ABF 的内切圆的周长是2π,若椭圆C 的离心率为13,24e ⎡⎤∈⎢⎥⎣⎦,则线段AB 的长度的取值范围是( )A .,3⎡⎢⎣B .3⎡⎢⎣C .,48⎣⎦D .816⎣⎦5.已知抛物线2:4C y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与抛物线C 的一个交点,若4PF FQ =,则QF =( ) A .3 B .52C .32D .32或52二、填空题6.已知P 为椭圆221164x y +=上的一个动点,过点P 作圆()2211x y -+=的两条切线,切点分别是A ,B ,则AB 的最小值为_______.7.已知抛物线C :22x py =-()0p >的焦点F 与22184y x +=的一个焦点重合,过焦点F 的直线与C 交于A ,B 两不同点,抛物线C 在A ,B 两点处的切线相交于点M ,且M 的横坐标为2,则弦长AB =______.8.已知1F ,2F 为椭圆221123x y+=的两个焦点,点P 在椭圆上,如果线段1PF 的中点在y 轴上,则1PF 的值为______.三、解答题9.如图,在平面直角坐标系xOy 中,已知椭圆1C :22221x y a b +=和椭圆2C :22221x y c b+=,其中0a c b >>>,222a b c =+,1C ,2C 的离心率分别为1e ,2e ,且满足12:2:3e e =,A ,B 分别是椭圆2C 的右、下顶点,直线AB 与椭圆1C 的另一个交点为P ,且185PB =.(1)求椭圆1C 的方程;(2)与椭圆2C 相切的直线MN 交椭圆1C 与点M ,N ,求MN 的最大值.10.在平面直角坐标系上,已知动点P 到定点()11,0F -、()21,0F 的距离之和为2. (1)求动点P 的轨迹方程C .(2)若直线:l y x t =+与曲线C 交于A 、B 两点,423AB =.求t 的值11.已知椭圆222:1(1)x E y a a +=>的离心率为32,右顶点为(,0)P a ,P 是抛物线2:2(0)C y px p =>的焦点.(1)求抛物线C 的标准方程;(2)若C 上存在两动点,A B (,A B 在x 轴两侧)满足20OA OB ⋅=(O 为坐标原点),且PAB △的周长为2||4AB +,求||AB .12.已知椭圆2222:1(0)x y G a b a b +=>>的离心率为1,2过椭圆G 右焦点2(1,0)F 的直线m :x =1与椭圆G 交于点M (点M 在第一象限) (1)求椭圆G 的方程;(2)连接点M 与左焦点并延长交椭圆于点N ,求线段MN 的长.13.已知抛物线21:2C y px =的焦点与椭圆222:198x y C +=的右焦点F 重合,过抛物线1C 的准线l 上一点P 作抛物线1C 的两条切线,切点为A ,B .(1)求证:直线AB 过焦点F ; (2)若8PA =,6PB =,求PF 的值.14.已知椭圆2222:1x y E a b+=()0a b >>的半焦距为c ,原点O 到经过两点()(),0,0,c b 的直线的距离为12c ,椭圆的长轴长为43.(1)求椭圆E 的方程;(2)直线l 与椭圆交于,A B 两点,线段AB 的中点为()2,1M -,求弦长.AB 15.已知直线l 经过抛物线26y x =的焦点F ,且与抛物线交于A 、B 两点. (1)若直线l 的倾斜角为60,求线段AB 的长; (2)若2AF =,求BF 的长.16.已知圆上224x y +=上任取一点P ,过点P 作y 轴的垂线段PQ ,垂足为Q ,当P在圆上运动时,线段PQ 中点为M . (1)求点M 的轨迹方程;(2)若直线l 的方程为y =x -1,与点M 的轨迹交于A ,B 两点,求弦AB 的长.一、单选题1.椭圆2214x y +=的两个焦点为1F 、2F ,过1F 作垂直于x 轴的直线与椭圆相交,一个交点为P ,则2PF =( ) A .3 B .3C .72D .4【答案】C 【解析】 试题分析:,所以当时,,而,所以,故选C.考点:椭圆的性质2.直线l 过抛物线22y x =的焦点F ,且l 与该抛物线交于不同的两点()11,A x y ,()22,B x y .若12 3x x +=,则弦AB 的长是( )A .4B .5C .6D .8【答案】A 【分析】由题意得1p =,再结合抛物线的定义即可求解. 【详解】 由题意得1p =,由抛物线的定义知:121231422p pAB AF BF x x x x p =+=+++=++=+=, 故选:A 【点睛】本题主要考查了抛物线的几何性质,考查抛物线的定义,属于基础题.3.焦点为F 的抛物线2:4C y x =的对称轴与准线交于点E ,点P 在抛物线C 上,在EFP △中,sin 2EFP FEP ∠=∠,则||EP 的值是( )A .2B .4C .2D .1【答案】A 【分析】过点P 作PH 垂直于准线于点H ,由双曲线的定义得cos PF PH m FEP ==∠,在EFP △中利用正弦定理可求出FEP ∠,带入所给等式即可推出2EFP π∠=,即可求得PE 的值. 【详解】如图所示,过点P 作PH 垂直于准线于点H ,设PE m =,则cos PF PH m FEP ==∠, 在EFP △中,由正弦定理知sin sin PF PEPEF EFP=∠∠,即cos sin 2sin m FEP FEP FEP∠=∠∠,所以2cos 2FEP ∠=,又()0,FEP π∠∈,所以4FEP π∠=,则sin 21EFP FEP ∠=∠=,又()0,EFP π∠∈,所以2EFP π∠=,在直角EFP △中,2EF =,4FEP π∠=,所以22PE =故选:A 【点睛】本题考查抛物线的定义与几何性质、正弦定理解三角形,属于中档题.4.椭圆()2222:10x y C a b a b+=>>的左、右焦点分别是1F 、2F ,斜率为12的直线l过左焦点1F 且交C 于A ,B 两点,且2ABF 的内切圆的周长是2π,若椭圆C 的离心率为13,24e ⎡⎤∈⎢⎥⎣⎦,则线段AB 的长度的取值范围是( )A .45,253⎡⎢⎣B .85453⎡⎢⎣C .535,48⎣⎦D .535816⎣⎦【答案】B【分析】先利用等面积法可得:12114222a r c y y ⨯⋅=⨯⋅-,求解出12y y -的值,然后根据弦长公式12AB y =-的取值范围. 【详解】设内切圆半径为r ,由题意得12114222a r c y y ⨯⋅=⨯⋅-得1228,43y y e ⎡⎤-=∈⎢⎥⎣⎦,1212AB y y y =-=-∈⎣. 故选:B. 【点睛】本题考查椭圆焦点三角形问题,考查弦长的取值范围问题,难度一般.解答时,等面积法、弦长公式的运用是关键.5.已知抛物线2:4C y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与抛物线C 的一个交点,若4PF FQ =,则QF =( ) A .3 B .52C .32D .32或52【答案】B 【分析】设点()1,P t -,利用4PF FQ =求得点Q 的横坐标,利用抛物线的定义可求得QF . 【详解】抛物线C 的焦点为()1,0F ,准线l 的方程为1x =-.设点()1,P t -、(),Q x y ,则()2,PF t =-,()1,FQ x y =-,4PF FQ =,可得()412x -=,解得32x =, 由抛物线的定义可得35122QF =+=. 故选:B. 【点睛】本题考查利用抛物线的定义求焦半径,求出点Q 的坐标是解题的关键,考查计算能力,属于中等题.二、填空题6.已知P为椭圆221 164xy+=上的一个动点,过点P作圆()2211x y-+=的两条切线,切点分别是A,B,则AB的最小值为_______..【答案】422.【分析】连接PC,交AB于H,可得H为AB中点,求得圆心和半径,连接AC,BC,可得,AC PA BC PB⊥⊥,运用勾股定理和三角形面积公式可得AB,设()4cos,2sinPθθ,[]0,2θπ∈,运用两点的距离公式和同角的平方关系,结合配方和二次函数的最值求法,可得所求最小值.【详解】如图,连接PC,交AB于H,可得H为AB中点,圆()2211x y-+=的圆心为()1,0C,半径1r=,连接AC,BC,可得,AC PA BC PB⊥⊥,则21PA PB PC==-又222121221PCPA ACAB AHPC PC PC-⋅====-设()4cos,2sinPθθ,[]0,2θπ∈,可得()()2 2222111 4cos12sin12cos8cos512cos33PCθθθθθ⎛⎫=-+=-+=-+⎪⎝⎭,当1cos 3θ=时,2PC 取得最小值为113,此时AB 取得最小值为11=.故答案为:11. 【点睛】本题考查椭圆中的最值问题,涉及圆的相切问题,属于中档题7.已知抛物线C :22x py =-()0p >的焦点F 与22184y x +=的一个焦点重合,过焦点F 的直线与C 交于A ,B 两不同点,抛物线C 在A ,B 两点处的切线相交于点M ,且M 的横坐标为2,则弦长AB =______. 