《时间序列分析》PPT课件
合集下载
时间序列分析第一章 时间序列 ppt课件
当 0 时,称为零均值白噪声; 当 0,2 1称为标准白噪声。
31
例2.3 Poisson过程和Poisson白噪声
如果连续时的随机过程满足 (1) N(0) 0 ,且对任何的t>s≧0和非负整数k,
P ( N ( t ) N ( s ) k ) (( t s ) ) k e x p [ ( t s ) ] ,其 中 是 正 数 k !
n X1,X2,
观测样本:随机序列各随机变量的观测样本。 个有序观
测值 x1,x2,x3 xn
一次实现或一条轨道:时间序列的一组实际观测。 时间序列分析的任务:数学建模,解释、控制或预报。
5
二.时间序列的分解
X t T t S t R t,t 1 ,2 ,
趋势项{T t } ,季节项{ S t } ,随机项{ R t } 注:1.单周期季节项:S(ts)S(t), t 只需要 S1,S2, SS
由季节项和随机项组成, 季节项估计 可由该数据的每个季节平均而得.
{
S
t
}
3. 随机项估计即为
方法一:分段趋势法
1 趋势项(年平均)
8
减去趋势项后,所得数据{Xt Tˆt}
9
2、季节项 {Sˆt }
10
3.随机项的估计 R ˆt x t T ˆt S ˆt,t 1 ,2 , ,2.4
11
方法二:回归直线法
(2){N(t)}有独立增量性:对任何n>1和 0 t0 t1 tn 随机变量 N ( tj) N ( tj 1 ) ,j 1 ,2 ,3 , n
相互独立,则称{N(t)}是一个强度为λ的Poisson过程。 数学期望和方差分别为
E [N ( t) ]t,v a r (N ( t) )t
31
例2.3 Poisson过程和Poisson白噪声
如果连续时的随机过程满足 (1) N(0) 0 ,且对任何的t>s≧0和非负整数k,
P ( N ( t ) N ( s ) k ) (( t s ) ) k e x p [ ( t s ) ] ,其 中 是 正 数 k !
n X1,X2,
观测样本:随机序列各随机变量的观测样本。 个有序观
测值 x1,x2,x3 xn
一次实现或一条轨道:时间序列的一组实际观测。 时间序列分析的任务:数学建模,解释、控制或预报。
5
二.时间序列的分解
X t T t S t R t,t 1 ,2 ,
趋势项{T t } ,季节项{ S t } ,随机项{ R t } 注:1.单周期季节项:S(ts)S(t), t 只需要 S1,S2, SS
由季节项和随机项组成, 季节项估计 可由该数据的每个季节平均而得.
{
S
t
}
3. 随机项估计即为
方法一:分段趋势法
1 趋势项(年平均)
8
减去趋势项后,所得数据{Xt Tˆt}
9
2、季节项 {Sˆt }
10
3.随机项的估计 R ˆt x t T ˆt S ˆt,t 1 ,2 , ,2.4
11
方法二:回归直线法
(2){N(t)}有独立增量性:对任何n>1和 0 t0 t1 tn 随机变量 N ( tj) N ( tj 1 ) ,j 1 ,2 ,3 , n
相互独立,则称{N(t)}是一个强度为λ的Poisson过程。 数学期望和方差分别为
E [N ( t) ]t,v a r (N ( t) )t
时间序列分析ppt课件
时间序列分析ppt课 件
目录
• 时间序列分析简介 • 时间序列的基本概念 • 时间序列分析方法 • 时间序列分析案例 • 时间序列分析的未来发展
01 时间序列分析简介
时间序列的定义与特点
定义
时间序列是指按照时间顺序排列的一 系列观测值。
特点
时间序列具有动态性、趋势性和周期 性等特点,这些特点对时间序列分析 具有重要的影响。
时间序列的季节性
总结词
时间序列的季节性是指时间序列在固定周期内重复出现的模式,这种模式可能是由于季节性因素、周 期性事件或数据采集的频率所引起的。
详细描述
