(完整word版)[精品]误差理论与测量平差基础试题
误差理论和测量平差试题+问题详解

实用标准文案《误差理论与测量平差》(1 )正误判断。
正确“ T ”,错误“ F ”。
(30分) 在测角中正倒镜观测是为了消除偶然误差()。
在水准测量中估读尾数不准确产生的误差是系统误差()。
如果随机变量X 和Y 服从联合正态分布,且()。
观测值与最佳估值之差为真误差()。
X 与Y 的协方差为0 ,则X 与Y 相互独立系统误差可用平差的方法进行减弱或消除( )。
权一定与中误差的平方成反比()。
间接平差与条件平差一定可以相互转换( )。
在按比例画出的误差曲线上可直接量得相应边的边长中误差()。
对同一量的 N 次不等精度观测值的加权平均值与用条件平差所得的结果一定相同无论是用间接平差还是条件平差, 对于特定的平差问题法方程阶数一定等于必要观测数( )。
对于特定的平面控制网,如果按条件平差法解算,则条件式的个数是一定的,形式是多样的( )。
观测值L 的协因数阵Q LL 的主对角线元素 Q ii 不一定表示观测值 L i 的权()。
当观测值个数大于必要观测数时,该模型可被唯一地确定()。
定权时6 0可任意给定,它仅起比例常数的作用()。
设有两个水平角的测角中误差相等, 则角度值大的那个水平角相对精度高()。
1. 1. 2 . 3 .4 .5 .6 .7 .8 .9 .101112131415用“相等”或“相同”或“不等”填空(8分)。
已知两段距离的长度及其中误差为300.158m ±3.5cm; 600.686m ±3.5cm。
则:1•这两段距离的中误差( )。
2.这两段距离的误差的最大限差( )。
3•它们的精度( )。
4•它们的相对精度( )。
17 . 选择填空。
只选择一个正确答案( 25分)。
1•取一长为d的直线之丈量结果的权为1,则长为D的直线之丈量结果的权a) d/D b) D/dc) d2/D2d) D2/d 22.有一角度测20测回,得中误差土0.42秒,如果要使其中误差为土0.28秒, 测回数N=( )。
《误差理论与测量平差基础》试卷A(答案)

《误差理论与测量平差基础》期末考试试题A(参考答案)一、名词解释(每题2分,共10分)1、偶然误差——在相同得观测条件系作一系列得观测,如果误差在大小与符号上都表现出偶然性。
即从单个误差瞧,该误差得大小与符号没有规律性,但就大量误差得总体而言,具有一定得统计规律。
这种误差称为偶然误差。
2、函数模型线性化——在各种平差模型中,所列出得条件方程或观测方程,有得就是线性形式,有得就是非线性形式。
在进行平差计算时,必须首先把非线性形式得函数方程按台劳公式展开,取至一次项,转换成线性方程。
这一转换过程,称之为函数模型得线性化。
3、点位误差椭圆——以点位差得极大值方向为横轴X 轴方向,以位差得极值F E 、分别为椭圆得长、短半轴,这样形成得一条椭圆曲线,即为点位误差椭圆。
4、协方差传播律——用来阐述观测值得函数得中误差与观测值得中误差之间得运算规律得数学公式。
如0K KL Z +=,若观测向量得协方差阵为LL D ,则按协方差传播律,应有T LL ZZ K KD D =。
5、权——表示各观测值方差之间比例关系得数字特征,220ii P σσ=。
二、判断正误(只判断)(每题1分,共10分)参考答案:X √X √X X X √√X三、选择题(每题3分,共15分)参考答案:CCDCC四.填空题(每空3分,共15分)参考答案:1、 6个2、 13个3、1/n4、 0、45、 0)()()()(432200=''+∆+∆+-''+-''-W y SX X x SY Y C ACA C C ACA C ρρ,其中AB AC AC X X Y Y W αββ-++--=''4300arctan五、问答题(每题4分,共12分)1、 几何模型得必要元素与什么有关?必要元素数就就是必要观测数吗?为什么?答:⑴几何模型得必要元素与决定该模型得内在几何规律有关;(1分) ⑵必要元素数就就是必要观测数;(1分)⑶几何模型得内在规律决定了要确定该模型,所必须具备得几何要素,称为必要元素,必要元素得个数,称为必要元素数。
误差理论与测量平差基础试卷一及答案