【答案】10 【分析】首先根据已知条件得到抛物线方程为28xy ,设直线AB 方程为2y kx =-,()11,A x y ,()22,B x y ,利用导数的几何意义得到两条切线分别为21148x x y x =-+和22248x x y x =-+,联立切线得到122M x x x +=,从而得到124x x +=,联立直线AB 与抛物线,利用韦达定理即可得到12k =-,再求焦点弦长即可. 【详解】由题意可得()0,2F -,则4p =,抛物线方程为28xy .设直线AB 方程为2y kx =-,()11,A x y ,()22,B x y ,其中2118x y =-,2228x y =-. 由28x y =-得4x y '=-,所以在点A 处的切线方程为()1114x y y x x -=--,化简得21148x x y x =-+①,同理可得在点B 处的切线方程为22248x x y x =-+②.联立①②得122M x x x +=,又M 的横坐标为2, 124x x ∴+=.将AB 方程代入抛物线得28160x kx +-=,1284x x k ∴+=-=,12k ∴=-,()1212144462y y k x x ∴+=+-=-⨯-=-,1210AB p y y ∴=--=.故答案为:10 【点睛】本题主要考查抛物线的焦点弦,同时考查导数的几何意义,属于中档题.8.已知1F ,2F 为椭圆221123x y+=的两个焦点,点P 在椭圆上,如果线段1PF 的中点在y 轴上,则1PF 的值为______.【分析】由题意可得PF 2平行y 轴,然后结合椭圆方程和椭圆的定义整理计算即可求得最终结果. 【详解】∵原点O 是F 1F 2的中点,∴PF 2平行y 轴,即PF 2垂直于x 轴, ∵c =3,∴|F 1F 2|=6,设|PF 1|=x,根据椭圆定义可知2PF x =,∴22)36x x +=,解得2x =.. 【点睛】本题主要考查椭圆的几何性质,方程的思想等知识,意在考查学生的转化能力和计算求解能力.三、解答题9.如图,在平面直角坐标系xOy 中,已知椭圆1C :22221x y a b +=和椭圆2C :22221x y c b+=,其中0a c b >>>,222a b c =+,1C ,2C 的离心率分别为1e ,2e ,且满足12:2:3e e =,A ,B 分别是椭圆2C 的右、下顶点,直线AB 与椭圆1C 的另一个交点为P ,且185PB =.(1)求椭圆1C 的方程;(2)与椭圆2C 相切的直线MN 交椭圆1C 与点M ,N ,求MN 的最大值.【答案】(1)22193x y +=;(232. 【分析】(1)由12:3e e =可得得42243840c a c a -+=,化为2232a c =,从而3a b ,2c b =, )2,0Ab ,()0,B b -,则直线AB 的方程为2y x b =-,与椭圆方程联立,利用弦长公式求得3b =(2)当直线MN 的斜率不存在时,易得2MN =,当直线MN 的斜率存在时,设直线MN :()0y kx m k =+≠,与椭圆2C :22163x y +=联立并消去y ,利用韦达定理、弦长公式表示出弦长,结合配方法可得答案. 【详解】(1)由题意知1c e a =,222222c b c ae --==, 因为12:3e e =22232c c a a c-=⋅,222223a c a c -=,将等号两边同时平方,得42243840c a c a -+=,即()()22222230a cac --=,所以2232a c =,又222a b c =+,所以3a b,c =,所以),0A,()0,B b -,所以直线AB的方程为y x b =-, 与椭圆1C :222213x y b b +=联立并消去y,得222332x x b b ⎛⎫+-= ⎪ ⎪⎝⎭, 整理得10x =,25x =,所以,55b P ⎛⎫ ⎪ ⎪⎝⎭, 因为185PB =185=,得b =3a =,椭圆1C 的方程为22193x y +=.(2)当直线MN 的斜率不存在时,易得2MN =.当直线MN 的斜率存在时,设直线MN :()0y kx m k =+≠,与椭圆2C :22163x y +=联立并消去y , 得()222124260kxknx m +++-=,因为直线MN 与椭圆2C 相切,所以()()222216412260k m k m∆=-+-=,整理得()22630*k m +-=,将直线MN 与椭圆1C 方程联立并消去y ,得()222136390k x kmx m +++-=,由()*式可得()()()22222223641339129336k m kmk m k ∆=-+-=+-=.设(),M M M x y ,(),N N N x y ,则2613M N km x x k -+=+,223913M N m x x k-=+,所以M N MN x =-==设213k t +=,则1t >,2MN ==22<,所以当4t =,即1k =±时,MN 最大,且最大值为322. 【点睛】求椭圆标准方程的方法一般为待定系数法,根据条件确定关于,,a b c 的方程组,解出,,a b ,从而写出椭圆的标准方程.解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.10.在平面直角坐标系上,已知动点P 到定点()11,0F -、()21,0F 的距离之和为22. (1)求动点P 的轨迹方程C .(2)若直线:l y x t =+与曲线C 交于A 、B 两点,423AB =.求t 的值 【答案】(1)2212x y +=;(2)1t =±.【分析】(1)求出,a b 可求椭圆的方程.(2)设点()11,A x y ,()22,B x y ,联立直线方程和椭圆方程,消去y 后利用韦达定理和弦长公式公式可得关于t 的方程,解方程后可得t 的值.【详解】解:(1)因为1222PF PF +=P 轨迹为椭圆,并且长轴长222a =, 因为焦点坐标分别为()1,0-,()1,0,所以22c =,又因为222a b c =+,所以1b =,所以P 点运动轨迹椭圆C 的方程为2212x y +=.(2)设点()11,A x y ,()22,B x y ,因为22220x y y x t⎧+-=⎨=+⎩,消元化简得2234220x tx t ++-=,所以()2221612222480t t t ∆=--=->,1221243223t x x t x x ⎧+=-⎪⎪⎨-⎪=⎪⎩,所以3AB ==又因为3AB =3=, 解得1t =±,满足>0∆,所以1t =±. 【点睛】直线与圆锥曲线的位置关系,一般可通过联立方程组并消元得到关于x 或y 的一元二次方程,再把要求解的目标代数式化为关于两个的交点横坐标或纵坐标的关系式,该关系中含有1212,x x x x +或1212,y y y y +,最后利用韦达定理把关系式转化为某一个变量的方程,解此方程即可.11.已知椭圆222:1(1)x E y a a +=>的离心率为2,右顶点为(,0)P a ,P 是抛物线2:2(0)C y px p =>的焦点.(1)求抛物线C 的标准方程;(2)若C 上存在两动点,A B (,A B 在x 轴两侧)满足20OA OB ⋅=(O 为坐标原点),且PAB △的周长为2||4AB +,求||AB . 【答案】(1)28y x =;(2)30. 【分析】(1)根据椭圆离心率的关系可得2a =,进而根据抛物线的性质求出方程即可. (2) 设直线:AB x my n =+,联立28y x =得出韦达定理,再结合抛物线的方程与20OA OB ⋅=化简可得10n =,再根据抛物线的焦半径公式以及弦长公式求得2m =±,进而求得||AB . 【详解】解析:(1)因为椭圆222:1x E y a +=22134a a -=, 解得24a =,所以2a =, 而22p=,所以4p =, 从而得抛物线C 的标准方程为28y x =.(2)由题意0AB k ≠,设直线:AB x my n =+, 联立28y x =得2880y my n --=, 设()()1122,,,A x y B x y (其中120y y <) 所以12128,8y y m y y n +=⋅=-,且0n >,因为20OA OB ⋅=,所以22121212122064y y OA OB x x y y y y ⋅=+=+=,2820n n -=,所以(10)(2)0n n -+=,故10n =或2n =-(舍), 直线:10AB x my =+, 因为PAB △的周长为2||4AB + 所以||||||2||4PA PB AB AB ++=+. 即||||||4PA PB AB +=+,因为()21212||||424824PA PB x x m y y m +=++=++=+.又12||AB y y =-=所以2820m +=解得2m =±,所以||30AB ==.【点睛】本题主要考查了联立直线与抛物线的方程,结合韦达定理与弦长公式、焦半径公式求解的问题,属于中档题.12.已知椭圆2222:1(0)x y G a b a b +=>>的离心率为1,2过椭圆G 右焦点2(1,0)F 的直线m :x =1与椭圆G 交于点M (点M 在第一象限) (1)求椭圆G 的方程;(2)连接点M 与左焦点并延长交椭圆于点N ,求线段MN 的长.