季节性是时间序列中的一个重要特征,许多时间序列都表现出季节性。例如,一个表示月度销售的序 列可能会在每个月份都出现类似的销售模式。在进行时间序列分析时,需要考虑季节性对模型的影响 ,以便更准确地预测未来的趋势和模式。
时间序列分析在金融领域的应用广泛,如股票价格预测 、风险评估等。未来将进一步探索时间序列分析时间序列分析可用于医学影像分析、疾病 预测等方面。未来将进一步拓展其在健康领域的应用范 围,为医疗保健提供有力支持。
谢谢聆听
时间序列分析的意义
01
预测未来趋势
通过对时间序列进行分析,可以了解数据的变化趋势, 从而预测未来的走势,为决策提供依据。
02
揭示内在规律
时间序列分析可以帮助我们揭示数据背后的内在规律和 机制,进一步理解事物的本质。
03
优化资源配置
通过对时间序列的预测和分析,可以更好地优化资源配 置,提高资源利用效率。
03 时间序列分析方法
图表分析法
总结词
通过图表直观展示时间序列数据,便 于观察数据变化趋势和异常点。
详细描述
目录
• 时间序列分析简介 • 时间序列的基本概念 • 时间序列分析方法 • 时间序列分析案例 • 时间序列分析的未来发展
01 时间序列分析简介
时间序列的定义与特点
定义
时间序列是指按照时间顺序排列的一 系列观测值。
特点
时间序列具有动态性、趋势性和周期 性等特点,这些特点对时间序列分析 具有重要的影响。
时间序列的季节性
总结词
时间序列的季节性是指时间序列在固定周期内重复出现的模式,这种模式可能是由于季节性因素、周 期性事件或数据采集的频率所引起的。
详细描述
季节性是时间序列中的一个重要特征,许多时间序列都表现出季节性。例如,一个表示月度销售的序 列可能会在每个月份都出现类似的销售模式。在进行时间序列分析时,需要考虑季节性对模型的影响 ,以便更准确地预测未来的趋势和模式。
时间序列分析在金融领域的应用广泛,如股票价格预测 、风险评估等。未来将进一步探索时间序列分析时间序列分析可用于医学影像分析、疾病 预测等方面。未来将进一步拓展其在健康领域的应用范 围,为医疗保健提供有力支持。
谢谢聆听
时间序列分析的意义
01
预测未来趋势
通过对时间序列进行分析,可以了解数据的变化趋势, 从而预测未来的走势,为决策提供依据。
02
揭示内在规律
时间序列分析可以帮助我们揭示数据背后的内在规律和 机制,进一步理解事物的本质。
03
优化资源配置
通过对时间序列的预测和分析,可以更好地优化资源配 置,提高资源利用效率。
03 时间序列分析方法
图表分析法
总结词
通过图表直观展示时间序列数据,便 于观察数据变化趋势和异常点。
详细描述
时间序列分析课件-07-ARIMA模型、疏系数模型、季节模型
• 假设序列如下
xt 0 1t at
• 考察一阶差分后序列和二阶差分序列 的平稳性与方差
比较
• 一阶差分
– 平稳
xt xt xt1
1 at at1 – 方差小
• 二阶差分(过差分)
– 平稳
2 xt xt xt1 at 2at1 at2
– 方差大
Var(xt ) Var(at at1)
• 参数估计
(1 0.44746 B 0.28132 B4 )(1 B)(1 B4 )xt t
模型检验
残差白噪声检验
参数显著性检验
延迟 阶数
2统 计量
P值
待估 t 统
参数 计量
P值
6
2.09 0.7191 1
12 10.99 0.3584 4
5.48 <0.0001 -3.41 <0.0001
2 2
Var(2xt ) Var(at 2at1 at2 )
6 2
ARIMA模型
• ARIMA模型结构 • ARIMA模型性质 • ARIMA模型建模 • ARIMA模型预测 • 疏系数模型 • 季节模型
ARIMA模型结构
• 使用场合
– 差分平稳序列拟合
• 模型结构
( B) d
E( t )
Tt 0 1 xtm l xtlm
• 简单/复杂季节模型 • X-11 • etc
• AR • MA • ARMA • WN • etc