误差理论与测量平差基础 试卷一及答案一、填空题(30分)1、测量误差定义为 ,按其性质可分为 、 和 。
经典测量平差主要研究的是 误差。
2、偶然误差服从 分布,它的概率特性为 、 和 。
仅含偶然误差的观测值线性函数服从 分布。
3、已知一水准网如下图,其中A 、B 为已知点,观测了8段高差,若设E 点高程的平差值与B 、E 之间高差的平差值为未知参数21ˆˆX X 、,按附有限制条件的条件平差法(概括平差法)进行平差时,必要观测个数为 ,多余观测个数为 ,一般条件方程个数为 ,限制条件方程个数为C4、取一长度为d 的直线之丈量结果的权为1,则长度为D 的直线之丈量结果的权为 ,若长度为D 的直线丈量了n 次,则其算术平均值的权为 。
5、已知某点(X 、Y)的协方差阵如下,其相关系数ρXY = ,其点位方差为2σ= mm 2⎪⎪⎭⎫ ⎝⎛=00.130.030.025.0XX D6、已知某平差问题观测值个数为50,必要观测量个数为22,若选6个独立参数进行平差,应该利用的平差模型是 ,则方程个数为 , 二、判断题(10分)1、通过平差可以消除误差,从而消除观测值之间的矛盾。
( × )2、观测值iL 与其偶然真误差i∆必定等精度。
(√)3、测量条件相同,观测值的精度相同,它们的中误差、真误差也相同。
( × )4、或然误差为最或然值与观测值之差。
( × )5、若X 、Y 向量的维数相同,则YX XY Q Q =。
( × ) 三 选择题(10分)1、已知)180(3ˆ -++=-=C B A W W A A ,m m m m C B A ===,m m W3=,则A m ˆ=A。
A 、m 32B 、m 32C 、m 32 D 、m 23 2、已知观测值L 的中误差为L m ,L x 2=,2L y =,则xy m = A 。
A 、24L LmB 、L Lm 4C 、22L Lm D 、L Lm 23、条件平差中,已知⎥⎦⎤⎢⎣⎡=8224W Q ,2±=μ,则±=1k m A 。
(完整word版)测量平差经典试卷含答案

一、填空题(每空2分,共20分)1、最优估计量应具有的性质为 、 和 最优估计量主要针对观测值中仅含 误差而言。
2、间接平差中,未知参数的选取要求满足 、 。
3已知条件平差的法方程为024322421=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡k k ,则PV V T = ,μ= , 1k p = ,2k p = 。
4、已知某平差问题,观测值个数为79,必要观测量个数为35,则按间接平差进行求解时,误差方程式个数为 ,法方程式个数为 。
5、已知某平差问题观测值个数为50,必要观测量个数为22,若选6个独立参数按具有参数的条件平差进行求解,则函数模型个数为 ,联系数法方程式的个数为 ;若在22个独立参数的基础上,又选了4个非独立参数按具有条件的参数平差进行求解,则函数模型个数为 ,联系数法方程式的个数为 。
6、条件平差中条件方程的个数等于________________,所选参数的个数等于_______________。
7、已知真误差向量1⨯∆n 及其权阵P ,则单位权中误差公式为 ,当权阵P 为 此公式变为中误差公式。
二、计算题(每题2分,共20分)1、条件平差的法方程等价于:A 、0=+W K Q KB 、0=+W Q K WC 、0=+W P K WD 、0=+W P K K答:______2、水准测量中,10km 观测高差值权为8,则5km 高差之权为:A 、2B 、4C 、8D 、16答:______3、已知⎥⎦⎤⎢⎣⎡=∆3112P ,则2L p 为:A 、2B 、3C 、25D 、35答:______4、间接平差中,L Q ˆ为:A 、TA AN 1- B 、A N A T1-C 、T A AN P11--- D 、A N A P T 11---答:______5、观测条件是指:A)产生观测误差的几个主要因素:仪器,观测者,外界条件等的综合B)测量时的几个基本操作:仪器的对中,整平,照准,度盘配置,读数等要素的综合 C)测量时的外界环境:温度,湿度,气压,大气折光……等因素的综合. D)观测时的天气状况与观测点地理状况诸因素的综合答:______ 6、已知观测向量()L L L T=12的协方差阵为D L =--⎛⎝ ⎫⎭⎪3112,若有观测值函数Y 1=2L 1,Y 2=L 1+L 2,则σy y 12等于?(A)1/4 (B)2 (C)1/2 (D)4 答:_____ 7、已知观测向量()L L L T=12的权阵P L =--⎛⎝ ⎫⎭⎪2113,单位权方差σ025=,则观测值L 1的方差σL 12等于:(A)0.4 (B)2.5 (C)3 (D)253答:____ 8、已知测角网如下图,观测了各三角形的内角,判断下列结果,选出正确答案。
误差理论与测量平差基础期末考试试卷样题