【答案】(1)22143x y +=(2)257【分析】(1)由已知条件推导出1c =,12c a =,由此能求出椭圆的方程. (2)依题意可得直线1MF 的方程,联立直线与椭圆方程,消元,求出两交点的横坐标,再根据弦长公式计算可得; 【详解】 解:(1)椭圆2222:1(0)x y G a b a b+=>>的离心率为12,过椭圆G 右焦点2(1,0)F 的直线:1m x =与椭圆G 交于点M (点M 在第一象限),1c ∴=,12c a =,解得2a =, 2223b a c ∴=-=,∴椭圆的方程为22143x y +=.(2)依题意可得()11,0F -,31,2M ⎛⎫⎪⎝⎭,所以1MF :3344y x =+ 联立方程得223344143y x x y ⎧=+⎪⎪⎨⎪+=⎪⎩,消去y 整理得22118390x x +-=,则()()121390x x -+=解得11x =,2137x =-所以121325177MN x ⎤⎛⎫=-=--= ⎪⎥⎝⎭⎦【点睛】本题考查待定系数法求椭圆方程,直线与椭圆的综合应用,弦长公式的应用,属于中档题.13.已知抛物线21:2C y px =的焦点与椭圆222:198x y C +=的右焦点F 重合,过抛物线1C 的准线l 上一点P 作抛物线1C 的两条切线,切点为A ,B .(1)求证:直线AB 过焦点F ; (2)若8PA =,6PB =,求PF 的值. 【答案】(1)证明见解析;(2)245. 【分析】(1)求出椭圆的右集合,即抛物线的焦点,从而可得p 值,得抛物线方程,设点()11,A x y ,()22,B x y ,()1,P a -,由切点设出切线方程11:()PA y y k x x -=-,由相切求出斜率k ,得切线PA 方程,同理得PB 方程,代入P 点坐标后可得过,A B 两点的直线方程,得证其过焦点;(2)由(1)中直线AB 方程与抛物线方程联立后消元应用韦达定理,然后可证得PA PB ⊥,又可证得PF AB ⊥,这样由直角三角形性质可得PF【详解】(1)证明:因为椭圆222:198x y C +=的右焦点()1,0F ,所以12p=,即2p =.所以抛物线1C 的方程为24y x =. 设点()11,A x y ,()22,B x y ,()1,P a -,设()111:PA y y k x x -=-, 联立()1112,4,y y k x x y x ⎧-=-⎨=⎩消x 得211114440yy y x k k -+-=, 由0∆=得2111110k y k x -+=.又2114y x =,故2211111104k y k y -+=,故2111102k y ⎛⎫-= ⎪⎝⎭,故112PA k k y ==,故直线PA 的方程为()1112y y x x y -=-, 即1122yy x x =+.同理22PB k y =,直线PB 的方程为2222yy x x =+. 又点P 在直线PA ,PB 上,所以112222,22,ay x ay x =-+⎧⎨=-+⎩故()11,A x y ,()22,B x y 在直线22ay x =-+上,故直线AB 的方程为22ay x =-+,令0y =,得1x =,所以直线AB 过焦点F .(2)解:由(1)知联立222,4,ay x y x =-+⎧⎨=⎩消x 得2240y ay --=,故122y y a +=,124y y =-,故12221PA PB k k y y ⋅=⋅=-, 故直线PA 与直线PB垂直,从而10AB ==.因为2AB k a =,0112PF a ak -==---,所以1PF AB k k ⋅=-, 故PF AB ⊥,所以6824105PF ⨯==. 【点睛】本题主要考查直线与抛物线的位置关系,解题方法是设而不求的思想方法,本题中设出两切点坐标1122(,),(,)A x y B x y ,由直线AB 方程与抛物线方程联立方程组消元后应用韦达定理,然后代入PA PB k k ⋅可得垂直.这是直线与圆锥曲线相交问题常用的方法.14.已知椭圆2222:1x y E a b +=()0a b >>的半焦距为c ,原点O 到经过两点()(),0,0,c b 的直线的距离为12c,椭圆的长轴长为 (1)求椭圆E 的方程;(2)直线l 与椭圆交于,A B 两点,线段AB 的中点为()2,1M -,求弦长.AB【答案】(1)221123x y +=;(2)10. 【分析】(1)由点到直线的距离得12b a =,再由长轴长可求得,a b 得椭圆方程;(2)直线AB 的斜率一定存在,设方程为()12y k x +=-,代入椭圆方程整理,设()()1122,,,A x y B x y ,由韦达定理得1212,x x x x +,由中点坐标公式求得k ,再由弦长公式求得弦长. 【详解】解:(1)经过两点()(),0,0,c b 的直线为:1x yc b+=即0bx cy bc +-=.由已知:原点到直线的距离12bc d c a ===即12b a =因为2a =b =所以椭圆的标准方程为:221123x y +=(2)当直线l 斜率不存在时,线段AB 的中点在x 轴上,不合题意.所以直线l 的斜率存在,设为k ,则直线()12y k x +=-即为:21y kx k =-- 设()()1122,,,A x y B x y 联立22214120y kx k x y =--⎧⎨+-=⎩得:()()22214821161680k x k k x k k +++++-= ()()22214821161680k xk k x k k +-+++-=显然>0∆ 则()122821414k k x x k++==+,解得12k = 则212216168214k k x x k +-⋅==+所以12AB x =-==【点睛】本题考查求椭圆的标准方程,考查求直线与椭圆相交弦长,解题方法是设而不求的思想方法,即设交点坐标1122(,),(,)x y x y ,设直线方程,代入椭圆方程应用韦达定理,得1212,x x x x +,由弦长公式得弦长.15.已知直线l 经过抛物线26y x =的焦点F ,且与抛物线交于A 、B 两点.(1)若直线l 的倾斜角为60,求线段AB 的长; (2)若2AF =,求BF 的长. 【答案】(1)8;(2)6. 【分析】(1)设点()11,A x y 、()22,B x y ,求出直线l 的方程,与抛物线方程联立,求出12x x +的值,再利用抛物线的焦点弦长公式可求得线段AB 的长; (2)设直线l 的方程为32x my =+,设点()11,A x y 、()22,B x y ,将直线l 的方程与抛物线的方程联立,可得出129y y =-,由2AF =求得1x 的值,利用韦达定理以及抛物线的方程求得2x 的值,利用抛物线的定义可求得BF 的长. 【详解】(1)设点()11,A x y 、()22,B x y ,抛物线26y x =的焦点为3,02F ⎛⎫⎪⎝⎭, 由于直线l 过点F ,且该直线的倾斜角为60,则直线l的方程为32y x ⎫=-⎪⎭,联立2326y x y x⎧⎫=-⎪⎪⎭⎨⎪=⎩,消去y 并整理得29504x x -+=,259160∆=-=>, 由韦达定理可得125x x +=,由抛物线的焦点弦长公式可得123538AB x x =++=+=;(2)设点()11,A x y 、()22,B x y ,由题意可知,直线l 不可能与x 轴重合,设直线l 的方程为32x my =+, 联立2326x my y x⎧=+⎪⎨⎪=⎩,消去x 并整理得2690y my --=,()23610m ∆=+>,由韦达定理可得126y y m +=,129y y =-,1322AF x =+=,可得112x =,21163y x ∴==,129y y ∴=-,则22218127y y ==,222962y x ∴==,因此,2362BF x =+=.【点睛】有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式12AB x x p =++,若不过焦点,则必须用一般弦长公式.16.已知圆上224x y +=上任取一点P ,过点P 作y 轴的垂线段PQ ,垂足为Q ,当P在圆上运动时,线段PQ 中点为M .(1)求点M 的轨迹方程;(2)若直线l 的方程为y =x -1,与点M 的轨迹交于A ,B 两点,求弦AB 的长.【答案】(1)2214y x +=;(2【分析】(1)设M 、P ,利用相关点法即可求解.(2)将直线与椭圆方程联立,利用弦长公式即可求解.【详解】(1)设(),M x y ,()00,P x y ,()00,Q y ∴,点M 是线段PQ 中点,002,x x y y ∴==,又()00,P x y 在圆224x y +=上,()2224x y +=, 即点M 的轨迹方程为2214y x +=. (2)联立22114y x y x =-⎧⎪⎨+=⎪⎩,消去y 可得,25230x x --=, ()22600∆=-+>,设()11,A x y ,()22,B x y , 则1225x x +=,1235x x =,12AB x ∴=-===. 【点睛】方法点睛:本题考查了轨迹问题、求弦长,求轨迹的常用方法如下:(1)定义法:利用圆锥曲线的定义求解. (2)相关点法:由已知点的轨迹进行求解. (3)直接法:根据题意,列出方程即可求解.。