3.考虑残差
获 得 观 察 值 序
Y
Y
平稳性 检验
白噪声 检验
分 析
结
N
束 N
列
差分 运算
拟合
ARMA 模型
xt 0 1t at
• 考察一阶差分后序列和二阶差分序列 的平稳性与方差
比较
• 一阶差分
– 平稳
xt xt xt1
1 at at1 – 方差小
• 二阶差分(过差分)
– 平稳
2 xt xt xt1 at 2at1 at2
– 方差大
Var(xt ) Var(at at1)
• 参数估计
(1 0.44746 B 0.28132 B4 )(1 B)(1 B4 )xt t
模型检验
残差白噪声检验
参数显著性检验
延迟 阶数
2统 计量
P值
待估 t 统
参数 计量
P值
6
2.09 0.7191 1
12 10.99 0.3584 4
5.48 <0.0001 -3.41 <0.0001
2 2
Var(2xt ) Var(at 2at1 at2 )
6 2
ARIMA模型
• ARIMA模型结构 • ARIMA模型性质 • ARIMA模型建模 • ARIMA模型预测 • 疏系数模型 • 季节模型
ARIMA模型结构
• 使用场合
– 差分平稳序列拟合
• 模型结构
( B) d
E( t )
Tt 0 1 xtm l xtlm
• 简单/复杂季节模型 • X-11 • etc
• AR • MA • ARMA • WN • etc
3.考虑残差
获 得 观 察 值 序
Y
Y
平稳性 检验
白噪声 检验
分 析
结
N
束 N
列
差分 运算
拟合
ARMA 模型
时间序列分析PPT授课课件
2.3 181 323.625 5.1 324 432.125 7.3 390 525.500
2.4 753 341.750 5.2 224 426.000 7.4 978 542.750
3.1 269 357.875 5.3 284 417.000 8.1 483
20232./23/23 214 374.875 5.4 822 427.000 8.2 320
2.乘法模型(时间序列的变化在每周期有与趋 势相同的比例时适用)
假定四种变动因素之间存在着交互作用 y=T×S × C × R
同样可简化为: y=T×S × R y=T×S
2022/3/23
5
第二节 长期趋势的测定
一.数学模型法
设时间序列的数据为(ti,yi)
设直线趋势方程为:
yt a bt
1.4 733 283.699 2.584 3.4 860 363.819 2.364
2.1 224 293.714 0.763 4.1 345 373.834 0.923
2.2 114 303.729 0.375 4.2 203 383.849 0.529
2.3 181 313.744 0.577 4.3 233 393.864 0.592
(2)求周期每一点的算术平均数(或几何平均数)得 到一个周期的季节因子
(3)对季节因子进行修正
若为季度数据,则S1+S2+S3+S4=4;
若为月度数据,则S1+S2+ …+S12=12。
2022/3/23
19
第三节 季节变动的测定
(资料见例1)
年.
季 度
销售 额Y
趋势值T
季节因子 Y/T
时间序列分析-课件PPT文档共183页
3、自协方差函数和自相关函数
r ( t , s ) E [ z t ( u t ) z s ( u s ) ] ( z t u t ) z s ( u s ) d t , s ( z t , F z s )
r(t,t)E(zt ut)2D(zt) r(s,s)E(zs us)2D(zs)
(1)随机序列是随机过程的一种,是将连续时 间的随机过程等间隔采样后得到的序列;
(2)随机序列也是随机变量的集合,只是与这 些随机变量联系的时间不是连续的、而是离 散的。
三、时间序列的分布、均值、协方差 函数
1、分布函数 (1)一维分布函数:随机序列中每个随机变量的分
布函数.