误差理论与测量平差基础期末考试试卷样题----42676c30-6ebc-11ec-aee4-7cb59b590d7d一、填空题(15分)1.误差的来源主要分为:。
2.均方误差是衡量精度的主要指标之一。
均方误差越大,精度越高。
极限误差差是指。
3.在平坦地区相同观测条件下,测量两段观测高差和水准路线长度如下:h1=10.125米,s1=3.8公里,h2=-8.375米,s2=4.5公里,那么h1的精度比h2的精度,H2的重量高于H1。
4、间接平差中误差方程的个数等于________________,所选参数的个数等于_______________。
5.在条件平差中,条件方程的数量等于。
6、平面控制网按间接平差法平差时通常选择________________为未知参数,高程控制网按间接平差法平差时通常选择________________为未知参数。
7、点位方差与坐标系,总是等于。
二、水准测量中若要求每公里观测高差中误差不超过10mm,水准路线全长高差中误差不超过20mm,则该水准路线长度不应超过多少公里?(5分)三、已知观测向量l??l1l2?t?3?1?的协方差阵为dl???,若有观测值函数?? 12? Y1=2l1,y2=L1+L2,然后呢?Y1y2等于?(5分)IV.观察向量l?(L13?1L2)的权重矩阵为PL?(),如果有一个函数x?l1?l2,?14t则函数x与观测向量l的互协因数阵qxl等于什么?(5分)五、在一定长度内进行同样精度的独立观测。
已知一次观测的均方误差为2mm,四次观测平均值的权重为2。
试着找出:(1)单位重量均方误差?0(2)初始观察值的权重;(3)如果平均值的权重等于8,应观察多少次?(9分)六、用某全站仪测角,由观测大量得一测回测角中误差为2秒,今用试制的同一这种新仪器测量角度10次,一次的均方误差为1.8秒。
询问新仪器的精度是否高于原仪器?(α=0.05)(8分)(|n0.05|=1.645,|n0.025|=1.960,|t0.05(24)|=1.699,|t0.025(24)|=2.045χ2(9)0.05=16.919,χ2(9)0.95=3.325,χ2(9)0.025=19.023,χ2(9)0.975=2.700f(15,21)0.025=2.53)七、有限制的间接调整与一般调整的关系(8分)八、已知间接平差的模型为v?bx?l,采用最小二乘法平差,已知观测值的中误差为qll,参数x与v是否相关,试证明之(8分)九、该图显示了一个控制网络,1和2是已知点,4-5的边长是已知的。
误差理论与测量平差基础期末复习试题含答案

误差理论与测量平差基础期末复习试题含答案误差理论与测量平差基础(B) 一、填空题(每空1分,共30分)1. 测量平差就是在基础上,依据原则,对观测值进行合理的调整,即分别给以适当的,使矛盾消除,从而得到一组最可靠的结果,并进行。
2. 测量误差的定义为,按其性质可分为、和。
3. 衡量估计量优劣的标准有、、。
9km,5mm4. 在A、B两点间进行水准测量,路线长度为,每千米单程观测高差的中误差等于,则A、B两点间单程观测高差的中误差等于,往返高差中数的中误差等于,往返高差不符值的限差为。
5. 设为独立等精度偶然误差,为每个误差的均方差,则误差和的限差为,(i,1,2,?,n),,,,i。
(取2倍中误差为限差) [,],6. 若有一组观测值的函数、,设,则二L,?,Lx,aL,?,aLx,bL,?,bLQ,I1n111nn211nnL者的相关系数= ,若再设,则行列式= 。
Q,b,2a(i,1,?,n)xxXii12x3,1,,,,17. 设,,,,,则,X,,,,2Σ,z,x,x,,z,x0Xz21212,,,,1x,122,,,,,, ,。
,,zzz122T8. = 。
tr[E(ΔPΔ)]1,nn,nn,111SS9. 设观测值为,观测值的函数为,欲使的权倒数为,则的权倒数, 。
f,lgSfppfS,,ˆˆv,sinx,2cosx,L10. 设非线性误差方程,参数近似值,观测值,x,60, x,45L,2512510205线性化之后的误差方程为。
11. 平差的数学模型可分为模型和模型,前者描述观测值之间、观测值与参数之间以及参数之间数学期望的关系,后者描述的则是观测值的精度特性。
ˆ,V,AδX,l,n,tn,1n,1t,1T12. 由二次型的数学期望= 可以证明,具有条件的参数平差模型中,E(XAX),ˆBδXW0,,X,t,1r,1r,t,T= 。
E(VPV),,15cm9cm4513. 已知某点的点位中误差等于,点位误差椭圆的短半轴为,短轴的方向角为,则误差椭圆的长半轴等于,长轴的方向角等于。
误差理论测量平差基础试题四及答案

误差理论测量平差基础 试题四及答案一、填空题(30分)1、丈量一个圆半径的长为3米,其中误差为±10毫米,则其圆周长的中误差为________________。
2、在平坦地区相同观测条件下测得两段观测高差及水准路线的长分别为:h 1=10.125米,s 1=3.8公里,h 2=-8.375米,s 2=4.5公里,那么h 1的精度比h 2的精度______,h 2的权比h 1的权______。
3、间接平差中误差方程的个数等于________________,所选参数的个数等于_______________。
4、控制网中,某点P 的真位置与其平差后得到的点位之距离称为P 点的___。
5、如下图,其中A 、B 、C 为已知点,观测了5个角,若设L 1、L 5观测值的平差值为未知参数21ˆˆX X 、,按附有限制条件的条件平差法进行平差时,必要观测个数为 ,多余观测个数为 ,一般条件方程个数为 ,限制条件方程个数为ABCDEL 1L 2L 3L 4L 56、测量是所称的观测条件包括 、观测者、7、已知某段距离进行了同精度的往返测量(L 1、L 2),其中误差cm 221==σσ,往返测的平均值的中误差为 ,若单位权中误差cm 40=σ,往返测的平均值的权为8、已知某观测值X 、Y 的协因数阵如下,其极大值方向为 ,若单位权中误差为±2mm ,极小值F 为 mm 。
9、在测量中会出现以下几种情况,使测量结果产生误差,判断产生的误差属于哪一类,视准轴与水准轴不平行 ,仪器下沉 ,估读数据不准确 ,水准尺下沉 。
二、判断题(10分)1、在水准测量中,由于水准尺下沉,则产生系统误差,符号为“+”。
答:____2、极限误差是中误差的极限值。
答:____3、在条件平差中,条件方程的个数等于多余观测数。
答:____4、改正数条件方程与误差方程之间可相互转换。
答:____5、权阵中的对角线元素,代表所对应的观测值得权。
误差理论与测量平差基础习题集精选文档