【圆锥曲线】09抛物线与直线的联立(含经典题型+答案)

【圆锥曲线】09抛物线与直线的联立(含经典题型+答案)

秒杀秘籍:焦点弦的特殊几何性质如图,已知 AB 是过抛物线 y2 2 px p 0 焦点 F 的弦,M 是 AB 的中点,l 是抛物线的准线, MN l ,N 为垂足。

则: (1)以 AB 为直径的圆与准线 l 相切。

(2) FN AB(3)A x1,y1 、B x2,y2,则y1 y2 p2,x1x21 4p2 (重点)(4)1 FA1 FB2(重点)p(5)设 BD l, D 为垂足,则 A、O、D 三点在一条直线上(重点)抛物线与直线联立的方式与性质证明:(1)过 A 作 AC 垂直 L,C 为垂足。

FA AC , FB BD 在梯形 ACDBK ,MN1 2ACBD1 2AFBF 12CAABNCAN ANM ,ANAMNB,90,A故C以NAB为直径的圆与准线AFNl相切。

(2)在 ACN 与 AFN中C,ANANANAMN,, AACCN AFAF;N 在 Rt ABN中AF,NNAMACNA9N0M,CAN ANM , ACN AFN AFN ACN 90 FN AB(3)AC设N直线AAFBN的方程为AxFNk ypA与C抛N物 线F90Ny2A2Bpx 联立得: y2 2 p ky p ,即 y2 2 pky p2 0AFN ACN 90FN AB 2 2故 Fy1Ny2 A Bp2; x1x2y12 2py22 2pp2 4(4)由于 AF P ; BF P ;故 1 1 1 cos 1 cos 21 cos1+ cosAF BFppp(5)因为点D的坐标为 p 2,y2 ,直线OA的方程为yy1 x , 因 此 只 要 证 明 x1y2py1 2 x12x1 y py12x1y12 p即证明 y12 y2 p2 y1, y1 y2 p2即证明1.已知 A、B 是过抛物线 y2 2x 的焦点的弦,A 点坐标为(8,4),则 B 点的坐标为。

2.已知抛物线 y2 2 px( p 0) 过焦点 F 的弦 AB,则1 FA1 FB。

圆锥曲线专题:中点弦及点差法的7种常见考法高二数学上学期同步讲与练(选择性必修第一册)(解析版)

圆锥曲线专题:中点弦及点差法的7种常见考法高二数学上学期同步讲与练(选择性必修第一册)(解析版)

圆锥曲线专题:中点弦及点差法的7种常见考法一、椭圆与双曲线的中点弦与点差法1、根与系数关系法:联立直线方程和椭圆方程构成方程组,消去一个未知数,利用一元二次方程根与系数的关系以及中点坐标公式解决;2、点差法:利用交点在曲线上,坐标满足方程,将交点坐标分别代入椭圆方程,然后作差,构造出中点坐标和斜率的关系,具体如下:直线l (不平行于y 轴)过椭圆12222=+by a x (0>>b a )上两点A 、B ,其中AB 中点为)(00y x P ,,则有22ab k k OPAB -=⋅。

证明:设)(11y x A ,、)(22y x B ,,则有⎪⎪⎩⎪⎪⎨⎧=+=+11222222221221b y a x by a x ,上式减下式得02222122221=-+-b y y a x x ,∴2222212221a b x x y y -=--,∴220021210021212121212122a b x y x x y y x y x x y y x x y y x x y y -=⋅--=⋅--=++⋅--,∴22a b k k OP AB -=⋅。

焦点在y 轴:直线l (存在斜率)过椭圆12222=+bx a y (0>>b a )上两点A 、B ,线段AB 中点为)(00y x P ,,则有22ba k k OPAB -=⋅。