F1(z) ,F2(z) ,…, Ft-1(z) , Ft(z) (2)二维分布函数:随机序列中任意两个随机变量
平稳时间序列自协方差仅与时间隔有关,当 间隔为零时,自协方差应相等:
4、自协方差与自相关函数的性质 (1) rk=r-k ρk= ρ-k k、-k仅是时间先后 顺序上的差异,它们代表的间隔是相同的。
时间序列分析-课件
时分析:是一种根据动态数据揭示 系统动态结构和规律的统计方法。其基本思 想:根据系统的有限长度的运行记录(观察 数据),建立能够比较精确地反映序列中所 包含的动态依存关系的数学模型,并借以对 系统的未来进行预报(王振龙)
2、计量经济学中的建模方法和思想
使用的分析方法有:移动平均法、指数平滑法、 模型拟和法等;
(2)季节性周期变化 受季节更替等因素影响,序列依一固
定周期规则性的变化,又称商业循环。 采用的方法:季节指数; (3)循环变化
周期不固定的波动变化。
(4)随机性变化
由许多不确定因素引起的序列变化。它所使用的分析 方法就是我们要讲的时间序列分析。
时间序列分析教材(PPT 82页)
滞后算子的性质: 常数与滞后算子相乘等于常数。 滞后算子适用于分配律。
Lc c
(Li Lj )x t Lix t Ljx t x ti x t-j
•滞后算子适用于结合律。 LiLjxt Li jx t x t-i-j •滞后算子的零次方等于1。L0xt xt
•滞后算子的负整数次方意味着超前。Lixt xti
8
随机过程与时间序列的关系如下所示:
随机过程: {y1, y2, …, yT-1, yT,} 第1次观测:{y11, y21, …, yT-11, yT1} 第2次观测:{y12, y22, …, yT-12, yT2}
第n次观测:{y1n, y2n, …, yT-1n, yTn}
某河流一年的水位值,{y1, y2, …, yT-1, yT,},可以看作 一个随机过程。每一年的水位纪录则是一个时间序 列 =成2,了时{y)y2取11,的y值2水1,的…位样,纪y本T录-1空1,是y间T不1}。。相而同在的每。年{ y中21,同y2一2, 时…,刻y2(n,}如构t
, k 0 , 则称{xt}为白噪声过程。
3
4
DJ P Y
2
2 1
0
0
-1
-2 -2
white noise -3
20 40 60 80 100 120 140 160 180 200
-4 20 40 60 80 100 120 140 160 180 200
由白噪声过程产生的时间序列(nrnd)
日元对美元汇率的收益率序列
长期趋势分析、季节变动 分析、循环波动分析。
随机性时间序列分析方 法:ARIMA模型等。
一、时间序列分析的几个基本概念
1.随机过程 由随机变量组成的一个有序序列称为随机过程,记为Yt ,t T ,
时间序列分析教材(PPT 70张)
出现的,有很清楚的上升趋势。等间隔的峰值暗 示存在时间序列的周期成分。考虑到销售的季节 性,高峰典型地发生在假期期间,你不必对数据 中发现的年季节成分感到吃惊。 也有峰值似乎没有成为季节性模式的一部分,这 表示邻近的数据点显著偏离。这些点可能是异常 值,它可以而且应该由Expert Modeler解决。
返回
时间序列习题参考答案(17)
六、数据转换
返回
时间序列习题参考答案(18)
返回
时间序列习题参考答案(19)
七、预测1999年3月的男装销售量
返回
时间序列习题参考答案(20)
返回
时间序列习题参考答案(21)
预测表包含因变量序列男子服装销售量的预测值,其中两个预测因子为邮寄
商品目录的数量和用于订购的开放式电话线数量。该表还包含置信区间的上 (UCL)、下限(LCL)。 在影响销售量的邮寄商品目录的数量每月增加2000份,而电话数量还是按原 先变化规律的前提下,1999年3月时男装的销售量的预测值为21580.96。
返回
创建时间序列对话框
运行函数Lag时的结果说明
返回
序列图
Sequence Charts
返回
序列图过程
主对话框
返回
时间轴参考线对话框
返回
定义时间轴的格式对话框
返回
序列图应用实例输出
模型描述表
样品处理摘要
含有基准线的序列图
返回
建立时间序列模型
Create models
返回
时间序列建模提示框
返回
时间序列习题参考答案