误差理论与测量平差基础习题集精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-第五章条件平差§5-1条件平差原理条件平差中求解的未知量是什么?能否由条件方程直接求得5. 1. 02 设某一平差问题的观测个数为n.必要观测数为t,若按条件平差法进行平差,其条件方程、法方程及改正数方程的个数各为多少?5. 试用符号写出按条件平差法平差时,单一附合水准路线中(如图5-1所示)各观测值平差值的表达式。
图5-15. 1. 04 在图5-2中,已知A ,B的高程为Ha = m , Hb=11. 123m,观测高差和线路长度为:图5-2S1=2km,S2=Ikm,S3=,h1=,h2= m,h3= m,求改正数条件方程和各段离差的平差值。
在图5-3的水准网中,A为已知点B、C、D为待定点,已知点高程=,观测了5条路线的高差:HA=,h1h=0. 821 m,2=,h3h=,4= m。
h5各观测路线长度相等,试求:(1)改正数条件方程;(2)各段高差改正数及平差值。
有水准网如图5-4所示,其中A、B、C三点高程未知,现在其间进行了水准测量,测得高差及水准路线长度为h 1 =1 .335 m ,S 1=2 km; h 2= m ,S 2=2 km;h 3= m ,S 3=3km 。
试按条件平差法求各高差的平差值。
如图 5-5 所示,L 1=63°19′40″,=30″;L 2 =58°25′20″,=20″;L 3=301°45′42″,=10″.(1)列出改正数条件方程;(2)试用条件平差法求∠C的平差值(注: ∠C是指内角)。
5-2条件方程5. 对某一平差问题,其条件方程的个数和形式是否惟一?列立条件方程时要注意哪些问题?如何使得一组条件方程彼此线性无关?. 10 指出图5-6中各水准网条件方程的个数(水准网中P表示待定高i表程点,hi示观测高差)。
误差理论与测量平差基础试题

误差理论与测量平差基础试题平差练习题及题解第一章1.1.04 用钢尺丈量距离,有下列几种情况使量得的结果产生误差,试分别判定误差的性质及符号:(1)尺长不准确;系统误差。
当尺长大于标准尺长时,观测值小,符号为“+”;当尺长小于标准尺长时,观测值大,符号为“-”。
(2)尺不水平;系统误差,符号为“-”。
(3)估读小数不准确;偶然误差,符号为“+”或“-”。
(4)尺垂曲;系统误差,符号为“-”。
(5)尺端偏离直线方向。
系统误差,符号为“-”。
第二章2.6.17 设对某量进行了两组观测,他们的真误差分别为:第一组:3,-3,2,4,-2,-1,0,-4,3,-2第二组:0,-1,-7,2,1,-1,8,0,-3,1试求两组观测值的平均误差?1、?2^^^^^和中^?1、?2,并比较两组观测值的精度。
^^解:?1=2.4,?2=2.4,?1=2.7,?2=3.6。
两组观测值的平均误差相同,而中误差不同。
由于中误差对大的误差反应灵敏,故通常采用中误差作为衡量精度的指标。
本题中?1<?2,因此,第一组观测值的精度高。
^^第三章3.2.14 已知观测值向量L1、L2和L3及其协方差阵为n1n2n3D11 D12 D13 D21 D22 D23 D31D32 D ,现组成函数:X=AL1+A0,Y=BL2+B0,Z=CL3+C0,式中A、B、C为系数阵,A0、B0、C0为常数阵。
令W=[X Y Z],试求协方差阵DWW 解答:XX DXY DXZ 11A AD12B AD13CDWW = DYX DYY DYZ = BD21A BD22B BD23CZX DZY D 31A CD32B CD33C3.2.19 由已知点A(无误差)引出支点P,如图3-3所示。
其中误差为?0,?0为起算方位角,观测角β和边长S的中误差分别为??和?S,试求P点坐标X、Y的协方差阵。
TTTTTTTTTT图3-1解答:令P点坐标X、Y的协方差阵为2 ?xyx2xy ?2???XAP2222?02 式中:?x=()?S+?YAP-2+?YAP2 ?S?22???YAP2222?02)?S+?XAP-2+?XAP2 ?y=(?S?2???XAP?YAP?022)?S-?XAP?YAP2-?XAPYAP2 ?xy=(2?S?2?xy=?yx3.5.62 设有函数F=f1x+f2y,其中x??1L1??2L2????nLn,y??1L1??2L2????nLn,?i,?i(i?1,2,?n)为无误差的常数,而L1,L2?Ln的权分别为P1,P2?Pn,试求函数F的权倒数1。
(完整word版)误差理论和测量平差试卷及答案6套 试题+答案(word文档良心出品)