3、双曲线的用点差法同理,可得220220()AB AB OP x b b k k k a y a=⋅⋅=二、抛物线的中点弦与点差法设直线与曲线的两个交点)(11y x A ,、)(22y x B ,,中点坐标为)(00y x P ,代入抛物线方程,2112=y px ,2222=y px ,将两式相减,可得()()()1212122-+=-y y y y p x x ,整理可得:12121202-===-+AB y y p pk x x y y y三、点差法在圆锥曲线中的结论AB AB M AB AB M AB AB AB AB b e x a y k k k x ab e b e x a y k k k x a y b e pk y pk y x k px k p222002222220222011-y 1111⎧-=-⇔⎪⎪==⎨⎪=⇔⎪-⎩⎧=-⇔⎪⎪==⎨⎪=⇔⎪-⎩⎧=⇔⎪⎪⎪⎪=-⇔⎪⎨⎪=⇔⎪⎪⎪=-⇔⎪⎩gg gg 焦点在轴椭圆:焦点在轴焦点在轴双曲线:焦点在轴开口向右开口向左抛物线:开口向上开口向下题型一中点弦所在直线的斜率与方程【例1】已知椭圆22195x y +=的弦被点()1,1平分,则这条弦所在的直线方程为______.【答案】59140x y +-=【解析】已知椭圆22195x y +=的弦被点()1,1平分,设这条弦的两个端点分别为()11,A x y 、()22,B x y ,则12121212x x y y +⎧=⎪⎪⎨+⎪=⎪⎩,得121222x x y y +=⎧⎨+=⎩,由于点A 、B 均在椭圆22195x y +=上,则22112222195195x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得22221212095x x y y --+=,可得2212221259y y x x -=--,即()()()()1212121259y y y y x x x x -+=--+,所以直线AB 的斜率为121259AB y y k x x -==--,因此,这条弦所在直线的方程为()5119y x -=--,即59140x y +-=.故答案为:59140x y +-=.【变式1-1】已知椭圆2222:1(0)x y C a b a b +=>>,直线l 与椭圆C 交于A ,B 两点,直线12y x =-与直线l 的交点恰好为线段AB 的中点,则直线l 的斜率为()A.12B.14C.1D.4【答案】C【解析】由题意可得2c e a ==,整理可得a =.设()11,A x y ,()22,B x y ,则2211221x y a b +=,2222221x y a b+=两式相减可得()()()()12121212220x x x x y y y y a b -+-++=.因为直线12y x =-与直线l 的交点恰好为线段AB 的中点,所以121212y y x x +=-+,则直线l 的斜率21212212121(2)12y y x x b k x x a y y -+==-⋅=-⨯-=-+.故选:C 【变式1-2】已知双曲线22142x y -=被直线截得的弦AB ,弦的中点为M (4,2),则直线AB 的斜率为()A.1D.2【答案】A【解析】设交点坐标分别为1(A x ,1)y ,2(B x ,2)y ,则128x x +=,124y y +=,2211142x y -=,2222142x y -=两式相减可得22221212042x x y y ---=,即()()()()1212121242x x x x y y y y +-+-=,所以()()121212122248144AB x x y y k x x y y +-⨯====-+⨯,即直线AB 的斜率为1;故选:A.【变式1-3】过点(2,1)M 的直线交抛物线24y x =于,A B 两点,当点M 恰好为AB 的中点时,直线AB 的方程为()A.250x y +-=B.210x y --=C.250x y +-=D.230x y --=【答案】D【解析】设()()1122,,,A x y B x y ,所以2211224,4y x y x ==,两式相减得,()()()1212124y y y y x x +-=-,因为点(2,1)M 为AB 的中点,所以122y y +=,所以12122y y x x --=,故直线AB 的斜率为2,所以直线AB 的方程为()122y x -=-,即230x y --=,联立22304x y y x--=⎧⎨=⎩,所以241690x x -+=,()2164490∆=--⨯⨯>,故斜率为2符合题意,因此直线AB 的方程为230x y --=,故选:D.【变式1-4】已知斜率为1k ()10k ≠的直线l 与椭圆2214yx +=交于A ,B 两点,线段AB 的中点为C ,直线OC (O 为坐标原点)的斜率为2k ,则12k k ⋅=()A.14-B.4-C.12-D.2-【答案】B【解析】设()11,A x y ,()22,B x y ,AB 的中点()00,C x y ,则1202x x x +=,1202y y y +=.因为A ,B 两点在椭圆上,所以221114y x +=,222214y x +=.两式相减得:()22222112104x y x y -+=-,()()()()11112222104x x y y x x y y +-+-+=,()()0122011202x y x y y x --+=,()()2102011202y y y x x x --+=,即121202k k +⋅=,解得124k k ⋅=-.故选:B【变式1-5】椭圆()222210x y a b a b +=>>离心率为3,直线20x y b -+=与椭圆交于P ,Q 两点,且PQ 中点为E ,O 为原点,则直线OE 的斜率是_______.【答案】43-【解析】因为椭圆()222210x y a b a b +=>>所以3c e a ==,所以2223b a =设()11,P x y ,()22,Q x y ,所以121212PQ y y k x x -==-,1212,22x x y y E ++⎛⎫⎪⎝⎭,因为P ,Q 在椭圆上,所以22112222222211x y a b x y ab ⎧+=⎪⎪⎨⎪+=⎪⎩,两式作差得22221212220x x y y a b --+=,即2221222212y y b x x a -=--,即()()()()1212121223y y y y x x x x -+-=-+,即23PQ OE k k ⋅=-,所以43OE k =-,故答案为:43-【变式1-6】已知离心率为12的椭圆()222210y x a b a b+=>>内有个内接三角形ABC ,O 为坐标原点,边AB BC AC 、、的中点分别为D E F 、、,直线AB BC AC 、、的斜率分别为123k k k ,,,且均不为0,若直线OD OE OF 、、斜率之和为1,则123111k k k ++=()A.43-B.43C.34-D.34【答案】C【解析】由题意可得12c a =,所以2243,b a =不妨设为22143y x +=.设1(A x ,1)y ,2(B x ,2)y ,3(C x ,3)y ,222211221,14343y x y x +=+=,两式作差得21212121()()()()34x x x x y y y y -+-+=-,则21212121()3()()4()x x y y y y x x +-=-+-,134OD AB k k =-,同理可得1313,44OF OE AC BC k k k =-=-,所以12311133()44OD OE OF k k k k k k ++=-++=-,故选:C .题型二求圆锥曲线的方程问题【例2】过椭圆2222:1(0)x y C a b a b+=>>的右焦点(2,0)F 的直线与C 交于A ,B 两点,若线段AB 的中点M 的坐标为95,77⎛⎫- ⎪⎝⎭,则C 的方程为()A.22195x y +=B.2215x y +=C.22162x y +=D.221106x y +=【答案】A【解析】设()()1122,,,A x y B x y ,则12x x ≠AB 的中点95,77M ⎛⎫- ⎪⎝⎭,所以5071927AB MFk k ⎛⎫-- ⎪⎝⎭===-,又2222221122222222b x a y a b b x a y a b ⎧+=⎨+=⎩,所以()()2222221212b x x a y y -=--,即2121221212y y y y b x x x x a-+⋅=--+,而12121ABy y k x x -==-,121252579927y y x x ⎛⎫⨯- ⎪+⎝⎭==-+⨯,所以2255199b a =⨯=,又2c =,所以22222254499c a b a a a =-=-==,所以2295a b ==,椭圆方程为:22195x y +=.故选:A.【变式2-1】已知双曲线E 的中心为原点,(30)F ,是E 的焦点,过F 的直线l 与E 相交于A 、B 两点,且AB 的中点为(1215)N --,,求双曲线E 的方程.【答案】22145x y -=【解析】设双曲线的方程为22221x y a b-=(0a >,0b >),由题意知3c =,229a b +=,设11()A x y ,、22()B x y ,则有:2211221x y a b -=,2222221x y a b -=,两式作差得:22121222121245y y x x b b x x a y y a-+=⋅=-+,又AB 的斜率是1501123--=--,∴2254b a =,代入229a b +=得,24a =,25b =,∴双曲线标准方程是22145x y -=.【变式2-2】已知双曲线C 的中心在坐标原点,焦点在x 轴上,离心率等于32,点()5-在双曲线C 上,椭圆E 的焦点与双曲线C 的焦点相同,斜率为12的直线与椭圆E 交于A 、B 两点.若线段AB 的中点坐标为()1,1-,则椭圆E 的方程为()A.2214536x y +=B.2213627x y +=C.2212718x y +=D.221189x y +=【答案】D【解析】设双曲线方程为22221(0,0)x y m n m n-=>>,则223224251m mn =⎪⎪⎨⎪-=⎪⎩,解得2245m n ⎧=⎨=⎩,故双曲线方程为22145x y -=,焦点为()3,0±;设椭圆方程为22221x y a b+=,则椭圆焦点为焦点为()3,0±,故22a b 9-=,设1122(,),(,)A x y B x y ,则2222112222221,1x y x y a b a b+=+=,两式相减得22221212220x x y y a b --+=,整理得2121221212y y x x b x x a y y -+=-⋅-+,即221121b a =-⋅-,解得222a b =,故2218,9a b ==,椭圆方程为221189x y +=.故选:D.【变式2-3】斜率为1的直线交抛物线()2:20C y px p =>于A ,B 两点,且弦AB 中点的纵坐标为2.求抛物线C 的标准方程;【答案】24y x=【解析】设()()1122,,,A x y B x y ,12122,42y y y y +=+=,21122222y px y px ⎧=⎨=⎩,两式相减并化简得1212122y y p x x y y -=-+,21,24pp ==,所以抛物线方程为24y x =.【变式2-4】设()11,A x y 、()22,B x y 是抛物线()2:20C x py p =>上不同的两点,线段AB 的垂直平分线为y x b =+,若1212x x +=-,则p =______.【答案】14【解析】由题知,2112x py =,2222x py =,两式相减得()()()1212122x x x x p y y -+=-,所以1212122AB y y x x k x x p-+==-,由题知1AB k =-,所以12122x x p +=-=-,所以14p =.故答案为:14.题型三求圆锥曲线的离心率问题【例3】过点()1,1M 作斜率为12-的直线与椭圆C :22221x y a b+=(0a b >>)相交于A 、B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于()A.22B.3C.12D.13【答案】A【解析】设1122(,),(,)A x y B x y ,则12122,2x x y y +=+=,121212AB y y k x x -==--,所以22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,作差得1212121222()()()()0x x x x y y y y a b -+-++=,所以1212222()2()0x x y y a b --+=,即21221212y y b a x x -=-=-,所以该椭圆的离心率2c e a ==【变式3-1】已知直线3y x m =-与椭圆()2222:10x y C a b a b+=>>相交于P ,Q 两点,若PQ 中点的横坐标恰好为2m ,则椭圆C 的离心率为______.【答案】2【解析】设()11,P x y ,()22,Q x y ,代入椭圆方程得2211221x y a b +=,2222221x y a b+=,两式作差得22221212220x x y y a b --+=,整理得122122121222y y y y b x x x x a +-⋅=-+-,因为1222x x m +=,所以12123322y y x m x mm +-+-==-,又因为12121PQ y y k x x -==-,所以2212m b m a -⨯=-,所以2212b a =,所以ce a======2212c a=.故答案为:2.【变式3-2】已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为A ,B ,点M 为椭圆C上异于A ,B 的一点,直线AM 和直线BM 的斜率之积为14-,则椭圆C 的离心率为()A.14B.12C.2D.4【答案】C【解析】由已知得(,0),(,0)A a B a -,设()00,x y ,由题设可得,2200221x y a b+=,所以()222202b y a x a=-.因为()222220200022222000014A MM B b a x y y y b a k k x a x a x a x a a -⋅=⋅===-=-+---,所以2214b a =,则22222222314c a b b e a a a -===-=,所以2e =.【变式3-3】已知斜率为1的直线l 与双曲线C :()222210,0x y a b a b-=>>相交于B ,D 两点,且BD 的中点为()1,3M ,则C 的离心率是______.【答案】2【解析】设1122(,),(,)B x y D x y ,则22112222222211x y a b x y a b ⎧-=⎪⎪⎨⎪-=⎪⎩,两式作差可得:2222121222x x y a b y =--,即1212121222()()()()x x x x y y y y a b -+-+=,因为()1,3M 为BD 中点,所以12122,6x x y y +=+=,又直线BD 斜率为1,所以12121y y x x -=-,代入可得,223b a=,所以C的离心率2e ==.故答案为:2【变式3-4】已知直线l :30x y -+=与双曲线C :22221x y a b-=(0a >,0b >)交于A ,B两点,点()1,4P 是弦AB 的中点,则双曲线C 的离心率为()A.43B.2C.2【答案】D【解析】设()()1122,,,A x y B x y 点()1,4P 是弦AB 的中点根据中点坐标公式可得:12122,8x x y y +=⎧⎨+=⎩A ,B 两点在直线l :30x y -+=根据两点斜率公式可得:12121y y x x -=-,A B 两点在双曲线C 上∴22112222222211x y a b x y a b ⎧-=⎪⎪⎨⎪-=⎪⎩∴222212122210x x y y a b ---=,即()()()()2221212122221212128142y y y y y y b a x x x x x x +--===⨯=-+-解得:2b a =∴c e a ===题型四弦中点的坐标问题【例4】已知直线:1l y x =+,椭圆22:13xC y +=.若直线l 与椭圆C 交于A ,B 两点,则线段AB 的中点的坐标为()A.13,44⎛⎫- ⎪⎝⎭B.31,44⎛⎫- ⎪⎝⎭C.13,22⎛⎫ ⎪⎝⎭D.31,22⎛⎫-- ⎪⎝⎭【答案】B【解析】由题意知,22113y x x y =+⎧⎪⎨+=⎪⎩,消去y ,得2230x x +=,则9810∆=-=>,32A B x x +=-,所以A 、B 两点中点的横坐标为:13()24A B x x +=-,所以中点的纵坐标为:31144-=,即线段AB 的中点的坐标为31()44-,.故选:B【变式4-1】求直线1-=x y 被抛物线x y 42=截得线段的中点坐标。