1、 时间序列是指一个依时间顺序做成的观察资料的集合。时间序列分析过程中最常用的 方法是:指数平滑、自回归、综合移动平均及季节分解。 2、 先对数据进行必要的预处理和观察,直到它变成稳态后再用这些过程对其进行分析。 根据对数据建模前的预处理工作的先后顺序,将它分为三个步骤:首先,对有缺失值 的数据进行修补,其次将数据资料定义为相应的时间序列,最后对时间序列数据的平 稳性进行计算观察。 3、 修补缺失值可在Transform菜单的Replace Missing Values过程中进行。修补缺失值 的方法共有五种,它们分别是: ⑴、Series mean; ⑵、Mean of nearby points; ⑶、Median of nearby points; ⑷、Linear interpolation; ⑸、Linear trend at point。 4、 定义时间变量可在Data菜单的Define dates过程里实现。 5、 判断序列是否平稳可以看它的均数和方差是否不再随时间的变化而变化、自相关系数 是否只与时间间隔有关而与所处的时间无关。 6、在时间序列分析中,为检验时间序列的平稳性,经常要用一阶差分、二阶差分,有时为 选择一个合适的时间序列的模型还要对原时间序列数据进行对数转换或平方根转换等。 这就需要在已经建立的时间序列的数据库中,再建一个新的时间序列的变量。在SPSS 的Create Time Series中可根据现有的数字型时间序列变量的函数建立一个新的变量。
应用时间序列分析(第6版)PPTch4
平稳序列拟合与预测
04
本章内容
01
建模步骤
02
单位根检验
03
模型识别
04
参数估计
05
模型检验
06
模型优化
07
序列预测
建模步骤
平
计
稳
算
非
样
白
本
噪
相
声
关
序
系
列
数
模型 识别
参数 估计
模
序
N
模型
Y型
列
检验
优
预
化
测
本章内容
01
建模步骤
02
单位根检验
03
模型识别
04
参数估计
05
模型检验
06
模型优化
07
序列预测
• 假设序列的确定性部分可以由过去p期的历史数据描述,即序列可以表达为
xt 1xt1 +2 xt2 + +p xt p t
• 如果序列平稳,它必须满足所有非零特征根都在单位圆内。假如有一个单位根存在,不妨假
设 1 =1,则序列非平稳。 • 把 1 =1 代入特征方程,得到
11 2 p =0 1+2 + +p =1
• 该序列最高延迟2阶的ADF检验结果如下表所示
例2-5续检验结果解读
• 检验结果显示:类型二和类型三的多种模型的统计量的P值小于显著性水平
( =0.05)。
• 所以可以认为该序列显著平稳,且该序列的确定性部分可以用类型二和类 型三的多种模型结构进行拟合。
本章内容
01
建模步骤
02
单位根检验
03
04
本章内容
01
建模步骤
02
单位根检验
03
模型识别
04
参数估计
05
模型检验
06
模型优化
07
序列预测
建模步骤
平
计
稳
算
非
样
白
本
噪
相
声
关
序
系
列
数
模型 识别
参数 估计
模
序
N
模型
Y型
列
检验
优
预
化
测
本章内容
01
建模步骤
02
单位根检验
03
模型识别
04
参数估计
05
模型检验
06
模型优化
07
序列预测
• 假设序列的确定性部分可以由过去p期的历史数据描述,即序列可以表达为
xt 1xt1 +2 xt2 + +p xt p t
• 如果序列平稳,它必须满足所有非零特征根都在单位圆内。假如有一个单位根存在,不妨假
设 1 =1,则序列非平稳。 • 把 1 =1 代入特征方程,得到
11 2 p =0 1+2 + +p =1
• 该序列最高延迟2阶的ADF检验结果如下表所示
例2-5续检验结果解读
• 检验结果显示:类型二和类型三的多种模型的统计量的P值小于显著性水平
( =0.05)。
• 所以可以认为该序列显著平稳,且该序列的确定性部分可以用类型二和类 型三的多种模型结构进行拟合。
本章内容
01
建模步骤
02
单位根检验
03
时间序列分析稿PPT课件
统计学原理
二.时间序列的表现形式
▪ 时间序列的一般表现形式如下:
Yt f T , S,C, I
▪ 常见的简化模型包括两种:
▪ 加法模型:;
▪
Yt T S C I
▪ 乘法模型:
Yt T S C I
统计学原理
第二节 趋势变动的测定
统计学原理
趋势变动测定的两种思路
▪ 一.修匀方法 ▪ 指从数列本身出发,通过平均的方法,消除数
o 短周期:一般在三至五年之内的周期; o 中周期:十至二十年的周期; o 长周期:二十年以上的周期。