《误差理论与测量平差》课程自测题(1)一、正误判断。
正确“T”,错误“F”。
(30分)1.在测角中正倒镜观测是为了消除偶然误差()。
2.在水准测量中估读尾数不准确产生的误差是系统误差()。
3.如果随机变量X和Y服从联合正态分布,且X与Y的协方差为0,则X与Y相互独立()。
4.观测值与最佳估值之差为真误差()。
5.系统误差可用平差的方法进行减弱或消除()。
6.权一定与中误差的平方成反比()。
7.间接平差与条件平差一定可以相互转换()。
8.在按比例画出的误差曲线上可直接量得相应边的边长中误差()。
9.对同一量的N次不等精度观测值的加权平均值与用条件平差所得的结果一定相同()。
10.无论是用间接平差还是条件平差,对于特定的平差问题法方程阶数一定等于必要观测数()。
11.对于特定的平面控制网,如果按条件平差法解算,则条件式的个数是一定的,形式是多样的()。
12.观测值L的协因数阵Q LL的主对角线元素Q ii不一定表示观测值L i的权()。
13.当观测值个数大于必要观测数时,该模型可被唯一地确定()。
14.定权时σ0可任意给定,它仅起比例常数的作用()。
15.设有两个水平角的测角中误差相等,则角度值大的那个水平角相对精度高()。
二、用“相等”或“相同”或“不等”填空(8分)。
已知两段距离的长度及其中误差为300.158m±3.5cm;600.686m±3.5cm。
则:1.这两段距离的中误差()。
2.这两段距离的误差的最大限差()。
3.它们的精度()。
4.它们的相对精度()。
三、选择填空。
只选择一个正确答案(25分)。
1.取一长为d的直线之丈量结果的权为1,则长为D的直线之丈量结果的权P D=()。
a) d/D b) D/d c) d 2/D 2d) D 2/d 22.有一角度测20测回,得中误差±0.42秒,如果要使其中误差为±0.28秒,则还需增加的测回数N=( )。
误差理论与测量平差基础期末考试试卷样题

偏差理论与丈量平差基础期末考试一试卷样题一、填空题( 15分)1、偏差的根源主要分为、、。
2、中偏差是权衡精度的主要指标之一,中偏差越,精度越。
极限误差是指。
3、在平展地域同样观察条件下测得两段观察高差及水平路线的长分别为:=10.125米,s1 =公里, =-8.375米, =公里,那么的精度比的精度 ______,的权比的权 ______。
4 、间接平差中偏差方程的个数等于________________所,选参数的个数等于_______________。
5 、在条件平差中,条件方程的个数等于。
6 、平面控制网按间接平差法平差时往常选择________________为未知参数,高程控制网按间接平差法平差时往常选择________________为未知参数。
7 、点位方差与坐标系,老是等于。
二、水平丈量中若要求每公里观察高差中偏差不超出10mm,水平路线全长高差中偏差不超出 20mm,则该水平路线长度不该超出多少公里(5分)三、已知观察向量 L L1 L2 T的协方差阵为 D L 3 1 ,如有观察值函数1 2Y =2L ,Y =L +L ,则y y 等于( 5分)1 12 1 21 2四、观察向量 LT的权阵为 P L (3 1 2, (L1 L2)1) ,如有函数X L1L4则函数 X与观察向量 L的互协因数阵等于什么(5分)五、对某长度进行同精度独立观察,已知一次观察中偏差为2mm,设 4 次观察值均匀值的权为2。
试求:( 1)单位权中偏差0 ;(2)一次观察值的权;(3)若使均匀值的权等于8,应观察多少次(9分)六、用某全站仪测角,由观察大批得一测回测角中偏差为2秒,今用试制的同一类新式仪器测角 10测回,得一测回中偏差为秒,问新仪器能否比原仪器精度有所提升(α=)( 8分)( ||= , ||= ,|(24)|= ,|(24)|=χ2(9)=, χ2(9)=, χ2(9)=, χ2(9)=F(15,21)= )七、附有限制条件的间接平差与归纳平差之间的关系(8 分)八、已知间接平差的模型为V B X l ,采纳最小二乘法平差,已知观察值的中偏差为 Q ll,参数X与V能否有关,试证明之(8分)九、如图为一控制网, 1、2为已知点, 4—5的边长已知,若采纳测角网的形式观测,共观察了 15个角度。
最新误差理论和测量平差试题+答案