专题9 圆锥曲线中的中点弦

专题9 圆锥曲线中的中点弦

3mk 3(k 2
k2m 9)
,
9m k
3km 2 9


P
6mk 2k 2 3(k 2 9)
m
,
18m 6km k2 9
,代入椭圆中得:
k 4 8k 3 18k 2 72k 81 0 , k 2 9 k 2 8k 9 0 , k 4 7 ,即存在。
5.(高考题)已知椭圆 C 的焦点分别为 F1(2 2, 0) 和 F2 (2 2, 0) ,长轴长为 6,设直线 y x 2 交椭圆 C 于 A, B 两点,求线段 AB 的中点坐标.
5
【解析】:(1) b 4, c 3 ,得 c 3, a 5 ,所以椭圆 C 的方程为: x2 y2 1 ;
a5
25 16
(2)同上,用两种方法可得中点坐标为:
3 2
,
6 5

3
7.(2013 年全国高考试题新课标卷 II)平面直角坐标系 xOy 中,过椭圆 M:
x2 a2
y2 b2
Step2:代入点坐标:即
y1 y2
kx1 t kx2 t

9 9
x12 x22
y12 y22
m2 (1) m2 (2)

Step3:作差得出结论:(1)-(2)得: kOM kl 9 ;
(2)设 l 的斜率为 k
,由
yM xM
.k
9 ①,yM
m
k
xM
m 3
②,联立得 M
,
Step3:作差得出结论:(1)-(2)得: kAB .
y中 x中
m n
kAB .kOP
。(作为公式记住,在小题中直接用。)
题型一:求值 :

圆锥曲线的中点弦问题(解析版)

圆锥曲线的中点弦问题(解析版)

第一篇圆锥曲线专题04中点弦问题一、用点差法求斜率及常用公式在圆锥曲线中涉及弦中点问题,如果涉及斜率,则常用点差法求斜率,关于点差法求斜率的方法,证明过程如下:直线y km b =+与椭圆2222:1x y C a b+=交于A,B 两点,00(x ,y )M 是弦AB 的中点,求直线AB 的斜率。

【解析】设1122A(x ,y ),B(x ,y ),点A,B 在椭圆上,所以221122x y 1a b +=…………………………………….①222222x y 1a b+=…………………………………….②①-②得:2222121222x x y y 0a b --+=2121221212(x x )(x x )(y y )(y y )a b-+=--+220220y ..x AB AB OM b b k k k a a=-⇒=-这是一个标准的点差法求斜率的例题,不过需要注意最后的结论,因为方法过程简单但是繁琐,在小题里面可以直接利用结论来求出相关的斜率,常用结论如下:1、斜率为k 的直线l 交椭圆22221x y a b +=于1122A(x ,y ),B(x ,y )两点且AB 的中点为00(x ,y )M ,则22.OM b k k a =-,焦点在y 轴上时有22.OM a k k b=-2、斜率为k 的直线l 交双曲线22221x y a b-=于1122A(x ,y ),B(x ,y )两点且AB 中点为00(x ,y )M ,则22.OM b k k a =,焦点在y 轴上时有22.OM a k k b=3、斜率为k 的直线l 交抛物线22y px =于1122A(x ,y ),B(x ,y )两点且AB 中点为00(x ,y )M ,则.OM pk k x =例1:已知双曲线2213x y -=的右焦点是抛物线22(p 0)y px =>的焦点,直线y km b =+与抛物线相交于A,B 两个不同的点,点(2,2)M 是AB 的中点,则AOB ∆的面积是().43A .313B .14C .23D 例2:如图,椭圆22214x y a +=的焦点为12,F F ,过1F 的直线交椭圆于点M,N ,交y 轴于点H ,若1F ,H 是线段的三等分点,则2F MN ∆的周长为_______.【解析】2F MN ∆的周长等于4a ,直线MN 斜率必定存在,设其为k ,则:y k(x c)MN =+可得H(0,ck),1F H 中点坐标为(,)22c ck P -所以2K 2op ckk c ==--根据中点弦结论可知22K .K MN opb a =-则,(0,)b bc k H a a =,因为H 是1F N 的中点,可得2N(c,bc a将N 点代入椭圆方程中整理可得225a c =,结合b=2解得25a =故2F MN ∆的周长为45二、利用导数法求解中点弦问题探究:在点差法中我们设了两个点,每个点中又有两个量,能不能减少未知量的个数,利用中点坐标公式我们可以将四个未知量变成两个,如下:例:过点(2,1)A 作一条直线l 交椭圆221169x y +=于点12,P P ,若点A 恰好是弦12PP 的中点,求直线l 的方程。