统计学原理
4.不规则变动
▪ Irregular Variations ▪ 由各种无法解释的因素而引起的经济波动,
一般不表现出明显的规律性。
▪ 不规则变动中,如果存在尚未被发现的系
统性因素,就会出现残差异常的情况。
统计学原理
1.长期趋势
▪ Secular Trend ▪ 指社会经济现象在较长的一段时间内所
表现出来的稳定的趋势性。
▪ 例如,一个国家的经济增长可能会出现
各种各样的波动,但在较长的时间内, 仍然是符合某种趋势性的。
统计学原理
观察中国1953-2009年经济增长速度
统计学原理
中国1953-2009年经济总量(1953年=100)
n
不难证明:
yˆt1 ayt (1 a) yˆt
也就是说,指数平滑法是一个递归算法,每一期算出本期的 预测值,再以a为权重,结合本期的真实值计算下一期的预测值。
统计学原理
二次指数平滑法
▪ 指数平滑法的应用基础是系列具有平稳
性,未考虑序列中存在的趋势。
▪ 若将趋势因素加入,则形成二次指数平
应用时间序列分析(第6版)PPTch6
. -174.38
-173.32
Q4
160.00 194.88 285.63 104.50 319.63 194.13 280.38 166.88 144.00
. 205.56
206.61
例6-1:季节效应的提取
澳大利亚政府季度消费支出每年都是 2季度最高,1季度最低。 消费支出从低到高排序是: 1季度<3季度<4季度<2季度 不同季节之间平均季节指数的差值就 是季节效应造成的差异大小。
y i1 j 1 km
k
yij
yj
i 1
k
, j 1, 2, , k
Sj
yj y
例6-2:季节效应提取
中国社会消费品零售总额序列具有上半年为淡 季,下半年为旺季,而且越到年底销售越旺的 特征。 不同季节之间季节指数的比值就是季节效应造 成的差异。比如1月份的季节指数为1.04,2 月份的季节指数为0.99,这说明由于季节的 原因,2月份的平均销售额通常只有1月份的 95%左右(0.99/1.04=0.95)。
年
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
yj
y
Sj yj y
Q1
. -709.13 -174.38 -476.38 -522.00 -685.75 -653.13 -429.88 -714.25 -490.75 -539.51
-538.45
• 因为简单中心移动平均具有这些良好的属性,所以,只要选择适当的移动平 均期数就能有效消除季节效应和随机波动的影响,有效提取序列的趋势信息。
例6-1
• 使用简单中心移动平均方法提取1981-1990年澳大利亚政府季度消费支出序列的趋 势效应。
-173.32
Q4
160.00 194.88 285.63 104.50 319.63 194.13 280.38 166.88 144.00
. 205.56
206.61
例6-1:季节效应的提取
澳大利亚政府季度消费支出每年都是 2季度最高,1季度最低。 消费支出从低到高排序是: 1季度<3季度<4季度<2季度 不同季节之间平均季节指数的差值就 是季节效应造成的差异大小。
y i1 j 1 km
k
yij
yj
i 1
k
, j 1, 2, , k
Sj
yj y
例6-2:季节效应提取
中国社会消费品零售总额序列具有上半年为淡 季,下半年为旺季,而且越到年底销售越旺的 特征。 不同季节之间季节指数的比值就是季节效应造 成的差异。比如1月份的季节指数为1.04,2 月份的季节指数为0.99,这说明由于季节的 原因,2月份的平均销售额通常只有1月份的 95%左右(0.99/1.04=0.95)。
年
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
yj
y
Sj yj y
Q1
. -709.13 -174.38 -476.38 -522.00 -685.75 -653.13 -429.88 -714.25 -490.75 -539.51
-538.45
• 因为简单中心移动平均具有这些良好的属性,所以,只要选择适当的移动平 均期数就能有效消除季节效应和随机波动的影响,有效提取序列的趋势信息。
例6-1
• 使用简单中心移动平均方法提取1981-1990年澳大利亚政府季度消费支出序列的趋 势效应。