《误差理论与测量平差》(1)一、正误判断。
正确“T”,错误“F”。
(30分)1.在测角中正倒镜观测是为了消除偶然误差()。
2.在水准测量中估读尾数不准确产生的误差是系统误差()。
3.如果随机变量X和Y服从联合正态分布,且X与Y的协方差为0,则X与Y相互独立()。
4.观测值与最佳估值之差为真误差()。
5.系统误差可用平差的方法进行减弱或消除()。
6.权一定与中误差的平方成反比()。
7.间接平差与条件平差一定可以相互转换()。
8.在按比例画出的误差曲线上可直接量得相应边的边长中误差()。
9.对同一量的N次不等精度观测值的加权平均值与用条件平差所得的结果一定相同()。
10.无论是用间接平差还是条件平差,对于特定的平差问题法方程阶数一定等于必要观测数()。
11.对于特定的平面控制网,如果按条件平差法解算,则条件式的个数是一定的,形式是多样的()。
12.观测值L的协因数阵Q LL的主对角线元素Q ii不一定表示观测值L i的权()。
13.当观测值个数大于必要观测数时,该模型可被唯一地确定()。
14.定权时σ0可任意给定,它仅起比例常数的作用()。
15.设有两个水平角的测角中误差相等,则角度值大的那个水平角相对精度高()。
二、用“相等”或“相同”或“不等”填空(8分)。
已知两段距离的长度及其中误差为300.158m±3.5cm;600.686m±3.5cm。
则:1.这两段距离的中误差()。
2.这两段距离的误差的最大限差()。
3.它们的精度()。
4.它们的相对精度()。
三、选择填空。
只选择一个正确答案(25分)。
1.取一长为d的直线之丈量结果的权为1,则长为D的直线之丈量结果的权P D=()。
a) d/D b) D/dc) d 2/D 2d) D 2/d 22.有一角度测20测回,得中误差±0.42秒,如果要使其中误差为±0.28秒,则还需增加的测回数N=( )。
a) 25 b) 20 c) 45 d) 5 3.某平面控制网中一点P ,其协因数阵为:⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=5.025.025.05.0yy yx xy xxXX Q Q Q Q Q单位权方差20σ=±2.0。
《误差理论与测量平差基础》考试试卷(含参考答案)

《误差理论与测量平差基础》考试试卷一、名词解释1.观测条件2.偶然误差3.精确度4.多余观测5.权6.权函数式7.相对误差椭圆8.无偏性二、填空题1.观测误差包括偶然误差、、。
2.偶然误差服从分布,其图形越陡峭,则方差越。
3.独立观测值L1和L2的协方差为。
4.条件平差的多余观测数为减去。
5.间接平差的未知参数协因数阵由计算得到。
6.观测值的权与精度成关系,权越大,则中误差越。
7. 中点多边形有 个极条件和 个圆周条件。
8. 列立测边网的条件式时,需要确定与边长改正数的关系式。
9. 秩亏水准网的秩亏数为个。
三、问答题1.写出协方差传播律的应用步骤。
2.由最小二乘原理估计的参数具有哪些性质?3.条件平差在列立条件式时应注意什么?什么情况下会变为附有参数的条件平差?4.如何利用误差椭圆求待定点与已知点之间的边长中误差?5.为什么在方向观测值的误差方程式里面有测站定向角参数?6.秩亏测角网的秩亏数是多少?为什么?7.什么是测量的双观测值?举2个例子说明。
8.方向观测值的误差方程式有何特点?四、综合题1.下列各式中的Li (i=1,2,3)均为等精度独立观测值,其中误差为,试求X 的中误差:(1) ,(2) 。
2.如图1示,水准网中A,B,C 为已知高程点,P1,P2,P3为待定点,h1~h6为高差观测值,按条件平差方法,试求:(1)全部条件式;σ321)(21L L L X ++=321L L L X =(2)平差后P2点高程的权函数式。
3.如图2示,测边网中A,B,C 为已知点,P 为未知点,观测边长为L1~L3,设P 点坐标、为参数,按间接平差方法,试求:(1)列出误差方程式;(2)按矩阵符号写出法方程及求解参数平差值的公式;(3)平差后AP 边长的权函数式。
4.在条件平差中,,试证明估计量为其真值的无偏估计。
(提示:,须证明)5. 在某测边网中,设待定点P 的坐标为未知参数,即 ,平差后得到的协因数阵为 ,且单位权中误差为,求: (1)P 点的纵横坐标中误差和点位中误差;(2)P 点误差椭圆三要素 、、。
《误差理论与测量平差基础》考试试卷