圆锥曲线中点弦典型例题及解析

圆锥曲线中点弦典型例题及解析


人 教 A 版 数 学
第二章
圆锥曲线与方程
y-1=2(x-1), 由 2 y2 消去 y 得,2x2-4x+3=0, x - 2 =1, Δ=-8<0. 这说明直线 MN 与双曲线不相交,故被点 B 平分的弦不 存在.
人 教 A 版 数 学
x 2 例2.设 双 曲 线 : 2 y 1a 0与 C a 直 线l : x y 1相 交 于 两 个 不 同 的 点 B A,
2
(1) 求 双 曲 线 的 离 心 率 的 取 值 范 围 ; C e
5 (2) 若 直 线与y轴 的 交 点 为 , 且PA l P PB y 12 求a的 值 P
A
O
x B
x 2 例2.设双曲线C : 2 y 1a 0与 a 直线l : x y 1相交于两个不同的点 , B A ()求双曲线C的离心率e的取值范围; 1
y P A
O
2
(1 a ) x 2a x 2a 0
2 2 2 2
x B
1 a 2 0 4a 4 8a 2 (1 a 2 ) 0 0 a 2且a 1 e 1
2பைடு நூலகம்
1
6
且e 2
5 ( )若直线l与y轴的交点为P,且PA PB 2 12 A( x1 , y1 ), B ( x2 , y2 ), P (0,1) 求a的值 5 PA PB y 12 5 P ( x1 , y1 1) ( x2 , y2 1) 12 5
符合题意的弦存在,那么弦的两个端点应分别在双曲线的 左右两支上,其所在直线的倾角也不可能是90°.
人 教 A 版 数 学
第二章

圆锥曲线中的中点弦

圆锥曲线中的中点弦

秒杀题型:玩转压轴题之中点弦问题秒杀题型一:圆、椭圆、双曲线的中点弦问题:注:方程:221mx ny +=,①当0,>n m 且n m ≠时,表示椭圆;②当0,>n m 且n m =时,表示圆;③当n m ,异号时,表示双曲线。

秒杀策略:点差法:简答题模板:step1:设直线与曲线:设直线:l y kx t =+与曲线:221mx ny +=交于两点A 、B ,AB 中点为),(中中y x P ,则有,A B 既在直线上又在曲线上,设),(11y x A ,),(22y x B ,Step2:代入点坐标:即1122y kx t y kx t =+⎧⎨=+⎩;22112222 1 (1)1 (2)mx ny mx ny ⎧+=⎪⎨+=⎪⎩,Step3:作差得出结论:(1)-(2)得:..AB AB OP y mk k k x n=-=中中。

(作为公式记住,在小题中直接用。

)题型一:求值:〖母题1〗已知椭圆221164x y +=,求以点P(2,-1)为中点的弦所在的直线方程.1.(2013年新课标全国卷I10)已知椭圆2222:1(0)x y G a b a b+=>>的右焦点为()0,3F ,过点F 的直线交椭圆于B A ,两点.若AB 的中点坐标为()11-,,则E 的方程为()A.1364522=+y x B.1273622=+y x C.1182722=+y x D.191822=+y x 2.(2010年新课标全国卷12)已知双曲线E 的中心为原点,()3,0F 是E 的焦点,过F 的直线l 与E 相交于,A B 两点,且AB 的中点为()12,15N --,则E 的方程为()A.22136x y -= B.22145x y -= C.22163x y -= D.22154x y -=3.(高考题)已知倾斜角为︒45的直线l 过点)2,1(-A 和点B ,B 在第一象限,23||=AB .(1)求点B 的坐标;(2)若直线l 与双曲线1:222=-y ax C )0(>a 相交于E 、F 两点,且线段EF 的中点坐标为)1,4(,求a 的值.4.(2015年新课标全国卷II20)已知椭圆)0(9:222>=+m m y x C ,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点B A ,,线段AB 的中点为M .(1)证明:直线OM 的斜率与l 的斜率的乘积为定值;(2)若l 过点⎪⎭⎫⎝⎛m m ,3,延长线段OM 与C 交于点P ,四边形OAPB 能否平行四边行?若能,求此时l 的斜率,若不能,说明理由.5.(高考题)已知椭圆C 的焦点分别为1(F -和2F ,长轴长为6,设直线2y x =+交椭圆C 于,A B 两点,求线段AB 的中点坐标.6.(高考题)设椭圆C :()222210x y a b a b+=>>过点()0,4,离心率为35.(1)求C 的方程;(2)求过点()3,0且斜率为45的直线被C 所截线段的中点坐标.7.(2013年全国高考试题新课标卷II)平面直角坐标系xOy 中,过椭圆M:22221x y a b+=(0>>b a )右焦点的直线03=-+y x 交M 于A,B 两点,且P 为AB 的中点,OP 的斜率为12.(1)求M 的方程;(2)C,D 为M 上的两点,若四边形ACBD 的对角线CD ⊥AB,求四边形ACBD 面积的最大值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

秒杀题型:玩转压轴题之中点弦问题: 秒杀题型一:圆、椭圆、双曲线的中点弦问题:注:方程:221mx ny +=,①当0,>n m 且n m ≠时,表示椭圆;②当0,>n m 且n m =时,表示圆; ③当n m ,异号时,表示双曲线。

秒杀策略:点差法:简答题模板:step1:设直线与曲线 :设直线:l y kx t =+与曲线:221mx ny +=交于两点A 、B ,AB 中点为),(中中y x P ,则有,A B 既在直线上又在曲线上,设),(11y x A ,),(22y x B ,Step2:代入点坐标:即1122y kx t y kx t =+⎧⎨=+⎩;22112222 1 (1)1 (2)mx ny mx ny ⎧+=⎪⎨+=⎪⎩,Step3:作差得出结论:(1)-(2)得:..AB AB OP y mk k k x n=-=中中。

(作为公式记住,在小题中直接用。

) 题型一:求值 :〖母题1〗已知椭圆221164x y +=,求以点P(2,-1)为中点的弦所在的直线方程. 【解析】:由结论可得:16421-=⨯-k ,得21-=k ,直线方程为:240x y --=。

1.(2013年新课标全国卷I10)已知椭圆2222:1(0)x y G a b a b+=>>的右焦点为()0,3F ,过点F 的直线交椭圆于B A ,两点.若AB 的中点坐标为()11-,,则E 的方程为 ( ) A.1364522=+y x B.1273622=+y x C.1182722=+y x D.191822=+y x 【解析】:由结论可得:222111ab -=⨯-,得222b a =,3=c ,选D 。

2.(2010年新课标全国卷12)已知双曲线E 的中心为原点,()3,0F 是E 的焦点,过F 的直线l 与E 相交于 ,A B 两点,且AB 的中点为()12,15N --,则E 的方程为 ( )A.22136x y -=B.22145x y -=C.22163x y -=D.22154x y -= 【解析】:由结论可得:()()221231501215ab =----⨯--,得2245b a =,3=c ,选B 。

3.(高考题)已知倾斜角为︒45的直线l 过点)2,1(-A 和点B ,B 在第一象限,23||=AB . (1)求点B 的坐标;(2)若直线l 与双曲线1:222=-y ax C )0(>a 相交于E 、F 两点,且线段EF 的中点坐标为)1,4(,求a 的值.【解析】:(1)=+=4cos231πB x 4,14sin232=+-=πB y ,点B 的坐标为()4,1。