《误差理论与测量平差基础》考试试卷3一、填空题(每空3分,共15分)1、有一段距离,其观测值及其中误差为 ,该观测值的相对中误差为 (1) 。
2、已知常系数矩阵A 和B ,随机向量L 的方差阵LL D ,并有随机向量的函数L A x T,L B y T 。
x 和y 的互协方差阵为 (2) 。
3、已知独立观测值 T L L L 211,2 的方差阵160064LL D,单位权方差420 ,则其权阵LL P 为 (3) 。
4、设有某个物理量同精度观测了n 次,得),,2,1(n i L i ,若每次观测的精度为 ,权为p ,则其算术平均值L 的权为 (3) 。
5、已知某三角网中P 点坐标的协因数阵为22ˆˆ 2.100.25/"0.25 1.60XX Q cm,单位权方差的估值为22"0ˆ 1.0,位差的极大值方向E 为 (5) 。
二、单选题(每题3分,共15分)1、设有观测向量 TL L X 211,2 ,已知2ˆ1 L,4ˆ2 L ,2)'('2ˆ21 L L ,其协方差阵XX D 为( )。
A 、4222 , B 、 4222 , C 、44416 , D 、16224 2、设有观测向量L ,其协方差阵为432LLD 。
函数11233F L L L 的方差为( )。
A 、9 ,B 、41 ,C 、 17 ,D 、25mm m 153003、已知观测向量L 的权阵为5224LL P ,观测值的权1L p 和2L p 分别为( )。
A 、165和4, B 、41和51, C 、 165和41, D 、4和54、有图(1)所示的三角网,其中B 、C 为已知点,A 、D 、E 为待定点,观测角)10,,2,1( i L i 。
则网中必要观测数和多余观测数分别是( )。
A 、6和4,B 、4和6,C 、5和 5 ,D 、7和35、下列说法错误的是( )。
A 、一个平差问题中,必要观测的个数取决于该问题本身的性质,与观测值的多少无关。
误差理论与测量平差基础习题集Word版