(2)点差法:step1:设直线与曲线 :设直线:l y kx t =+与曲线1:222=-y ax C 交于两点E 、F ,EF 中点为(4,1),则有E 、F 既在直线上又在曲线上;Step2:代入点坐标:即1122y kx t y kx t =+⎧⎨=+⎩;⎪⎪⎩⎪⎪⎨⎧⋅⋅⋅=-⋅⋅⋅=-)2(1)1(12222221221y a x y a x ;Step3:作差得出结论:(1)-(2)得:21.EF y k x a =中中,代入点)1,4(,得2a =。

4.(2015年新课标全国卷II20)已知椭圆)0(9:222>=+m m y x C ,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点B A ,,线段AB 的中点为M .(1)证明:直线OM 的斜率与l 的斜率的乘积为定值; (2)若l 过点⎪⎭⎫⎝⎛m m ,3,延长线段OM 与C 交于点P ,四边形OAPB 能否平行四边行?若能,求此时l 的 斜率,若不能,说明理由.【解析】:(1)点差法:step1:设直线与曲线 :设直线:l y kx t =+与曲线)0(9:222>=+m m y x C 交于两点A 、B ,AB 中点为),(中中y x P ,则有,A B 既在直线上又在曲线上,设),(11y x A ,),(22y x B ;Step2:代入点坐标:即1122y kx t y kx t =+⎧⎨=+⎩;⎪⎩⎪⎨⎧⋅⋅⋅=+⋅⋅⋅=+)2(9)1(92222222121m y x m y x ; Step3:作差得出结论:(1)-(2)得:9-=⋅l OM k k ;(2)设l 的斜率为k ,由9.-=k x y M M ①,⎪⎭⎫ ⎝⎛-=-3m x k m y M M ②,联立得⎪⎪⎭⎫ ⎝⎛+-++-939,)9(33222k km m k m k mk M ,得⎪⎪⎭⎫⎝⎛+-++-9618,)9(326222k km m k m k mk P ,代入椭圆中得:0817*******=+-+-k k k k ,()()098922=+-+k k k ,74±=k ,即存在。

5.(高考题)已知椭圆C的焦点分别为1(F -和2F ,长轴长为6,设直线2y x =+交椭圆C 于 ,A B 两点,求线段AB 的中点坐标.【解析】:法一:同上,作差得出中点的一个关系,又中点在直线上,解方程组得中点坐标为::91,55⎛⎫- ⎪⎝⎭。

法二:直线与椭圆联立,利用根与系数的关系。

6.(高考题)设椭圆C :()222210x y a b a b+=>>过点()0,4,离心率为35.(1)求C 的方程; (2)求过点()3,0且斜率为45的直线被C 所截线段的中点坐标. 【解析】:(1)=b 4,53=a c ,得5,3==a c ,所以椭圆C 的方程为:2212516x y +=; (2)同上,用两种方法可得中点坐标为:36,25⎛⎫-⎪⎝⎭。

7.(2013年全国高考试题新课标卷II)平面直角坐标系xOy 中,过椭圆M:22221x y a b+=(0>>b a )右焦点的直线03=-+y x 交M 于A,B 两点,且P 为AB 的中点,OP 的斜率为12. (1)求M 的方程;(2)C,D 为M 上的两点,若四边形ACBD 的对角线CD ⊥AB,求四边形ACBD 面积的最大值。

【解析】:(1)代入右焦点()0,c 可得3=c ,由点差法可得2122-=-=⨯a b k k ABOP ,得222b a =,所以椭圆的方程为:13622=+y x ; (2) 设CD 方程:m x y +=,AB 、CD 方程与椭圆联立,由弦长公式得:364=AB ,2218322m CD -=,33<<-m ,当0=m 时,638max =S 。

题型二:求当AB k 为定值时,平行弦中点轨迹:1.(高考题)(1)求右焦点坐标是)0,2(,且经过点)2,2(--的椭圆的标准方程;(2)已知椭圆C 的方程是12222=+by a x )0(>>b a .设斜率为k 的直线l ,交椭圆C 于A B 、 两点,AB 的中点为M .证明:当直线l 平行移动时,动点M 在一条过原点的定直线上;(3)利用(2)所揭示的椭圆几何性质,用作图方法找出下面给定椭圆的中心,简要写出作图步骤,并在图中标出椭圆的中心.【解析】:(1)法一:设椭圆标准方程为:12222=+b y a x ,422+=b a ,即椭圆方程为142222=++by b x ,∵ 点(2,2--)在椭圆上,∴124422=++bb ,解得42=b 或22-=b (舍),由此得82=a ,即椭圆的标准方程为:14822=+y x 。

法二:利用椭圆的定义,点)2,2(--到两焦点)0,2(、()0,2-距离之和为a 2=24。

(2)step1:设直线与曲线:设直线l 的方程为m kx y +=,与椭圆C 交于A (11,x y ),B (22,x y )两点;Step2:直线与曲线联立:⎪⎩⎪⎨⎧=++=12222b y ax mkx y ,得02)(222222222=-+++b a m a kmx a x k a b ;Step3:由韦达定理写出根与系数的关系:∵ 0>∆,∴ 2222k a b m +<,即222222k a b m k a b +<<+-,则2122222,a km x x b a k +=-+2122222b my y b a k +=+; Step4:代入得出结论:∴AB 中点M 的坐标为⎪⎪⎭⎫⎝⎛++-22222222,k a b m b k a b kma ,即线段AB 的中点M 在过原点的直线022=+y k a x b 上。

法二:利用点差法可得(步骤同上):22y a k x b⋅=-中中,即22a y x kb =-中中,即在过原点的定直线上。

(3)如图,作两条平行直线分别交椭圆于A 、B 和D C 、,并分别取AB 、CD 的中点N M 、,连接直线MN ;再作两条平行直线(与前两条直线不平行)分别交椭圆于1A 、1B 和11D C 、,并分别取11B A 、11D C 的中点11N M 、,连接直线11N M ,那么直线MN 和11N M 的交点O 即为椭圆中心。

(4)题型三:求当直线l 恒过一定点(),e f 时,得定点弦中点轨迹:利用AB y fk x e-=-中中消去AB k 。

1.(高考题)设椭圆方程为:1422=+y x ,过点()0,1M 的直线l 交椭圆于点,A B ,O 是坐标原点,点P 满足)(21OB OA OP +=,点N 的坐标为)21,21(,当l 绕点M 旋转时.求:(1)动点P 的轨迹方程; (2)求PN 的最值.【解析】:(1)Step1:设l 的方程可设为1y kx =+;Step2:直线与曲线联立:⎪⎩⎪⎨⎧=++=14122y x kx y ,得032)4(22=-++kx x k ; Step3:由韦达定理写出根与系数的关系:⎪⎪⎩⎪⎪⎨⎧+=++-=+.48,42221221k y y kk x x ;Step4:代入关系式:1()2OP OA OB =+=1212(,)22x x y y ++224(,)44k k k-=++,设点P 的坐标为),,(y x 则⎪⎪⎩⎪⎪⎨⎧+=+-=.44,422k y k k x 消去参数k 得0422=-+y y x (或利用点差法); (2)2111,.1644x x ≤-≤≤22211||()()22NP x y =-+-2173()612x =-++,当41=x 时,||取最小值,最小值为61;41-=x 当时,||NP 取得最大值,最大值为6。

秒杀题型二:抛物线的中点弦问题:秒杀策略:抛物线:ⅰ.22.y px y k p =⇒=中;点差法:简答题模板:step1:设直线与曲线 :设直线:l y kx t =+与曲线:px y 22=交于两点A 、B ,AB中点为),(中中y x P ,则有,A B 既在直线上又在曲线上,设),(11y x A ,),(22y x B ,Step2:代入点坐标:即1122y kx t y kx t =+⎧⎨=+⎩;⎪⎩⎪⎨⎧⋅⋅⋅=⋅⋅⋅=)2(2)1(2222121px y px yStep3:作差得出结论:(1)-(2)得:22.y px y k p =⇒=中。

相关文档
最新文档