误差理论与测量平差基础习题集Word版第⼀章绪论§1-1观测误差1.1.01为什么说观测值总是带有误差,⽽且观测误差是不可避免的?1.1.02观测条件是由哪些因素构成的?它与观测结果的质量有什么联系?1.1.03测量误差分为哪⼏类?它们各⾃是怎样定义的?对观测成果有何影响?试举例说明。
1.1.04⽤钢尺丈量距离,有下列⼏种情况使量得的结果产⽣误差,试分别判定误差的性质及符号:(1)长不准确;(2)尺尺不⽔平;(3)估读⼩数不准确;(4)尺垂曲;(5)尺端偏离直线⽅向。
1.1.05在⽔准测量中,有下列⼏种情况使⽔准尺读数带有误差,试判别误差的性质及符号:(1)视准轴与⽔准轴不平⾏;(2)仪器下沉;(3)读数不准确;(4)⽔准尺下沆。
§1-2测量平差学科的研究对象1.2.06 何谓多余观测?测量中为什么要进⾏多余观测?1.2.07 测量平差的基本任务是什么?§1-3测量平差的简史和发展1.3.08 ⾼斯于哪⼀年提出最⼩⼆乘法?其主要是为了解决什么问题?1.3.09 ⾃20世纪五六⼗年代开始,测量平差得到了很⼤发展,主要表现在那些⽅⾯?§1-4 本课程的任务和内容1.4.10 本课程主要讲述哪些内容?其教学⽬的是什么?第⼆章误差分析与精度指标§2-1 正态分布2.1.01 为什么说正态分布是⼀种重要的分布?试写出⼀维随机变量X的正态分布概率密度式。
§2-2 偶然误差的规律性2.2.02 观测值的真误差是怎样定义的?三⾓形的闭合差是什么观测值的真误差?2.2.03 在相同的观测条件下,⼤量的偶然误差呈现出什么样的规律性?2.2.04 偶然误差*服从什么分布?它的数学期望和⽅差各是多少?§2-3 衡量精度的指标测值⽐误差⼤的观测值精度⾼?2.3.07 若有两个观测值的中误差相同,那么,是否可以说这两个观测值的真误差⼀定相同?为什么?2.3.08 为了鉴定经纬度的精度,对已知精确测定的⽔平⾓α=45O00’00”作12次观测,结果为:45o00’06” 44o59’55” 44o59’58” 45o00’04”45o00’03” 45o00’04” 45o00’00” 44o59’58”44o59’59” 44o59’59” 45o00’06” 45o00’03”设α没有误差,试求观测值的中误差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黑龙江工程学院期末考试卷
2003-2004学年 第 一 学期 考试科目:测 量 平 差(三) 一、选择题(每小题3分,共18分)
1、用钢尺量得两段距离的长度:L m cm L m cm 12100051005=±=±,,选出正确答案:
A)由于σσ12=,故两个边长的观测精度相同。
B)由于L L 12>,故L 2的精度比L 1的精度高。
C)由于σσ1122//L L <,故L 1的精度比L 2的精度高。
D)由于它们的中误差相同,所以它们的精度相同。
答:_____
2、已知观测向量()L L L T
=12的协方差阵为D L =--⎛⎝ ⎫⎭
⎪3112,若有观测值函数
Y 1=2L 1,Y 2=L 1+L 2,则σy y 12等于?
(A)1/4 (B)2 (C)1/2 (D)4 答:_____
3、观测向量L L L T
=()12的权阵为P L =--()3114,若有函数X L L =+12,则
函数X 与观测向量L 的互协因数阵Q XL 等于什么? (A)()34 (B)(
)511411 (C)()311411 (D)()3411
答:____ 4、已知测角网如下图,观测了各三角形的内角,判断下列结果,选出正确答案。
A B
C
D
A)应列出4个条件方程, B)应列出5个线性方程
C)有5个多余观测 , D)应列出5个角闭合条件 答:_____ 5、已知误差方程为:⎧⎨⎪
⎩⎪=-=+=-+-===v x v x v x x p p p 11223
12123567121 ,法方程为:
A)2113250012--⎡⎣⎢⎤⎦⎥⎡⎣⎢⎤⎦⎥+--⎡⎣⎢⎤⎦⎥=⎡⎣⎢⎤⎦⎥x x , B)2113250012--⎡⎣⎢⎤⎦⎥⎡⎣⎢⎤⎦⎥
+⎡⎣⎢⎤⎦⎥=⎡⎣⎢⎤
⎦⎥x x C)2003250012⎡⎣⎢⎤⎦⎥⎡⎣⎢⎤⎦⎥+--⎡⎣⎢⎤⎦⎥=⎡⎣⎢⎤⎦⎥x x , D)2003250012⎡⎣⎢⎤⎦⎥⎡⎣⎢⎤⎦⎥
+⎡⎣⎢⎤⎦⎥=⎡⎣⎢⎤
⎦⎥x x 答:____ 6、已知条件方程为:
v v v v v v v S S 1231
227006*********++-=-++-+=⎧
⎨⎩.....
权:p p p p S 1
23121
====,(秒22/cm ),p S 2
05=.(秒22/cm ),解算其法方程
得
:K =-80..,据此可求出v 2为:
A)0.8秒 B)-0.5厘米 C)0.5秒 D)0.9秒 答:_____ 二、填空题(每空2分,共10分) 1、n 个独立观测值的方差阵是个________阵,而n 个相关观测值的方差阵是个_____阵。
2、水准测量中若要求每公里观测高差中误差不超过10mm ,水准路线全长高差
中误差不超过100mm,则该水准路线长度不应超过____公里。
3、高程控制网按参数平差法平差时通常选择________________为未知参数。
4、点位方差的计算公式共有_____种。
三、判断题(每小题1分,共4分)
1、在水准测量中,由于水准尺下沉,则产生系统误差,符号为“+”。
答:_____
2、若观测量的准确度高,其精密度也一定高。
答:_____
3、在条件平差中,改正数方程的个数等于多余观测数。
答:_____
4、点位方差总是等于两个相互垂直方向上的方差之和。
答:_____
四、问答题(每小题4分,共16分)
1、 观测值中为什么存在观测误差?
2、对某量进行观测,结果出现 []
∆n
不趋于0,原因可能有哪些? 3、什么叫必要观测?其数目用什么符号表示?各类控制网的必要观测数如
何来确定?
4、观测方程的个数由什么决定?它与参数的选择有无关系?
五、列方程题(18分)
1(9分)、下图为边角三角网,试列出其改正数条件方程(L 1、L 2为观测角,S 为观测边,A,B 为已知三角点,C 为未知点)。
2(9分)、为了确定通过已知点(x 0=0.4,y 0=1.02)处的一条直线(见下图):y=ax+b,现以等精度量测了x=1,2,3处的函数值y i (i=1,2,3),其结果列于下表。
又选
直线方程中的a 、b 作为参数:[]
T b a
X ˆˆˆ=。
试列出误差方程和限制条件方程,并组成求a,b 估值的法方程。
六、计算题(24分)
1(12分)、如图所示的水准网中,A,B 为已知点,P P 1
2,为待定点.设各水准路线等长,各水准路线编号如图所示。
试按间接平差法求待定点平差高程的协因数阵和平差高差2h 的权倒数。
A
P1P2B h1h2h3
2(12分)、已知待定点坐标的协因数阵为:
Q Q Q Q X
XY YX Y ⎡⎣⎢⎤⎦⎥=--⎡⎣⎢⎤
⎦
⎥2112 且 σ0
2
2
4=cm ,据此求: A)、该点位差的极大值方向E ϕ和该点位差的极小值方向F ϕ; B)、该点位差的极大值
E 和该点位差的极小值F
;
C)、任意方向ϕ=2500
的位差ϕσ
ˆ; D)、待定点位方差2
ˆp
σ。
七、检验题(10分)
在某地区进行三角观测,共25个三角形,其闭合差(以秒为单位)如下: +0.8 -0.5 +O.5 +0.8 -0.5 -0.8 -1.2 -1.0 -0.6 +0.3 +0.2
+1.8 +0.6 -1.1 -1.5 -1.6 +1.2 -1.2 +0.6 +1.3 +0.4 -0.5 -0.6 +0.4 -2.0
现算出[]
08.252=w ,正误差平方和为9.07,负误差平方和为16.01,对该闭合 差进行偶然误差特性的检验。
A
C B
L1
L2
S。